

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Thesis for Degree of Doctor of Philosophy

Deep Ensemble Methods for Food

Ingredient Entity Recognition in Natural

Language Processing

by

Kokoy Siti Komariah

Department of Artificial Intelligence Convergence

The Graduate School

Pukyong National University

February, 2023

Deep Ensemble Methods for Food

Ingredient Entity Recognition in Natural

Language Processing

자연어 처리에서 식품 성분 용어

인식을 위한 심층 앙상블 방법

Advisor: Prof. Sin Bong-Kee

by

Kokoy Siti Komariah

A thesis submitted in partial fulfillment of requirements

for degree of

Doctor of Philosophy

Department of Artificial Intelligence Convergence

The Graduate School

Pukyong National University

February, 2023

i

Table of Contents

List of Figures .. iv

List of Tables ... vi

List of Abbreviations ... viii

Abstract .. xii

Chapter I Introduction .. 1

1.1 Background .. 1

1.2 Motivations .. 3

1.3 Thesis Contributions .. 5

1.4 Outline of the Thesis .. 6

Chapter II Literature Reviews .. 8

2.1 Natural Language Processing .. 8

2.2 Named Entity Recognition... 10

2.3 Ensemble Deep Learning ... 15

2.4 Transfer Learning .. 17

2.5 Self Training .. 21

2.6 Deep Learning Approaches for NER ... 23

2.6.1 Transformer Model ... 23

2.6.2 Transformer-based NER ... 27

2.6.2.1 SpaCy NER ... 27

2.6.2.2 BERT... 28

2.6.2.3 DistilBERT .. 29

2.6.3 Recurrent Neural Networks (RNNs) based NER 31

2.6.3.1 Recurrent Neural Network (RNN) 31

2.6.3.2 Long-Short Term Memory (LSTM) 32

2.6.3.3 Gated Recurrent Unit (GRU) 34

ii

Chapter III Food Ingredient Named-Entity Data Construction using Semi-

Supervised Multi-Model Prediction Technique ... 36

3.1 Background and Related Works .. 36

3.2 Data Construction Workflow ... 38

3.3 Data Preparation .. 40

3.4 Named Entity Labeling .. 45

3.5 Semi-Supervised Multi-Model Prediction Technique (SMPT) 46

3.5.1 Training .. 48

3.5.2 Dataset Building Schemes .. 48

Chapter IV Ensemble-based Recurrent Networks for Food Ingredient

Named Entity Recognition ... 51

4.1 Background and Related Works .. 51

4.1.1 Food-Related NER ... 51

4.1.2 Ensemble Method for NER .. 52

4.1.3 Recurrent Model for NER .. 53

4.2 Dataset… 54

4.3 Hyperparameter Optimization ... 55

4.4 Recurrent Network-based Ensemble (RNE) 56

Chapter V Results and Analysis ... 59

5.1 Experimental Setup .. 59

5.2 Evaluation Metrics ... 59

5.3 Analysis and Evaluation for SMPT method 60

5.3.1 Test Results with Training Schemes 61

5.3.2 Evaluation on ML Models .. 66

5.4 Analysis and Evaluation for RNE model ... 70

Chapter VI Conclusions and Future Work ... 78

6.1 Conclusions.. 78

6.2 Future Work ... 79

iii

References ... 81

Acknowledgement .. 92

List of Publications (SCIE Journals) .. 93

List of Publications (Conference Papers) ... 94

iv

List of Figures

Figure 1. 1 Food Knowledge Graph (FKG) applications [1] contains various

applications utilizing food data. .. 2

Figure 1. 2 Overall system framework .. 4

Figure 1.3 Relationship diagram between chapters. .. 7

Figure 2.1 Natural Language Processing (NLP) is the intersection of computer

science, artificial intelligence, and human language. .. 8

Figure 2. General classification of natural language processing (NLP) 9

Figure 2.3 NLP tasks and applications [22]. ... 10

Figure 2.4 NER examples for general entities (sentence 1) and food ingredient

entities (sentence 2). .. 12

Figure 2.5 A typical NER process flow. ... 13

Figure 2.6 A typical ensemble architecture. x is input data (in our case is text), and

y is the output prediction (in our case is class label or tag). 15

Figure 2. 7 Ensemble method strategies for deep learning [32]. 17

Figure 2.8 Comparison of Traditional ML and Transfer Learning. 18

Figure 2.9 The concept of transfer learning (TL). ... 19

Figure 2.10 Transfer learning taxonomy in NLP. ... 20

Figure 2.11 The standard TL procedure in NLP. .. 21

Figure 2.12 The procedure of Fine-tuning a pre-trained language model (LM). 21

Figure 2.13 A step-by-step Self-Training procedure. .. 23

Figure 2.14 The transformer model architecture [44]. .. 24

Figure 2.15 spaCy NER custom model training.. 27

Figure 2.16 Fine-tuned BERT for FINER. .. 28

Figure 2.17 Knowledge distillation from BERT with the combination of cross

entropy and the masked LM objectives. .. 29

v

Figure 2.18 RNN architecture. .. 31

Figure 2.19 The LSTM unit architecture... 33

Figure 2.20 The GRU unit architecture. .. 35

Figure 3.1 Dataset construction flowchart. ... 40

Figure 3.2 A recipe structure and ingredient data extraction workflow. 41

Figure 3.3 An example of data scrapped from allrecipes.com. 42

Figure 3.4 An example of an NER CONLL file format. ... 42

Figure 3.5 Splitting process of ingredient lists into individual phrase. 44

Figure 3.6 The SMPT method workflow. ... 47

Figure 3.7 An example of data size growth procedure with growth factor s = 2. .. 50

