가

가

2002 2

가

가

)

(

()

•••	• • • • • • • • • • • • • • • • • • • •	•••••	
ABSTRA	A CT	•••••	
1	•••••		1
2			3
2.1	가	• • • • • • • • • • • • • • • • • • • •	3
2.2			4
3	가	•••••	5
3.1	•••••	•••••	5
3.2	•••••	•••••	5
3.2.1			5
3.2.2		•••••	6
3.2.3	가	*************	7
3.3 AST	M	•••••	7
3.4	•••••		8
3.5		(FT - IR)	10
3.6	가	•••••	10
3.7		•••	12
3.8			
4			
4.1			17
4.2		••••	18
4.3	•••••	••••••	
5		가	20
5.1		•••••	20
5.1.1		•••••	20

20	5.1.2
22	5.2
25	5.3
31	6
33	

	3.1
가	3.2
가	3.3
	3.4
	3.5
	5.1
	5.2
	5.3
	5.4
	5.5
	5.6
	5.7
	•

< >

3	フ	2.1
4		2.2
8	ASTM	3.1
9		3.2
FT - IR11	-	3.3
Γ-IR11		3.4
14		3.5
		3.6
		3.7
(1)21		5.1
(2)21		5.2
22	19m m	5.3
23		5.4
29		5.5
29		5.6
30		5.7
30		5.8

Manufacture of Rejuvenators for Recycling Old Asphalts and Quality Evaluation of Recycled Asphalt concrete

Jun-Myung Jang

Department of Civil Engineering, Graduate School,

Pukyong National University

ABSTRACT

A recycling agent has been manufactured based on the analyses of the variation in the chemical composition of reclaimed asphalt binders and virgin asphalt binders. The chemical compositions of reclaimed asphalt binders extracted from aged reclaimed asphalt pavement have been analyzed by using the ASTM method and their compositions were compared to those of virgin asphalt binder AP-3. Reclaimed asphalt binders showed that the amount of asphaltenes was increased whereas the amounts of saturates, naphthene aromatics, and polar aromatics fractions were decreased. recycling agent using aromatics, its chemical composition is similar to the aromatics fraction in asphalt binders, has been produced to reduce the amount of asphaltenes in reclaimed asphalt binders. The evaluation of the recycling agents A and B produced in the study was performed in terms of ductility, rolling and ball softening point, and penetration at 25. Adding the recycling agent A-20% and B-15% by weight to the reclaimed asphalt binders, the physical properties of reclaimed asphalt binders can be recovered to the level of virgin asphalt binder AP-3. Recycled asphalt concrete specimens were made of reclaimed asphalt concrete, rejuvenator, and raw materials. Proportions of raw materials in the recycled asphalt concrete were 30, 50, 70, 100% by the total weight of mixtures. The quality evaluation was performed on the recycled mixtures by the Marshall test. The Marshall stability of the recycled mixtures was appeared to be much greater than the strength criterion specified in KS F 2349. In addition, asphalt content, voids, and flow value also meets the requirements in KS F 2349.

Keywords: Reclaimed asphalt pavement, Reclaimed asphalt binder, Rejuvenator, Penetration, Ductility, Rolling and ball softening point, Marshall test, Flow, Asphalt content.

. 1915 , 가 가 1970 .

.

10% 70%, 20% 50% ,
60%, 81%, 100% .

. , 2000

70%

,

(1992 12 8 4538) 2 12 , (1994 6 24

13915) 5 22 (94-1 , 94-1) 3 7

,

•

1995 가 8 12 (PSI : Present Serviceability Index)가 0.5 . 1995 () 가 18 27 10 13 가 (Cold Recycling), 가 (Hot Mix Recycling), 가 (Hot In-Place Recycling), (Cold In-Place 가 Recycling) (Hot Mix Recycling) . 가 . 가 가 가 가 가

