저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

- 저작자표시. 귀하는 원저작자를 표시하여야 합니다.
- 비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.
- 변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
체육학석사학위논문

만성 발목 불안정성에 대한
엉덩관절 훈련프로그램이
자세제어와 발목기능에 미치는 영향

2022년 8월
부경대학교 대학원
체육학과
조대영
체육학석사 학위 논문

만성 발목 불안정성에 대한 엉덩관절 훈련프로그램이 자세제어와 발목기능에 미치는 영향

지도교수 김태규

이 논문을 체육학석사 학위 논문으로 제출함.

2022년 8월

부경대학교 대학원

체육학과

조대영
조대영의 체육학 석사 학위논문을 인준함.

2022년 8월 26일

위 원 장 의학박사 김 영 훈 (인)
위 원 체육학박사 박 종 철 (인)
위 원 이학박사 김 태 규 (인)
목차

목차 ....................................................................................................................... i  
표 목차 ................................................................................................................... iii  
그림 목차 ............................................................................................................... iv  
Abstract ............................................................................................................... v  

Ⅰ. 서론 ................................................................................................................... 1
  1. 연구의 필요성 .......................................................... 1
  2. 연구의 목적 .......................................................... 6
  3. 연구의 문제 .......................................................... 7
  4. 연구의 제한점 ......................................................... 8
  5. 용어의 정의 .......................................................... 9

Ⅱ. 이론적 배경 ................................................................................................... 11

Ⅲ. 연구방법 ...................................................................................................... 17
  1. 연구절차 ............................................................. 17
  2. 연구대상 ............................................................. 19
  3. 측정도구 및 측정방법 ........................................... 21
  4. 훈련프로그램 ........................................................ 30
  5. 자료처리 방법 ......................................................... 38
Ⅳ. 연구결과

1. 훈련프로그램 적용에 따른 자세제어 차이
   가. 훈련프로그램 적용에 따른 정적 자세제어 차이
      (1) 훈련프로그램 적용에 따른 총 궤적장(TL) 차이
      (2) 훈련프로그램 적용에 따른 COP 동요속도(SV) 차이
      (3) 훈련프로그램 적용에 따른 외주면적(ENV) 차이
   나. 훈련프로그램 적용에 따른 동적 자세제어 차이

2. 훈련프로그램 적용에 따른 발목기능 차이

Ⅴ. 논의

Ⅵ. 결론 및 제언

참고문헌

국문초록

부록
표 목차

표 1. 연구 대상자의 일반적 특성 ............................................................. 20
표 2. 정적 자세제어 측정 항목 ................................................................ 23
표 3. 신경근 훈련프로그램 .................................................................. 33
표 4. 엉덩관절 훈련프로그램 ................................................................ 36
표 5. 발목관절 훈련프로그램 ................................................................. 37
표 6. 총 궤적장(Total Length) 차이 ............................................................ 41
표 7. COP 동요속도(Sway Velocity) 차이 ................................................. 45
표 8. 외주면적(Envelope Area) ............................................................... 49
표 9. 동적 자세제어 차이 ..................................................................... 52
표 10. 발목관절 기능 차이 ................................................................... 56
그림 목차

그림 1. 연구절차 ................................................................. 18
그림 2. 정적 자세제어 측정도구 ........................................... 24
그림 3. 한발시기검사 ........................................................... 25
그림 4. 동적 자세제어 측정 .................................................... 26
그림 5. 종합도달점수 공식 ..................................................... 26
그림 6. 발목관절 기능검사 ..................................................... 29
그림 7. 신경근 훈련프로그램 ............................................... 31
그림 8. 한발시기자세 .......................................................... 31
그림 9. 신경근 훈련프로그램 (균형패드에서 공주고 받기) .......... 32
그림 10. 한다리 스쿼트 (Single Limb Squat) ......................... 34
그림 11. 옆으로 누워 엉덩벌림 (Side Lying Hip Abduction) .... 35
그림 12. 한다리 데드리프트 (Single Limb Deadlift) ................. 35
그림 13. 발목관절 훈련프로그램 ........................................... 37
그림 14. SSEO, SSEC 총 궤적장 (Total Length) 차이 ............... 42
그림 15. USEO, USEC 총 궤적장 (Total Length) 차이 ............. 43
그림 16. SSEO, SSEC COP 동요속도 (Sway Velocity) 차이 ...... 46
그림 17. USEO, USEC COP 동요속도 (Sway Velocity) 차이 ...... 47
그림 18. SSEO, SSEC 외주면적 (Envelope Area) 차이 .......... 50
그림 19. USEO, USEC 외주면적 (Envelope Area) 차이 .......... 51
그림 20. 동적자세제어 차이 ............................................... 53
그림 21. 사이드 홉 검사 및 6미터 크로스오버 홉 차이 ............ 57
그림 22. 8자형 홉 검사 및 정사각형 홉 검사 차이 .................. 58
Effects of Hip Joint Training Program on Postural Control and Ankle Joint Function in Subjects with Chronic Ankle Instability

Dae Young Jo

Department of Physical Education, The Graduate School
Pukyong National University
Directed by Professor Kim, Tae Gyu, Ph.D.

Abstract

This study aimed to investigate the effects of hip joint training on static and dynamic posture control and ankle joint function in individuals with chronic ankle instability (CAI) and to provide useful information on various rehabilitation strategies. A total of 25 subjects who met the criteria for International Ankle Consortium were participated in this study and they were applied 6-week training program consisting of neuromuscular training and hip (EG, n=12) or ankle (CG, n=13) joint training program. Before and after applied 6-week training program, the static and dynamic posture control and ankle joint function on their injured leg were examined. The static posture control consisted of total length (TL), sway velocity (SV), and envelope area (ENV) of the center of pressure (COP) on stable and unstable surface with eyes open and closed, and lower quarter Y-balance test (YBT-LQ) was performed to measure dynamic posture.
control. The ankle joint function was tested using 4 hop tests.

The result is as follows:

1. After 6-week training program, the TL and SV of COP in both groups were significantly reduced during one leg standing on stable surface with eyes closed. And in only CG, they were significantly reduced on unstable surface with eyes closed.

2. The ENV of COP in only CG was reduced during both one leg standing on stable and unstable with eyes closed after 6-week training program. And after the training program, it of CG was lower compared to EG.

3. The score of YBT-LQ after the application of 6-week training program was significantly higher in both EG and CG.

4. After 6-week training program, the ankle joint function using 4 hop test was improved in both EG and CG.

This study showed that 6-week hip training program improved the static and dynamic posture control and ankle joint function similar to conventional ankle training, and the hip training program had a positive effect on chronic ankle instability (CAI).

**Keywords**: Chronic ankle instability, Hip training, Ankle training, Posture control, Ankle function
Ⅰ. 서론

1. 연구의 필요성

발목 부상은 스포츠, 연령, 성별과 관계없이 모든 움직임에서 발생할 수 있으며 가장 혼란한 하지의 근골격계 부상 중 하나로서 발목 부상의 85%는 발목 염좌(ankle sprain)라고 보고하였다(McKay, Goldie, Payne & Oakes, 2001). 이러한 발목 염좌는 안쪽 발목 염좌(medial ankle sprain), 가쪽 발목 염좌(lateral ankle sprain, LAS) 및 정강중아리인내결합 염좌(high ankle sprain)로 분류할 수 있으며(Chen, McInnis, & Borg-Stein, 2019) 이 중 가쪽 발목 염좌(LAS)는 전체 발목 염좌의 약 80%를 차지한다고 보고하였다(Gerber, Williams, Scoville, Arciero & Taylor, 1998). 이러한 가쪽 발목 염좌(LAS)를 경험한 개인의 약 30%는 만성 발목 불안정성(chronic ankle instability, CAI)으로 발전한다고 보고하였다(Wikstrom, Hubbard-Turner & McKeon, 2013). 만성 발목 불안정성(CAI)은 활동에 있어 반복적인 발목 염좌와 가속적으로 휘청거림(giving way), 자세제어 결함, 불충분한 고유수용성 감각 및 종아리근 약화와 같은 증상이 나타나는 것으로 정의된다(Hertel, 2002). 이러한 만성 발목 불안정성(CAI)은 발목 복합체 내 하나 이상의 관절구조를 변경하는 요인으로 인해 발생할 수 있는 기계적 발목 불안정성(mechanical ankle instability, MAI)과 고유수용성 감각, 신경근 조절, 자세제어 및 근력 부족으로 인해 발생하는 기능적 발목 불안정성(functional ankle instability, FAI)의 조합에 의해 유발되는 다단성 상태라고 보고하였다(Tropp et al., 1985; Wilkerson & Nitz, 1994).
이러한 만성 발목 불안정성(CAI)을 가진 개인과 자세제어(postural control) 간에 밀접한 연관이 있는데 자세제어는 다양한 환경에서 개인의 의도에 맞게 안정적으로 신체를 수직 및 수평 방향을 유지하기 위한 균형을 유지하는 것으로(Jacobs, Burleigh-Jacobs & Winter, 2000), 최소한의 움직임으로 자신의 신체를 안정적으로 유지하는 정적 자세제어(static postural control)와 움직임을 수행하면서 자신의 신체를 안정적으로 유지하는 동적 자세제어(dynamic postural control)로 분류할 수 있다(Winter, Patla & Frank, 1990). 정적 및 동적 자세제어는 주로 발목관절전략(ankle joint strategies) 또는 엉덩관절전략(hip joint strategies)을 통해 유지 되는데(Riemann, Myers & Lephart, 2003), 반복적인 발목 염좌 후 고유수용성 감각 및 신경균 조절 결손으로 발목관절전략이 감소하며 이로 인해 발생한 혼들림에 대응하기 위해 엉덩관절전략의존도가 높아져 자세제어 결함(postural control deficits)이 발생한다고 보고되었다(Hertel, 2002; McKeon & Hertel, 2008). 이러한 자세제어 결함은 급성 발목 염좌에서 만성 발목 불안정성(CAI)으로 발전되는 중요한 위험요인으로 만성 발목 불안정성(CAI)을 가진 개인에게 부상 경험이 연속성에 기여하여 재부상의 위험을 증가시키며 개인의 일상생활의 제약과 더욱 심각한 부상을 초래하며, 더 나아가 발목의 기능적 수행 결함(Functional Performance Deficits)을 유발할 수 있다고 보고하였다(McKeon & Hertel, 2006).

발목관절의 기능적 수행 결함은 운동 수행 중 발목관절에 가해지는 힘과 작용에 대해 안정적으로 대응하는 지지능력의 상실로써(Demeritt, Shultz, Docherty, Gansneder & Perrin, 2002), 이러한 결함은 신체활동을 감소시키며 만성 발목 불안정성(CAI)의 잠재적 부상 위험성을 증가시키고(Hubbard-Turner & Turner, 2015), 장기적으로 지속되어 적절한 치료를 받지 못한다면 또 다른 하지의 근골격계 부상을 유발할 수도 있다고 보고
이러한 결함은 만성 발목 불안정성(CAI)을 가진 개인에게 흔히 볼 수 있는 요인으로서 개선하기 위해 수많은 프로토콜이 여러 방면에서 연구자들에게 보고되었으며, 긍정적인 보존적 치료를 위해서는 신경근 훈련 및 발목관절 훈련을 권장한다고 보고하였다(Kaminski, Hertel, Amendola, Docherty, Dolan, Hopkins & Richie, 2013).

신경근 훈련을 적용하여 정적 자세제어를 확인하기 위해 실제 선행연구에서는 만성 발목 불안정성(CAI)을 가진 개인 48명을 대상으로 6주간 신경근 훈련프로그램을 적용한 결과, 정적 자세제어가 향상되었다고 보고하였으며(Bernier & Perrin, 1998), 신경근 훈련을 통한 동적 자세제어를 확인하기 위해 만성 발목 불안정성(CAI)을 가진 개인에게 4주간 신경근 훈련프로그램을 적용 후 YBT 검사를 통해 측정한 결과 전체적인 도달거리 증가로 동적 자세제어가 향상되었다고 확인되었다(Anguish & Sandrey, 2018). 또 만성 발목 불안정성(CAI)을 가진 개인 39명을 신경근 훈련집단, 발목 훈련집단, 대조집단으로 나누어 4주간 훈련프로그램을 적용하여 정적 자세제어 및 동적 자세제어, 발목기능(functional performance)에 미치는 영향을 확인한 선행연구 결과, 신경근 훈련집단이 다른 두 집단보다 정적 및 동적 자세제어, 발목기능이 향상되었다고 보고하였다(Hall, Chomistek, Kingma & Docherty, 2018). 또한 발목관절 훈련 후 정적 및 동적 자세제어를 확인한 실제 선행연구에서는 만성 발목 불안정성(CAI)을 가진 개인에게 4주간 저항밴드를 이용하여 발등굽힘(dorsi flexion), 발바닥굽힘(plantar flexion), 안쪽 변짐(inversion), 가쪽 변짐(eversion) 총 4개의 방향으로 근력을 훈련을 하였을 때 정적 자세제어 및 동적 자세제어 모두 유의한 향상을 보였으며(Cain, Ban, Chen, Geil, Goerger & Linens, 2020), 만성 발목 불안정성(CAI)을 가진 개인 55명을 대상으로 6주간의 저항밴드를 이용
한 근력훈련 후 발목기능검사(figure-of-eight hop test)를 실시하여 발목기능을 확인한 결과, 발목 훈련단에서 발목기능이 유의하게 향상되었다고 보고하였다(Hall, Docherty, Simon, Kingma & Klossner, 2015). 이렇듯, 신경근 훈련과 발목관절 훈련이 만성 발목 불안정성(CAI)을 가진 개인의 자세제어와 발목기능에 긍정적인 영향을 미치는 것을 확인하였다.