Figure 4.1 The RNE model architecture. .. 57

Figure 4.2 Input and output data example. .. 58

Figure 5.1 The performance results in each iteration with growth factor 2 (scheme

1). .. 61

Figure 5.2 The performance results in each iteration with growth factor 5 (scheme

2). .. 62

Figure 5.3 The performance results in each iteration with growth factor 10 (scheme

3). .. 62

Figure 5.4 The average performance in each scheme. .. 63

Figure 5.5 An example of NER sentence generated in scheme 3 over three iterations.

 ... 65

Figure 5.6 The computational cost comparison for each model. 72

Figure 5.7 The confusion matrix analysis for Bi-RNN model. 75

Figure 5.8 The confusion matrix analysis for Bi-GRU model. 75

Figure 5.9 The confusion matrix analysis for Bi-LSTM model. 76

Figure 5.10 The confusion matrix analysis for RNE model. 76

file:///H:/MY%20PHD%20DISSERTATION/Draft/revised_dissertation-draft-final.docx%23_Toc122687778

vi

List of Tables

Table 2.1 Various NER application use cases. .. 14

Table 3.1 Available food dataset compared to our FINER dataset. 36

Table 3.2 An example of a sentence in an NER CoNLL format. 42

Table 3.3 The dataset information details. .. 44

Table 3.4 The organization of the initial dataset. Initial training set and evaluation

set are manually annotated. ... 44

Table 3.5 Entity classes with their respective definitions and examples. 45

Table 3.6 IOB tagging scheme. ... 46

Table 3.7 The size of the sets and additions over iterations. tn is the training set size,

un is the size of increments, s is scheme factor, while n = 1, 2, . . . , n. 49

Table 4.1 Comparative overview of prior studies on NER utilizing the ensemble

method ... 52

Table 4.2 The distribution of the named entity dataset. .. 54

Table 4.3 Hyperparameter space for each model. The final value is determined by

selecting the optimal hyperparameter using greedy search. 56

Table 5.1 Computation time of each scheme. As the training set grows, labeling time

increases. Note that the three schemes increased the labeled set differently. 64

Table 5.2 Performance of each model with the best performance is emphasized in

bold. .. 67

Table 5.3 The classification report for each models and the best performance is

emphasized in bold. .. 67

Table 5.4 Comparative analysis of the FINER dataset with other similar datasets

from previous work with the best performance is emphasized in bold. 69

Table 5.5 A comparison of the models of unidirectional and bidirectional recurrent

networks. The best performance is emphasized in bold. .. 71

vii

Table 5.6 The classification report for each NER model with their highest

performance emphasized in bold. P is precision, R is recall, and F1 is F1-score. . 74