가

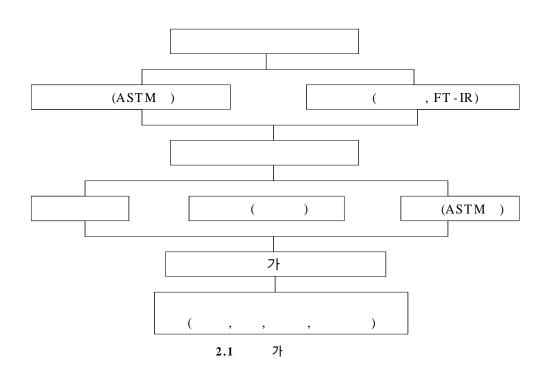
- 2 -

가

가

2.1 가

가

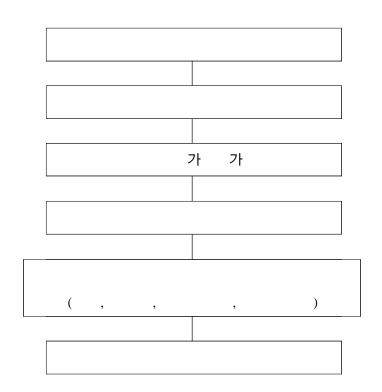

ASTM D 4124

.

 プ
 プ

 (25), , , (60)
 プ

 . 2.1 プ



2.2

J

. , , , KS F 2349

. 2.2

2.2

3.1 10 (AP-3)85 100 AP-3 . , (,), n-Heptane (Duksan,), Toluene (Duksan,), Methanol (Duksan,) , WhatmanAlumina (Sigma Chemical Co., Type No.2 , Column F-20, 80 200 mesh) . 가 3.2 3.2.1 가 ASTM D 4124 가 . ASTM (Asphaltenes), (Saturates Fraction), -(Naphthene Aromatics Fraction) (Polar Aromatics Fraction) n-Heptane 가 n-Heptane

가

3

- 5 -

가

 $n\hbox{-}Heptane \hspace{1.5cm} Toluene$

•

Tolune

. $3 \ 5g$ 1g 100mL n-Hepatane 80 30 24

, (Rotary

Evaporator) 50mL 350 3 F-20 Alumina

 3.1×100 cm $3.1 5 \pm 1$ mL/min

가 Fraction

.

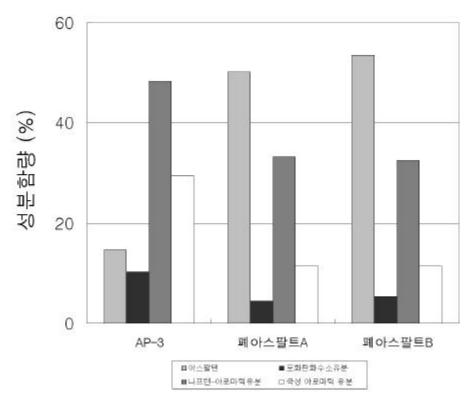
3.1

Column Feed Volume	Fractions Received on Tared Containers		
Eluant Solvent	mL	Eluate Fraction	mL
n-Heptane Toluene	200 100	Saturates	300
Tolue ne Methanol/ Tolue ne (50/50)	300 300	Naphthenic Aromatics	600
Trichloroethylene Column hold-up	600	Polar Aromatics	600

3.2.2

2가 1kg , 100 1 가 . , 1L 가 . 10 , 가

. 가 , . .


가 가 3.2.3 가 ASTM D 4552-92 가 가 30% 70% 가 ASTM D 4552-92 3.3 ASTM AP-3 (A, B) , 가 3.1 . A B 가 , 3.1 AP-3가 14.6% A가 50.1%, B가 53.4% AP-3 3 AP-37 10.2%, A 4.4%, B 5.36% フト 5% AP-3 48.2%, A 33.1%, B 32.5% AP-3가 15% . AP-3가 29.4% A가 11.43%, B가 11.44% 18% 가 . . 가

- 7 -

가 .

