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딥러닝을 사용한 흉부 X-선 및 CT 스캔을 통한 COVID-19 검출 및  

심각도 등급 판별 
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인공지능융합학과 

 

요   약 

 

COVID-19 의 조기 식별은 신속한 의료 대응 계획과 치명적인 질병의 빠른 확산 

속도를 늦추는 데 도움이 될 수 있다. COVID-19 의 조기 선별 검사에서 RT-PCR 을 

대체하는 새롭고 혁신적이며 안전한 방법은 의료 영상 기법을 사용하여 COVID-

19 를 진단하는 것이다. 최근에 의료 영상 기술의 발전과 비전 알고리즘이 적용된 

딥러닝의 성공으로 질병의 조기 진단을 위한 의료 영상 분석에 대한 연구가 많이 

이루어지고 있다. 본 논문은 딥러닝을 사용한 흉부 X 선 및 CT 스캔 사진 데이터 

세트를 통한 COVID-19 검출 및 중증도 등급을 판별하는 방법을 제안한다. 특수 

흉부 X 선 및 CT 스캔 사진 데이터 세트에서 이러한 모델을 훈련(training)하기 

전에 먼저 6 가지 최첨단 딥러닝 기술에 대한 상세한 설명을 제공한다. 데이터 

세트는 COVID-19 환자, 폐렴 환자 및 정상 상태의 사례로 구성하여 인공지능 

시스템이 COVID-19 를 검출하고 심각도를 결정하는 데 얼마나 잘 수행하는지 

분석한다. 딥러닝을 사용한 COVID-19 조기 진단의 결과는 철저하고 안정적이며, 

신뢰할 수 있는 전략으로 방사선 전문의에게 도움이 될 수 있음을 보여주었다. 
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Abstract 

 

Early identification of COVID-19 may aid in both the planning of a prompt medical response 

and the slowing of the deadly disease's fast spread. One of the new, innovative, and safe 

methods to replace RT-PCR in the early screening of COVID-19 is to diagnose COVID-19 

using medical imaging modalities. Recently, a lot of research has been done to analyze 

medical imaging for the early diagnosis of disease due to the improvement of medical 

imaging technology as well as the success of deep learning applied for vision tasks. The use 

of deep learning based on chest X-ray and CT scan to identify COVID-19 patients and 

severity grading is the subject of this thesis. We first offer a thorough explanation of six 

cutting-edge deep learning techniques before training these models on the specialized Chest 

X-ray and CT Scan picture dataset. The dataset comprises of COVID-19 cases, Pneumonia 

patients, and NORMAL instances to analyze how well artificial intelligence systems perform 

at detecting COVID-19 and determining its severity. The outcomes have demonstrated to us 

that deep learning may assist radiologists as a thorough, stable, and reliable strategy for early 

diagnosis of COVID-19.  



 
 

1 
 

I. Introduction 

1.1 Coronavirus pandemic (COVID-19) 

The COVID-19 coronavirus disease has been spreading and posing major threats to 

the lives and health of billions of people worldwide. Starting in Wuhan, China with 

the initial assumption caused by the animal selling in the local market, the novel 

Coronavirus has been rapidly expanding all over China and then spread to other 

countries. On January 30, 2020, the WHO (World Health Organization) announced 

the virus as an international concern at its highest emergency alert. The deadly virus 

can spread quickly and widely from one person to another through the air and 

surfaces of sick people, which is a crucial fact to be aware of. 

 

 

Fig. 1. Coronavirus PCR-RT Testing. 

 

The main method to detect COVID-19 is the reverse transcriptase–polymerase 

chain reaction (RT–PCR) [1], which can detect axit ribonucleic SARS-CoV-2 (RNA) 

from the respiratory specimens (collected from nasopharyngeal swabs), is now the 
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gold standard for identifying COVID-19. However, RT–PCR has many limitations 

[2], and this screening method is a time-consuming procedure, laborious, 

complicated, and lacking supply devices. Some patients, including those highly 

suspected of COVID-19, have false negative and false positive results with the RT–

PCR test, which indicates the poor sensitivity and highly variable results of the 

method [3] [4]. 

That is, to solve these problems globally, many attempts have been made to utilize 

available radiology medical imaging modalities to detect and analyze COVID-19. 

The two most popular types of images used for COVID-19 detection are Chest X-

Ray and CT Scan images. Using medical images to detect new Coronavirus has 

gained many successes that prove the proper utilization of the method. However, the 

number of patients far exceeds the number of radiologists who take charge of 

diagnosing the input images. Thus, we need an automatic procedure to help these 

experts reduce the workload of classifying COVID-19 and NORMAL images.  

 

1.2 Deep Learning for Medical Images Analysis   

Despite Chest X-Ray and CT Scan diagnosis having many advantages, it still faces 

some obstacles due to some idiosyncratic characteristics of the new pandemic 

disease. The most cumbersome obstacle is the lack of experienced radiologists and 

also the error-prone human visual indicators. Computer aid design diagnosis can help 

radiologists to have faster and more accurate COVID-19 diagnosis as a crucial 

adjunct to reduce workload and enhance patient safety [5] [6]. 

Recently, with the emergence of deep learning, many studies have been 

conducted to analyze the potential of Deep Learning for Medical Image Analysis [7] 

[8], especially to apply deep learning for automatic COVID-19 detection [9] [10]. 

Deep learning for COVID-19 detection could help solve the problem of a lack of 

radiology specialists and also produce reliable performance [11] [12]. However, 
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almost all developed artificial intelligence (AI) systems are not open and are not 

available for the research community to access resources. We do not have much 

open-source coding or datasets available to conduct thorough research on the subject. 

Recently, there have been significant efforts pushing for access to the resource and 

AI source code about detecting COVID-19 using Chest X-Ray images; some of the 

notable research can be found in [13] [14]. In one study, a tailored convolution neural 

COVID-NET [15] architecture was created to classify normal, pneumonia, and 

COVID-19. Different from other studies, the author of this study used a large dataset 

containing 13,800 Chest X-Ray images on 13,645 patients. The authors gained 

accuracy results of 92.4% with COVID-19 classification performance. 

Severity Grading using Chest X-Ray is not an easy task, even with experienced 

radiologists; clinical diagnosis with the aid of a computer could help doctors with 

this daunting task. There are some works related to COVID-19 severity grading [16] 

[17], including the deep learning applied works of Liang et al. [18] and COVID-

Gram [19] in which the author investigated the X-Ray abnormality to detect COVID-

19. In the work of Colombi et al. [20], the lung pneumonia extent was diagnosed to 

assess the severity of the disease. Another notable work was COVID-NET-S [21], 

one of the early COVID-19 severity grading studies in which the author designed a 

deep neural network to predict extent scores from Chest X-Ray images.  