viii

List of Abbreviations

AI Artificial Intelligence

ML Machine Learning

NLP Natural Language Processing

NER Named-Entity Recognition

FINER Food Ingredient NER

RNE Recurrent Network-based Ensemble

SMPT Semi-supervised Multi-model Prediction Technique

TL Transfer Learning

LM Language Model

RNN Recurrent Neural Network

GRU Gated-Recurrent Unit

LSTM Long-Short Term Memory

BPPT Back Propagation Through Time

Bi-LSTM Bidirectional Long-Short Term Memory

BERT Bidirectional Encoder Representations from Transformers

MLM Masked Language Modelling

DistilBERT Distillation BERT

ELMo Embeddings from Language Models

MLP Multilayer Perceptron

ix

ABM1 AdaBoostM1

ME Maximum Entropy

CRF Conditional Random Field

SVM Support Vector Machine

CNN Convolutional Neural Network

HMM Hidden Markov Model

MEM Maximum Entropy Model

GloVe Global Vector

Word2vec Word to vector representations

TP True Positive

FP False Positive

FN False Negative

CoNLL Conference on Computational Natural Language Learning

NLTK Natural Language Toolkit

x

자연어 처리에서 식품 성분 용어 인식을 위한 심층 앙상블 방법

Kokoy Siti Komariah

부 경 대 학 교 대 학 원 인공지능융합학과

요 약

최근 몇 년 동안 요리를 배우거나 메뉴를 기획하려는 사람들 사이에서 레시피

공유 사이트가 많은 인기를 얻고 있다. 사용자들은 이 레시피를 이용해 자신의

라이프스타일과 건강 상태에 맞는 재료를 선택할 수 있고, 온라인으로 올라온

레시피의 정보는 다양한 음식, 영양, 그리고 건강 관리 응용 프로그램을 만드는 등

다양하게 응용될 수 있다. 그러나 온라인으로 공유되는 레시피는 구조화된 정보가

부족하다. 이 정보들을 잘 구성된 데이터로 추출하기 위해 명명된 엔티티 인식 또는

NER 이라는 자연어 처리 기술을 사용할 수 있다. 이 기술은 텍스트에서 핵심정보

또는 엔티티를 식별하고 이를 미리 정해진 범주로 분류하는 기술이다. 그러나 식품

영역에서 NER 을 개발할 때 세 가지 주요 문제가 생기는데, 첫번째로 식품 영역에

대한 데이터 세트의 가용성은 현재까지도 제한적인 것, 두번째로 식품 개체를

인식하는 데 효과적이고 효율적인 기계 학습 모델을 설계하는 것에 대한 어려움,

세번째로 기존의 NER 모델은 단일 모델에만 의존하고 있는데, NER 에 대해 앙상블

학습을 사용하는 연구가 거의 없으며, 특히 식품 영역에 대한 연구는 없다고 볼 수

있는 것이다.

이 연구에서는 다양한 학습 알고리즘을 결합하여 기존 모델의 성능을 넘어서는

집단적인 성능을 얻는 앙상블 학습 기법을 통해 이러한 문제를 해결하고자 한다.

xi

앙상블 기법을 활용하여 위에서 언급한 문제에 대한 해결책을 다음과 같이 제안한다.

첫 번째로, SMPT(준지도 다중 모델 예측 기법)라는 반복적인 자체 훈련 접근법을

구축했다. SMPT 는 자체 훈련 개념을 채택하고 반복 데이터 레이블링 프로세스에서

사전 훈련된 여러 언어 모델을 기반으로 하는 딥 앙상블 학습 모델로, 엔티티

레이블을 결정하는 최종 결정으로 투표 메커니즘이 사용된다. 이 SMPT 를 활용하여

FINER 데이터 세트라는 새로운 주석이 달린 성분 엔티티 데이터 세트를 만들었다.

두 번째로, 이 연구에서는 Recurrent Network-based Ensemble Model

(RNE)이라고 불리는 식품 성분 NER 모델을 제안한다. RNE 는 RNN, GRU 및

LSTM 을 포함한 반복 네트워크 모델과 심층 앙상블 학습을 통합하여 식품 관련

엔티티를 추출하기 위한 새로운 모델이다. 실험 결과를 통해서, 제안된 RNE 모델이

단일 모델보다 식품 조리법에서 정보를 더 효과적으로 추출할 수 있음을 보여주고

있고, 향후 추가적으로 생성되는 정보는 수많은 식품 관련 정보 시스템에 적용되어

다양하게 활용할 수 있을 것이다.

xii

Deep Ensemble Methods for Food Ingredient Entity Recognition in

Natural Language Processing

Kokoy Siti Komariah

Department of Artificial Intelligence Convergence, the Graduate School,

Pukyong National University

Abstract

In recent years, recipe-sharing websites are becoming popular among

those who wish to learn how to cook or plan their menu. Individuals can

choose ingredients that suit their lifestyle and health condition using online

food recipes. The information from online recipes can be used to build various

food, nutrition, and healthcare applications. However, the information

collected from online food recipes lacks structured information. To extract

such information into well-structured data, we can use a technique in natural

language processing called Named Entity Recognition or NER. NER is a

technique of recognizing key information or entities in a text and categorizing

them into a predetermined category. However, three major issues arise when

developing named-entity recognition in the food domain: (1) The availability

of datasets for the food domain is still quite limited; (2) How to design a

machine learning model that is effective and efficient in recognizing food

entities; and (3) Existing NER models relied solely on a single model, and just

xiii

a few studies employ ensemble learning for NER, particularly none for the

food domain.

This study aims to solve these problems via an ensemble learning

technique, combining various learning algorithms to obtain a collective

performance beyond existing models' performance. Drawing upon the

ensemble technique, we propose a solution to the challenges mentioned above

in two stages: first, we built an iterative self-training approach called SMPT

(Semi-supervised Multi-model Prediction Technique). SMPT is a deep

ensemble learning model that employs the concept of self-training and builds

on multiple pre-trained language models in the iterative data labeling process,

with a voting mechanism used as the final decision to determine the entity's

label. Utilizing the SMPT, we have created a new annotated dataset of

ingredient entities named the FINER dataset; and second, we proposed a food

ingredient NER model called the Recurrent Network-based Ensemble model

or RNE. RNE is a novel model for extracting food-related entities by

incorporating deep ensemble learning with recurrent network models,

including RNN, GRU, and LSTM. The experimental findings demonstrate that

the proposed RNE model could extract information from food recipes more

effectively than a single model. In future development, such information can

support numerous food-related information systems.

1

Chapter I

Introduction

1.1 Background

The huge amounts of food data found on the internet provide a foundation for the

development of artificial intelligence (AI) and contribute to the establishment of

digital technology as an important part of food science and industries. Hence, to drive

the development in the food domain, it is possible to replace every stage of this

system, from food processing to food consumption, with a data-driven computational

approach. However, these food data are still not being utilized to their full potential,

and it is still difficult to meet the demand for efficient food data sharing,

organization, and traceability which hinders the advancement of this domain.