AP-3

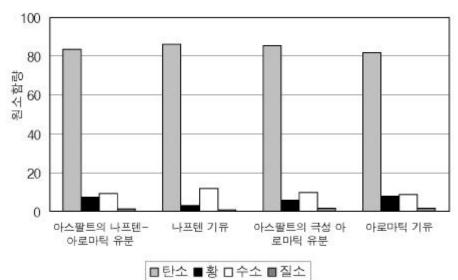
가

3.1. ASTM

3 .4

. -

. 가


가 가

가

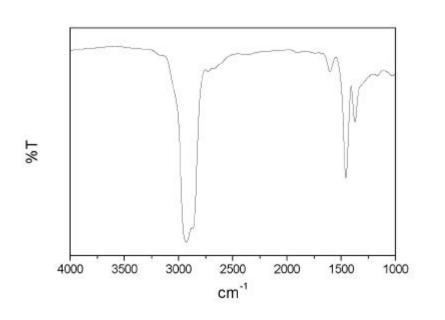
가 가

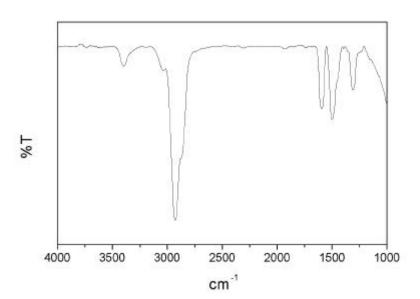
3.2

-

지구 ■워 미구구 ■ 듣고

3.2


3.2 - , 가 83.7% 86.3% 가 , , , ,


가 85.4% 82.9% 가 9.9% 8.9%, 5.7% 7.8%, 2.0% 2.0% 가 가 가 3.5 (FT-IR)3.3 3.4 -(Fourier Transform) 2600 3000 cm ^{- 1} peak가 C-C C-H , 1600 cm ^{- 1} peak C=C , 3100 cm⁻¹ peak C=C C-H . 3.3 3.4 peak 가 가 가 3.6 가 가 가 가 A, 가 B 3.2 (AP-3 80 1),

9.1% 11.8%, 7.3% 3.2%, 1.3% 0.9%

- 10 -

3.3

3.2 가

	가 (A)	가 (B)
(AP-3)	14%	0
	8%	12%
	56%	50%
	22%	38%

3.3 가

<u>3.3</u> 가						
(Specific Gravit	y) @4	0.8709	0.9217	1.0189	KS M 2002	
(Flash Point) (COC	254	182	254	KS M 2012	
	40 cSt	75.06	57.02	878.7	KS M	
(Kinematic Viscosity	100 cSt	9.330	6.314	22.86	2014	
(Viscosity In	100	29	-73	KS M 2014		
(Poir Point)	- 15.0	-32.5	+ 7.5	KS M 2016		
(Aniline Poin	t)	120.3	77.0	3 1.0	KS M 2053	
(Refractive Ind	ex) D ²⁰ n	1.4772	1.4918	1.5728	KS M 0005	
		0.8012	0.8726	0.9763	KS M 2040	
(Refractive	1.0434	1.0325	1.0649	KS M 2040		
	Ca	0.0	19.0	42.8		
% (Hydrocarbon Type)	Cn	33.1	34.2	41.1	KS M 2040	
(Hydrocarbon Type)	Ср	66.9	46.8	16.1	2040	

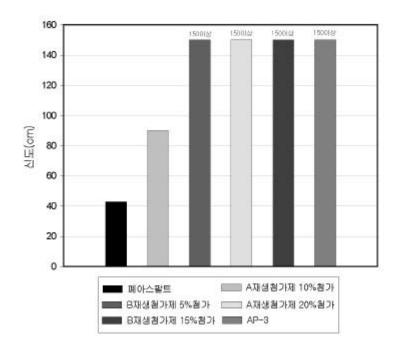
3.7

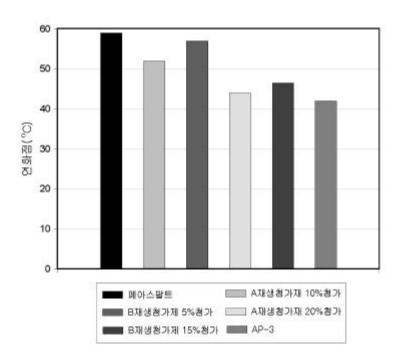
3.4 7 (A) 7 7 (A) 7 7 (A)