만성 발목 불안정성(CAI)을 가진 개인의 근력 및 신경근 조절에 대한 변화가 엉덩 분절인 발목에만 국한되지 않는다는 연구자의 의견이 지속적으로 늘어나고 있으며, 만성 발목 불안정성(CAI)을 가진 개인의 발목관절 전력감소에 의해 엉덩관절전력의 의존도가 증가되며 이러한 엉덩관절전력에서 중요한 요인은 엉덩관절 근력이라고 보고하였다(Friel, McLean, Myers & Caceres, 2006). 만성 발목 불안정성(CAI)을 가진 개인의 엉덩관절 근력에 대해 조사한 선행연구에서 엉덩관절 밀립근의 근력은 발목 부상이 발생한 다리가 건강한 다리에 비해 유의하게 낮았다고 보고하였다(Friel et al., 2006). 엉덩근 및 중간볼근근의 근력 약화는 동적 자세 제어결함과 관련 있고, 재부상의 원인이 될 수 있다고 보고하였으며, 장기적으로 자세제어 및 기능적 수행을 향상시키기 위해서는 엉덩근 강화가 필요하다고 보고하였다(Raghava Neelapala, Suresh Bhat, Almeida & Moily, 2017).

또 다른 선행연구에서는 만성 발목 불안정성(CAI)을 가진 집단은 LAS Cooper 및 대조군에 비해 엉덩관절 밀립근 및 바깥돌림근의 약화가 나타났다고 보고되었다(McCann, Crossett, Terada, Kosik, Bolding & Gribble, 2017). 근력 약화 외에도 발목 염좌의 발생은 엉덩관절 펠동안 큰볼기근 동근의 현저한 자연이 발생되는 것을 발견하였고, 국소 부위 감각 및 몸쪽 분절의 기능 변화가 나타났다고 보고하였으며(Bullock–Saxton, 1994), 만성 발목 불안정성(CAI)을 가진 개인의 보행에서 중간볼근근의 근활성도에 대한 연구에서는 보행 속도와 관계없이 전체 보행주기에 걸쳐 중간볼근근의
근활성도가 감소한 것을 확인하였다(DeJong, Koldenhoven, Hart & Hertel, 2020).

이러한 엉덩근의 근력 약화 및 신경근 조절 결손에 의해 만성 발목 불안정성(CAI)을 가진 개인에게 부정적인 영향을 미친다는 연구자들의 의견이 대두되었으며, 다양한 엉덩근 훈련을 적용한 선행연구들이 보고되었다. 실제 만성 발목 불안정성(CAI)을 가진 개인 24명을 대상으로 점진적 저항밴드와 신경근 훈련을 포함한 기존 발목관절 훈련과 엉덩관절 훈련인 한 다리 회전 스쿼트 및 회전 런지 훈련을 적용한 결과, star excursion balance test를 이용하여 동적 자세제어 평가하였을 때 한 다리 회전 스쿼트 및 회전 런지 훈련의 포함 여부와 관계없이 두 훈련 모두 동적 자세제어가 향상되었으며 연구자는 다른 만성 병리학에서 긍정적인 효과를 낼 엉덩근 운동을 고려할 것을 제시하였다(Kosik, Treada, McCann, Boland & Gribble, 2017). 이와는 반대로 만성 발목 불안정성(CAI)을 가진 개인 27명을 대상으로 점진적 저항밴드를 이용하여 엉덩관절 벌림 및 바깥쪽 돌림 훈련을 열린사슬운동의 형태로 4주간 적용한 결과, 정적 및 동적 자세제어가 개선되었다고 보고하였으며 향후 연구에서는 엉덩근 강화를 위한 기능적인 단면사슬운동에 대한 연구가 이뤄져야 한다고 보고하였다(Smith, Curtis & Docherty, 2018). 또한 중간볼기근 훈련과 신경근 훈련이 동적 자세제어에 미치는 영향을 확인하기 위해 건강한 개인 48명을 신경근 훈련집단, 중간 볼기근 훈련집단, 복합훈련집단으로 나누어 6주간 훈련프로그램을 적용한 결과 중간볼기근 훈련과 신경근 훈련을 같이 적용한 복합훈련집단에서 동적 자세제어가 다른 두 집단보다 향상되었다고 보고하였으며, 향후 연구에서는 건강한 대상자가 아닌 만성 발목 불안정성(CAI)을 가진 개인에게 통합된 훈련프로그램을 적용한 추가적인 연구의 필요성을 강조하였다(Leavey, Sandrey & Dahmer, 2010).
이렇듯, 지속적으로 여러 선행연구에서 만성 발목 불안정성(CAI)을 가진 개인에게 기존의 단순 분절의 발목관절 훈련에서 나아가 몸쪽 분절에 대한 엉덩관절 훈련을 적용한 연구가 진행되고 있으며, 다양한 엉덩관절 훈련을 적용한 선행연구에서는 엉덩관절 훈련의 종류에 따라 연구결과가 다르다. 따라서 본 연구의 목적은 만성 발목 불안정성(CAI)을 가진 개인을 대상으로 두 집단으로 나누어 6주간 신경근 훈련과 엉덩관절 훈련프로그램 및 발목관절 훈련프로그램을 각각 적용 후 엉덩관절 훈련프로그램이 정적 자세 제어와 동적 자세제어, 발목기능에 미치는 영향을 조사하여 만성 발목 불안정성(CAI)을 가진 개인에게 다양한 재활전략에 대한 유용한 정보를 제공하고자 한다.

2. 연구의 목적

본 연구에서는 B광역시에서 자발적으로 참여한 20대 성인 남녀를 대상으로 국제발목협회의 만성 발목 불안정성(CAI) 표준 선정기준에 따라 두 집단으로 나누어 6주간 신경근 훈련과 엉덩관절 훈련프로그램 및 발목관절 훈련프로그램을 각각 적용 후 엉덩관절 훈련프로그램이 정적 자세제어와 동적 자세제어, 발목기능에 미치는 영향을 조사하여 만성 발목 불안정성 (CAI)을 가진 개인에게 다양한 재활전략에 대한 유용한 정보를 제공하고자 한다.
3. 연구의 문제

본 연구에서 밝히고자 하는 문제는 다음과 같다.

첫째, 엉덩관절 훈련프로그램 적용에 따른 정적 자세제어의 차이가 있을 것이다.

1-1. 훈련프로그램 적용은 COP 총 궤적장의 차이가 있을 것이다.
1-2. 훈련프로그램 적용은 COP 동요속도의 차이가 있을 것이다.
1-3. 훈련프로그램 적용은 COP 외주면적의 차이가 있을 것이다.

둘째, 엉덩관절 훈련프로그램 적용에 따른 동적 자세제어의 차이가 있을 것이다.

2-1. 훈련프로그램 적용은 Y-Balance 종합점수의 차이가 있을 것이다.

셋째, 엉덩관절 훈련프로그램 적용에 따른 발목기능의 차이가 있을 것이다.
4. 연구의 제한점

본 연구에서는 아래와 같은 연구의 제한점이 있다.

첫째, 본 연구는 예상치 못한 대상자의 훈련탈락을 통제하지 못하였다.

둘째, 측정 시 연구 대상자가 가지고 있는 생리적, 심리적 요인을 완전히 통제하지 못하였다.

셋째, 본 연구는 훈련 시간 외 대상자의 일상생활을 통제하지 못하였다.
5. 용어의 정의

가. 가쪽 발목 염좌(LAS)

발목이 감작스러운 내측으로 뒤첨(supination)되어 발목 가쪽에 존재하는 인대의 외상성 손상으로 발목 염좌의 80%가 안쪽으로 겹이며 발생한다. 발목 외측의 앞쪽발중아리인대(anterior talofibular ligament), 발꿈치 종아리인대(calcaneofibular ligament), 뒤쪽발중아리인대(posterior talofibular ligament) 등이 있는데 이들의 손상에 의해 나타나는 질환이다.

나. 만성 발목 불안정성(CAI)

만성 발목 불안정성(CAI)은 반복적인 발목 염좌와 휘청거림(giving way), 자세제어 결함, 불충분한 고유수용성 감각 및 비골 근력 약화와 같은 증상이 나타나는 것으로 정의되며 가쪽 발목 염좌(LAS)의 30%는 만성 발목 불안정성(CAI)으로 발전된다. 하나 이상의 관절구조변경에 의한 기계적 불안정성(MAI)과 고유수용성 및 신경근 조절, 자세제어, 근력 약화 등이 나타나는 기능적 불안정성(FAI)의 조합에 의해 유발되는 다인성 상태이다.

다. 자세제어

다양한 환경에서 개인의 의도에 맞게 안정적으로 신체를 수직 및 수평 방향으로 유지하기 위해 균형을 잡는 것으로 최소한의 움직임으로 자신의 신체를 안정적으로 유지하는 정적 자세제어와 움직임을 수행하면서 자신의
신체를 안정적으로 유지하는 동적 자세제어로 분류할 수 있다.

라. 발목기능

발목기능은 여러 방향으로 신체의 움직임을 가능하게 하는 능력으로 관절가동범위, 근력, 유연성, 평형성, 그리고 고유수용성 감각 등 종합적인 요인들의 협응으로 움직임을 수행하는 것이다.
Ⅱ. 이론적 배경

1. 만성 발목 불안정성(CAI)

만성 발목 불안정성(CAI)은 반복적인 염좌 또는 발목의 휘청거림(giving way)을 특징으로 하는 상태로 통증, 근력 약화, 관절정렬범위(ROM) 감소와 같은 지속적인 증상이 초기 부상 후 1년 이상 지속되는 것을 의미한다(Gribble, Delahunt, Bleakley, Caulfield, Docherty, Fourchet & Wikstrom, 2013). 이러한 만성 발목 불안정성(CAI)에 영향을 주는 요인은 크게 기계적 발목 불안정성(MAI)과 기능적 발목 불안정성(FAI)으로 나뉘며(Freeman, 1965), 기계적 발목 불안정성(MAI)은 가쪽 발목 염좌(LAS)에 의한 이차적인 발목관절 및 주변 조직의 이상으로 나타나는 병리학적 이환, 목말뼈의 전후방 활주 제한과 같은 관절구조의 변경, 활액 및 퇴행성 변화를 포함하며 기능적 발목 불안정성(FAI)은 인대 및 관절 수용기 손상으로 인한 고유수용성 감각 장애, 신경근 조절 결손, 근력 결핍 및 자세조절 장애 등이 포함되며 이러한 기계적 및 기능적 발목 불안정성(FAI)의 다인성 조합이 만성 발목 불안정성(CAI)에 가장 크게 기여한다고 보고하였다(Tropp, Odenrick & Gillquist, 1985; Wilkerson et al., 1994). 이러한 만성 발목 불안정성(CAI)을 가진 대상에게 관상면 및 시상면 발목 운동의 능동 및 수동 관절 위치 감각 모두에서 결함의 보고를 확인하였으며(Munn, Sullivan & Schneiders, 2010; McKeon & McKeon, 2012), 보행 또는 착지 시 처음 접촉하기 전에 발목관절의 위치를 정확하게 감지하지 못하는 것은 발목을 쉽게 지면에 접촉할 가능성이 높아 재발성 발목 염좌의 위험을 증가시키는 것으로 나타났다(Konradsen & Voigt 2002). 또한 만성...
발목 불안정성(CAI)을 가진 대상에게 발바닥굽힘(plantar flexion), 안쪽 변짐(inversion), 가쪽 변짐(eversion)과 같은 발목 기능에 대한 부분에서 발목근 약화와 엉덩관절의 벌림근, 평근, 바깥돌림근 등의 엉덩근 약화가 나타났다고 확인되었다(Hertel & Corbett, 2019). 또한 걷기, 달리기, 자르기 및 착지를 포함한 기능적 활동에서 변경된 하지 움직임 패턴을 보고하였으며(Moisan, Descarreaux & Cantin, 2017), 만성 발목 불안정성(CAI)에 대한 다양한 방면에서 연구가 이루어지고 있다.
2. 만성 발목 불안정성(CAI)의 엉덩관절 관련 연구

여러 연구자에 의해 만성 발목 불안정성(CAI)을 가진 대상에게서 엉덩근 약화가 나타났고 이러한 엉덩근 강화에 대한 중요성을 강조하고 있다. 만성 발목 불안정성(CAI)을 가진 23명을 대상으로 환측발과 건측발의 엉덩 뿔근 및 엉덩 폄근의 근력을 평가하였는데, 환측발의 엉덩관절 뿔근 강도는 건측발보다 유의하게 약해졌다고 보고하였으며 연구자는 이 차이가 만성 발목 불안정성(CAI)으로 인한 특정적인 손상과 관련 있으며 이러한 손상은 보행 중 안정성을 감소시키고 반복적인 부상의 위험을 증가시킬 수 있다고 하였다(Friel et al., 2006). 엉덩근과 동적 자세제어의 관계에 대한 선형연구에서는 만성 발목 불안정성(CAI)을 가진 32명을 대상으로 큰볼근 및 중간볼근을 휴대용 동력계를 이용해 최대 동적성 근력을 측정하고 SEBT(star excursion balance test)를 통해 동적 자세제어를 측정하여 엉덩관절 근력과 동적 자세제어 사이의 상관관계를 조사하였을 때, 큰볼근 및 중간볼근 모두 높은 상관관계가 나타났으며, 이러한 엉덩관절 근력이 만성 발목 불안정성(CAI)에서 관찰되는 자세제어 결함의 원인 이 될 수 있음을 보여주고 엉덩관절의 안정성은 다양한 체중부하운동을 수행하는데 필수적이며, 엉덩근 강화를 통해 발목 부상의 재발을 줄이고 장기적으로 자세제어와 기능 수행능력을 향상시켜야한다고 보고하였다(Raghava Neelapala, Suresh Bhat, Almeida & Moily, 2017). 이러한 연구들을 바탕으로 다양한 엉덩관절 훈련이 진행되었는데 만성 발목 불안정성(CAI)을 가진 26명의 대상에게 엉덩관절 벌립 및 바깥쪽 돌림 훈련을 적용하였을 때, 정적 자세제어 및 동적 자세제어의 유의한 향상을 가져왔다고 보고하였으며, 추가적으로 단반운동순서에서 더 많은 기능적 운동을 고
려해야 한다고 보고하였다(Smith et al., 2018). 만성 발목 불안정성(CAI)에
대한 엉덩관절 훈련으로 제한된 한 다리 회전 런지 및 회전 스쿼트를 포함
한 훈련을 23명에게 적용하여 동적 자세제어를 확인한 선행연구에서는 이
러한 몸쪽 분절의 엉덩관절 훈련이 동적 자세제어 향상을 가져왔지만 발목
관절 훈련과 비교하였을 때 차이를 가져오지 못하였으며, 추가적으로 다른
만성 병리학 내에서 사용되어왔으며 긍정적인 향상을 보여주는 다른 몸쪽
분절 운동의 활용을 고려해봐야 한다고 하였다(Kosik et al., 2017).
3. 만성 발목 불안정성(CAI)의 발목관절 관련 연구