Organizing and integrating food data is important in food research and system

development. Thus, developing a standard knowledge organization system for food,

such as Food Knowledge Graph (FKG) proposed by Min et al. [1] in their research,

is one step closer unveiled the full potential of food data utilization. Knowledge

graphs offer a unified and standardized conceptual terminology presented in a

structured form. As a result, they can properly organize the food data to benefit a

wide range of applications effectively, as seen in Figure 1.1.

However, to construct a food knowledge graph, we need to extract the food

information from those heterogeneous sources and find the important key

information or entity relevant to our desired application. In natural language

processing, or NLP, there is a subtask called named entity recognition or NER. NER

intends to find a word or an expression that uniquely describes an element among a

set of other elements with similar attributes. It provides a piece of rough categorical

2

information related to the target. Named entities in the text usually play vital roles in

a sentence functionally and semantically. Named entity recognition is an information

extraction technique that identifies keywords or information units dispersed within

a text with known labels [2].

Figure 1. 1 Food Knowledge Graph (FKG) applications [1] contains various applications

utilizing food data.

3

Thus, once such food and nutrition entities are located in the text, we can further

explore important information regarding the relationship between those entities. Such

information can help build intelligent applications for the food industry, such as a

personalized recommendation system for diets [3], [4], finding ingredient substitutes

for people who are allergic to certain food or ingredients [5], or even calculating

nutrient levels in food to prevent malnutrition [6]. However, when developing a

reliable machine learning (ML) system, the biggest challenge comes from the need for

extensive training data and a suitable model that can work perfectly with the data.

Although numerous studies have been undertaken on creating food NER data [7]–[11]

and related models [12]–[16], the food information domain is still relatively limited

and therefore has much room for improvement.

1.2 Motivations

The importance of digital text data in food and nutrition has only recently drawn

attention due to advance in food computing [17]. This development has brought a

new dimension to food information processing. One technology that lies behind

many applications and solutions is NER, a fundamental element for Natural

Language Processing (NLP) in text. Three major issues arise when developing

named-entity recognition in the food domain:

1) The availability of datasets for the food domain is still quite limited.

2) How to design powerful machine learning model that is accurate and

efficient in recognizing food entities.

3) Existing NER models largely depended on a single model. There are only a

few of studies utilizing ensemble learning for NER, and none for the food

domain.

4

Figure 1. 2 Overall system framework

5

 Based on these issues, we propose a strategy for developing NER datasets and

model for the food domain that combines deep learning with ensemble learning.

Figure 1.2 is the overall system framework of our study. First is the technique called

Semi-supervised Multi-Model Prediction Technique or SMPT for constructing food

ingredient named entity recognition dataset named FINER. SMPT utilized three

pretrained language models with ensemble voting for the final decision on token’s

label. In the next study, this FINER dataset will be used as input in our second

proposed method called Recurrent Network-based Ensemble model or RNE for

short. RNE uses three recurrent network-based model in ensemble learning approach

for predicting the entity’s label in ingredient NER task.

1.3 Thesis Contributions

In order to take advantage offered by deep learning and ensemble learning. A

deep ensemble model consisting of various deep learning algorithms was considered

to extract food entities from text recipes. The contribution of the dissertation

includes:

1) The SMPT method, a deep ensemble learning model that employs the

concept of self-training that builds on pretrained language models (spaCy

NER, BERT, and DistilBERT) in the iterative data labeling process with a

voting scheme used as the final decision to determine the entity's label.

2) The FINER dataset, an annotated dataset for food ingredient entities. The

dataset is made public and accessible on Figshare [18]:

https://doi.org/10.6084/m9.figshare.20222361.v3.

3) RNE model [19], a novel model for extracting food-related entities by

combining the deep ensemble method with recurrent network models such

as RNN, GRU, and LSTM. According to the author's knowledge, this is the

6

first work to investigate a model that can benefit from an ensemble method

based on deep learning used for food-related NER tasks.

4) In comparison to single models for food-related NER, the suggested NER

task strategy yields superior results.

1.4 Outline of the Thesis

This section presents an outline of the contents of the thesis as shown in the

relationship diagram in Figure 1.3, and each chapter can be explained as follows:

Chapter I Introduction: introduces the background of Named-Entity Recognition

(NER), ensemble technique, and several deep-learning methods used in this thesis.

In addition, this chapter also describes the research motivation, contribution, and the

structure of this thesis.

Chapter II Literature Reviews: describes the basic knowledge including natural

language processing, named-entity recognition, and the theory behind the proposed

methods for extracting the entities such as self-training, transfer learning,

transformers-based pretrained language model, and the RNNs-based model.

Chapter III Dataset Construction using SMPT method: presents the proposed

method for constructing Food Ingredient NER dataset such as the data construction

workflow, data preparation, NER labeling format, and our machine learning

approach for annotating the dataset.

Chapter IV Enhancing Food Ingredient NER using RNE method: presents the

proposed method to enhanced NER model’s performance called Recurrent Network-

based Ensemble (RNE) method including the deep learning classifiers used, the

organization of the proposed model.