 

Fig. 2. Apply Deep Learning for Medical Image Classification. 
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1.3 Outline of Thesis 

In this thesis, we study the application of deep learning for detecting COVID-19 

based on Chest X-Ray ad CT Scan images. The experimental results have shown us 

that artificial intelligence methods based on deep neural networks could aid doctors 

and radiologists with high accuracy and reliable performance. Furthermore, we also 

study the assessment of COVID-19 severity through classified Chest X-Ray images. 

The patient severity is divided into level1 and level2, which indicates the seriousness 

of the illness and can aid doctors in deciding a treatment response. We collected 

training images from various open dataset sources and then cleaned the input data 

by removing low-quality images and separating the original dataset to balance sets 

for efficient training. We trained six deep learning models on the customized datasets 

and evaluated model performance on three metrics: precision, recall, and F1-score. 

The rest of this thesis is organized as follows. Section II discusses related works 

about COVID-19 detection and severity grading. Section III describes the 

customized datasets used for the experiment and goes into more detail about deep 

learning architectures to train these datasets; we also explain preprocessing and some 

settings for the training pipeline; five evaluation metrics are presented and each 

formula is discussed. At the end of the thesis, we recap our study and address some 

future works to enhance our experiment results. 
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II. Related Works 

2.1 COVID-19 Detection Using Chest X-Ray 

One of the recent emerging screening methods for COVID-19 is thoracic imaging 

analysis, which can be applied in early COVID-19 detection [22] [23]. These Chest 

X-Ray images are obtained and analyzed by radiologists to find visual indicators 

related to SARS-CoV-2 viral infection. Former studies prove that COVID-19 causes 

abnormal areas that could be visible in Chest X-Rays; 

 

 

 
 

 
 

 

Fig. 3. Chest X-Ray for COVID-19 Detection. 
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This hypothesis could be a strong suggestion to use Chest X-Rays as the initial 

step for COVID-19 monitoring [24] [25]. Some of the most cutting-edge benefits 

when using Chest X-Rays for COVID-19 diagnosis include the following: 

• Chest X-Ray diagnosis allows us to have rapid COVID-19 classification 

and could be carried out in parallel with RT–PCR testing to deal with high 

volumes of patients. 

• Chest X-Ray images could be obtained in many clinical sites and are 

readily available in most health care centers. 

• The portable Chest X-Ray imaging system helps doctors to isolate the 

image capturing process from other people such that it can reduce the risk 

of spreading COVID-19. 

 

2.2 COVID-19 Detection Using CT-Scan 

Deep Learning methods applied for radiology had seen a very successful scheme. 

Many notable works have been done for the detection of COVID based on X-Ray 

images, especially for CT Scan images. In the work of Anthony Ortiz et al. [26] the 

authors had developed an architecture which calculates the total volume of chest CT 

then represents in 2D data for simple integration with clinical data to detect COVID-

19 from CT Scan images. Another work of Ahmed Mohammed et al. [27] proposed 

a weakly-supervised deep learning architecture based on RestNext and Long Short 

Term (LSTM) to detect COVID-19 with very few labeled input data.  



 
 

7 
 

 

Fig. 4. CT Scan Images apply for COVID-19 Detection. 

 

Tahereh Javaheri et al. [28] created CovidCTNet which is an open-source 

collection of deep learning methods which facilitate doctors, radiologists, physicians 

on the screening process of COVID-19 detection. Parnian Afshar et al. [29] proposed 

a capsule network that can reach human-level in COVID-19 detection performance 

on low-dose and ultra-dose CT Scan images. The architecture uses a two-stage 

capsule network and run experiment on a collection of LDCT/ULDCT dataset which 

reduces the radiation exposure and still remain the image resolution. Edward H. Lee 

et al. [30] designed Deep COVID DeteCT which used to detect COVID-19 on CT 

images, which consists of 27 feature extractor layers of 3D Inception, 3D average 

pooling, and one fully connected layer. The experiment had conducted on a large 

and diverse population across 13 international organizations and 8 countries.  

2.3 COVID-19 Severity Grading Using Chest X-Ray 

Various Deep Learning models were created to assist COVID-19 detection based on 

Chest X-Ray images [15] [31]. With the rapid emergence of AI models, still have 
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some limitations due to the weakness of methodology and biases [32]. First, the 

publicity Chest X-Ray dataset often has varied quality and lack of validity. We need 

to have high-resolution images and multi-center image sources to have a more 

effective baseline. Second, we need to have a balanced dataset that has equal 

numbers of positive as well as negatives cases to have a more generalized machine 

learning model, however, due to the rapid change of COVID-19 in the community 

and the sensitivity of the deep learning model with the unbalanced dataset, the 

generalization of COVID-19 model is not yet understood.  

 

Fig. 5. COVID-19 Severity Assessment Using Chest X-Ray Images. 

 

The use of deep learning in processing and analyzing medical images is a 

challenging field of AI [33]. In the work of [34] the authors used a special deep 

learning model called SqueezeNet because it has a smaller structure compared to 

other famous neural nets. The main focus of this new architecture is to obtain higher 

accuracy so the optimization of parameters is a priority task [35]. 

While most of the research material focuses on the detection of COVID-19 with 

the aid of a computer using Chest X-Ray images, the work of assessing COVID-19 
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severity is not well explored. Some notable works in this field are COVID-Net S, a 

tailored convolution neural network designed by Wong et al. [36] and the work of 

Cohen et al. [37] which tries to gauge the severity of COVID-19 for the treatment 

response of serious cases.  
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III.  The Proposed Methods and Results 

3.1 Dataset 

3.1.1 COVID-19 Detection Chest X-Ray Dataset 

We collected the COVID-19 classification dataset from two open datasets. The first 

is COVID CXR dataset which contains 30,128 images in total. There are 16,488 

images labeled as COVID-19 and 5555 images labeled as pneumonia and 8085 

images labeled as normal. The whole dataset was collected from five open-source 

datasets which are currently freely available. The second dataset is the Chest X-Ray 

Images (Pneumonia) dataset which was published on the Kaggle competition to 

classify pneumonia and normal Chest X-Ray images. We mixed the two datasets 

together and removed portions of COVID-19 labeled images from the COVID CXR 

dataset to create a more balanced dataset. Details about the dataset contribution are 

illustrated in Table 1, in which the COVID CXR was collected from 5 published 

datasets which account for 80% of the mixed dataset. We made the combined dataset 

cleaner by removing all low-quality images and keeping the high-quality images 

only, then data augmentation was used to feed images into the deep learning models. 

Table 1. Detailed description of the COVID-19 classification dataset from the Chest X-Ray 

and COVIDX-CXR-3 datasets. 

