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Abstract

In this paper, we propose a novel deep learning framework for autonomous 

clinical diagnosis by dealing with the practical challenges in training with poor 

clinical dataset. The small dataset size, partially labeled data, and inconsistent 

labels between annotators with varying expertise make it hard to train the model to 

learn the effective diagnosis method in frequently and drastically updated clinical 

dataset. Motivated by such difficulties, the proposed framework introduces the 

weighted combination of inconsistent labels by taking into account the levels of 

annotators' expertise and adapt meta-learning approach to obtain generalized model 

parameters for the quick adaptation to a new task. The performance of the proposed 

framework is evaluated with posterior pelvic tilt detection in a squat motion, which 

is one of the representative rehabilitation activities. Our experimental results show 

that the proposed approach has a strong generalization ability and outperforms the 

conventional learning-based approaches, including transfer learning, in terms of the 

convergence speed and the converged mean squared error.
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.� Introduction

Physiotherapy is an important treatment to assist in the recovery of many 

injuries, disabilities, and health conditions. Although proper physiotherapy 

treatment conducted under the supervision of medical specialists is beneficial 

for the speedy and successful recovery, it entails a large cost and the 

inconvenience of visiting medical facility. Furthermore, recent outbreak of 

COVID-19 makes it harder for patients to get proper treatment from medical 

facilities. For these reasons, the demand for rehabilitation monitoring systems 

is constantly increasing with the need of in-home physiotherapy [1-2].

The autonomous diagnosis of medical disorder is considered as a key 

technology for the monitoring system. There has been great improvement in 

the autonomous diagnosis in virtue of recent advances in machine learning 

algorithms and hardware [3]. Although the previous work on the artificial 

intelligence (AI)-based diagnosis have successfully shown great potential for 

deep learning, it is not easy to achieve a high accuracy with deep learning 

approaches in practical systems with poor training dataset. In the field of 

medical diagnosis, it is hard to establish a large, high quality dataset due to 

expensive annotation [4], privacy [5], and scarcity of diseases [6]. Hence, 

dealing with the problems caused by poor dataset is essential to improve the 
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deep learning-based diagnosis performance in practical scenarios.

Recently, crowdsourcing annotation via Amazon Mechanical Turk and 

Crowdflower has received attention as an effective solution to alleviate the 

annotation problem [7]. However, the crowdsourcing cannot clearly solve the 

annotation problem in the clinical diagnosis by introducing inconsistent 

labeling problem. This is because due to the nature of symptom-based 

diagnosis, the results of clinical diagnosis are relatively more dependent on 

the annotator's expertise and personal experience compared to other fields.

With the limited number of data sources and annotators with expertise, the 

clinical dataset consists of a small number of data samples and can be 

drastically updated by the participation of new annotators and the additional 

data sources. Such frequent and drastic updates give rise to significant 

computational cost for re-training the deep neural network (DNN) model. For 

the computational cost reduction and the incremental performance 

improvement with the dataset update, the quick adaptation of DNN model to 

the updated dataset is required.

In order to cope with the partially and inconsistently labeled data, and 

dynamic dataset update, we propose a novel meta-learning based 

physiotherapy diagnostic method that takes account of the annotator's 

expertise by introducing the weight on labels. Although there have been some 
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previous works on learning from multiple annotators with varying expertise

[8-9], they have not provide the solution to deal with inconsistent and 

duplicated labels for the same data from multiple annotators. We apply the 

proposed method to the evaluation of squat exercise, which is one of the 

representative rehabilitation activities that help prevent injuries, strengthens 

core muscles, and improves balance and posture [10]. Specifically, based on 

inertial measurement unit (IMU) sensor data, the proposed method learns to 

detect the timing of posterior pelvic tilt, which is a critical factor for 

diagnosing low-back problem and evaluating athletic performance [11], in the 

descent phase of squatting. Experiment results show that the proposed 

physiotherapy diagnostic method outperforms the conventional learning-

based approaches, including transfer learning, in terms of not only the 

convergence speed of DNN model but also the timing gap with ground-truth.

The contributions of our work can be summarized as follows:

1. To the best of our knowledge, this is an initial work that tackles the 

practical challenges of deep learning for autonomous clinical 

diagnosis, such as a large variation in labeling pattern of annotators 

with varying expertise, partially labeled data samples, small dataset 

size, and dynamic dataset update.
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2. We propose a novel deep learning framework for mitigating the 

problems caused by the partially and inconsistently labeled data, and 

dynamic dataset update in clinical diagnosis.