만성 발목 불안정성(CAI)을 가진 대상에게서는 기능적 수행결함과 고유 수용성 결함 및 발목근 약화가 나타나는데 이 중 발목근 약화는 만성 발목 불안정성(CAI)의 휘청거림, 반복적인 염좌 및 추가적인 부상률 증가의 주 요인 중 하나로써 이러한 잔여 증상을 줄이고 추가적인 발목 염좌가 발생하지 않도록 예방하기 위해 발목관절 근력훈련은 재활 프로토콜에 필수적인 부분이다(Arnold, Linens, De La Motte & Ross, 2009). 이러한 발목관절 훈련은 발목이 불안정한 대상자의 발목근력과 관절위치감각을 개선하고(Willems, Witvrouw, Verstuyft, Vaes & De Clercq, 2002; Smith, Docherty, Simon, Klossner & Shrader, 2012), 신경근 요인을 강화하기 때문에 첫 3~5주 동안 근육 증가를 촉진하는 것으로 보고되었으며(Moritani, 1979) 고유수용성 감각과 자세제어 결함을 개선할 수 있다고 나타냈다(Docherty, Moore & Arnold, 1998; Sekir, Yildiz, Hazneci, Ors & Aydin, 2007). 실제로 선행연구에서도 만성 발목 불안정성(CAI)을 가진 55명의 대상에게 저항밴드 훈련프로그램을 6주 동안 진행하였을 때 발목근력과 인지된 발목 불안정성을 유의하게 향상시켰다고 보고하였다(Hall et al., 2015). 또한 만성 발목 불안정성(CAI)을 가진 청소년 운동선수를 43명을 대상으로 4주 동안 발등 굽힘(dorsi flexion), 발바닥 굽힘(plantar flexion), 안쪽 번짐(inversion), 가쪽 번짐(eversion) 4가지 방향으로 저항밴드를 이용해 훈련을 적용하였을 때 정적 및 동적 자세제어, 발목 기능에 유의한 향상을 가져왔다고 보고하였다(Cain et al., 2020). 발목관절 훈련프로그램에 대한 효과를 보기 위한 선행연구에서는 만성 발목 불안정성(CAI)을 가진 40명의 대상에게 6주간 발목관절 근력훈련을 적용하였을 때, 발목의 안
쪽 변진과 가쪽 변진 근력향상이 나타났다고 보고하였다(Smith et al., 2012). 이와 비슷한 다른 선행연구에서는 만성 발목 불안정성(CAD)을 가진 30명의 대상자들에게 PNF기법과 발목저항밴드를 활용한 근력운동을 적용 시켰을 때, 동심성 수축 및 변심성 수축과 안쪽 변진 및 가쪽 변진의 근력 이 증가하였고, 정적 및 동적 자세제어 능력이 유의하게 향상되었고, 발목 기능에서도 유의한 향상을 가져왔다고 보고하였다(Hall et al., 2018). 이렇듯 발목관절 근력훈련의 다양한 설계 및 검사방법에 따라 다양한 연구들이 보고되고 있다.
Ⅲ. 연구방법

1. 연구 절차

본 연구는 실험연구(experimental study)로써, B 광역시에 거주하며 본 연구의 목적과 절차 및 방법에 대해 자세한 설명을 듣고 자발적으로 참여한 20대 성인남녀 중 포함기준에 만족하는 대상 28명에게 만성 발목 불안정성(chronic ankle instability) 설문지를 실시하였다. 이후, 엉덩관절 훈련 집단(실험군)과 발목관절 훈련집단(대조군)으로 나누어, 6주간 각 집단에 다른 부위의 근력훈련을 적용하여 그에 따른 정적 자세제어, 동적 자세제어, 발목기능에 대한 차이를 비교 분석하였다. 연구 절차는 <그림 1>과 같다.
그림 1. 연구절차

[Diagram of the research procedure with Korean text, including subcategories such as investigation, subject selection, comparison groups, and subsequent procedures.

- 연구계획수립
- 자료조사
- 연구대상자 선정
- 영당훈련집단 (n=14)
- 후복훈련집단 (n=14)
- 사전측정
- 중도검사
  - 훈련 미흡한
  - 훈련 미흡한
- 영당훈련집단 (n=12)
- 후복훈련집단 (n=13)
- 사후측정
- 자료처리 및 결론분석]
2. 연구대상

본 연구의 대상자는 B 광역시에서 거주하며 연구목적과 절차에 대해 충분한 설명을 듣고 이해한 후, 자발적으로 참여한 20대 성인 남녀 대상으로 시행하였다. 우선 병력과 관련된 사전 조사를 진행하였고, 양쪽 사지에서 근골격 구조(뼈, 관절, 신경)에 대한 이전 수술 이력과 재정렬이 필요한 골절 병력, 연구등록 전 3개월 이내 하지의 발목 이외의 다른 관절의 근골격 구조에 대한 급성손상으로 인해 관절의 완전성과 기능에 영향을 미치는 신체활동을 1일 이상 중단한 경험이 있는 자는 제외하였다(Gribble et al., 2013). 연구대상자 수의 산출을 위해 파워 분석(G-power Analysis 3.1.9.7)을 실시하였다. 70%의 검정력 및 0.25의 중간효과 크기 얻기 위해 Cohen’s d를 이용해 계산하였고 각 그룹에서 14명, 총 28명의 대상자 모집이 필요한 것을 파악하였다. 만성 발목 불안정성(CAI)을 가진 대상자 선별 기준은 처음 발목 염좌가 본 연구시작 12개월 전에 발생하였고, 6개월 이내 2번 이상의 화청거림(giving way)을 경험한 자, 가장 최근 발목 염좌가 3개월 이내 발생한 자, 최소 1일 이상 신체활동을 중단한 경험이 있는 대상자 중 발목 불안정성 설문지(ankle instability instrument, AII)에 “예”라고 응답한 개수가 5개 이상이며, 기능적 발목 불안정성 분류 설문지(identification of functional ankle instability, idFAI)의 점수가 11점 이상이고 Cumberland 발목불안정성 도구(cumberland ankle instability tool, CAIT)의 점수가 24점 이하인 대상을 선정하였다(Gribble et al., 2013). 모집된 28명의 대상자는 영남관절 훈련집단과 발목관절 훈련집단으로 무작위로 나눠 훈련을 실시하였으며, 신경근 훈련은 두 집단 공통으로 진행되었다. 집단 간 인구통계학적 특성의 동질성을 확보하였고, 연구대상자의 일
반적인 특성은 <표 1>과 같다.

<table>
<thead>
<tr>
<th></th>
<th>EG (n=12)</th>
<th>CG (n=13)</th>
<th>Between group</th>
</tr>
</thead>
</table>
| Age (yrs.) | 23.50±3.15 | 23.71±2.72 | \(t=0.192\)  
|         |           |           | \(p=0.849\) |
| Height (cm)  | 170.35±5.73 | 169.50±5.88 | \(t=-0.391\)  
|         |           |           | \(p=0.699\) |
| Weight (kg)   | 67.07±14.03 | 68.57±14.21 | \(t=0.281\)  
|         |           |           | \(p=0.781\) |
| BMI (kg/m²) | 22.90±3.74 | 23.69±4.01 | \(t=0.538\)  
|         |           |           | \(p=0.595\) |
| Sex       | 6 males, 6 females | 7 males, 6 females | \(\chi^2=0.037\)  
|          |           |           | \(p=0.848\) |
| CAI Limb  | Rt. 5(35.7%) | 9(64.3%) | \(\chi^2=2.286\)  
|          | Lt. 9(64.3%) | 5(35.7%) | \(p=0.131\) |
3. 측정도구 및 측정방법

모든 연구대상자는 양말을 탈의한 상태로 반바지를 입고 측정에 참여하였다. 모든 검사 전에 충분한 준비운동과 연습을 시행한 후 동일한 검사자에 의해 정적 자세제어검사, 동적 자세제어검사, 발목기능검사 순서로 진행하였다. 모든 검사는 만성 발목 불안정성(CAI)이 있는 환자들 기준으로 측정하였다.

가. 만성 발목 불안정성(CAI)

(1) 발목 불안정성 설문지(ankle instability instrument, AII)

(2) 기능적 발목 불안정성 식별 설문지(identification of functional ankle instability, idFAI)


(3) Cumberland 발목 불안정성 도구(cumberland ankle instability tool, CAIT)

개인의 기능적 발목 불안정성을 가지고 있는지에 대한 여부와 불안정성의 심각도를 평가할 수 있는지를 확인하기 위해 Hiller, Refshauge, Bundy, Herbert, Kilbreath(2006)에 의해 개발된 Cumberland 발목 불안정성 도구(cumberland ankle instability tool, CAIT)를 사용하였다. 총 9개의 질문으로 구성되어 있으며, 그 중 5개 질문은 0점에서 3점까지, 2개 질문은 0점에서 4점까지, 1개 질문은 0점에서 5점까지, 또 다른 1개 질문은 0점에서 2점으로 되어있다. 총점 30점 중 안정성 발목은 28점 이상, 불안정성 발목은

나. 자세제어

(1) 정적 자세제어 검사

본 연구에서 정적 자세제어를 평가하기 위해 Gaitview AFA-50(alFOOTs, Korea)의 스캔 보드에서 vestibular test mode를 이용하였으며, Gaitview Pro 2.0 <그림 2> 통해 <표2>과 같은 측정값을 확인하였다.

<table>
<thead>
<tr>
<th>항목</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>외주면적 (envelope area, ENV)</td>
<td>COP의 측정 외부 면적의 총 길이가 작을수록 균형능력이 좋은 것을 의미</td>
</tr>
<tr>
<td>총 궤적장 (total length, TL)</td>
<td>COP에서 측정시간 동안 이동한 총 거리</td>
</tr>
<tr>
<td></td>
<td>총 거리가 낮을수록 더 나은 균형능력을 의미</td>
</tr>
<tr>
<td>COP 동요속도 (sway velocity, SV)</td>
<td>총 궤적장 / 검사시간</td>
</tr>
<tr>
<td></td>
<td>COP 속도가 낮을수록 더 나은 균형능력을 의미</td>
</tr>
</tbody>
</table>

COP : 압력 중심(Center Of Pressure)
단단한 지면은 스캔 보드 바닥이었으며, 불안정한 지면은 airex Balance pad(Elite, made in swiss, 50 x 40.8 x 6cm), <그림 2>로 구성되었다 (Linens, Ross., Arnold., Gayle & Pidco 2014). 대상자는 1) 눈 뜬 상태로 단단한 지면(SSEO) 2) 눈 감은 상태로 단단한 지면(SSEC) 3) 눈 뜬 상태로 불안정한 지면(USEO) 4) 눈 감은 상태로 불안정한 지면(USEC) 총 4 가지 다른 조건에서 한발 서기검사(one leg standing test)를 통해 측정되었다(그림 3). 대상자는 눈 뜬 상태에서 맨발로 자연스럽게 선 자세로 약 3m 앞을 주시하도록 구두지시하였으며, 대상자의 눈 감은 자세는 동일 자세에서 시각 입력을 제거하기 위해 눈가리개를 착용하였다. 한발 서기검사는 총 15초 동안 기록하였고, 총 3회 측정하였으며 검사 중에는 손을 엉덩이에 올려놓은 자세를 유지하도록 하였고 검사 측 다리는 무릎을 약 5도 굽히고 비 검사 측 다리는 약 90도 무릎 굽힘, 약 30도 엉덩관절 굽힘을 유지하도록 지시하였다. 대상자들은 검사를 수행하기 전에 각 지면에서 1회의 연습기회를 부여받았고 각 측정시도 사이에 30초 동안 휴식을 취하였으며, 검사 중 엉덩이에서 손을 놓거나, 허벅지를 30도 이상 굽힘 또는 벌림, 앞발 또는 뒤꿈치를 들거나, 5초 이상 검사 위치에서 벗어나거나, 눈을 뜨는 경우 재측정하였다(Shiravi, Moghadam, Hadian & Olyaei, 2017).