7

Chapter V Results and Analysis: validates the effectiveness of the proposed

method for constructing the dataset using SMPT as well as evaluate the RNE model

with various evaluation metrics such as Recall, Precision and F1-score.

Chapter VI Conclusion and Future Work: presents the conclusion of the thesis

and some future works are described.

Figure 1.3 Relationship diagram between chapters.

8

Chapter II

Literature Reviews

2.1 Natural Language Processing

 Natural Language Processing (NLP) is a subfield of Computer Science, Human

language or linguistics, and Artificial Intelligence that focuses on the interaction

between computers and human language as depicted in Figure 2.1 [20]. NLP is

divided into two distinct subfields, namely Natural Language Understanding (also

known as NLU) and Natural Language Generation or NLG, which respectively

advance the goals of understanding and generating text [21].

Figure 2.1 Natural Language Processing (NLP) is the intersection of computer science,

artificial intelligence, and human language.

 Figure 2.2 provides an overview of the various NLP categories. NLU and

NLG are part of NLP. NLP aims to analyze and comprehend the text of a given

9

document, whereas NLU enables humans to have natural language conversations

with computers. While both systems comprehend human language, NLU interacts

with untrained humans to learn their intentions. In addition to recognizing words and

interpreting their meaning, NLU is also designed to understand the meaning despite

common human errors, including mispronunciations or transposed letters and words.

Figure 2. 2 General classification of natural language processing (NLP)

In contrast to traditional computer-generated writing, NLG enables computers to

generate natural language text automatically, imitating how humans communicate

naturally. In simple terms, computer-generated content lacks the fluency, emotion,

and personality that make human-generated content engaging. NLG can utilize NLP

so that computers can create human text in style replicating a human author. This

human-like content is achieved by recognizing a document's main topic and applying

10

natural language processing to discover the optimal solution to compose the text in

the user's native language.

In summary, NLP fills the gap between human language and computer

comprehension. Typically, NLP algorithms evaluate large amounts of unstructured

text data, such as documents, log files, and transcripts. Depending on the targeted

outcomes, the output of an NLP model can differ. For instance, Amazon designed

Alexa to recognize voice patterns, infer meaning, and do tasks to assist the users. As

shown in Figure 2.3, the recent advancements in NLP and computational linguistics

have allowed the NLP industry to expand from simple tools such as spell checking

to more complex applications like as customer service chatbots, real-time voice-to-

text translators, Google assistant, and others.

Figure 2.3 NLP tasks and applications [22].

2.2 Named Entity Recognition

Nowadays, people who are interested in learning how to cook or planning their

menus have been referring more frequently to recipe-sharing websites for

11

inspiration. Likewise, in our daily meals, we expect to consume food and beverages

with a complete nutritional content ranging from carbohydrates, proteins, vitamins,

fats, and minerals. On the other hand, malnutrition is the root cause of a wide range

of disorders, including anemia, sprue, goiter, as well as starvation and poor diet [23].

Therefore, it is necessary to be aware of food nutrition to have an accurate ingredient

profile of food [6]. This ingredient profile will also provide information that will be

helpful to individuals who follow a particular diet or have food allergies to certain

ingredients or foods [3], [5]. One of the challenges those individuals face is finding

food ingredients that perfectly fit the recipes. Due to various factors such as

geography, climate, and time of year, certain recipe ingredients can be challenging

to find or incredibly expensive in particular regions. As a result, we frequently search

for alternative ingredients similar in taste, nutrition, and texture. Moreover,

information regarding the ingredients of food recipes plays a critical role in the well-

being of people who are following particular diets or who suffer from food allergies.

In recipes, a variety of cooking terminology are used. In addition to ingredients

and utensils, cooking terms also include cooking actions and ingredient proportions.

If we consider the cooking action of "cutting," there are a variety of cutting

techniques, such as "cutting into chunks," "slicing in rounds," "chopping into small

pieces," etc., depending on the cooking materials and purposes. If we can extract

these cooking terms from recipe texts, we can use them to perform activities like

extracting information from recipes and responding to questions. In this particular

task, we make advantage of machine learning in order to perform automatic

extraction of cooking terms. Among many different tasks that are involved in natural

language processing, one of them is referred to as named entity recognition or NER

for short.

12

Figure 2.4 NER examples for general entities (sentence 1) and food ingredient entities

(sentence 2).

Named entity is the method of extracting unique terms from natural language

sentences, such as the names of people, places, and organizations, and many other

[2]. This task can be expressed as a serial labeling problem. In sequential labeling

for named entity recognition, input sentences are split into words, and each word is

labeled with a name entity tag. The result of extracting labeled word strings is

intrinsic expressions. In this study, instead of recognizing person and place names as

intrinsic expressions, we train models to recognize the names of ingredients, product,

quantities, unit, and cooking process or cooking state, as seen in the Figure 2.4. The

figure presents the example of NER sentences with its recognized entities, sentence

one contains general entities and sentence two contains food-related entities.