3.4

	1	2	3	4
	50.1%	29.7%	19.4%	14.6%
	4 .4 %	8 .4 %	9.7%	10.2%
-	33.1%	39.5%	43.4%	48.2%
	11.4%	22.6%	26.3%	29.4%

1: 2: 7\ (10%)+ 3: 7\ (20%) + 4: AP-3


가 (A) 20% 가 가 AP-3
. 가 (B)
. , 5%, 15% 가 ,
, , 가 (A) .


3.8

가 (A, B)가 가 . 가 (A,

```
B)
         3.5 3.7 3.5
          AP-3
         가 (A) 10%, 20%
                            가 (B)
5%, 15% 가
                가
 3.5 가 (A, B)
                가 17
                             가 (A)
10% 가 가 31 43, 20% 가 가 31 80 20%
가 가 AP-3 , 가 (B) 5% 가
 가 68 15% 가 AP-3
3.6 3.7 25
3.6 25
                            43cm ,
가 (A) 10% 가 98cm, 20% 가 150cm , 가
(B) 5% 15% 71 AD 2
        100
        80
      시대(dmm)
        60
        40
            ■■ 테아스팔트 ■■ A재생형가제 10%참가
            ■ B재생참가제 5%참가 □ A재생참가제 20%참가
             ■ 8채생점가제 15%참가 ■■■ AP-3
```

J .J

.

3.5

		A 10%	가 가	A 20%	가 가	AP-3
		3,0	008	1,2	51	
	24,000	В	가	В	가	800 1 200
(cSt)	34,900	5%	가	15%	가	800-1,200
		4,2	228	1,9	52	

4.1

KS F

2354 . . .

800 1,200g .

110±5°C 가 .

 (W_1)

1 3,600 .

200m1 3 .

2,000ml 100ml 500 600°C 7

 (W_2) .

 (W_3) .

(4.1) (A) .

 $A (\%) = \frac{W_2 + W_3}{W_1} \times 100$ (4.1)

: : 3.5 · 5.5%

· : 5 7%

KS F 2502

•

4.2

가 ,

가 .

•

 $(RAP) (4.1) (A_1)$

 (A_1) 가 (A_2) 가

 (W_1) (A_3) .

 $7 + A_{1} + A_{2} + A_{3} \qquad .$

(X) (4.2) .

 $X(\%) = \frac{A_1 + A_2 + A_3}{RAP - A_1 + W_1} \times 100$ (4.2)

4 .3

(Bruce Marshall)

(U.S. Corps of Engineer)

가

(ASTM D 1559, KS F 2337)

1) 101.66mm, 63.5mm 가 60°C 60 30 30 가 , 가 가 2) $50 \pm 5 \text{mm/min}$. 가 가 가 (Flow) 가 가 . KS F 2337

- 19 -

5 가

5.1

5.1.1

5

5.1 .

3.2 3.5%

5.1

	1	2	3	4	5
(%)	3.28	3 .4 1	3.43	3.40	3.29

5.1.2

4 KS F 2354

.

19mm , KS F 2349 19mm

5.1 5.2 ,

.

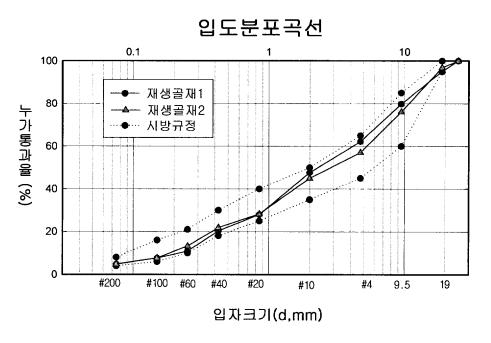


그림 5.1 재생골재의 입도곡선(1)