3. We develop IMU-based wearable devices for sensing body 

movement. Based on the collected sensor data, we create a new squat 

dataset with the data annotation of physiatrists.

4. The performance of the proposed methodology is evaluated with 

posterior pelvic tilt detection from the constructed squat dataset.

Experiment results show that the proposed method can achieve better 

convergence speed and mean squared error (MSE) than the transfer 

learning-based approach developed for shortening the training time 

and mitigating the problems caused by small dataset size [12].
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� . Problem Description

In a squat, the timing of posterior pelvic tilt provides useful information 

for diagnosing low-back problem and evaluating athletic performance. For 

autonomous disorder diagnosis and athletic performance evaluation, we 

consider the problem of detecting posterior pelvic tilt timing in the IMU 

sensor data of the squat movement.

Each squat data is constructed by �-dimensional sensing data of � IMU 

sensors for �  sampling periods. The � -th squat data is denoted as �� ∈

ℝ� ×�×� . Since the annotators are assumed to have different levels of 

experience and expertise in diagnosis, the annotation results for the same data 

can be different between annotators. To deal with such inconsistency, we 

combine the annotation results after assigning weights to annotators 

according to the level of annotator’s experience and expertise. Specifically, 

the ground truth label for data �� is defined as

��

= �
��

∑ ��� ∈�
� ∈�

��,� , (1)
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where �, ��, and ��,� denote the set of all annotators, the weight assigned 

to annotator �, and the annotation result of annotator � for data �� ,

respectively. However, in practical scenarios, it is hard for each annotator to 

participate in the annotation of all data samples due to the limited 

processing capability of human. For this reason, only a subset �� ⊂ � of 

annotators annotate data �� , and the corresponding combined label is 

represented by

���

= �
��

∑ ��� ∈��� ∈��

��,� . (2)

Hence, the combined label (2) is actually available for training the model 

instead of (1). Different annotator set of data leads to the reliability variation 

of the combined label ��� , and it makes hard to learn the generalized rule for 

detecting posterior pelvic tilt with conventional deep learning technique.

Furthermore, due to the nature of clinical data, the size of clinical dataset 

is generally small. For this reason, the dataset can be drastically updated by 

the participation of new annotators and the additional data sources.
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Specifically, the dataset � = ����, ���,� ∶ � ∈ �����
���

�
  can be updated 

by �� with more data samples �� ≥ � and ��
� ⊃ ��. In addition, with the 

new annotators and re-arrangement of weights, the annotator weights Λ =

���, ��, … , �|�|�  can be updated by Λ� = ���
� , ��

� , … , �����
� �  for �� ⊃ � .

Such drastic updates require additional training process, and it causes 

significant computational cost and time for re-training the DNN model in the 

conventional deep learning algorithm.

Eventually, the objective of our work is to learn initial model parameters 

�  that can be quickly adapted to the updates in ��  and Λ�  so as to well 

approximate the updated ground truth

��
� ≈ �� (��) for ��� , ���,� ∶ � ∈ ��

��� ∈ �� ,     (3)

where ��
� denotes the ground truth label (1) computed with the updated 

annotator set ��, and ��(∙) denotes DNN model with parameters �.
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. Ⅲ Quick Model Adaptation with Meta-Learning-based 

Approach

Meta-learning, also known as learning to learn, aims to learn a general 

purpose learning algorithm that can generalize across multiple tasks and

enables new task to be learned quickly. For the quick adaptation to the updates 

�� and Λ�, we adapt the model-agnostic meta-learning (MAML) approach, 

which learns an initialization of model parameters so that a new task can be 

learned with a few gradient update steps [13]. In other words, the initial model 

parameters � that can quickly adapt to a new task �� = (��, Λ�) should be 

learned from the dataset �.