In addition, the existing NER systems do not necessarily rely on a single

technique, sometimes it uses processing pipelines with a series of stages. Figure 2.5

presents a typical of NER process flow. The training set are transformed into a

different features representation such as a vector space representation, on which base

models are sometimes built with the assistance of external data. These models are

applied to a testing set in order to evaluate their performance on previously unseen

data [24]. According to Figure 2.5, the process starts with pre-processing by

13

preparing and refining the text to match the desired input. Next, employing NLP

techniques for accurate sentence-splitting and POS tagging, and even adding

annotation from other resources (e.g., dictionaries, gazetteers, Etc.) for better

identification of entities. Later, several machine learning (ML) approaches are

applied in parallel to label the entities. In the evaluation phase, we applied the model

trained on the training set in the testing set to evaluate the model performance on

unseen data.

Figure 2.5 A typical NER process flow.

NER is useful in any scenario where a high-level overview of a significant

amount of text is required. NER allows to easily understand the subject or theme of

a text's content and group texts based on their relevance or similarity. Table 2.1 is an

example of various NER application use cases.

14

Table 2.1 Various NER application use cases.

Use Case Details

Human resources ▪ Accelerate the hiring process by summarizing

applicants' resumes.

▪ Enhance internal procedures by classifying employee

concerns and complaints.

Healthcare ▪ Improve the patient care standards and minimize

workloads by obtaining essential information from

laboratory reports.

▪ This is being done by Roche with pathology and

radiology reports.

Content classification Identifying the topics and themes of blog posts and news

stories helps with content discovery and provides insight into

trends.

Customer support/Help

desk

▪ Improve response times by classifying user requests,

complaints, and queries and filtering them using priority

keywords.

Recommendation and

search engine

▪ Enhance the rate and relevancy of search results and

suggestions by summarizing descriptive language,

reviews, and comments

▪ One prominent example of success in this field by using

NER is Booking.com.

Education (Academia) ▪ Enable students and researchers to locate relevant

information easier and faster by summarizing papers

and documents and highlighting key terms, topics, and

themes.

▪ For example: Europeana, the digital platform of the EU

for cultural heritage, uses NER to make historical

newspapers searchable.

15

2.3 Ensemble Deep Learning

The goal of an ensemble learning algorithm is to create a classifier with an

improved prediction performance by aggregating the predictions of various learners

as indicated in the Figure 2.6. Using ensemble methods, multiple learners are trained

to solve the same problem. Unlike conventional learning approaches, which attempt

to construct a single learner from training data, ensemble methods attempt to

construct and combine multiple learners. There are a number of base learners within

an ensemble. Base learners are typically generated from training data by the base

classifier (base model), which could be logistic regression, random forest, neural

networks, or other learning algorithms [25]. Various strategies to effectively

combine base classifiers have been developed [26], [27]. The most common methods

include bagging, boosting, stacking, voting, and blending [25], [28], [29].

Figure 2.6 A typical ensemble architecture. 𝑥 is input data (in our case is text), and 𝑦 is the

output prediction (in our case is class label or tag).

While deep neural network (DNN) architectures are now becoming increasingly

popular and have demonstrated superior performance when compared to shallow or

traditional models [30], [31]. DNN are a nonlinear method. They provide more

flexibility and are able to scale proportionally to the amount of available training

16

data. The consequence of this flexibility is that they are sensitive to the specifics of

the training data and could encounter different weights each time they are trained,

leading to different predictions. In general, these are referred to as DNNs with high

variance, making it challenging to create the final model for making predictions. In

order to successfully reduce the variance of a DNN model, it is necessary to train

multiple models and combine their predictions. This technique is known as ensemble

learning, and it not only reduces prediction variance but also produces more accurate

predictions than a single model. The combination of deep learning and ensemble

method is called ensemble deep learning [32]. There are various ways to apply the

ensemble method in deep learning. However, in general, the ensemble can be

implemented in the following ways:

▪ Varying the training data: achieved by selecting different data to train each

model in the ensemble.

▪ Varying the models: achieved by selecting a different subset of models to

employ in the ensemble.

▪ Combination: achieved by selecting different combinations of ensemble

member outputs.

As shown in Figure 2.7, they are various strategies for constructing ensemble

deep learning from traditional techniques, including bagging, boosting, and stacking,

into general and fusion techniques [32]. Various studies have been carried out by

utilizing ensemble deep learning techniques, and it has been proven that the use of

ensemble methods combined with deep learning can produce better model

performance [32]–[37]. Therefore, out of these strategies, we utilized two of them

for building our proposed methods which are majority voting and concatenation. In

the following chapter, we will elaborate on each of our recommended methods in

further detail.

17

Figure 2. 7 Ensemble method strategies for deep learning [32].

2.4 Transfer Learning

In recent years, various sophisticated machine learning models for audio, image,

and text data with large volume of data have been introduced. Unfortunately, the

performance degrades whenever we train a model on one dataset and then attempt to

apply it to a different dataset. This occurs because the model fails to generalize and

comprehend the fundamental data patterns. Even a minor change in the data can

throw it off guard. It is important to address this issue because real-world data are

18

constantly evolving, and it is impractical to constantly retrain a model from scratch

for new scenarios. Transfer learning comes into play in this situation.