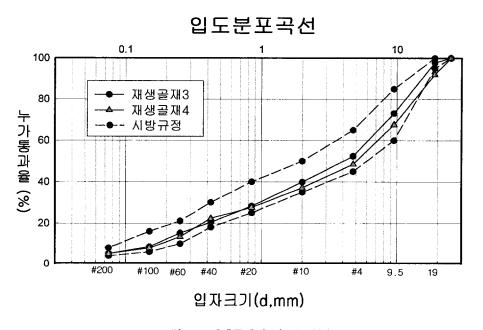


그림 5.2 재생골재의 입도곡선(2)

5.2 재생아스팔트 콘크리트혼합물의 입도 결정

재생아스콘 공시체 제작을 위해서 폐아스콘에 신규골재를 첨가하여, 19mm밀입도 표층시방기준입도를 만족하도록 배합설계 하였다. 각 시료는 전체 혼합물의 중량비로 신재아스콘을 100, 70, 50, 30, 0%로 혼합하였다. 그림 5.3은 표층시방입도의 상한·하한·중간 입도로서 본 연구에서는 신재 골재 혼합입도 기준에서 중간입도로 결정하였다.

폐아스콘에 신규골재를 첨가할 경우 19mm밀입도 표층시방규정입도를 만족하는지 검토를 위해 신재골재와 재생골재를 혼합 후 입도분포를 표층시방입도와 검토하였다. 그림 5.4는 신재골재의 혼합비율이 0, 30, 50, 70, 100% 일 때의 입도분포곡선으로 모두 19mm 밀입도 표층시방입도를 만족하는 것으로 나타났다. 표 5.2~표 5.4는 신규골재 혼합비가 각각 70, 50, 30%인 재생 아스팔트 콘크리트 혼합물의 합성입도를 나타낸 것이다.

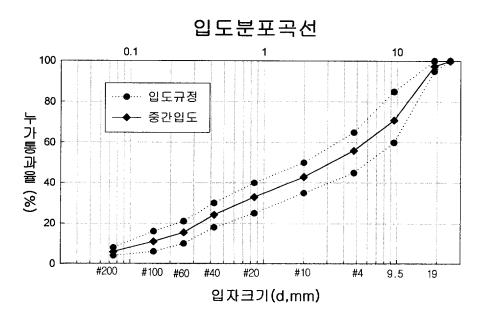
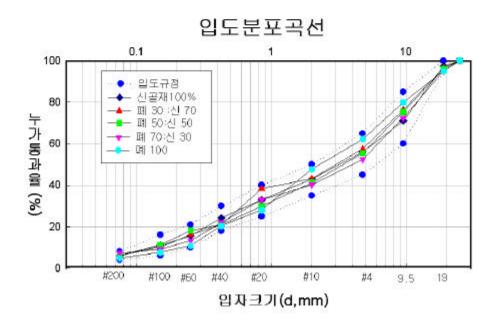



그림 5.3 19mm 밀입도 시방규정 입도

· • •

5.2 70%

	(19 m m)								
		19 m m	13 m m	8 m m					
(%)	30	25.5	7.6	12.6	15.6	9.7	100		
(m m)									
25	100	100	100	100	100	100	100	100	100
19	95.0	100	100	100	100	100	96.5	100	95
9.52	77.9	86.1	75.15	100	100	100	76.4	8.5	60
4.75	60.2	19.45	22.1	77.59	98.4	100	57.5	65	4 5
2.36	47.7	1.64	2.75	13.2	87.8	100	43.2	50	35
1.18	27.1	0	0	5.3	81.5	100	38.3	40	25
0.524	18.7	0	0	3 .9 1	46.2	100	21.0	30	18
0.3	10.7	0	0	0	27.8	97	16.2	2 1	10
0.15	6.8	0	0	0	4 .4	88	10.2	16	6
0.075	4.1	0	0	0	1.2	6 1	6.2	8	4