First of all, we generate new tasks �(�)  by randomly trimming data 

samples and annotations and randomly re-arranging annotator weights of the 

original task � = (�, Λ) as follows

�(�) = ��(�), Λ(�)�
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= �����, ���,� ∶ �

∈ ��
(�)���

���

�(�)

, ���
(�)

, ��
(�)

, … , �
��(�)�

(�) ��, (4)

where �(�) ⊂ �, ��
(�)

⊂ ��, �(�) ≤ �, and ��
(�)

denote the total 

annotator set, annotator set of data �� , number of data samples, and weight 

of annotator �, respectively, in the trimmed task �. Such tasks can be 

utilized to learn internal features applicable to various tasks. Specifically, 

the model parameters � adapt to a task �(�) via stochastic gradient 

descent (SGD)

�(�) ← � − �∇�ℒ�(�)(��) (5)

where � denotes a learning rate, and ℒ�(�)(∙) denotes a loss function that 

evaluates the model parameters for a given task �(�). To take account of the 

reliability of the combined label, weighted mean squared error (WMSE) is 

adopted as a loss function
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ℒ�(�)(��) =
1

|ℬ(�)|
� � ��

(�)
���(��) − ���

(�)
�

�

�∈�
�
(�)�∈ℬ(�)

, (6)

where ℬ(�)  denotes a batch sampled from �(�) , and ���
(�)

  denotes the 

combined label of ��   for participating annotator set ��
(�)

  and annotator 

weight Λ(�). With the summation term of weights in (6), the data sample that 

is annotated by highly experienced annotators has more influence on the 

model parameter adaptation (5).

Based on the parameter adaptations for � trimmed tasks, we derive the 

generalized model parameters �  that enables model to adapt quickly to a 

new task by solving the following problem

arg max
�

� ℒ�(�) ���(�)�

�

���

= arg max
�

� ℒ�(�) �����∇�ℒ
�(�)(��)�

�

���

.

Based on (7), the optimized parameters �  across the trimmed tasks are 

derived via SGD as follows
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�

← � − �∇� � ℒ�(�)���(�)�.

�

���

(8)

Eventually, the proposed meta-learning-based model generalization for 

clinical diagnosis can be summarized as algorithm 1.

After the model generalization across the trimmed tasks, the model with 

the optimized parameters from (7) can easily be fine-tuned to a new updated 
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task �� in the similar way as (5) by replacing �(�) with ��.

. Ⅳ Experiment Results

4.1 Measurement Settings

To collect motion data, we develop wearable devices with IMU sensors.

Figure 1-(a) shows the structure of the developed wearable device. 9-axis 

IMU sensor MPU9250 can measure acceleration, angular velocity, and 

magnetic strength. Arduino Nano 33 BLE board is used to record the sensor 

data to database via Bluetooth. In order to get rid of any restrictions on 

movements, rechargeable lithium polymer ion battery is utilized for supplying 

power without wired connection.
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Figure 1: Experiment setup

Based on the medical advice from physiatrist, the developed devices are 

placed on � = 4 parts of body as shown in figure 1-(b). Two out of four 

devices are placed on top of lumbar spine L4 and S2. The other two devices 

are placed at the one-third point between the patella and pelvis bone on the 

left thigh and the midpoint of the patella and ankle bone on the left calf.

Eventually, � = 4  IMU sensors measure the � = 3 -dimensional sensing 

data of squat motion with a sampling frequency of 20 Hz for 5 seconds. 

Environmental parameters are summarized in table � .

4.2 Dataset Construction

With the developed devices, the squat motion dataset is constructed 
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through the collaboration with physiatrists in department of physical 

medicine & rehabilitation, Kosin University gospel hospital. The clinical 

dataset is composed of 1268 data samples that are measured from 3 subjects 

and annotated by 2 physiatrists.

In order to overcome the limited number of annotators, we create 8 virtual 

annotators with different annotation patterns by adding some noise to the 

labels annotated by physiatrist � ∈ {1, 6}. For instance, the virtual annotator 

�� ∈ �� is assumed to annotate the data �� as follows

��,��

= ��,� + ��,�� , (9)

Table I: Environmental Parameters

Parameters Value [unit]

No. of IMU sensors, � 4 [sensors]

Dimension of a sensing sample, � 3 [dimensions]

No. of samples in a data sample, � 100 [samples]

No. of annotators in original task, |�| 5 [annotators]

No. of annotators in original task, |��| 10 [annotators]

No. of trimmed tasks, � 3 [tasks]
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Original dataset size, � 400 [data samples]

Updated dataset size, �� 800 [data samples]

Figure 2: Training progress comparison

where ��,� denotes a label annotated by physiatrist � ∈ {1, 6}, , and 

��,��  ~ �(��� , 1) denotes the variation from ��,�� . Specifically, the labels 

of virtual annotator �� ∈ {2, 3, 4, 5}  or �� ∈ {7, 8, 9, 10}  are generated by 

adding noise to labels of physiatrist � = 1 or � = 6, respectively. The noise 

means are �� =  �� = 2 , �� =  �� =  −2,  �� =  �� = 4,  and �� =

 ��� =  −4. Note that � = {1, 2, 3, 4, 5} and �� =  � ∪ {6, 7, 8, 9, 10}.