Sets Category Chest X-Ray 
COVIDX-CXR-

3 
Total 

Train 

COVID-19 - 13,192 13,192 

Normal 3290 4444 7734 

Pneumonia 3418 4444 7862 

Validation COVID-19 - 3298 3298 
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Normal 821 1111 1932 

Pneumonia 855 1111 1966 

Test 

COVID-19 - 200 200 

Normal - 100 100 

Pneumonia - 100 100 

 

 

The Chest X-Ray Pneumonia dataset contains a total of 5856 images which are 

grouped into two categories, normal and pneumonia. There are 1583 images labeled 

as normal and 4273 images labeled as pneumonia. All the normal and pneumonia 

images were then mixed with normal and pneumonia images from the COVID CXR 

dataset. 

The total number of COVID-19 images is 9446, normal is 9668, and pneumonia 

is 9828. The Chest X-Ray images were selected from Guangzhou Women and 

Children’s Medical Center, Guangzhou. All those images were collected as the 

clinical checking routine for patients suffering from pneumonia. The Chest X-Ray 

images were cleaned to make sure the quality of the input images was acceptable to 

feed into deep neural models. These images were classified by two expert 

radiologists and double-checked by a third radiologist.  

3.1.2 COVID-19 Detection CT Scan Dataset 

Three open-source datasets were used to collect data for the training pipeline. We 

take images from the COVID-CT-Dataset [38], SARS-CoV-2 [39], and COVID-

CTSet [40], with a proper image number to have a balanced dataset between 

categories. The dataset contribution was summarized in Table 2 with a detailed 

number of images taken from each dataset. 
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COVID-CT-Dataset: The Dataset contains 349 COVID-19 CT images from 216 

patients and 463 NORMAL CT images. The labeling process was done by a 

radiologist expert who has been in charge of treating those patients since 

Coronavirus pandemic outbreaks. All 760 COVID-19 images were collected from 

medRxiv and bioRxiv with the associated metadata. Firstly, the author manually 

selected CT images, then read all the captions to judge whether positive for COVID. 

In case the judgment cannot be made, the author will analyze the text from preprint 

documents to make a decision. For the NORMAL CT Scan images, the author 

utilized datasets from many sources, including MedPix, LUNA16, Radiopaedia 

website, and PubMed Central (PMC). The MedPix is an online open-source medical 

image database, that aims to provide rich medical data for medical, nurses, students, 

physicians, and health professionals. The LUNA16 dataset published in the scope of 

Lung Nodule Analysis 2016, which captured from 888 scans and labeled by four 

experienced radiologists. Radiopaedia website is an open website with the purpose 

to provide publicity and free data about medical images the same as Wikipedia. 

There are thousands of patient cases published on the website and we can access 

them freely. PubMed Central (PMC) is a large research database storing academic 

journal papers related to biomedical and life science.  

Table 2. Covid CT Scan images contribution from three datasets COVID-CT-Dataset, 

SARS-CoV-2, and COVID-CTSet 

 

Dataset 
Train Test 

COVID NORMAL COVID NORMAL 

COVID-CT-Dataset 280 318 69 79 

SARS-CoV-2 1002 983 250 246 

COVID-CTSet 1820 1916 462 462 
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SARS-CoV-2: The dataset contains 1252 COVID and 1230 NORMAL CT scan 

images which include a total of 2482 images. These images were captured from 

hospitals around Sao Paulo, Brazil with the purpose to encourage the study of finding 

an artificial intelligence technique to detect COVID-19 from CT scan images. There 

are 60 patients diagnosed with COVID-19, of which there are 32 males and 28 

females in this group. There are 60 patients who do not infect with COVID-19, and 

there was a total of 30 males and 30 females. To evaluate the performance of this 

dataset, the author had run experiments on different deep learning models. The 

proposed xCNN model produced the best result when training on the SARS-CoV-2 

dataset with the explainable deep learning approach. The method had gained 97,31% 

as an F1 score metric and could provide a new quick, safe and reliable technique for 

the COVID-19 detection method. 

COVID-CTSet: The dataset was captured from Negin radiology in Sari, Iran 

between the period from 5th March to 23nd 2020. There are total of 48, 260 chest 

CT Scan images captured from 282 COVID-19 patients and 15, 589 images of 282 

normal people. The Negin radiology had used the SOMATON scope model to 

capture 16-bit grayscale DICOM images with 512 x 512 resolution. The author uses 

16-bit grayscale images instead of 8-bit since converting the original DICOM 16-bit 

to 8-bit might lose important information.  Moreover, the 16-bit DICOM might 

contain information that human eyes cannot see, but the computer could process this 

information that helps the deep learning model enhance the classification 

performance of deep learning models. Because the patient's information could 

retrieve from DICOM images, the author had converted original images from 

DICOM to TIFF format. These converted images have the same 16-bit grayscale in 

color, however, do not contain any patient information. In addition, the TIFF image 

format is easy to read and processed by the popular image processing library. For 

precise model training output, a clinical expert labeled input images and a third 

radiologist expert supervised all COVID-19 CT images to exactly classify input data. 
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3.1.3 COVID-19 Severity Grading Dataset 

We collected covid severity images using two open-source datasets: RICORD and 

RALO. The datasets contain images from two categories level1 and level2, which 

denoted the severity status of patients. If patients were diagnosed as level1, they 

could self-quarantine at home and no need to have further treatment support and if 

patients were diagnosed as level2 they should go to the hospital and need assistance 

from doctors. We mixed two dataset images together and removed all low-quality 

images, kept the high-quality ones then separated them into training, validation, and 

test sets. 

RICORD dataset: The RICORD dataset shorts for the RSNA International 

COVID-19 Open Radiology Database which is a multi-institutional, multi-national 

coronavirus imaging dataset. The RICORD dataset is collected from 4 countries 

which represent the diversity of the COVID-19 case all around the world. The 

images were labeled by experienced volunteer radiologists with the aim to have a 

more precise diagnosis and assessment for the severity of the COVID-19 cases. 

These radiologists have spent hundred hours collecting, organizing, and labeling the 

dataset with an effortless contribution. The RICORD dataset contains 240 CT scan 

images and 1000 Chest X-Ray images, including the meta-information about age, 

sex, status, and the COVID-19 testing methods. 

Table 3. Dataset contribution from RICORD and RALO dataset 

Sets Category RICORD RALO Total 

Train 
level1 140 845 985 

level2 467 1054 1521 

Validation 
level1 35 211 246 

level2 117 263 380 
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RALO dataset: The RALO dataset contains 2373 Chest X-Ray images and was 

captured from Stony Brook Medicine. Each image was scored by two radiologists 

with the score including Right Geographic, Right Opacity, Left Geographic, Left 

Opacity, and total Opacity. Both the dataset was published as freely available with 

the purpose of research and education only, without commerce.  