Transfer learning (TL) enables us to learn a task by employing labeled data from

other tasks or domains that are related. The model's objective is to accomplish tasks.

For example, recognizing the food entities in a recipe text, whereas the domain is the

source of data. For example, all sample recipes are obtained from Allrecipes website.

Figure 2.8 illustrates a comparison of TL with classic ML approach. Using TL

approach, the knowledge acquired during task A for source domain A is saved and

applied to the problem of interest in domain B [38].

Figure 2.8 Comparison of Traditional ML and Transfer Learning.

Moreover, Figure 2.9 presents the concept of TL which involves utilizing the

feature representation of a previously trained model so that a new model does not

need to be trained from scratch. In ML, it is common to apply TL to NLP problems

involving textual input or output. Typically, the pre-trained models are trained on

large amounts of data that serve as a benchmark for the NLP frontier. The weights

19

derived from the models may be reapplied to other NLP tasks. These models can

either be used directly to make predictions on new tasks or incorporated into the

training process for a new model. Incorporating previously trained models into a new

model reduces training time and generalization error. TL is particularly useful when

the training dataset is small. In this instance, we initialize the weights of the new

model with the weights of the pre-trained models.

Figure 2.9 The concept of transfer learning (TL).

There are several types of TL that are common in modern NLP. They are

distinguished across three dimensions based on: 1) whether the source and target

settings deal with the same task; 2) the origin of the source and target domains; and

3) the order in which the tasks are learned [39]. Figure 2.10 explains a taxonomy that

highlights the variations of TL in NLP.

20

Figure 2.10 Transfer learning taxonomy in NLP.

Sequential transfer learning has produced the most significant gains to date.

Figure 2.11 demonstrates the common practice of pretraining representations on a

large unlabeled text corpus and then adapting these representations to a supervised

target task using labeled data. In addition to Pre-training, another option in the TL

step is Fine-tuning. In the standard transfer learning setup in Figure 2.11, a model is

initially pre-trained on large amounts of unlabeled data using a language modeling

loss such as MLM or masked language modeling [40]. However, in the fine-tuning

procedure shown in Figure 2.12, using a standard cross-entropy loss, the pre-trained

model is then fine-tuned using labeled data from a downstream task. While

pretraining is computationally intensive, fine-tuning is relatively inexpensive [41].

Individual pre-trained models are downloaded, and fine-tuned multiple times based

21

on the target tasks/domains, which makes fine-tuning more important for the

practical implementation.

Figure 2.11 The standard TL procedure in NLP.

Figure 2.12 The procedure of Fine-tuning a pre-trained language model (LM).

2.5 Self Training

Self-Training is a type of Semi-Supervised ML where a model learns from both

labeled and unlabeled data. Combining labeled and unlabeled examples, Semi-

Supervised Learning increases the amount of training data available. As a result, we

can improve model performance and save a substantial amount of time and money

by eliminating the need to manually label thousands of examples [42].

22

Self-training employs a labeled training set 𝐿 and an unlabeled data set 𝑈 to train

a model 𝑚. At each iteration, the model generates predictions 𝑚(𝑥) as a probability

distribution over the 𝐶 classes for all unlabeled examples 𝑥 in 𝑈. If the probability

assigned to the most probable class is greater than a predetermined threshold 𝜏, 𝑥 is

added to the labeled examples with the pseudo label 𝑝(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑚(𝑥). This

process is typically repeated for a predetermined number of iterations or until no

more confident predictions can be made on unlabeled examples. This concept is

illustrated in Algorithm 1 [43].

Algorithm 1 Self-training

1: repeat

2: 𝑚 ← 𝑡𝑟𝑎𝑖𝑛_𝑚𝑜𝑑𝑒𝑙(𝐿)

3: for 𝑥 ∈ 𝑈 do

4: if max 𝑚(𝑥) > 𝜏 then

5: 𝐿 ← 𝐿 ∪ {(𝑥, 𝑝(𝑥))}

6: until no more predictions are confident

Figure 2.13 illustrates the steps of the Self-Training method. it starts with a set of

labeled (𝐿) for training the baseline model while sparing set of unlabeled (𝑈) data

for the next step. In the second step, we use the baseline model to predict the U. The

part of results that meet our predefined criteria (e.g., prediction probability is greater

than 90%) called pseudo-labeled data are combined with labeled data. And after that,

we make new predictions and include newly selected observations in the pool of

pseudo-labeled data. These steps are repeated until all data are labeled.

23

Figure 2.13 A step-by-step Self-Training procedure.

2.6 Deep Learning Approaches for NER

This section will presents a brief overview of the theory underlying the proposed

methods for creating NER datasets and the algorithms used to develop the proposed

deep ensemble model for food information extraction when addressing NER

problems.

2.6.1 Transformer Model

The transformer model came from the research of Vaswani, et. al. in their paper

titled “Attention is all you need” [44]. Transformer model utilized the encoder-

decoder architecture that commonly used in Neural Machine Translation (NMT)

models, but does not rely on recurrence and convolutions in order to generate an

24

output. Figure 2.14 shows the overall Transformer architecture, which employs

stacked self-attention and point-wise, follow by fully connected layers for both the

encoder and decoder.