In the original task �, the annotation set �� for data � ∈ {1, 2, … , �} is 

randomly generated while satisfying |��| = 3. On the other hand, in a new 
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task �� , the annotation set ��
�  for data � ∈ {1, 2, … , ��}  is randomly 

generated by adding two additional annotators among {6, 7, 8, 9, 10}.

4.3 Performance Comparisons

In this subsection, simulation results show the performances of the 

proposed framework and the conventional learning-based approaches in 

terms of the convergence speed and the converged MSE. We consider two 

conventional learning methods, denoted by ��������  and 

�������� �������� in figures. In the baseline method, a simple supervised 

learning is conducted for the updated task ��  with randomly initialized 

model parameters. In the transfer learning method, the model is initialized 

with the model parameters trained for the original task � and is fine-tuned 

to the updated task �� . For all learning methods, we adopt the same 

convolutional neural network (CNN) model consisting of two convolution 

layers and a single fully connected layer. In all simulation results, the 

inference accuracy is quantified by MSE between ground truth label and 

inference, �[|��
� − �� (��)|�].
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(a) No additional data samples, �� = �

(b) No additional annotators, �� =  �

Figure 3: Training progress with restricted task updates
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Figure 2 shows MSE of training model inference with respect to gradient 

update steps in the situation where the task is updated by new annotators, 

additional annotations, annotator weight re-arrangement, and new data 

samples according to section IV-B. All methods are shown to reduce the error 

as the training progresses; however, there are big performance gaps between 

them in the convergence speed and the converged MSE. Even though the 

transfer learning-based method is shown to achieve MSE comparable to the 

proposed method in the early stage of training process by exploiting the 

similarity between tasks, its initial parameters fully-fitted to the original task 

� makes it hard for the model to adapt to a new task ��. On the other hand, 

from the observation that the proposed learning framework outperforms the 

other methods in terms of the convergence speed and converged MSE, we can 

see that the proposed framework is able to effectively derive the generalized 

initial model representation across various tasks.

In order to see the effects of task update factors on the performance 

separately, figure 3 shows training progresses with the updated task without 

(a) additional data samples, �� = � = 400, and (b) additional annotators, 

�� = � = {1, 2, 3, 4, 5}. All environmental parameters except the restriction 

factor are the same with figure 2. From two panels of figure 3, the proposed 
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framework is shown to achieve significant performance gains in both types 

of task updates. Furthermore, we can see that the proposed framework is 

relatively more effective to the task update with additional annotators than the 

update with additional data samples.

Figure 4: Training progress versus the number of tasks

Figure 4 shows training progress against the number of tasks for meta-

learning. It is shown that the proposed framework outperforms the transfer 

learning-based method in terms of MSE. Moreover, from the observation that 

decreasing rate of the proposed framework improves with the number of tasks, 

we can see that making multiple virtual tasks for meta-learning is beneficial 

to learn generalized model parameters for various tasks.
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� . Conclusions

In this paper, we have proposed a learning-based clinical diagnosis 

framework where the model training is conducted with the dataset in poor 

conditions with inconsistently and partially labeled data from multiple 

annotators. The proposed framework has dealt with such challenges by 

introducing the compromised label with the weighted combination of the 

inconsistent labels and adapting a meta-learning approach for the generalized 

initial model parameters. In addition, we have developed wearable devices 

with IMU sensors to construct a clinical dataset for posterior pelvic tilt 

detection in squat motion. Experimental results have shown that the proposed 

framework outperforms the conventional learning-based approaches in terms 

of convergence speed and MSE. It has also been shown that the proposed 

framework is relatively more effective for the task update with additional 

annotators than the update with additional data samples. Moreover, when the 

number of tasks was increased, it was shown that the performance of the 

proposed framework was significantly improved, whereas the performance 
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change of conventional learning-based approaches was insignificant.
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