 

3.2 Deep Learning Architectures 

We used five neural networks to conduct our experiment, three convolutional, and 

two transformer-based models. The overview of each model architecture is shown 

in Table 4 and the details are presented in the following sections. 

Table 4. Detailed description of the six deep learning models used in thesis. 

Architecture Input Shape Trainable 

Parameters 

Non-

Trainable 

Parameters 

Total 

Parameters 

DenseNet121 (384, 384, 3) 6,956,931 83,648 7,040,579 

ResNet50 (384, 384, 3) 25,583,592 53,120 25,636,712 

InceptionNet (384, 384, 3) 54,673,507 63,616 54,737,123 

Swin Transformer (224, 224, 3) 86,746,299 336,140 87,082,439 

EfficientNet (384, 384, 3) 18, 454, 835 170, 574 18, 625, 530 

Hybrid EfficientNet-

DOLG 

(384, 384, 3) 32,843,059 170,695 33,013,754 

 

Test 
level1 52 - 52 

level2 98 - 98 
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3.2.1 DenseNet121 

The DenseNet121 [41] model won the CVPR 2017 Best Paper Award and was 

invented by researchers from Cornell University, Tsinghua University, and 

Facebook Research. The convolution neural net contains shorter connections 

between input and output layers so that the network can be deeper, more efficient, 

and more accurate. Based on these observations, Gao Huang et al. introduced 

DenseNet, which connects each layer following the deep-forward design principle. 

With each layer, a feature map of all layers is used as the input and its own feature 

map is then used for the next layers. The DenseNet architecture has many strong 

points: it reduces the gradient descent, enhances features propagation, promotes 

features reuse, and reduces a large number of parameters. 

 

Fig. 6.  DenseNet121 overall architecture 

We have a convolutional neural network (CNN) with 𝐿 layers, an image 𝑥0 

passing through the network. We denote subscript 𝑙  as the 𝑙𝑡ℎ  layer, 𝐻𝑙(∙)  is a 
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nonlinear transformation, and output of 𝑙𝑡ℎ layer is 𝑥𝑙. In the conventional CNN, the 

output of 𝑙𝑡ℎ layer is given as:  

𝑥𝑙 = 𝐻𝑙(𝑥𝑙−1) 

In ResNet, a new skip connection technique is proposed to tackle gradient 

vanishing problem, the output of 𝑙 − 1𝑡ℎ layer is added with the identity function: 

𝑥𝑙 = 𝐻𝑙(𝑥𝑙−1) + (𝑥𝑙−1) 

Instead of simple summation of identity function and the output of 𝐻𝑙(∙) , 

DenseNet proposed the dense connectivity which take the input from concatenation 

of previous layers: 

𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥0, … , 𝑥𝑙−1])  

In which,  [𝑥0, 𝑥0, … , 𝑥𝑙−1] is concatenation of 𝑥0, 𝑥0, … , 𝑥𝑙−1 layers. 
 

3.2.2 ResNet50 

ResNet architecture was proposed by Kaiming He et al. [42] to solve the problem 

when training very deep neural networks. Prior convolutional neural networks often 

face the issue of gradient vanishing when a large number of layers are stacked into 

the neural network. Gradient vanishing appears when the network is too deep, and 

the gradient calculated from the loss function easily decreases to zero through several 

chain rule operations. This results in the model not learning anything from the 

training process as there is no weight updating.  

 

Fig. 7. ResNet50 Model Architecture 
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The main concept of ResNet is the skip connection mechanism which reduces the 

gradient vanishing in two ways. First, it establishes a shortcut for the gradient passing 

through many layers, which helps the gradient to still pass over many layers. Second, 

it allows the model to learn an identity function which makes sure that the higher 

layers do not perform worse than the lower. In this paper, we use ResNet50, which 

is a variant of ResNet and has 50 layers, including 48 convolution layers and 1 max-

pooling, and 1 average pool layer. 

ResNet adopt residual learning mechanism, we have 𝑥 and 𝑦 are the input and 

output of the 𝑙𝑡ℎ layer, consider the building block: 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 

In which, function 𝐹(𝑥, {𝑊𝑖}) denotes the residual mapping to be learned. The 

summation operation: 𝐹 + 𝑥 represents the shortcut or the skip connection element-

wise operation. 

3.2.3 InceptionNet 

Before InceptionNet, prior convolutional neural networks mainly focused on 

increasing the depth of the network to extract features for improving the learning 

ability of the model. However, the creators of InceptionNet [43] pioneered the 

scaling of both depth and width of the model while still maintaining constant 

hardware usage. The principal idea behind the InceptionNet model is that every 

neuron which extracts the same features should learn together. Furthermore, 

InceptionNet architecture focuses on parallel processing and extracting different 

feature maps simultaneously.  
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Fig. 8.  InceptionNet module with dimensionality reduction 

This is the key innovative aspect that makes InceptionNet unique from other 

convolutional neural networks before it. However, InceptionNet architecture also 

has some disadvantages, for example, large models which use InceptionNet are 

subjected to overfit, especially with limited numbers of labeling input data. The 

model will bias toward the category which has more labels than another category. 

3.2.4 Swin Transformer 

Winning the Best Paper Awards and Best Student Paper competition, the Swin 

Transformer [44] is listed on the priority choices to run our experiments. The model 

had solved many problems that many vision transformers before it experienced, and 

it also makes a significant shift in applying transformer for vision tasks. We face a 

substantial challenge when applying transformer from natural language processing 

to computer vision, because of the natural difference between these two tasks, for 

example, a large number of pixels in high-resolution images far exceeds the number 

of words in text documents.  
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Fig. 9. Swin Transformer with Shifted Window Architecture 

 
Which makes the transformer for vision tasks cost more expensive computationally 

than applying transformer for NLP. In order to solve this problem, the creators of 

Swin Transformer proposed a hierarchical architecture of transformer which has 

representation computed by shifted windows. This hierarchy provided a flexible 

ability to model at different scales and has linear complexity with image size. 

Therefore, it can be used as the backbone for other vision tasks such as classification 

and dense prediction. 

3.2.5 EfficientNet 

EfficientNet was proposed by Mixing Tan and Quoc Le [45], in their work, the 

authors studied the relationship between the depth and the wide of the model 

compare with the network performance of the network. They concluded that if we 

apply to scale on both the depth, the wide, and the resolution of input images, we get 

a new type of model that has fewer parameter numbers and has better classification 

performance. These categories of model architecture called EfficientNet ranging 

from B0 to B7 and had passed all prior state-of-the-art models on the classification 
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task of ImageNet Challenge. The main building block of EfficientNet is the MBConv 

(Mobile ConvNets) which have origin in MobileNet architecture [46]. Compare to 

other convolutional neural networks such as ResNet50 [47] with a total of 

approximately 20 million parameters and the EfficientNet B0 with only 5 million 

parameters the EfficientNet model still performs a better classification accuracy.  