그림 2. 정적 자세제어 측정도구
(A: Gait view Pro 2.0, B: AIRex Balance Pad)
(2) 동적 자세제어 검사

본 연구에서 동적 자세제어를 평가하기 위해 YBT Kit(Functional Movement System Inc., Chatham, VA, USA)를 사용하여 YBT-LQ(Y-Balance Test Lower Quarter)를 실시하였다. 측정 전, 대상자들에게 검사지침에 대해 설명 후 수행하였으며 모든 검사 발은 환측발을 기준으로 각 방향에 대해 3번의 연습 시도를 한 후 진행되었다. 대상자는 맨발로 시작 선에 가장 긴 발가락 끝을 맞추고 검사대 주변에 양손은 허리에 두고 한 발로 서도록 하였으며, 앞쪽(anterior), 뒤가쪽(posterolatera), 뒤안쪽(posteromedial)방향으로 반대 발을 최대한 멀리 뻗어 적색 표적 부위를 밀어내도록 하였다. 대상자가 뻗는 발이 바닥에 닿거나 자세를 잃는 검사대에서 벗어지는 경우, 움직이는 동안 뻗는 발이 적색 표적을 건져가거나 뻗기 표적과 위에 발을 올려놓으므로 선 자세를 지탱하는 경우, 뻗은
상태에서 시작 자세로 되돌아오지 못할 경우 실패로 간주하고 재측정하였으며, 총 3회 측정 후 평균값을 기록하였다. 도달거리는 대상자의 다리 길이로 정규화하였으며, 다리 길이는 대상자를 실험용 침대 위에 바로 누운 자세(supine position)를 취하도록 교육하였고, 골반을 수평으로 하기 위해 다리를 펴서 힘을 빼고, 대상자의 위앞엉덩뼈위가시(anterior superior iliac spine, ASIS)부터 같은 측 발목의 안쪽 복사(medial malleolus)까지의 거리를 줄자를 이용하여 측정하였다(그림 4). YBT-LQ 종합도달점수는 <그림 5> 공식에 대입하여 다리 길이에 대한 측정기록의 비율을 산출하였다 (Wilson, Robertson, Burnham, Yonz, Ireland, & Noehren, 2018).

그림 4. 동적 자세제어 측정  
(A:준비 자세, B:앞쪽 뻗음, C:뒤가쪽 뻗음, D:뒤안쪽 뻗음)

종합도달점수 = \left( \frac{\text{앞쪽} + \text{뒤가쪽} + \text{뒤안쪽}}{\text{다리길이} \times 3} \right) \times 100

그림 5. 종합도달점수 공식
다. 발목관절 기능검사

본 연구에서 발목관절 기능은 8자형 홉 검사(figure-of-eight hop test), 사이드 홉 검사(side hop test), 6미터 크로스오버 홉 검사(6-meter cross-over hop test), 정사각형 홉 검사(square hop test) 등 네 가지 홉 검사를 통해 확인하였다(그림6).

(1) 8자형 홉 검사(figure-of-eight hop test)

8자형 홉 검사를 하기 위해 원뿔 모양의 콘(training cone)을 배치 한 후 대상자에게 시작점에서부터 한발로 점프하여 최대한 빠르게 8자 모양을 그리며 반대쪽 콘을 돌아오도록 교육하였고 총 3회 측정하였으며 0.01초(s) 단위로 기록하여 평균값을 사용하였다. 검사 중 대상자가 반대쪽 발이 지면에 닿거나 중심을 잃지 못하고 넘어진 경우 또는 콘을 건드린 경우, 검사지점에 맞게 8자형 코스를 이행하지 못한 경우 30초간 휴식 후 재측정하였다(Caffrey, Docherty, Schrader & Klossner, 2009).

(2) 사이드 홉 검사(side hop test)

사이드 홉 검사를 하기 위해 30cm 간격으로 2개의 선을 그은 후 대상자에게 한발로 뛰어 30cm간격을 넘은 후 다시 시작 위치로 뛰어넘어 돌아가 는 것을 1회로 총 10회를 최대한 빠르게 반복하는 것으로 총 3회 측정하였으며 0.01초(s) 단위로 기록하여 평균값을 사용하였다. 대상자가 중심을 잃고 넘어지거나 반대쪽 발이 지면에 닿거나, 검사 중 30cm 거리를 완전히 뛰어넘지 못하여 선을 밟았을 경우 30초 휴식 후 재측정하였다(Caffrey et al., 2009).
(3) 6미터 크로스오버 홉 검사(6-meter crossover hop test)

6미터 크로스오버 홉 검사를 하기 위해 대상자는 6m 길이, 15cm 두께의 기준선을 그은 후 대상자에게 시작점에서부터 한발로 기준선을 좌우로 교차로 뛰어넘어 도착점까지 진행하도록 교육하였고, 총 3회 측정하였으며 0.01초(s) 단위로 기록하여 평균값을 사용하였다. 검사 중 대상자가 반대쪽 발을 내리거나 중심을 잃지 못하고 넘어지거나 기준선을 밟았을 경우, 30초 휴식 후 재측정하였다(Caffrey et al., 2009).

(4) 정사각형 홉 검사(square hop test)

정사각형 홉 검사를 하기 위해 40cm x 40cm으로 네 변의 길이가 같은 정사각형 선을 그은 후 대상자가 시작점에서 정사각형의 밖에서 안으로 뛰었다가 안에서 밖으로 각 변에 대한 방향으로 뛰어나오고를 반복하였다. 정사각형의 각 변에 대한 방향을 다 돌아 시작점으로 돌아오는 것을 1회로 총 5회를 반복하는 것으로 교육하였고 대상자들은 왼쪽발이 오른발일 때 시계 방향으로 뛰었으며 왼발일 때 반시계방향으로 뛰도록 하였다. 검사는 총 3회 측정하였으며 0.01초(s) 단위로 기록하여 평균값을 사용하였고 대상자가 뛰다가 넘어졌거나 반대쪽 발을 지면에 닿거나 잘못된 방향으로 뛰거나 정사각형의 선을 완전히 넘지 못하였을 경우, 30초 휴식 후 재측정하였다(Caffrey et al., 2009).
그림 6. 발목관절 기능검사

(Figure-of-Eight Hop Test) (Side Hop Test) (6-Meter Crossover Hop Test) (Square Hop Test)

(Ankle joint function test)
4. 훈련프로그램

본 연구에서는 6주간 두 집단에게 동일한 신경근 훈련프로그램을 적용한 후 각각 엉덩관절 훈련프로그램과 발목관절 훈련프로그램을 적용하였다. 대상자들의 훈련을 주 3회, 1회 30~40분간 진행하였으며 훈련프로그램 실시 전 1주일마다 대상자들에게 단계별로 진행되는 훈련에 대해 사전 교육 지침을 통해 이해를 도왔고, 본 훈련에 들어가기 전에 추가적인 부상 예방과 완활한 훈련을 위해 충분한 준비운동 시간을 제공하였다.

가. 신경근 훈련프로그램

신경근 훈련프로그램은 McKeon, Ingersoll, Kerrigan, Saliba, Bennett & Hertel (2008)이 제시한 훈련프로그램을 본 연구의 환경적 요인에 맞게 수정·보완하여 진행하였으며, 다양한 동적 자세제어 활동을 수행하는 동안 한쪽 다리 자세를 유지하는 대상자의 능력에 도전하도록 구성되었다. 각 주마다 훈련에 적용함에 따라 감각운동 시스템에 가해지는 강도가 점진적으로 증가하며 다양한 빠빠른 운동의 환경적 구성 등 총 7단계의 난이도가 포함되어있다. 주 3회, 1회 20분간 진행하였으며, 훈련프로그램의 모든 동작은 통증이 없는 범위 내에서 실시하였고, 들고 있는 다리가 바닥에 닿거나, 팔의 위치가 변하거나 들어 올린 다리를 다디고 있는 다리에 지지하였을 경우 운동 중단 후 다시 수행하도록 하였다. 본 연구의 신경근 훈련 프로그램에 사용된 훈련 도구는 <그림 7>와 같이 사용하였으며, 세션 및 내용은 <그림8>,<그림9>,<표 3>과 같다.
그림 7. 신경근 훈련프로그램

(A: 단단한 지면, B: 불안정한 지면)
그림 9. 신경근 훈련프로그램
（균형패드에서 공주고 받기）
<table>
<thead>
<tr>
<th>Exercise</th>
<th>Description</th>
<th>Start</th>
<th>Progression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Limb Hop to Stabilization</td>
<td>Start to target at 18 → 27 → 36 in Anterior/Posterior, Medial/Lateral Anterolateral/Posteromedial</td>
<td>10 hops/direction at 7 levels of difficulty with 2/distance</td>
<td>When able to perform 10 error-free reps at each level of difficulty</td>
</tr>
<tr>
<td>Hop to stabilization and reach</td>
<td>Similar to above except: hop → stabilize → reach back to start → hop back to start → reach to target</td>
<td>5 rep/direction at 7 levels of difficulty with 2/distance</td>
<td>When able to perform 5 error-free reps at each level of difficulty</td>
</tr>
<tr>
<td>Unanticipated hop to stabilization</td>
<td>Stand in middle of 9-marker grid Sequence of numbers displayed As sequence change, hop to new target position</td>
<td>Use any combination of hops to target position 7 levels of difficulty based on time(1-3) and compromised surface(4-7)</td>
<td>When error free at each level of difficulty When error free at each level of difficulty</td>
</tr>
<tr>
<td>Single-Limb Stance</td>
<td>Single-limb stance, eyes open Hard floor 1. 60 s x 3set 2. foam pad 30s x 3set 3. 60s x 3set 4. 90s x 3set</td>
<td>when able to perform 3 error-free reps at each level of difficulty</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Giving and receiving a 6-pound ball on a foam pad 5. 15reps x 3set 6. 20reps x 3set 7. 25eps x 3set</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single-limb stance, eyes closed 1. arms out 30s x 3set 2. arms across 30s x 3set 3. arms across 60s x 3set 4. arms out on foam pad 30s x 3set 5. arms across on foam pad 30s x 3set 6. arms across on foam pad 60s x 3set 7. arms across on foam pad 90s x 3set</td>
<td></td>
<td>when able to perform 3 error-free reps at each level of difficulty</td>
</tr>
</tbody>
</table>
나. 엉덩관절 훈련 프로그램

엉덩관절 훈련 프로그램은 한 다리 스쿼트(single leg squat), 한 다리 데드리프트(single leg deadlift) 및 옆으로 누워 엉덩벌림(side lying hip abduction) 세 가지로 구성하였다. 옆으로 누워 엉덩벌림은 옆으로 누운 자세에서 균형유지를 위해 아래쪽 엉덩관절과 무릎관절은 30° 굽힌 후 위쪽 다리는 평 상태에서 벌림을 수행하였다(Fredericson, Cookingham, Chaudhari, Dowdell, Oestreicher & Sahrmann, 2000; 그림10). 한 다리 스쿼트는 한발 선 자세에서 허리를 숙은 후 내려가며 지지하는 다리의 발 끝에 손을 닿은 후 다시 원래 자세로 돌아오도록 하였다(Willy & Davis, 2011; 그림11). 한 다리 데드리프트는 한발 선 자세에서 상체를 곧히 양손을 바닥으로 내려가는 동시에 반대쪽 다리도 뒤로 끌어내리면서 천천히 본 자세로 돌아오도록 지시하였다(Haddad, Budich & Eckenrode, 2016; 그림12). 대상자들은 주 3회, 1회에 10분씩 수행하도록 하였으며 훈련에 대한 적응 정도를 고려하여 적절하게 훈련수행을 할 수 있도록 세트와 횟수를 증가시켰다(표 4). 각 운동을 수행할 때마다 교육지침을 통해 이해를 도왔으며, 훈련 프로그램의 모든 동작은 통증이 없는 범위 내에서 실시하였다.
그림 11. 한다리 스쿼트 (single limb squat)

그림 12. 한다리 데드리프트 (single limb deadlift)
다. 발목관절 훈련프로그램

발목관절 훈련프로그램은 Docherty 등(1998)이 제시한 연구에서 훈련 프로그램을 적용하였으며, 대상자들은 주 3회, 1회에 10~15분씩 점진적인 저항과 충분한 훈련 부하를 제공할 수 있도록 설계되었다. 훈련 프로토콜은 고무 밴드(Thera-Band Tubing Resistive Exerciser, The Hygenic Corporation, Akron, OH)를 사용하였으며, 대상자는 밴드의 한쪽 끝을 치료 테이블에 고정하였으며, 다른 쪽 끝은 발의 발허리뼈 머리를 감싸고 앉아서 진행하였다(표 5). 운동 방향은 발등 굽힘(dorsi flexion), 발바닥 굽힘(plantar flexion), 안쪽 번짐(inversion), 가쪽 번짐(eversion)의 4 가지 방향으로 수행하였다. 대상자의 고무 밴드를 바닥의 지정된 표시까지 늘렸으며, 이는 밴드의 최대길이의 170%로 계산되었다(그림 13). 대상자들은 발목관절 이외의 움직임을 최소화하였으며, 전체 동작 범위에 횡수당 약 3~5초의 일관된 속도를 유지하도록 지시하였다.
표 5. 발목관절 훈련프로그램

<table>
<thead>
<tr>
<th>week</th>
<th>Tubing</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blue - Light</td>
<td>3s x 10r</td>
</tr>
<tr>
<td>2</td>
<td>Blue - Light</td>
<td>4s x 10r</td>
</tr>
<tr>
<td>3</td>
<td>Yellow - Medium</td>
<td>3s x 10r</td>
</tr>
<tr>
<td>4</td>
<td>Yellow - Medium</td>
<td>4s x 10r</td>
</tr>
<tr>
<td>5</td>
<td>Red - Heavy</td>
<td>3s x 10r</td>
</tr>
<tr>
<td>6</td>
<td>Red - Heavy</td>
<td>4s x 10r</td>
</tr>
</tbody>
</table>

s : sets, r : repetitions
5. 자료처리 방법

본 연구로 얻어진 모든 자료는 SPSS 21.0(IBM SPSS Statistics, Armonk, USA)를 사용하여 분석하였다. 모든 자료에 대해 Shapiro-Wilk의 정규성 검정을 실시한 결과에 따라 모수검정 또는 비모수검정 방법을 사용하였다. 집단 간 인구통계학적 특성 및 운동프로그램 적용에 따른 사례제어와 발목기능의 차이를 확인하기 위해 카이제곱검정 (Chi-Squared test)과 독립표본 t-검정(independent t-test) 또는 맨-휘트니 U 검정(Mann-Whitney U test)을 사용하였고, 집단 내 프로그램 적용 전후 차이를 확인하기 위해 대응표본 t-검정(paired t-test) 또는 윌콕슨 부호 순위 검정(Wilcoxon's signed-ranks test)을 사용하였다. 정규 분포를 만족하는 변인에 대해 집단 간 훈련프로그램 적용에 따른 상호작용 효과를 확인하기 위해(repeated measure ANOVA, RMANOVA)를 사용하였고, 모든 통계적 유의수준은 $\alpha=.05$로 설정하였다.
본 연구는 만성 발목 불안정성(CAI)을 가진 개인을 대상으로 신경근 훈련과 발목관절 훈련 프로그램 및 엉덩관절 훈련 프로그램을 6주간 적용하여 훈련 프로그램 적용 전후에 대해 정적 자세 제어와 동적 자세 제어 및 발목기능에 미치는 효과를 측정하여 비교 분석한 결과는 다음과 같다.