5.3 50%

	(19 m m))
		19 m m	13 m m	8 m m					
(%)	50	18.5	8.5	7.5	10.8	4.7	100		
(m m)									
2.5	100	100	100	100	100	100	100	100	100
19	95.0	100	100	100	100	100	96.0	100	95
9.52	77.9	86.1	75.15	100	100	100	75.3	85	60
4.75	60.2	19.45	22.1	77.59	98.4	100	55.5	65	4 5
2.36	47.7	1.64	2.75	13.2	87.8	100	41.2	50	35
1.18	27.1	0	0	5.3	81.5	100	30.0	40	25
0.524	18.7	0	0	3.91	46.2	100	21.0	30	18
0.3	10.7	0	0	0	27.8	97	18.2	2 1	10
0.15	6.8	0	0	0	4 .4	88	11.2	16	6
0.075	4.1	0	0	0	1.2	6 1	6.2	8	4

5.4 30%

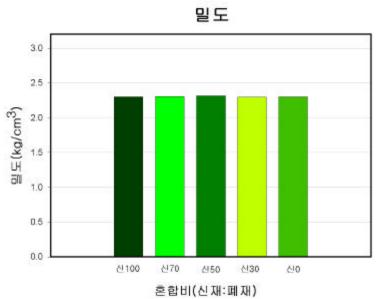
	(19 m m))	
		19 m m	13 m m	8 m m					
(%)	70	11.0	7.5	5.2	4.0	2.7	100		
(mm)									
2.5	100	100	100	100	100	100	100	100	100
19	95.0	100	100	100	100	100	95.0	100	95
9.52	77.9	86.1	75.15	100	100	100	72.5	85	60
4.75	60.2	19.45	22.1	77.59	98.4	100	52.5	65	4 5
2.36	47.7	1.64	2.75	13.2	87.8	100	40.2	50	35
1.18	27.1	0	0	5.3	81.5	100	33.0	40	25
0.524	18.7	0	0	3 .9 1	46.2	100	22.0	30	18
0.3	10.7	0	0	0	27.8	97	13.2	2 1	10
0.15	6.8	0	0	0	4 .4	88	9.2	16	6
0.075	4.1	0	0	0	1.2	6 1	7.2	8	4

5.3

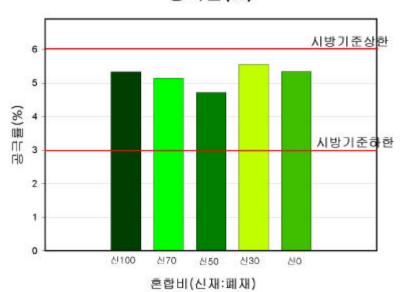
가 가 KS F 2349 100, 70, 50, 30, 0% 가 (A) 20% 가 KS F 2337 5.5% 가 100, 70, 50, 30, 0%가 5.7 . 5.5 5.7 5.5 2.2 7 2.38 3 6% 가 20 40 37 43 KS F 2349 500kg 1000kg 가 100, 70, 50, 30, 0% 5.5 5.8 5.5 5.8 가 가

- 25 -

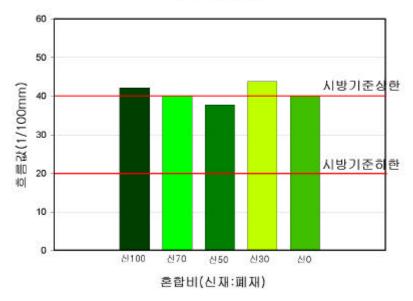
5.5 (1)