 

 

Fig. 10.  EfficientNet architecture with compound scaling 

 

The important contribution of the EfficientNet is the new compound scaling 

method, that uniformly scales the network in terms of depth, width, and resolution 

of input images. The scaling method is demonstrated in the following principle:  

 

{

depth: 𝑑 = 𝛼𝛷

width:𝑤 = 𝛽𝛷

resolution: 𝑟 = 𝛾𝛷  

, 𝑠. 𝑡. 𝛼 · 𝛽𝛷 ·  𝛼𝛷 · 𝛾𝛷 ≈ 2 , 𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1   

 

In which, 𝛼, 𝛽, 𝛾 are constant coefficients which can be calculated by a small 

grid search on the original small model. And 𝛷 is coefficient predefined by users 
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that control resources for model scaling. If we scale the network depth 𝛼𝑁, width 

𝛽𝑁, and resolution 𝛾𝑁  then we get 2𝑁 times more computational resources. 

 

3.2.6 Hybrid EfficientNet and DOLG 

The Hybrid EfficientNet and DOLG [48] won the Google Landmark Competition 

2021 with the highest recognition performance on the over 200,000 classes. The 

author implemented the model by enhancing the original DOLG [49] with some 

adjustments to improve the recognition capability. At first, the author used the 

EfficientNet [45] which was pre-trained on the ImageNet dataset as an encoder. Then 

the author added a local branch after the third EfficientNet block and extracted those 

1024 dimensions of local features by using three dilated convolutions where 

parameters were different per each model.  

 

Fig. 11.  Hybrid EfficientNet-B5 and DOLG architecture. 

 
The output of the fourth EfficientNet was projected to 1024 dimensions and those 

fused features accumulate using the average pooling before they were fed into the 

fully connected layers. The model used the subcenter arc face as the loss function 

contains dynamic margins for predicting thousands of classes. Overview architecture 
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of Hybrid EfficientNet and DOLG illustrates in Figure 3 with EfficientNet-B5 as a 

feature extractor and DOLG as a classifier. 

 

3.3 Preprocessing and Training Setting 

3.3.1 Data Augmentation 

Recently, convolutional neural network and transformer performed excellently on 

many vision tasks such as classification and segmentation. However, these networks 

need more input data to prevent overfitting, which leads to the failure of the model 

generalization. These models overfit when learned weights are performed well on 

the training set, however, badly on the testing set. Unfortunately, many application 

domains of deep learning do not have access to big data, such as the medical and 

biomedical domains, in which input data are scarce because of the costly labeling 

expense and the scarcity of image sources. We need to have experienced radiologists, 

pathologists, and specialists in medical images analysis to perform labeling of input 

data which makes the cost of labeling data become too expensive. Furthermore, 

many real-life medical data cannot be available for the privacy protection of patient 

information. 

One of the common techniques usually used to increase input image data for deep 

learning models is to apply data augmentation operations. Many works apply deep 

learning for COVID-19 detection using Chest X-Ray data augmentation techniques 

to increase input data. In the work of COVID-NET, Wang et al. [15] applied 

horizontal flip, intensity shift, translations, zoom, and rotation. The work of Bassi et 

al. [50] applied flipping, rotations, and translation methods to improve the deep 

neural network performance. Another work by Nishio et al. [51] used a mixture of 

data augmentation techniques, such as rotating, flipping, shifting, and mix-up to 

improve the model’s performance. In this paper, we utilized various image 

transformation techniques using ImageDataGenerator from 
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keras.preprocessing.image to augment our input data. Image augmentation 

operations include height_shift_range, rotation_range, horizontal_flip, 

brightness_range, width_shift_range, and rescale.  

 

Fig. 12.  Augmentation techniques used in our experiments. 

 

3.3.2 Hardware and Hyperparameter Setting 

We trained deep learning models on the NVIDIA GeForce RTX 2070 GPU 8GB 

with the computer hardware setting: Intel(R) Core (TM) i7-8700K CPU @ 3.70GHz 

RAM 16GB. We used CallBack, ModelCheckpoint, LearningRateScheduler, 

TensorBoard, EarlyStopping, and ReduceLROnPlateau from 

tensorflow.keras.callbacks. We set the maximum epoch to 120 with a patience of 10, 

starting with a leaning rate to 0.0001 with a minimum learning rate of 0.0001 and 

maximum learning rate of 0.0005. We utilized the Adam optimizer [52] from 
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tensorflow_addons, which is the upgrade version of the stochastic gradient descent 

and has been used frequently for vision and natural language processing.  

 

Fig. 13.  Sparse Categorical Cross Entropy 

 
We used Sparse Categorical Cross Entropy as the loss function for our training 

pipeline, which is a loss function applied for multi-categorical classification. There 

are two loss functions usually applied for the multi-categorical classification tasks, 

which are categorical cross entropy and sparse categorical cross entropy. The two 

loss functions have the same formula as illustrated in the diagram above; however, 

the only difference is the truth value in sparse categorical cross entropy, which are 

integer encoded such as {1}, {2}, {3}, and the categorical cross entropy use of one-

hot encoding, such as {1, 0, 0}, {0, 1, 0}, and {1, 0, 1} instead. Illustration of multi-

categorical classification scheme presents in Figure 5 with feature maps goes through 

Softmax layer before passing to Sparse Categorical Cross Entropy. 

 

3.4 Evaluation Metrics 

In our experiment, we used evaluation metrics from classification_report in 

sklean.metrics which include precision, recall, F1-score metrics with respect to each 

        
        

  =    
 
  lo ( ( )   ( ) =

   

    
 

       

            

      

       

 1

  

 2

 

 1

 2

 

  



 
 

26 
 

category, macro average and micro average. Details about metrics are presented in 

the following sections. 

 

3.4.1 Precision Metric 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

The precision metric calculates the ratio between positive observations which was 

predicted correctly and the total positive observations. Precision is a good metric to 

evaluate our machine learning models when the cost of false positives is high. 

3.4.2 Recall Metric 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

The recall metric calculates the ratio between positive observations which was 

predicted correctly and the total actual positive observations. Recall actually 

calculate the number of actual positive that our model predicts via labeling it as true 

positive. Recall metric might be used when there is a high cost of false negatives.  

3.4.3 F1-score Metric 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

F1-score metric calculated by using the precision and recall of the models then taking 

the harmonic mean of them. This metric is mainly used to compare performances of 

two machine learning models. For example, if model A produces better precision but 

model B produces higher recall then for this case, we should use F1-score to choose 

the best model. 
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3.4.4 Macro-Average Metric 

When dealing with multi-categories task, to find the average metric of all these 

categories, we have two kinds of metrics, which are Macro Avg and Micro Avg. The 

difference between Macro Avg and Micro Avg is that the Macro Avg compute 

precision, recall, and f1-score for each category individually and then takes the 

average of them. In contrast, Micro Avg take the calculation of the lower components 

like true positives, false positives, true negative, and false negative to compute the 

average.  