1. 훈련프로그램 적용에 따른 자세제어 차이

가. 훈련프로그램 적용에 따른 정적 자세 제어 차이

(1) 훈련프로그램 적용에 따른 총 궤적장(TL) 차이

<표 8>과 <그림 14>, <그림 15>는 6주간 훈련프로그램 적용에 따른 집단 간 정적 자세 제어 동안 총 궤적장 차이를 확인한 결과이다. 훈련프로그램 적용 전 SSEO, SSEC, USEO, USEC는 모두 두 집단 간 통계적으로 유의한 차이를 보이지 않았다(각각, Z = -0.490, p = .624; t = -0.252, p = .803; t = -0.284, p = .779; t = -0.252, p = .803). 훈련프로그램 적용 후 SSEO, SSEC, USEO, USEC는 모두 집단 간 통계적으로 유의한 차이를 보이지 않았다(각각, Z = -0.490, p = .624; t = -0.851, p = .404; t = -1.643, p = .114; t = -1.725, p = .098).

6주간 훈련프로그램 적용에 따른 집단 내 정적 자세 제어 동안 총 궤적장 차이를 확인한 결과, SSEO는 두 집단 내 통계적으로 유의한 차이를 보이지 않았다(각각, Z = -0.784, p = .433; Z = -0.594, p = .552). SSEC는 두 집단 모두 적용 후(각각, 583.68±149.08mm와 534.53±139.69mm) 적용 전
각각, 732.36±224.24㎜와 698.65±235.33㎜보다 증가하였으며(각각, \( t=2.311, p=.041; t=3.052, p=.010 \)), 훈련프로그램에 적용에 따른 집단 간 상호작용 효과는 나타나지 않았다(\( F=0.389, p=.539 \)). USEO는 두 집단 내 통계적으로 유의한 차이를 보이지 않았으며(각각, \( t=-0.178, p=.862; t=1.237, p=.240 \)), 훈련프로그램 적용에 따른 집단 간 상호작용 효과도 나타나지 않았다(\( F=1.199, p=.285 \)). USEC는 EG집단에서 통계적으로 유의한 차이를 보이지 않았으나(\( t=0.214, p=.834 \)), CG집단에서 적용 후 (1061.10±266.74㎜) 적용 전(1279.26±428.11㎜)보다 감소하였으며(\( t=3.350, p=.006 \)), 훈련프로그램 적용에 따른 집단 간 상호작용 효과 또한 통계적으로 유의한 수준으로 확인되었다(\( F=6.097, p=.021 \)).
**Table 6.** Comparative effect of applying exercise program on total length change (mm)

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre</th>
<th>Post</th>
<th>Within group</th>
<th>Interaction effect</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stable surface</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Eyes open</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG (n=12)</td>
<td>312.87±140.76</td>
<td>328.09±146.81</td>
<td>Z=-0.784</td>
<td></td>
</tr>
<tr>
<td>CG (n=13)</td>
<td>303.94±148.66</td>
<td>287.97±73.10</td>
<td>Z=-0.594</td>
<td></td>
</tr>
<tr>
<td>Between group</td>
<td>Z=-0.490</td>
<td>Z=-0.490</td>
<td>p=0.624</td>
<td>p=0.624</td>
</tr>
<tr>
<td><strong>Stable surface</strong></td>
<td></td>
<td></td>
<td>F=0.389</td>
<td></td>
</tr>
<tr>
<td><strong>Eyes closed</strong></td>
<td></td>
<td></td>
<td>p=0.539</td>
<td></td>
</tr>
<tr>
<td>EG (n=12)</td>
<td>732.36±224.24</td>
<td>583.68±149.08</td>
<td>t=2.311</td>
<td></td>
</tr>
<tr>
<td>CG (n=13)</td>
<td>698.65±235.33</td>
<td>534.53±139.69</td>
<td>t=3.032</td>
<td></td>
</tr>
<tr>
<td>Between group</td>
<td>t=0.252</td>
<td>t=0.851</td>
<td>p=0.803</td>
<td>p=0.404</td>
</tr>
<tr>
<td><strong>Unstable surface</strong></td>
<td></td>
<td></td>
<td>F=1.199</td>
<td></td>
</tr>
<tr>
<td><strong>Eyes open</strong></td>
<td></td>
<td></td>
<td>p=0.285</td>
<td></td>
</tr>
<tr>
<td>EG (n=12)</td>
<td>470.77±127.70</td>
<td>491.09±130.85</td>
<td>t=0.178</td>
<td></td>
</tr>
<tr>
<td>CG (n=13)</td>
<td>457.95±213.37</td>
<td>414.75±100.58</td>
<td>t=1.237</td>
<td></td>
</tr>
<tr>
<td>Between group</td>
<td>t=0.284</td>
<td>t=1.643</td>
<td>p=0.779</td>
<td>p=0.114</td>
</tr>
<tr>
<td><strong>Unstable surface</strong></td>
<td></td>
<td></td>
<td>F=6.097</td>
<td></td>
</tr>
<tr>
<td><strong>Eyes closed</strong></td>
<td></td>
<td></td>
<td>p=0.021</td>
<td></td>
</tr>
<tr>
<td>EG (n=12)</td>
<td>1242.83±228.27</td>
<td>1231.58±223.17</td>
<td>t=0.214</td>
<td></td>
</tr>
<tr>
<td>CG (n=13)</td>
<td>1279.26±428.11</td>
<td>1061.10±266.74</td>
<td>t=3.350</td>
<td></td>
</tr>
<tr>
<td>Between group</td>
<td>t=0.420</td>
<td>t=1.725</td>
<td>p=0.678</td>
<td>p=0.98</td>
</tr>
</tbody>
</table>

Values express as mean ± standard deviation.
EG: Experimental Group, Hip exercise group; CG: control group, Ankle exercise group
- : No Interaction effect
그림 14. 훈련프로그램 적용에 따른 SSEO, SSEC 총 궤적장(TL) 차이
그림 15. 훈련프로그램 적용에 따른 USEO, USEC 총 궤적장(TL) 차이
(2) 훈련프로그램 적용에 따른 COP 동요속도(SV) 차이

표 9)과 (그림 16),(그림 17)은 6주간 훈련프로그램 적용에 따른 집단 간 정적 자세제어 동안 COP 동요속도 차이를 확인한 결과이다. 훈련 프로그램 적용 전 SSEO, SSEC, USEO, USEC는 모두 두 집단 간 통계적으로 유의한 차이를 보이지 않았다(각각, Z=-0.272, p=.786; t=0.021, 
=0.984; t=0.423, p=.676; t=0.053, p=.958). 훈련프로그램 적용 후 SSEO, SSEC, USEO, USEC는 모두 집단 간 통계적으로 유의한 차이를 보이지 않았다(각각, Z=-1.360, p=.174; t=0.907, p=.374; t=-1.651, p=.112; t=-1.208, p=.240).

6주간 훈련프로그램 적용에 따른 집단 내 정적 자세제어 동안 COP 동요속도 차이를 확인한 결과, SSEO는 두 집단 내 통계적으로 유의한 차이를 보이지 않았다(각각, Z=1.177, p=.239; Z=-0.664, p=.507). SSEC는 두 집단 모두 훈련프로그램 적용 후(각각, 39.10±9.74㎜/s와 35.63±9.31㎜/s) 적용 전(각각, 48.10±14.45㎜/s와 46.90±16.24㎜/s)보다 감소하였으나(각각, t=-2.366, p=.037; t=3.072, p=.010) 훈련프로그램 적용에 따른 집단 간 상호작용 효과는 통계적으로 유의한 차이를 보이지 않았다(F=0.590, p=.450). USEO는 두 집단 내 통계적으로 유의한 차이를 보이지 않았으나(각각, t=0.984, p=.345), 훈련프로그램 적용에 따른 집단 간 상호작용 효과는 나타나지 않았다(F=1.404, p=.248).

USEC는 EG집단에서 집단 내 통계적으로 유의한 차이를 보이지 않았다(t=1.460, p=.172). CG집단에서 적용 후(70.74±17.77㎜/s) 적용 전(84.31±28.19㎜/s)보다 감소하였으나(t=-3.149, p=.008), 훈련프로그램 적용에 따른 집단 간 상호작용 효과는 통계적으로 유의한 차이를 보이지 않았다(F=1.626, p=.215).
<table>
<thead>
<tr>
<th>Group</th>
<th>Apply Exercise Program</th>
<th>Within group</th>
<th>Interaction effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td></td>
</tr>
<tr>
<td><strong>Stable surface</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eyes open</td>
<td>EG (n=12)</td>
<td>20.90±10.56</td>
<td>22.30±9.80</td>
</tr>
<tr>
<td></td>
<td>CG (n=13)</td>
<td>19.98±9.26</td>
<td>19.20±4.87</td>
</tr>
<tr>
<td></td>
<td>Between group</td>
<td>Z=-0.272</td>
<td>Z=-1.360</td>
</tr>
<tr>
<td></td>
<td>p=.786</td>
<td>p=.174</td>
<td></td>
</tr>
<tr>
<td><strong>Stable surface</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eyes closed</td>
<td>EG (n=12)</td>
<td>48.10±14.45</td>
<td>39.10±9.74</td>
</tr>
<tr>
<td></td>
<td>CG (n=13)</td>
<td>46.90±16.24</td>
<td>33.63±9.31</td>
</tr>
<tr>
<td></td>
<td>Between group</td>
<td>t=0.021</td>
<td>t=0.907</td>
</tr>
<tr>
<td></td>
<td>p=.984</td>
<td>p=.374</td>
<td></td>
</tr>
<tr>
<td><strong>Unstable surface</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eyes open</td>
<td>EG (n=12)</td>
<td>30.94±8.59</td>
<td>32.75±8.69</td>
</tr>
<tr>
<td></td>
<td>CG (n=13)</td>
<td>29.46±11.91</td>
<td>27.64±6.70</td>
</tr>
<tr>
<td></td>
<td>Between group</td>
<td>t=-0.423</td>
<td>t=-1.651</td>
</tr>
<tr>
<td></td>
<td>p=.676</td>
<td>p=.112</td>
<td></td>
</tr>
<tr>
<td><strong>Unstable surface</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eyes closed</td>
<td>EG (n=12)</td>
<td>86.40±25.15</td>
<td>79.80±19.54</td>
</tr>
<tr>
<td></td>
<td>CG (n=13)</td>
<td>84.31±28.19</td>
<td>70.74±17.77</td>
</tr>
<tr>
<td></td>
<td>Between group</td>
<td>t=0.633</td>
<td>t=1.208</td>
</tr>
<tr>
<td></td>
<td>p=.958</td>
<td>p=.240</td>
<td></td>
</tr>
</tbody>
</table>

Values express as mean ± standard deviation.
EG: Experimental Group, Hip exercise group; CG: control group, Ankle exercise groupe
-: No Interaction effect
그림 16. 훈련프로그램 적용에 따른 SSEO, SSEC COP 동요속도(SV) 차이
그림 17. 훈련프로그램 적용에 따른 USEO, USEC COP 동요속도(SVelocity) 차이
(3) 훈련프로그램 적용에 따른 외주면적(ENV) 차이

<표 10>과 (그림 18),(그림 19)는 6주간 훈련프로그램 적용에 따른 집단 간 정적 자세체어 동안 외주면적 차이를 확인한 결과이다. 훈련프로그램 적용 전 SSEO, SSEC, USEO, USEC는 모두 두 집단 간 통계적으로 유의한 차이를 보이지 않았다(각각, Z=-1.197, p=.231; Z=-0.490, p=.624; t=-0.640, p=.528; t=-0.665, p=.512). 훈련프로그램 적용 후 SSEO, SSEC, USEO는 모두 두 집단 간 통계적으로 유의한 차이를 보이지 않았다(각각, t=-0.965, p=.344; t=-0.723, p=.477; t=-1.886, p=.072).