		AP	(g/cm ³)	%		(kg)
		(%)		70	(1/100mm)	(85)
		5 7	-	3 6	20 40	500kg
	1		2.315	4.9	48	1418.8
	2		2.287	6.0	41	1230.9
	3		2.309	5.1	44	1368.3
	4		2.302	5.4	45	1363.5
	5		2.296	5.7	44	1368.4
	6		2.305	5.3	43	1176.6
	7		2.316	4.8	41	1389.3
	8		2.314	4.9	42	1207.1
(1000/)	9	5.5%	2.284	6.1	36	1369.4
(100%)	10		2.354	3.3	48	1203.4
	11		2.297	5.6	49	1234.0
	12		2.279	6.4	37	1395.1
	13		2.318	4.8	24	1376.2
	14		2.279	6.4	49	1382.0
			2.303	5.3	42.2	1320.2
			0.019	0.78	6.4	83.8
	1		2.290	5.9	34	1098.3
	2	1	2.293	5.8	39	1159.0
	3			5.0	57	1137.0
	J		2.309	5.1	35	1176.0
	4					
			2.309	5.1	35	1176.0
	4	-	2.309 2.287	5.1 6.0	35 36	1176.0 1159.2
	4 5		2.309 2.287 2.306	5.1 6.0 5.3	35 36 34	1176.0 1159.2 1198.5
	4 5 6		2.309 2.287 2.306 2.301	5.1 6.0 5.3 5.5	35 36 34 35	1176.0 1159.2 1198.5 1139.1
(100%)	4 5 6 7	5.5%	2.309 2.287 2.306 2.301 2.297	5.1 6.0 5.3 5.5 5.6	35 36 34 35 38	1176.0 1159.2 1198.5 1139.1 1176.7
(100%)	4 5 6 7 8	5.5%	2.309 2.287 2.306 2.301 2.297 2.298	5.1 6.0 5.3 5.5 5.6 5.6	35 36 34 35 38 34	1176.0 1159.2 1198.5 1139.1 1176.7 1188.0
(100%)	4 5 6 7 8 9	5.5%	2.309 2.287 2.306 2.301 2.297 2.298 2.342	5.1 6.0 5.3 5.5 5.6 5.6 3.8	35 36 34 35 38 34 58	1176.0 1159.2 1198.5 1139.1 1176.7 1188.0 1237.2
(100%)	4 5 6 7 8 9	5.5%	2.309 2.287 2.306 2.301 2.297 2.298 2.342 2.312	5.1 6.0 5.3 5.5 5.6 5.6 3.8 5.0	35 36 34 35 38 34 58 52	1176.0 1159.2 1198.5 1139.1 1176.7 1188.0 1237.2 1149.0
(100%)	4 5 6 7 8 9 10	5.5%	2.309 2.287 2.306 2.301 2.297 2.298 2.342 2.312 2.298	5.1 6.0 5.3 5.5 5.6 5.6 3.8 5.0 5.6	35 36 34 35 38 34 58 52 49	1176.0 1159.2 1198.5 1139.1 1176.7 1188.0 1237.2 1149.0 1268.3
(100%)	4 5 6 7 8 9 10 11	5.5%	2.309 2.287 2.306 2.301 2.297 2.298 2.342 2.312 2.298 2.297	5.1 6.0 5.3 5.5 5.6 5.6 3.8 5.0 5.6 5.6	35 36 34 35 38 34 58 52 49	1176.0 1159.2 1198.5 1139.1 1176.7 1188.0 1237.2 1149.0 1268.3 1124.2
(100%)	4 5 6 7 8 9 10 11 12 13	5.5%	2.309 2.287 2.306 2.301 2.297 2.298 2.342 2.312 2.298 2.297 2.302	5.1 6.0 5.3 5.5 5.6 5.6 3.8 5.0 5.6 5.6 5.6	35 36 34 35 38 34 58 52 49 37 43	1176.0 1159.2 1198.5 1139.1 1176.7 1188.0 1237.2 1149.0 1268.3 1124.2 1279.3

5.6 (2)