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑔𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑃1 + 𝑃2

2
 

 

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑔𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑅1 + 𝑅2

2
 

 

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑔𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
𝐹1 + 𝐹2

2
 

For example, when computing Macro avg of precision, we have two classes: class 

1 and class 2, with P1 is the precision metric of class 1 and P2 is the precision metric 

of class 2. We then calculate the average of P1 and P2, which is then compute the 

mean of P1 and P2 

3.4.5 Macro-Average Metric 

Similar to Macro Avg, the second average metric Micro Avg also computes the 

average performance of all categories based on precision, recall, and f1-score. The 

difference is that Micro Avg determines this metric by executing the calculation of 

numbers like true positives, true negatives, false positives, false negatives, 

MicroAvgPrecision, and MicroAvgRecall: 

𝑀𝑖𝑐𝑟𝑜𝐴𝑣𝑔𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃1 + 𝑇𝑃2

𝑇𝑃1 + 𝑇𝑃2 + 𝐹𝑃1 + 𝐹𝑃2
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𝑀𝑖𝑐𝑟𝑜𝐴𝑣𝑔𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃1 + 𝑇𝑃2

𝑇𝑃1 + 𝑇𝑃2 + 𝐹𝑁1 + 𝐹𝑁2
 

 

𝑀𝑖𝑐𝑟𝑜𝐴𝑣𝑔𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑀𝑖𝑐𝑟𝑜𝐴𝑣𝑔𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑀𝑖𝑐𝑟𝑜𝐴𝑣𝑔𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝑖𝑐𝑟𝑜𝐴𝑣𝑔𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑀𝑖𝑐𝑟𝑜𝐴𝑣𝑔𝑅𝑒𝑐𝑎𝑙𝑙
 

 

For example, to compute MircroAvgF1-score we will take the harmonic mean of 

MicroAvgPrecison and MicroAvgRecall. 

 

3.5 Results and Discussion 

We ran experiments on two tasks. The first task included normal, pneumonia, and 

COVID-19 classification, which was a multiple-categorical classification task. The 

second task was the COVID-19 severity assessment, which included two levels of 

severity and turned out to be a binary classification task 

3.5.1 COVID-19 Chest X-Ray Classification Results 

We trained three convolution-based and two transformer-based models on the 

customized COVID-19 classification dataset. The output results were evaluated 

based on three metrics, which were precision, recall, and F1-score with respect to 

COVID-19, normal, pneumonia, macro-average, and micro-average. Each tables 

below contained numerical results of three metrics and will be described in detail. 

The two models which showed the best results were DenseNet121 and Hybrid 

EfficientNet-DOLG.  
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Table 5. Comparing results between the five deep learning models on the COVID-19 

classification task with respect to precision metric score. 

Methods 

Precision 

COVID-

19 
Normal Pneumonia 

Macro-

Average 

Micro-

Average 

DenseNet121 0.98 0.91 0.94 0.94 0.95 

ResNet50 0.98 0.83 0.93 0.92 0.94 

InceptionNet 0.98 0.83 0.90 0.90 0.92 

Swin Transformer 0.99 0.62 0.89 0.83 0.87 

Hybrid EfficientNet-DOLG 0.98 0.93 0.93 0.95 0.96 

 
 
Table 5 compares the performance of five deep learning models based on the 

precision metric score. The numerical results illustrate each category and on macro- 

and micro-average. For the COVID-19 precision score, the best model was found to 

be Swin Transformer with a score of 0.99, and for normal images, we found Hybrid 

EfficientNet-DOLG a top score of 0.93, and for pneumonia, the DensNet121 model 

produced the highest result (0.94). For macro-average and micro-average, the Hybrid 

EfficientNet-DOLG was found to lead both metrics with scores of 0.95 and 0.96, 

respectively. The hierarchical architecture of Swin Transformer computed image 

representation in different scales which works best on COVID-19. On the other hand, 

the concatenate mechanism of DenseNet boosted the pneumonia detection of 

DenseNet. The hybrid architecture helped Hybrid EfficientNet-DOLG perform best 

results on normal, macro average, and micro average. 

As shown in Table 6, we could see the outstanding performance of Hybrid 

EfficientNet-DOLG as it produced the highest score on three metrics: pneumonia, 
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macro-average, and micro-average, with scores of 0.95, 0.96, and 0.96, respectively. 

For the COVID-19 category, we found the DenseNet121 to have a recall score of 

0.98 and the second highest score was found to be Hybrid EfficientNet Transformer 

which was 0.97, only smaller than a 0.01 gap. For normal, we found Swin 

Transformer to have a score of 0.97 and the second score was DenseNet 121 and 

Hybrid EfficientNet-DOLG, which was 0.94. The other models, including ResNet50 

and InceptionNet, also computed comparable results. With respect to recall, the 

dense architecture of DenseNet worked best on COVID-19 images, and different 

from precision metric, the hierarchy architecture of Swin Transformer achieved the 

best results on normal images. The combination of EfficientNet and DOLG took the 

best place on pneumonia, macro average, and micro average. 

Table 6. Comparing results between the five deep learning models on the COVID-19 

classification task with respect to recall metric. 

Methods 

Recall 

COVID-

19 
Normal Pneumonia 

Macro-

Average 

Micro-

Average 

DenseNet121 0.98 0.94 0.92 0.95 0.95 

ResNet50 0.94 0.96 0.89 0.93 0.93 

InceptionNet 0.93 0.88 0.94 0.92 0.92 

Swin Transformer 0.70 0.97 0.90 0.86 0.82 

Hybrid EfficientNet-

DOLG 
0.97 0.94 0.95 0.96 0.96 

 

The third metric was the F1-score; in this metric, we could see the pattern that 

Hybrid EfficientNet produced the best results on all scores except the normal 

category, in which the top result belonged to DenseNet with a score of 0.95. For 

COVID-19, pneumonia, macro-average, and micro-average the Hybrid EfficientNet-
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DOLG produced the highest results with scores of 0.99, 0.94, 0.95, and 0.96, 

respectively. For COVID-19, pneumonia, macro-average, and micro-average, the 

second highest model was DensNet121, which produced scores of 0.98, 0.93, 0.94, 

and 0.95 sequentially. Different from precision and recall, the classification 

performance of DenseNet secured best on normal images, this might be because the 

dense connections performed well for normal cases regarding the F1-score, then the 

compound of EfficientNet and DOLG did efficiently on other categories. 

Table 7. Comparing results between the five deep learning models on the COVID-19 

classification task with respect to F1-score metric. 