USEC는 두 집단 간 통계적으로 유의한 차이를 나타냈으며 EG(1775.70 ±460.88㎟)가 CG(1494.34 ±417.64㎟)보다 높은 것으로 확인되었다(각각, Z=-2.013, p=.044)

6주간 훈련프로그램 적용에 따른 집단 내 정적 자세체어 동안 외주면적 차이를 확인한 결과, SSEO는 두 집단 내 통계적으로 유의한 차이를 보이지 않았다(각각, t=-0.454, p=.659; Z=-1.153, p=.249). SSEC는 EG 집단에서 통계적으로 유의한 차이를 보이지 않았으나(t=1.723, p=.113), CG 집단에서 적용 후(325.62±112.25㎟) 적용 전(532.16 ±326.45㎟)보다 감소 하였다(Z=2.201, p=.028). USEO는 두 집단 내 통계적으로 유의한 차이를 보이지 않았다(각각, t=-1.134, p=.281; t=0.131, p=.898). 훈련프로그램 적용에 따른 집단 간 상호작용 효과는 통계적으로 유의한 차이를 보이지 않았다(F=0.965, p=.336). USEC는 EG 집단에서 통계적으로 유의한 차이를 보이지 않았으나(Z=1.647, p=.099) CG 집단에서 적용 후(1494.34 ±417.64㎟) 적용 전(1961.17 ±642.93㎟)보다 감소하였다(t=4.612, p=.001).
<table>
<thead>
<tr>
<th>Group</th>
<th>Apply Exercise Program</th>
<th>Within group</th>
<th>Interaction effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
<tr>
<td>Stable surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eyes open</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG (n=12)</td>
<td>163.75±185.13</td>
<td>130.41±47.89</td>
<td>t=0.454</td>
</tr>
<tr>
<td>CG (n=13)</td>
<td>168.00±215.26</td>
<td>114.47±34.03</td>
<td>Z=-1.153</td>
</tr>
<tr>
<td>Between group</td>
<td>Z=-1.197</td>
<td>t=-0.965</td>
<td>p=.231</td>
</tr>
<tr>
<td>Stable surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eyes closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG (n=12)</td>
<td>446.50±202.99</td>
<td>364.94±157.63</td>
<td>t=1.723</td>
</tr>
<tr>
<td>CG (n=13)</td>
<td>548.33±319.42</td>
<td>325.62±112.25</td>
<td>Z=-2.201</td>
</tr>
<tr>
<td>Between group</td>
<td>Z=-0.490</td>
<td>t=-0.723</td>
<td>p=.624</td>
</tr>
<tr>
<td>Unstable surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eyes open</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG (n=12)</td>
<td>469.25±184.38</td>
<td>556.54±220.15</td>
<td>t=1.134</td>
</tr>
<tr>
<td>CG (n=13)</td>
<td>428.27±221.49</td>
<td>418.01±141.66</td>
<td>t=0.131</td>
</tr>
<tr>
<td>Between group</td>
<td>t=-0.640</td>
<td>t=-1.886</td>
<td>p=.528</td>
</tr>
<tr>
<td>Unstable surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eyes closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG (n=12)</td>
<td>2165.12±734.21</td>
<td>1775.70±460.88</td>
<td>Z=-1.647</td>
</tr>
<tr>
<td>CG (n=13)</td>
<td>1961.17±642.93</td>
<td>1494.34±417.64</td>
<td>t=-0.665</td>
</tr>
<tr>
<td>Between group</td>
<td>t=-0.665</td>
<td>Z=-2.013</td>
<td>p=.512</td>
</tr>
</tbody>
</table>

Values express as mean ± standard deviation.
EG: Experimental Group, Hip exercise group; CG: control group, Ankle exercise group
- : No Interaction effect
그림 18. 훈련프로그램 적용에 따른 SSEO, SSEC 외주면적(ENV) 차이
그림 19. 훈련프로그램 적용에 따른 USEO, USEC 외주면적(ENV) 차이
나. 훈련프로그램 적용에 따른 동적 자세제어 차이

표11과 (그림20)은 6주간 훈련프로그램 적용에 따른 집단 간 동적 자세제어의 차이를 확인한 결과이다. 훈련프로그램 적용 전 두 집단 모두 통계적으로 유의한 차이를 보이지 않았다(\(t=1.053, p=.303\)). 훈련프로그램 적용 후 두 집단 모두 통계적으로 유의한 차이를 보이지 않았다 (\(Z=-0.272, p=.786\)). 6주간 훈련프로그램 적용에 따른 집단 내 동적 자세제어의 차이를 확인한 결과, 두 집단 모두 프로그램 적용 후(각각, 96.75 ±6.94%와 97.49±7.74%) 적용 전(각각, 93.02±7.85%와 89.38±9.32%)보다 증가하였다(각각, \(Z=-2.510, p=.012; t=5.216, p=.001\)).

<table>
<thead>
<tr>
<th>Group</th>
<th>Apply Exercise Program</th>
<th>Within group</th>
<th>Interaction effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td></td>
</tr>
<tr>
<td>EG (n=12)</td>
<td>93.02±7.85</td>
<td>96.75±6.94</td>
<td>(Z=-2.510)</td>
</tr>
<tr>
<td>CG (n=13)</td>
<td>89.38±9.32</td>
<td>97.49±7.74</td>
<td>(t=-5.216)</td>
</tr>
</tbody>
</table>

Values express as mean ± standard deviation.
EG: Experimental Group, Hip exercise group; CG: control group, Ankle exercise group
- No Interaction effect
그림 20. 훈련프로그램 적용에 따른 동적자세제어 차이
2. 훈련 프로그램 적용에 따른 발목관절 기능 차이

<표 12>와 (그림 21), (그림 22)는 6주간 훈련프로그램 적용에 따른 발목관절 기능의 차이를 확인한 결과이다. 훈련프로그램 적용 전 모든 검사에서 집단 간 통계적으로 유의한 차이를 보이지 않았다(각각, $t=-0.396, p=.696; Z=-0.001, p=1.000; t=0.365, p=.718; Z=-0.109, p=.913$). 훈련프로그램 적용 후 모든 검사에서 집단 간 통계적으로 유의한 차이를 보이지 않았다($t=0.061, p=.952; Z=-1.033, p=.301; t=-0.186, p=.854; t=0.665, p=.513$).


Figure-of-eight hop test 기록은 EG와 CG가 훈련프로그램 적용 후(각각, 6.15±0.93; 5.86±1.33) 적용 전(각각, 8.36±3.67sec와 7.68±1.94sec)보다 증가하였다(각각, $Z=-2.981, p=.003; Z=-3.111, p=.002$).

6-meter crossover hop test 기록은 EG와 CG가 훈련프로그램 적용 후(각각, 3.66±1.15sec와 3.57±1.28sec) 적용 전(각각, 7.30±2.90sec와 7.76...
±3.27sec)보다 증가하였다(각각, \( t=4.984, p=.001; Z=5.491, p=.001 \)). 훈련 프로그램 적용에 따른 집단 간 상호작용 효과는 통계적으로 유의한 차이를 보이지 않았다(\( F=0.403, p=.523 \)).

Square hop test 기록은 EG와 CG가 훈련프로그램 적용 후(각각, 16.48 ±1.91sec와 17.33±4.02sec) 적용 전(각각, 21.94±5.39sec와 24.08±10.04sec)보다 증가하였다(각각, \( Z=-3.059, p=.002; Z=-3.040, p=.002 \)).
<table>
<thead>
<tr>
<th>Group</th>
<th>Apply Exercise Program</th>
<th>Within group</th>
<th>Interaction effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td></td>
</tr>
<tr>
<td>Side hop test</td>
<td>EG (n=12)</td>
<td>13.49±3.83</td>
<td>9.46±1.03</td>
</tr>
<tr>
<td></td>
<td>CG (n=13)</td>
<td>12.90±4.24</td>
<td>9.51±2.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t=4.275</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F=1.056</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p=.315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t=-0.396</td>
<td>t=0.061</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p=.696</td>
<td>p=.962</td>
</tr>
<tr>
<td>Figure-of-eight hop test</td>
<td>EG (n=12)</td>
<td>8.36±3.07</td>
<td>6.15±0.93</td>
</tr>
<tr>
<td></td>
<td>CG (n=13)</td>
<td>7.68±1.94</td>
<td>5.86±1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Z=-3.111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z=0.001</td>
<td>Z=-1.033</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p=1.000</td>
<td>p=.301</td>
</tr>
<tr>
<td>6-meter crossover hop test</td>
<td>EG (n=12)</td>
<td>7.30±2.90</td>
<td>3.66±1.15</td>
</tr>
<tr>
<td></td>
<td>CG (n=13)</td>
<td>7.76±3.27</td>
<td>3.57±1.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t=5.491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>t=-0.365</td>
<td>t=-0.186</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p=.718</td>
<td>p=.854</td>
</tr>
<tr>
<td>Square hop test</td>
<td>EG (n=12)</td>
<td>21.94±5.39</td>
<td>16.48±1.91</td>
</tr>
<tr>
<td></td>
<td>CG (n=13)</td>
<td>24.08±10.04</td>
<td>17.33±1.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Z=-3.040</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z=-0.109</td>
<td>t=0.065</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p=.913</td>
<td>p=.541</td>
</tr>
</tbody>
</table>

Values express as mean±standard deviation.
EG: Experimental group, Hip exercise group; CG: Control group, Ankle exercise group.
- : No Interaction effect.
그림 21. 훈련프로그램 적용에 따른 사이드 홉 검사 및 6미터 크로스오버 홉 검사 차이

사이드 홉 검사 및 6미터 크로스오버 홉 검사 차이
그림 22. 훈련프로그램 적용에 따른 8자형 훑 검사 및 정사각형 훑 검사 차이
Ⅴ. 논의

본 연구에서는 만성 발목 불안정성(CAD)을 가진 개인 25명을 대상으로 발목관절 훈련집단과 엉덩관절 훈련집단으로 나누어 6주간 신경근 훈련을 기반으로 발목관절 훈련프로그램과 엉덩관절 훈련프로그램을 적용 후 정적 자세제어 및 동적 자세제어, 발목관절 기능에 미치는 영향을 조사하였다. 그 결과, 정적 자세제어의 총 궤적장(TL)은 눈 감은 상태로 단단한 지면(SSEC)에서 수행했을 때 두 집단 모두 훈련프로그램 적용전보다 후에 총 궤적장(TL)의 거리가 유의하게 감소하였으며, 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때 발목 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였으며, 상호작용효과가 유의하게 나타났다. COP 동요속도(SV)는 눈 감은 상태로 단단한 지면(SSEC)에서 수행했을 때 두 집단 모두 훈련프로그램 적용 전보다 후에 COP 동요속도(SV)가 유의하게 감소하였으며, 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때 발목관절 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 외주면적(ENV)은 눈 감은 상태로 단단한 지면(SSEC)에서 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 외주면적(ENV)이 유의하게 감소하였으며, 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 유의하게 감소하였으며, 집단 간 훈련프로그램 후 유의하게 발목관절 훈련집단이 엉덩관절 훈련집단보다 감소한 차이를 보였다. 동적 자세제어는 두 집단 모두 훈련프로그램 적용 전보다 후에 집단 내 YBT의 종합점수가 유의하게 증가하였다. 발목관절 기능은 총 4가지 검사(side hop test, figure-of-eight hop test, 6-meter crossover hop test, and jump landing test)를 수행하였다. 발목관절의 총 궤적장(TL)은 눈 감은 상태로 단단한 지면(SSEC)에서 수행했을 때, 발목관절 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때, 발목관절 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 외주면적(ENV)은 눈 감은 상태로 단단한 지면(SSEC)에서 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 외주면적(ENV)이 유의하게 감소하였으며, 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 동적 자세제어는 두 집단 모두 훈련프로그램 적용 전보다 후에 집단 내 YBT의 종합점수가 유의하게 증가하였다. 발목관절 기능은 총 4가지 검사(side hop test, figure-of-eight hop test, 6-meter crossover hop test, and jump landing test)를 수행하였다. 발목관절의 총 궤적장(TL)은 눈 감은 상태로 단단한 지면(SSEC)에서 수행했을 때, 발목관절 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때, 발목관절 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 외주면적(ENV)은 눈 감은 상태로 단단한 지면(SSEC)에서 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 외주면적(ENV)이 유의하게 감소하였으며, 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 동적 자세제어는 두 집단 모두 훈련프로그램 적용 전보다 후에 집단 내 YBT의 종합점수가 유의하게 증가하였다. 발목관절 기능은 총 4가지 검사(side hop test, figure-of-eight hop test, 6-meter crossover hop test, and jump landing test)를 수행하였다. 발목관절의 총 궤적장(TL)은 눈 감은 상태로 단단한 지면(SSEC)에서 수행했을 때, 발목관절 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때, 발목관절 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 외주면적(ENV)은 눈 감은 상태로 단단한 지면(SSEC)에서 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 외주면적(ENV)이 유의하게 감소하였으며, 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 동적 자세제어는 두 집단 모두 훈련프로그램 적용 전보다 후에 집단 내 YBT의 종합점수가 유의하게 증가하였다. 발목관절 기능은 총 4가지 검사(side hop test, figure-of-eight hop test, 6-meter crossover hop test, and jump landing test)를 수행하였다. 발목관절의 총 궤적장(TL)은 눈 감은 상태로 단단한 지면(SSEC)에서 수행했을 때, 발목관절 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때, 발목관절 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 외주면적(ENV)은 눈 감은 상태로 단단한 지면(SSEC)에서 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 외주면적(ENV)이 유의하게 감소하였으며, 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 동적 자세제어는 두 집단 모두 훈련프로그램 적용 전보다 후에 집단 내 YBT의 종합점수가 유의하게 증가하였다. 발목관절 기능은 총 4가지 검사(side hop test, figure-of-eight hop test, 6-meter crossover hop test, and jump landing test)를 수행하였다. 발목관절의 총 궤적장(TL)은 눈 감은 상태로 단단한 지면(SSEC)에서 수행했을 때, 발목관절 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때, 발목관절 훈련집단에서만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 외주면적(ENV)은 눈 감은 상태로 단단한 지면(SSEC)에서 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 외주면적(ENV)이 유의하게 감소하였으며, 눈 감은 상태로 불안정한 지면(USEC)에서 수행했을 때 발목관절 훈련집단만 훈련프로그램 적용 전보다 후에 유의하게 감소하였다. 동적 자세제어는 두 집단 모두 훈련프로그램 적용 전보다 후에 집단 내 YBT의 종합점수가 유의하게 증가하였다.
정적 자세제어는 다양한 환경에서 최소한의 움직임으로 자신의 신체를 안정적으로 유지하는 것으로 이러한 정적 자세제어를 측정하는데 사용되는 일반적인 검사는 BESS, Romberg 검사, 한 다리 자세동요검사, time-in-balance 검사, force-plate 검사, gait view 등 다양한 검사방법을 사용하며 시간(time), 무게중심(center of gravity), 압력중심(center of pressure) 등의 요인들로 정량화하는데 그 중 gait view 장비를 이용한 한발 서기 자세(single leg stance)를 통해 압력중심(COP)의 총 궤적장(TL), COP 동요 속도(SV), 외주면적(ENV)을 측정하여 불안정한 정적 자세제어를 식별하였다. 발목관절 훈련 및 신경근을 적용하여 정적 자세제어를 측정한 선행연구에서는 만성 발목 불안정성(CAI)을 가진 대상에게 4주간 훈련프로그램을 적용 후 시간-균형검사(time-in-balance test)와 발들기 검사(foot-lift test)를 통해 평가하였을 때 정적 자세제어가 유의하게 향상되었다고 보고하였다(Cain et al., 2020). 또 다른 선행연구에서는 만성 발목 불안정성(CAI)을 가진 성인 20명을 대상으로 발목근 훈련을 적용 후 force-plate 장비를 이용한 압력중심(COP)측정을 통한 정적 자세제어를 평가하였을 때 유의한 향상을 가져왔다고 보고하였다(Han, Ricard & Fellingham, 2009). 엉덩근 훈련을 적용하여 정적 자세제어를 확인한 선행연구에서는 만성 발목 불안정성(CAI)을 가진 개인 27명에게 엉덩근 훈련을 적용 후 BESS를 사용하여 정적 자세제어를 평가하였을 때 정적 자세제어가 유의하게 향상되었다고 보고하였다(Holmes, 2018). 또 다른 선행연구에서는 만성 발목 불안정성(CAI)을 가진 축구선수를 대상으로 엉덩근 훈련을 적용 후 BESS를 이용한 정적 자세제어를 측정하였는데 그 결과 유의한 향상을 가져왔다고 보고하였다(Syafrianto, Karmaya & Lesmana, 2021). 본 연구의 결과에서 발목관절 훈련집단의 훈련프로그램 적용 후 총 궤적장(TL), 동요속도(SV), 외주면적(ENV) 모
두 단단한 지면에서 눈감은 자세(SSEC)와 불안정한 지면에서 눈감은 자세(USEC)에서 정적이 자세제어가 유의하게 증가하였다. 엉덩관절 훈련집단은 본 연구의 결과에서 엉덩관절 훈련집단의 훈련프로그램 적용 후 총 궤적장(TL)과 동요속도(SV)에서 단단한 지면에서 눈감은 자세(SSEC)에서 서만 부분적으로 정적 자세제어의 유의한 향상을 가져왔다. 발목관절 훈련집단이 이러한 결과가 나타난 것은 전정 및 시각 정보 입력은 적절한 자세제어 및 균형 반응에 중요한 요소임(Pickerill & Harter, 2011), 만성 발목 불안정성(CAI)을 가진 대상에게서는 반복적인 염좌로 인한 발 및 발목 근육의 체험감각손실이 나타나고, 이로 인해 시각 정보에 대한 의존도가 높아지며 시각 정보 차단 시 자세제어 결함(PCD)이 발생한다고 보고하였다(Bureau & Wikstrom, 2016; Hoch, McKeon & Andreatta, 2012; McKeon et al., 2012; Perrin, Bene, Perrin & Durupt, 1997; Powell, Powden, Houston & Hoch, 2014). 이러한 시각 차단 상태에서 나타난 정적이 자세제어의 향상은 발목관절 근력훈련 및 신경근 훈련을 통해 관절수용기, 근지간기, 근방추 등의 고유수용성 감각 정보의 긍정적인 향상을 가져온 것으로 생각되며, 이러한 근골격체 훈련은 근력과 협응력, 운동 조절 능력을 증가시켜 정적자세조절의 향상을 가져온 것으로 판단된다(Chae, Choe & Kim, 2020). 엉덩관절 훈련집단의 결과가 나타난 것은 인간의 자세제어 시스템은 균형을 잡기 위해 다양한 동요에 반응하는데 중추 신경계는 다양한 동요 및 규모에 적합하고 생체역학적 제약에 따른 적절한 근육 활성화 패턴을 선택하며 표면 이동의 크기가 증가하거나 제어하는 기저면이 감소함에 따라 자세제어에 대한 근육 활성화는 면에서 면으로 변화한다고 보고하였다(Park, Horak & Kuo, 2004). 이러한 동요의 크기가 증가함에 따라 인체는 피드 포워드-피드백 메커니즘에 따라 발목관절의 피드백 제어를 감소시키고 양형관절의 피드백 제어를 증가시킨다고 하였다. 이러한 결과는 양형관절 훈련 및 신경근 훈련을 통해 발목관절전력이 적은 환자들에도 신체가 반응할 수 있도
록 개선되고 엉덩관절전략은 발목관절전략으로 적절하게 제어하지 못한 더 큰 혼합감에 보상하여 자세제어를 유지한다는 것으로 보고되었으며 (Lee & Han, 2018), 본 연구는 이러한 선행연구에 부합되는 것으로 판단된다.