		AP (%)	(g/cm ³)	%	(1/100mm)	(kg)
		5 7	-	3 6	20 40	500kg
	1		2.304	5.3	40	1409.1
	2		2.306	5.3	24	1445.8
	3		2.310	5.1	31	1436.5
	4		2.370	2.6	46	1523.2
	5		2.297	5.6	43	1456.9
	6		2.304	5.3	40	1299.2
:	7		2.309	5.1	41	1327.5
(70:30)	8	5.5%	2.309	5.1	43	1272.7
(70.30)	9		2.312	5.0	51	1366.4
	10		2.286	6.0	43	1108.0
	11		2.299	5.5	41	1111.0
	12		2.297	5.6	40	1026.0
			2.308	5.1	40	1315.1
			0.019	0.81	6.6	151.9
	1	5.5%	2.320	4.7	32	1321.6
	2		2.306	5.3	40	1262.5
	3		2.304	5.3	39	1333.6
	4		2.301	5.5	34	1192.4
	5		2.306	5.3	36	1186.3
	6		2.284	6.2	38	1198.0
:	7		2.302	5.4	35	1254.4
(50.50)	8		2.304	5.3	34	1316.7
(50:50)	9		2.305	5.5	40	1303.2
	10		2.386	2.0	42	1369.0
	11		2.370	2.6	41	1494.0
	12		2.340	3.9	42	1097.0
			2.319	4.7	37	1277.3
			0.029	1.2	3.2	99.1

5.7	(3)


		AP (%)	(g/cm ³)	%	(1/100mm)	(kg)
		5 7	-	3 6	20 40	500kg
	1		2.312	5.0	43	1305.9
	2		2.309	5.1	41	1227.9
	3	5.5%	2.306	5.3	40	1154.6
	4		2.297	5.6	46	1176.0
	5		2.306	5.3	43	1106.2
	6		2.289	6.0	44	1159.1
	7		2.309	5.1	40	1079.6
	8		2.307	5.6	40	1195.2
	9		2.308	5.2	46	1197.6
(30:70)	10		2.298	5.7	52	1198.2
	11		2.283	6.2	39	1126.0
	12		2.272	6.7	37	1366.1
	13		2.296	5.7	55	1242.5
	14		2.299	5.5	43	1089.0
	15		2.289	6.0	49	1144.6
			2.298	5.5	43	1184.4
			0.01	0.45	4.8	75.9

공극률(%)

흐름값시험

안정도시험

٠..

가 가 가 (A, B) 가 1) 가 sulfoxide(-S=O) carboxyl(-C=O) 가 가 가 3 4 가 가 . 가 가 가 가 ASTM D 4124 가 , 가 가 (A, B) . 가 (A, B) 가 가 A 20% 가 , 가 B 15% 가 (AP-3)

가

```
(1990.5), "
       (1997), "
       (1997.7), "
                   (42), "
                                    가
           ," 1996.
       (2000), "
       (1985), "
                              가
                                                                  ," 1995.
         (1996), "
             (1997), "
                     • 가
                                                    ," KS F 2349.
                     가
                                   ," KS F 2502.
                                                                        ," KS
F 2337.
                                                                ," KS F 2354.
```

- Dale, Decker, "Hot Mix Recycling: State-of-the-Practice," presented at 5 the symposium session of the 1997 annual meeting of the AAPT, Salt Lake City, Utah, March 17-19, 1997.
- Joe, W. Button., Cindy K. Estakhri. and Dallas, N. Little(1995), "Performance and Cost of Selected Hot In-Place Recycling Project," Transportation Research Record, Vol. 1507, pp. 51-66.
- Kandhal, P. S. "Recycling of Asphalt Pavements An Overview," Presented at the symposium session of the 1997 annual meeting of the AAPT, Salt

- Lake City, Utah, March 17-19, 1997.
- Martin, K. S., Davison, R. R., Glover, C. J. and Bullin, J. A.(1990) "Asphalt Aging in Texas Roads and Test Sections," Transportation Research Record, 1269, pp.9-19.
- Roverts, F. L., Kandhal P. S., Brown, E. R., Lee, D. Y. and Kennedy, T. W.(1991), "Hot Mix Asphalt Materials, Mixture Design and Construction," NAPA Education Foundation.
- ASTM D 4124, "Standard Test Methods for Separation of Asphalt into Four Fractions".
- ASTM D 4552-92, "Standard Practice for Classifying Hot-Mix Recycling Agent".