Methods 

F1-score 

COVID-

19 
Normal Pneumonia 

Macro-

Average 

Micro-

Average 

DenseNet121 0.98 0.95 0.93 0.94 0.95 

ResNet50 0.96 0.89 0.91 0.92 0.93 

InceptionNet 0.96 0.85 0.92 0.91 0.92 

Swin Transformer 0.82 0.75 0.90 0.82 0.82 

Hybrid EfficientNet-

DOLG 
0.99 0.94 0.94 0.95 0.96 

 

From Table 7, we can conclude that Hybrid EfficientNet-DOLG and DenseNet 

models are the best models for COVID-19 classification tasks on our customized 

dataset. Figure 14 and Figure 15 demonstrate the confusion matrix of inference 

results on the test set and training history of the Hybrid EfficientNet-DOLG and 

DenseNet models.  
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(a) 

 

(b) 

 

 

Fig. 14.  Confusion matrix of (a) DenseNet and (b) Hybrid EfficientNet-DOLG on the 

COVID-19 classification task. 
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(a) 

 

 
(b) 

Fig. 15.  Training history of (a) DenseNet and (b) Hybrid EfficientNet-DOLG on the 

COVID-19 classification task. 
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3.5.2 COVID-19 CT Scan Classification Results 

In this paper, we used four deep learning models to run our experiments on COVID-

19 detection on a customized dataset.  The models we use include, GoogleNet, 

EfficientNet, Hybrid EfficientNet-DOLG, and DenseNet121. 

Table 8. Classification results comparison of four deep learning models on CT Scan Images 

with respect to Precision metrics 

Method 

Precision 

COVID Normal 
Macro-

Average 

Micro-

Average 

GoogleNet 0.77 0.75 0.76 0.76 

EfficientNet 0.85 0.72 0.79 0.79 

Hybrid-EfficientNet-DOLG 0.85 0.81 0.83 0.83 

DenseNet121 0.92 0.84 0.88 0.88 

 
From Tables 8, 9 and 10 we can see that DenseNet121 produces the highest score 

on three evaluation metrics, which are precision, recall, and f1-score. In precision 

metric, with respect to COVID, the Densenet121 model produced a result of 0.92, 

then followed by EfficientNet and Hybrid EfficientNet-DOLG with 0.85 accuracies. 

The same pattern occurred for NORMAL, macro avg, and micro avg, in which the 

Hybrid EfficientNet-DOLG produced slightly higher results than EfficientNet and 

GoogleNet. 
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Table 9. Classification results comparison of four deep learning models on CT Scan Images 

with respect to Recall metrics 

Method 

Recall 

COVID Normal 
Macro-

Average 

Micro-

Average 

GoogleNet 0.73 0.78 0.76 0.76 

EfficientNet 0.66 0.89 0.77 0.77 

Hybrid-EfficientNet-DOLG 0.80 0.86 0.83 0.83 

DenseNet121 0.82 0.93 0.87 0.88 

 
In terms of recall metrics, DenseNet also produced the best results compared to 

other architecture, with 0.82, 0.93, 0.87, and 0.88 for COVID, NORMAL, micro avg, 

and macro avg accuracy output respectively, followed by Hybrid EfficientNet-

DOLG which also output a comparable result. For the f1-score metric, DensetNet 

still outperformed on the classification task, Hybrid EfficientNet-DOLG, 

EfficientNet, and Google also produced comparable results. 

Table 10. Classification results comparison of four deep learning models on CT Scan Images 

with respect to F1-score metrics 

 

Method 

F1-score 

COVID Normal 
Macro-

Average 

Micro-

Average 

GoogleNet 0.75 0.76 0.75 0.75 

EfficientNet 0.74 0.80 0.77 0.77 

Hybrid-EfficientNet-DOLG 0.82 0.83 0.83 0.83 

DenseNet121 0.87 0.88 0.87 0.87 
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(a) 

 

 
(b) 

Fig. 16.  Training and validation accuracy (a) loss (b) of DenseNet121. 
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3.5.3 COVID-19 Chest X-Ray Severity Grading Results 

With the COVID-19 severity assessment task, we also trained the customized 

COVID-19 severity dataset with five models: DenseNet121, ResNet50, 

InceptionNet, Swin Transformer, and Hybrid EffificientNet-DOLG. The dataset 

contains images of two categories, level1 and level2, in which level1 indicates the 

patient severity is normal and the patient can self-quarantine at home without 

requiring a further treatment response. Level2 indicates that the patients need to have 

further support and need to go to the hospital for a treatment response because the 

pneumonia extent of COVID-19 damage is large and severe.  

After training models for hours, we obtained the output results as shown in 

Tables 11-13. We also evaluated severity assessment results on three metrics: 

precision, recall, and F1-score with respect to level1, level2, macro-average, and 

micro-average, the same as the COVID-19 classification task. A detailed analysis of 

deep learning models’ performance on COVID-19 severity assessment is presented 

for each metric under every table. 

From Table 11, we can see that with level1, DenseNet121 output had the top 

precision score result of 0.76, and level2 Hybrid EfficientNet-DOLG produced a 

precision score of 0.87. The Swin Transformer led the macro-average with a 0.81 

precision score, and with respect to the micro-average, the Hybrid Efficient-DOLG 

also produced the highest score of 0.82. The dense connection of DenseNet helped 

to reduce gradients vanishing which improve the precision metric of DenseNet on 

level1 Chest X-Ray images. The Swin Transformer produced the best on macro 

average because the accuracy of level1 and level2 is very high, and Hybrid 

EfficientNet-DOLG surpassed other neural nets on micro average because its 

precision on level2 is the highest and on level1 almost equal DenseNet. 
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Table 11. Comparing results between the five deep learning models on COVID-19 severity 

assessment task with respect to precision metric. 

Methods 

Precision 

Level1 Level2 
Macro-

Average 

Micro-

Average 

DenseNet121 0.76 0.84 0.80 0.81 

ResNet50 0.74 0.77 0.76 0.76 

InceptionNet 0.72 0.77 0.75 0.75 

Swin Transformer 0.75 0.86 0.81 0.80 

Hybrid EfficientNet-DOLG 0.74 0.87 0.80 0.82 

 

Table 12. Comparing results between the five deep learning models on the COVID-19 

severity assessment task with respect to recall metric. 

Methods 

Precision 

Level1 Level2 
Macro-

Average 

Micro-

Average 

DenseNet121 0.67 0.89 0.78 0.81 

ResNet50 0.65 0.85 0.70 0.77 

InceptionNet 0.70 0.80 0.70 0.76 

Swin Transformer 0.72 0.80 0.73 0.75 

Hybrid EfficientNet-DOLG 0.75 0.86 0.80 0.82 

 

When comparing the precision score, we could see that the Hybrid EfficientNet-

DOLG outperformed on all three categories: level1, macro-average, and micro-

average with the score of 0.75, 0.80, and 0.82. The DenseNet121 produced the 

highest score of level2 (0.89) on the recall metric. The dense connection mechanism 
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of DenseNet produced is sensitive with level2 Chest X-Ray images that . Swin 

Transformer and other two convolution-based neural nets, ResNet50 and 

InceptionNet, also achieved comparable results with DenseNet and Hybrid 

EfficientNet-DOLG. 