하여 만성 발목 불안정성(CAI)을 가진 개인 27명을 대상으로 SEBT를
통해 동적 자세제어를 평가한 선행연구에서도 동적 자세제어가 유의하게
향상된 것으로 확인되었다(Smith et al., 2018). 본 연구의 결과에서는 앞
선 선행연구의 결과와 같이 YBT-LQ를 실시하여 엉덩관절 훈련집단과
발목관절 훈련집단 모두 훈련프로그램 적용 후 동적 자세제어가 유의하
게 향상된 것으로 나타났다. 이러한 발목관절 훈련집단의 향상은 발목의
고유수용성 감각의 기여는 근육 수용체는 근육 길이, 관절위치감
각, 움직임 속도 변화에 대한 감각 입력을 지원하는데 만성적인 발목 염
좌로 말초 감각 섬유의 손상으로 인해 감각 입력 손실되어 고유수용성
감각 절손으로 이어진다(Goble, Coxon, Van Impe, Geurts, Van Hecke,
Sunaert & Swinnen, 2012). 저항밴드를 이용한 발목관절 훈련을 통해
발목 근육의 동심성 및 편심성 활동의 증가에 기인하여(Willems et al.,
2002) 발목 관절 안정성을 증가시키게 동적 자세제어의 향상을 가져온 것
으로 생각되며, 신경근 훈련을 통해 평균선경의 감각 개입을 일으켜 뒤
정강근, 긴엄지굽힘근 및 긴발가락굽힘근을 자극함으로써 발목의 관절위
치감각과 운동제어에 기여하여(Taira & Hori, 2003) 발목의 고유수용성
감각을 유의하게 개선하였다고 보여진다(Wester, Jespersen, Nielsen &
Neumann, 1996). 또한 엉덩관절 훈련집단의 향상에 대해 일반적으로 젊
고 건강한 사람들은 엉덩관절전략보다 발목관절전략을 사용하여 질량중
심(center of mass)에 관여하는데 고령자나 발목관절의 부상이 있는 개
인의 경우 중간불기근 및 엉덩 볼림근이 약해진 발목 근육을 보상하고
자세조절 유지에 관여한다고 보고하였다(Hertel, 2002; Wilson, 2005). 질
량중심의 자세 혼들림에 대한 이러한 몸쪽 분절의 보상작용은 만성 발목
불안정성(CAI)을 가진 개인에게서 흔히 보이는 움직임 보상작용으로
(Beckman & Buchanan, 1995; Gribble, Hertel, Denegar & Buckley,
2004; Bernier & Perrin, 1998), 엉덩관절에서 엉덩근 훈련을 통해 중간
불기근 및 엉덩 볼림근을 강화하여 향상된 엉덩근 및 관절 안정성을 증
가시켜 불충분한 발목 전략이 존재할 수 있는 발목 관절의 근건 구조에 대한 기계적 긴장을 줄이는 적응 전략을 통해 움직임에 대한 성능을 향상시키는 것으로 보여진다(Leavey et al., 2010; Smith et al., 2018). 따라서 본 연구의 결과 또한 이에 부합할 것이라고 생각된다.

발목의 기능적 수행능력(Ankle functional performance ability)이란 여러 환경에서 다방향으로 조절된 움직임을 수행하는 능력으로 균형능력, 협응력, 근골격 조절 및 고유수용성 감각과 연관되어 있다고 보고되었다(Demeritt et al., 2002). 이러한 발목의 기능적 수행능력을 측정하는 데 사용되는 검사는 주로 힘 검사가 있으며 속도, 파워, 민첩성을 요구하는 기능적 작업으로 하지 관절의 안정성을 측정하는데 높은 유용성을 제공하여 널리 사용되고 있다(Lu, Wu, Adams, Han & Cai 2022). 실제 발목의 기능적 수행능력을 확인하기 위해 만성 발목 불안정성(CAI)을 가진 대상에게 6주 동안 발목관절 훈련 및 신경근 훈련을 적용 후 힘 검사를 이용하여 발목기능을 평가한 결과 사이드 힘 검사(side hop test)의 기록이 유의하게 향상되었다(Hall et al., 2018). 만성 발목 불안정성(CAI)을 가진 개인 54명을 대상으로 발목관절 훈련 및 신경근 훈련을 적용하여 싱글 힘 검사(single hop test), 트리플 힘 검사(triple hop test), 크로스 오버 힘 검사(cross over hop test), 6m 시간 힘 검사(6m timed hop test)의 기록이 유의하게 향상되었다(Wang, Yu, Kim & Kan, 2021). 또한 엉덩관절 훈련에 대한 선행 연구에서 만성 발목 불안정성(CAI)을 가진 20대 남성에게 4주간 엉덩관절 훈련을 적용 후 크로스오버 힘 검사(crossover hop test)와 싱글 힘 검사(single hop for distance)를 통해 발목의 기능을 평가한 단일 사례 연구에서는 엉덩관절 훈련을 통해 두 가지의 힘 검사의 기록이 향상되었다고 보고하였다(Holmes, 2018). 슬개퇴통증증후군을 가진 여성 70명을 대상으로 엉덩관절 훈련을 적용하였을 때 한 다리 힘 검사(single limb hop test)를 사용하여 발목기능을 평가한 결과, 엉덩관절 훈련 후 기록이 유의하게 향상된 것을
확인하였다(Fukuda, Rossetto, Magalhães, Bryk, Garcia Lucareli & de Almeida Carvalho, 2010). 본 연구의 결과에서도 발목관절 훈련집단과 엉덩관절 훈련집단 모두 집단 내 훈련프로그램 적용 후 사이드 홉 검사 (side hop test), 8자형 홉 검사(figure-of-eight hop test), 6미터 홉 검사 (6-meter crossover hop test), 정사각형 홉 검사(square hop test)로 발 목 기능을 평가한 결과, 총 4가지의 홉 검사 모두 유의하게 기록이 감소 하였다. 발목관절 훈련집단의 이러한 기록 감소는 발목관절 훈련을 통해 근육을 수축시켜 운동 수행에 필요한 추진력을 생성하는 동심성 수축과 근육을 늘려 관절에 가해지는 힘을 제어하는 편심성 수축에 도움을 주어 전체 운동사슬 전반에 걸쳐 기능적 성능을 향상된 것과 관련 있다고 생 각되며(Hall et al., 2018; Devita & Skelly, 1992). 이를 통해 발목의 기 능적 수행능력에 긍정적인 효과를 줄 것으로 판단되며 신경근 훈련이 발 목 주위의 정강근, 장판지근과 같은 다양한 근섬유와 신경을 자극한 결 과(Laudner & Koschnitzky, 2010)로 근방추와 골지건기관의 감각신경을 자극하여 관절과 주변 조직의 반응에 따른 반응을 일으켜 결과적으로 인 대가 과도하게 늘어나는 것을 방지하고 관절의 안정성을 증가시키는 것 으로 생각된다(Hung, 2015). 또한 엉덩관절 훈련집단의 기록 감소는 만 성 발목 불안정성(CAI)을 가진 개인에게서 엉덩관절의 측면 이동으로 인한 발목의 안쪽 변점 증가가 나타나는데 이러한 증상은 발목의 위치를 더 안쪽으로 밀어 무게중심(COM)을 받의 가쪽 경계 쪽으로 더 이동하 여 가쪽 발목 염좌(LAS)를 유발할 위험성이 증가될 수 있고(Yen, Chui, Corkery, Allen & Cloonan, 2017), 엉덩관절 훈련을 통해 엉덩관절의 근력이 증가하면 내측 및 외측 자세 안정성이 향상되며 발목의 가쪽 변점 이 더 빠르게 활성화되어 과도한 발목 안쪽 변점을 방지하며(Powers, Ghoddos, Straub & Khayambashi, 2017), 이러한 몸쪽 분절의 근력 증 가는 발목에서 하지 생체역학 및 신경근 조절 개선으로 이루어져 발목의 전반적인 기능에 영향을 미친 것으로 생각된다(Holmes, 2018).
VI. 결론 및 제언

본 연구는 만성 발목 불안정성(CAI)을 가진 대상에게 엉덩관절 훈련 프로그램이 정적 자세제어 및 동적 자세제어, 발목관절 기능에 미치는 영향을 조사하기 위해 B광역시에 거주하는 만성 발목 불안정성(CAI)을 가진 대상자를 두 집단으로 나누어 신경근 훈련을 기반으로 엉덩관절 훈련프로그램(n=12)과 발목관절 훈련프로그램(n=13)을 각각 적용한 후 정적 자세제어 및 동적 자세제어, 발목관절 기능의 변화를 확인하였다. 그 결과는 다음과 같다.

첫째, 엉덩관절 훈련프로그램 적용에 따른 COP 총 궤적장(TL)은 두 집단 모두 눈 감은 상태로 단단한 지면(SSEC)에서 집단 내 유의하게 감소하였고, 눈 감은 상태로 불안정한 지면(USEC)에서 발목관절 훈련 집단만 집단 내 유의하게 감소하였다.

둘째, 엉덩관절 훈련프로그램 적용에 따른 COP 동요속도(SV)는 두 집단 모두 눈 감은 상태로 단단한 지면(SSEC)에서 집단 내 유의하게 감소하였고, 눈 감은 상태로 불안정한 지면(USEC)에서 발목관절 훈련집단만 집단 내 유의하게 감소하였다.

셋째, 엉덩관절 훈련프로그램 적용에 따른 COP 외주면적(ENV)은 눈 감은 상태로 단단한 지면(SSEC)에서 발목 훈련집단만 집단 내 유의하게 감소하였고, 눈 감은 상태로 불안정한 지면(USEC)에서 발목관절 훈련집단만 집단 내 유의하게 감소하였고, 발목관절 훈련집단이 엉덩관절 훈련 집단보다 집단 간 유의하게 낮게 나타났다.
넷째, 엉덩관절 훈련프로그램 적용에 따른 YBT - 종합점수 차이는 두 집단 모두 집단 내 유의하게 증가하였다.

다섯째, 엉덩관절 훈련프로그램 적용에 따른 8자형 홉 검사, 6미터 크로스오버 홉 검사, 사이드 홉 검사, 정사각형 홉 검사의 기록은 두 집단 모두 집단 내 유의하게 감소하였다.

이러한 결론은 기존의 발목관절 훈련프로그램과 비교하여 엉덩관절 훈련프로그램도 정적 자세제어, 동적 자세제어, 발목관절 기능에 대해 유의한 향상을 가져왔으며 만성 발목 불안정성(CAI)에 대해 긍정적인 효과가 있다고 판단된다. 본 연구에서는 세 가지 운동으로 구성된 엉덩관절 훈련프로그램을 적용하였고 이 훈련에 대한 적절한 엉덩관절 근력평가는 이루어지지 않았다. 향후 만성 발목 불안정성(CAI)을 가진 대상의 자세제어 및 발목관절 기능에 긍정적인 영향을 미치는 다양한 엉덩근 훈련을 추가하여 비교 분석하는 연구와 적절한 엉덩관절 근력평가가 고려된다면 만성 발목 불안정성(CAI)을 가진 대상에게 다양한 재활 및 예방에 유용한 정보를 제공할 수 있을 것이다.
참고 문헌


programs on dynamic postural control. *Journal of sport rehabilitation, 19*(3).


control and lateral ankle instability, part I: can deficits be detected with instrumented testing?. *Journal of athletic training, 43*(3), 293–304.


국문초록

만성 발목 불안정성에 대한
엉덩관절 훈련프로그램이
자세제어와 발목기능에 미치는 영향

본 연구의 목적은 만성 발목 불안정성(CAI)을 가진 개인에게 엉덩관절 훈련이 정적 자세제어 및 동적 자세제어, 발목관절 기능에 미치는 영향을 조사하여 만성 발목 불안정성(CAI)을 가진 개인에게 다양한 재활 전략에 대한 유용한 정보를 제공하고자 하였다.

B광역시에 거주하고 있으며, 자발적으로 참여한 20대 성인남녀를 25명을 대상으로 국제발목협회의 만성 발목 불안정성(CAI) 선정기준에 따라 엉덩관절 훈련집단 12명과 발목관절 훈련집단 13명으로 분류하였다. 훈련프로그램은 두 집단 모두 신경근 훈련과 엉덩관절 훈련프로그램 및 발목관절 훈련프로그램을 각각 6주간 적용하였으며, 훈련프로그램 적용 전후 정적 자세제어, 동적 자세제어, 발목관절 기능을 측정하였다. 정적 자세제어를 측정하기 위해 한발서기 검사를 통해 총 궤적장(TL), 동요속도(SV), 외주면적(ENV)을 측정하였으며, 동적 자세제어를 측정하기 위해 YBT-LQ를 실시하였으며 발목관절 기능을 측정하기 위해 사이드 홉 검사(side hop test), 8자형 홉 검사(figure-of-eight hop test), 6미터 크
로스오버 홉 검사(6-meter crossover hop test), 정사각형 홉 검사(square hop test)를 실시하였다.
그 결과는 다음과 같다.

1. 6주간 엉덩관절 훈련프로그램 적용에 따른 COP 총 궤적장(TL)는 두 집단 모두 눈 감은 상태로 단단한 지면(SSEC)에서 집단 내 유의하게 감소하였고, 눈 감은 상태로 불안정한 지면(USEC)에서 발목관절 훈련집단만 집단 내 유의하게 감소하였다.

2. 6주간 엉덩관절 훈련프로그램 적용에 따른 COP 동요속도(SV)는 두 집단 모두 눈 감은 상태로 단단한 지면(SSEC)에서 집단 내 유의하게 감소하였고, 눈 감은 상태로 불안정한 지면(USEC)에서 발목관절 훈련집단만 집단 내 유의하게 감소하였다.

3. 6주간 엉덩관절 훈련프로그램 적용에 따른 COP 외주면적(ENV)는 눈 감은 상태로 단단한 지면(SSEC)에서 발목관절 훈련집단만 집단 내 유의하게 감소하였고, 눈 감은 상태로 불안정한 지면(USEC)에서 발목관절 훈련집단만 집단 내 유의하게 감소하였으며, 발목관절 훈련집단이 엉덩관절 훈련집단보다 집단 간 유의하게 낮게 나타났다.

4. 6주간 엉덩관절 훈련프로그램 적용에 따른 YBT-종합점수 차이는 두 집단 모두 집단 내 유의하게 증가하였다.

5. 6주간 엉덩관절 훈련프로그램 적용에 따른 사이드 홉 검사(side hop test), 8자형 홉 검사(figure-of-eight hop test), 6미터 크로스오버 홉 검사(6-meter crossover hop test), 정사각형 홉 검사(square hop test)는 두 집단 모두 집단 내 유의하게 감소하였다.
본 연구의 결과에서 기존 발목관절 훈련프로그램과 비교하여 엉덩관절 훈련프로그램도 정적 자세제어, 동적 자세제어, 발목관절 기능에 대해 유의한 향상을 가져왔으며 만성 발목 불안정성(CAI)에 대해 긍정적인 효과가 있다고 판단된다.

주요어: 만성 발목 불안정성, 엉덩훈련, 발목훈련, 자세제어, 발목기능
부록 1. 설문지

1. 발목관절 불안정성 도구(ankle instability instrument)

평소 불편함을 느끼는 발목 (오른쪽 □, 왼쪽 □)을 체크해 주시고, 불편함을 느끼는 발목에 대해 다음 문항을 읽고 응답해 주십시오.

<table>
<thead>
<tr>
<th>문항</th>
<th>예</th>
<th>아니오</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 발목을 접침감(衝) 적이 있습니까?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 발목 접침감(衝) 때문에 땅끝을 빠르게 적어 있습니까?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 발목 접침감(衝) 이후 제자리 날기가 여러번 복발과 같은 장치를 이용한 적 있습니까?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 발목의 불안정함 또는 취정기림(giving way)을 경험한 적이 있습니까?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 발목으로부터 이동한 동안 발목의 불안정함 또는 취정기림(giving way)을 경험한 적이 있습니까?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 휘골산동한 지면에 걸는 동안 발목의 불안정함 또는 취정기림(giving way)을 경험한 적이 있습니까?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. 여가활동 및 스포츠 활동 시 발목의 불안정함 또는 취정기림(giving way)을 경험한 적이 있습니까?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. 개단을 올라가는 동안 발목의 불안정함 또는 취정기림(giving way)을 경험한 적이 있습니까?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. 개단을 내려가는 동안 발목의 불안정함 또는 취정기림(giving way)을 경험한 적이 있습니까?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. 기능적 발목관절 불안정성

(identification of functional ankle instaability, idFAI)

다음 각 질문에서 본인의 발목 상태를 가장 적절히 설명하는 진술 하나만 고르시오. 질문이 있으면 검사자에게 질문하여 주십시오.

<table>
<thead>
<tr>
<th>문항</th>
<th>검사</th>
<th>유동성</th>
<th>결론</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 발목 관절(링)이 발생한 횟수는 아래에 적혀있나요?</td>
<td>회</td>
<td>회</td>
<td></td>
</tr>
<tr>
<td>없음</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2년 이하</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2년</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-12개월</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5개월</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1개월 이내</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 마지막으로 발목 관절(링)이 발생한 시기는?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>없음</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2년 이하</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2년</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-12개월</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5개월</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1개월 이내</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 흔한 요인과 의사, 기타 의료 전문가의 판단한 경우, 판단 결과 발목 관절(링)의 유동성은 어느 정도로 평가하였습니까?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>연대 악감증(이도 악화)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>연대 악감증(이도 유의)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>연대 쏙어침(이도 악화)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 발목의 관절(링) 때문에 주변이나 기타 가구를 사용한 적이 있는 경우, 얼마나 오랜기간 동안 사용하였습니까?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>사용한 적 없음</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3일</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-7일</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-14주</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3주 이상</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 발목의 응급경향 또는 허영변(bowing way)을 얼마나 가주 느끼세요?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>경험한 적 없음</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1년에 한 번</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1개월에 한 번</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1주일에 한 번</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1일에 한 번</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. 마지막으로 병역의 불만정항 또는 취정기원(giving way)을 느낀 것은 언제였습니까?

   | 경험한 적 없음 | 0 |
   | 2년 전           | 1 |
   | 1-2년 전         | 2 |
   | 2-12개월 전      | 3 |
   | 1-12개월 전      | 4 |
   | 1개월 전          | 5 |

7. 병역의 결심(입) 또는 귀하분이 시작하는 경우 어떻게 멈출 수 있습니까?

   | 경험한 적 없음 | 0 |
   | 즉시 멈출 수 있음 | 1 |
   | 가급 멈출 수 있음 | 2 |
   | 전하 멈출 수 없음 | 3 |

8. 병역의 결심(입) 또는 귀하분이 발생하였을 때, 경향적으로 흔한 말 경기에 참여하기까지 걸리는 시간은 어느 정도입니까?

   | 경험한 적 없음 | 0 |
   | 특파 참여할 수 있음 | 1 |
   | 1일 이내에 참가할 수 있음 | 2 |
   | 1-2일 이내에 참가할 수 있음 | 3 |
   | 2일 이후에 참가할 수 있음 | 4 |

9. 근무 중에 아닌 일반경과에서 병역의 불만정항 또는 취정기원(giving way)을 얼마나 자주 느�ınız가?

   | 경험한 적 없음 | 0 |
   | 1년에 한 번       | 1 |
   | 1개월에 한 번     | 2 |
   | 1주일에 한 번     | 3 |
   | 1일에 한 번       | 4 |

10. 스포츠 활동 또는 여가활동 중 병역의 불만정항 또는 취정기원(giving way)을 얼마나 자주 느�ınız가?

    | 경험한 적 없음 | 0 |
    | 1년에 한 번       | 1 |
    | 1개월에 한 번     | 2 |
    | 1주일에 한 번     | 3 |
    | 1일에 한 번       | 4 |
### 3. Cumberland 발목관절불안정성 도구
(Cumberland ankle instability tool)

각각의 질문에 가장 잘 묘사한 것을 하나만 선택해주십시오.

<table>
<thead>
<tr>
<th>질문</th>
<th>확인</th>
<th>혹은 확인</th>
<th>혹은 확인</th>
<th>점수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 내 발목의 동작이</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>정상 없음</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>동작하는 동안 동작</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>동작하는 동안 암목 역</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>동작하는 동안 경사 역</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>동작하는 동안 중점</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2. 내 발목이 응결하는가? 아래는 매</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>정상 없음</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>응결하는 동안 암목 역</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>응결하는 동안 경사 역</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>응결하는 동안 중점</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3. 강과가 반향관절(back)에서는 내 발목이 응결하는가? 느껴지는 정양</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>정상 없음</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>정상 잠들 때 기울</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>정상 잠들 때 기울</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4. 제안은 배로가 매 내 발목이 응결하는가? 느껴지는 정양</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>정상 없음</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>정상 잠들 때</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>정상 잠들 때</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5. 한발로 서있음 매 내 발목이 응결하는가? 느껴지는 정양</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>정상 없음</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>정상 잠들 때</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>6. 내 발목이 응결하는가? 느껴지는 정양</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>정상 없음</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>정상 잠들 때</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>정상 잠들 때</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
7. 네 방목의 음반용하다고 느끼는 베는

<table>
<thead>
<tr>
<th>베의 음반 용하다</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>전적으로 음반된 것들 덜할 때 (run)</td>
<td>3</td>
</tr>
<tr>
<td>전적으로 음반되지 않은 것들 느끼게 할 때 (jump)</td>
<td>2</td>
</tr>
<tr>
<td>전적으로 음반되지 않은 것들 절로 때</td>
<td>1</td>
</tr>
<tr>
<td>전적으로 음반된 것들 절로 때</td>
<td>0</td>
</tr>
</tbody>
</table>

8. 방목이 난관이면 할 때 나눈 것들이 목록

<table>
<thead>
<tr>
<th>할 때 나눈 것들이</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>즉시 음반할 수 있다</td>
<td>2</td>
</tr>
<tr>
<td>가두 음반할 수 있다</td>
<td>1</td>
</tr>
<tr>
<td>가장 음반할 수 있다</td>
<td>0</td>
</tr>
<tr>
<td>음반할 수 없다</td>
<td>3</td>
</tr>
<tr>
<td>개입하려는 경향이 많다</td>
<td>2</td>
</tr>
</tbody>
</table>

9. 방목이 난관에 의해 나의 방목이 경상으로 돌아오기 계획

<table>
<thead>
<tr>
<th>계획</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>가의 즉시 그대로 남기</td>
<td>1</td>
</tr>
<tr>
<td>하부 인출으로</td>
<td>2</td>
</tr>
<tr>
<td>1-2일</td>
<td>1</td>
</tr>
<tr>
<td>2일 이상</td>
<td>0</td>
</tr>
<tr>
<td>방목이 취한 것들이 필요하다</td>
<td>3</td>
</tr>
</tbody>
</table>