Table 13. Comparing results between the five deep learning models on the COVID-19 

severity assessment task with respect to F1-score metric. 

Methods 

Precision 

Level1 Level2 
Macro-

Average 

Micro-

Average 

DenseNet121 0.71 0.86 0.79 0.81 

ResNet50 0.60 0.84 0.72 0.75 

InceptionNet 0.65 0.84 0.75 0.77 

Swin Transformer 0.62 0.84 0.63 0.69 

Hybrid EfficientNet-DOLG 0.74 0.86 0.80 0.82 

The last metric we analyzed was F1-score. In this metric, Hybrid EfficientNet-

DOLG outperformed all four categories: level1, level2, macro-average, and micro-

average, with scores of 0.74, 0.86, 0.80, and 0.82. The top results on the F1-score of 

Hybrid EfficientNet-DOLG are based on the robustness of EfficientNet as an 

encoder of the structure and combine with the global and local descriptor of DOLG. 

DenseNet also produced high output results with scores of 0.71 on level1, 0.86 on 

level2, 0.79 on macro-average, and 0.81 on micro-average. Output of DenseNet was 

only smaller than Hybrid EfficientNet-DOLG with 0.01 score gaps on level1, macro-

average, and micro-average and produce the equal result on level2. Other neural nets 

also achieved comparable results on F1-score with DenseNet and Hybrid 

EfficientNet-DOLG. 



 
 

40 
 

 

(a) 

 

(b) 

Fig. 17.  Confusion matrix of (a) DenseNet and (b) Hybrid EfficientNet-DOLG on the 

COVID-19 severity assessment task 
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(a) 

 

 
(b) 

Fig. 18. Training history of (a) DenseNet and (b) Hybrid EfficientNet-DOLG on the 

COVID-19 severity assessment task 
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3.5.4 Potential methods and limitations of this study 

There are many deep learning architecture and deep transfer learning techniques 

that could apply to X-Ray and CT Scan imagery as a potential method for classifying 

COVID-19 detection and severity assessment. Some of the architecture techniques 

include Wide Residual Networks [53] (WRNs) and Visual Geometry Group (VGG) 

[54]. Wide Residual Networks are variants of ResNet, which both increase the width 

and decrease the depth of residual networks, and also create lightweight models with 

high performance. With only 16 layers, the network can outperform another 

convolutional neural networks with over 1000 layers on CIFAR and ImageNet 

datasets.  

 

 

Fig. 19. Wide residual Networks architecture 

 

The second network is VGG, which won the ImageNet Challenge 2014 and was 

first and second in terms of localization and classification, respectively. We have 

VGG16 and VGG19, which represent 16 layers and 19 layers of neural networks. In 

general, the architecture of VGG includes input layers, convolutional layers, hidden 

layers, and fully connected layers, and depending on the architecture we use, that the 

number of layers might be different. There is research that studies the application of 

deep transfer learning, including the work of Naushad et al. [55] in which the author 

efficiently implemented deep transfer learning techniques for land use and land cover 
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classification based on WSNs and VGG pre-trained models. Another study by Das 

et al. [56] tried to apply deep transfer learning automatically to detect COVID-19 

based on Chest X-Ray images. 

 

 

Fig. 20. Visual Geometry Group Net architecture 

 
This study has some limitations. First, we collected data from many open-source 

datasets; to some extent this might affect the model accuracy. Because X-Ray images 

obtained from different machines have various image qualities, image color channels 

as well as resolutions, these factors have significantly impact on the model training 

pipeline. Another shortcoming of this study was the severity assessment levels; to 

have a more precise treatment response for patients, having many classes of severity 

is better than having few classes. In this study, we only focused on two classes, level1 

and level2; this is not as detailed as it could be with more levels for severity 

diagnosis, which means a more appropriate treatment response could be designed. 

The last disadvantage of this paper is that we did not implement a new deep learning 

model to customize for our Chest X-Ray and CT Scan dataset. We only used a built-
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in model from available libraries, which was then not as efficient as we trained on 

X-Ray and CT Scan imagery. In future work, we aim to build a model that is 

lightweight, robust, and has a lower computational complexity for X-Ray image 

classification tasks. We used six deep neural networks with computational 

complexity as follows: Swin Transformer (1038 Giga FLOPs), InceptionNet (24.57 

Giga FLOPs), Hybrid EfficientNet-DOLG (9.9 Giga FLOPs), DenseNet121 (5.69 

Giga FLOPs), EfficientNet B4 (4.2 Giga FLOPs) , and ResNet50 (3.8 Giga FLOPs). 

We will design a network with computational complexity approximate to 10 Giga 

FLOPs for an efficient and robust model. 
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IV.  Conclusion 

In this thesis, we have demonstrated the advantages of early screening of COVID-

19 utilizing CT scan and chest X-ray pictures in order to form a quicker and safer 

technique of COVID-19 identification. The work mainly taken idea from the paper 

[57]  which published on Applied Sciences journal in January 2022. In order to 

improve the balance of our training dataset, we also produced new CT Scan and 

Chest X-Ray datasets from the open datasets that were already accessible. The input 

data was then cleaned up by getting rid of any poor-quality images. The COVID 

CXR and Chest X-Ray Pneumonia datasets were combined to create the initial 

dataset, which was utilized for COVID-19, pneumonia, and normal classification. It 

had 36,384 pictures in total. The COVID-CT-Dataset, SARS-CoV-2, and COVID-

CTSet datasets were combined to create the second dataset, which was utilized for 

COVID-19 detection through CT scan. Six convolutional and transformer-based 

deep learning models were the subjects of our investigations. According to the 

findings, utilizing chest X-ray pictures to identify and rate COVID-19 severity is a 

promising technique since it yields accurate inference results. The models based on 

transformers outperformed models based on convolutions in terms of accuracy, 

recall, and F1-score, as well as other measures. 

More data augmentation methods, including GAN [58] will be used in further 

research to improve the input data used to train training models. In order to enhance 

model performance for the COVID-19 severity and COVID-19 detection grading 

tasks, we will additionally take into account tailoring neural network models for the 

Chest X-Ray and CT Scan dataset. On a research scale, our machine learning model 

works admirably, but it is not yet ready to be used in production. In the future, we 

intend to collect additional real case datasets so that we may use our machine 

learning system to make accurate diagnoses in clinical situations. 
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