Figure 2.14 The transformer model architecture [44].

First part is Encoder, it provides an attention-based representation capable of

locating a specific piece of information from a large context. The encoder consists

of six identical layers where each layer has two sublayers including a Multi-Head

Attention layer and a Fully Connected Feed-Forward layer (𝐹𝐹𝑁). The first sublayer

is the Multi-Head Attention layer. The Multi-Head Attention is a component of the

Transformer that concatenates ℎ distinct attention layers with different initializations

[40], [44], [45]. The function of a Multi-Head Attention can be calculated as

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (1)

where, ℎ𝑒𝑎𝑑1 is 𝑖𝑡ℎ attention head which is given by:

25

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉) (2)

and is computed using these projection matrix parameters:

▪ 𝑊𝑖
𝐾 ∈ ℝ𝑑𝑒𝑚𝑏×𝑑𝑘,

▪ 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑒𝑚𝑏×𝑑𝑉,

▪ 𝑊𝑖
𝑄 ∈ ℝ𝑑𝑒𝑚𝑏×𝑑𝑘, and

▪ 𝑊𝑖
𝑂 ∈ ℝℎ𝑑𝑣×𝑑𝑒𝑚𝑏

Here 𝑄, 𝐾 and 𝑉 are input matrices for query, key, and values, respectively. The

input matrix 𝑋 is used for all three matrices at the beginning. Then their projections

𝑋𝑊𝑖
𝑄

, 𝑋𝑊𝑖
𝐾, and 𝑋𝑊𝑖

𝑉 become 𝑄𝑖, 𝐾𝑖, and 𝑉𝑖. These matrices are used to calculate

the Scaled Dot-Product Attention for each head as follows

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
 𝑉) (3)

The second sublayer is the fully connected feed-forward layer which consists of two

linear transformations with ReLU activation in between [44].

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1) 𝑊2 + 𝑏2 (4)

Each of the six layers of the transformer encoder applies the same linear

transformations to all the words in the input sequence but uses different weight (𝑊1,

𝑊2) and bias (𝑏1, 𝑏2) parameters. In addition, unlike RNNs, transformer architecture

cannot automatically determine where words are in a sequence. This information has

to be added by incorporating positional encodings into the input embeddings.

The second part of transformer is decoder. Decoder has similar components with

the encoder but with additional one sublayer called masked multi-head self-attention

26

layer. Unlike the multi-head self-attention layer, this sublayer is masked to prevent

positions from attending to the future. While the encoder is designed to process each

word in the input sequence regardless of its location, the decoder is adjusted to

process only the prior words. Thus, the prediction for a word at position can only be

based on the known outputs of the preceding words. This is obtained by applying a

mask over the values produced by the scaled multiplication of matrices 𝑄 and 𝐾 in

the multi-head attention mechanism (which performs multiple single attention

functions in parallel). This masking is conducted by eliminating matrix values

corresponding to unauthorized connections.

Prior to the release of the transformer, the majority of cutting-edge NLP models

were based on RNN. RNN processes data sequentially or word by word to reach the

last word's cell. RNN is inefficient at handling long sequences, and the sequential

structure of RNNs makes it difficult to maximize the performance of modern fast

computing devices such as TPUs and GPUs. On the other hand, the transformers do

not rely on past hidden states to determine word dependencies. They avoid recursion

by processing sentences as a whole with the help of attention mechanisms and

positional embeddings. Therefore, there is no possibility of losing or forgetting past

information. Shortly after the introduction of the transformer model, many pre-

trained language models that took advantage of the transformer model architecture

became available and used to solve NLP problems, as an example is a decoder-only

transformer which performs exceptionally well in language modeling tasks like GPT

[46] and BERT [40].

27

2.6.2 Transformer-based NER

2.6.2.1 SpaCy NER

SpaCy is a Python and Cython-based open-source library for natural language

processing that provides various NLP tools for such tokenization, POS-tagging,

and Named Entity Recognition in text. Figure 2.15 shows the procedure that

spaCy is used to train a custom NER model. It employs word embedding and a

multilayer CNN with residual connections. It supports pretrained models in

multiple languages and provides a default classifier for a wide variety of named

or numerical entities, such as a person, organization, date, location, and event. In

addition, it allows us to extend the NER model with new classes for novel entities.

Figure 2.15 spaCy NER custom model training.

In this study, we design a neural network with a custom vector layer initialized

with the pretrained spaCy's output layer. That layer is then trained using the spaCy

library pre-training command [47], [48] on a domain-specific text corpus. Later,

in the experiment, we also use the pretrained spaCy model (en_core_web_lg) and

train our custom dynamic embedding model on our ingredient dataset. We apply

28

this domain-specific word embedding model to vectorize tokens while

conducting transfer learning from the spaCy pretrained model over the annotated

data.

2.6.2.2 BERT

BERT is a language representation model introduced by Devlin et al. [40]. It uses

stacked transformer encoders that learn a deep bidirectional representation from

a large unlabeled corpus. An additional output layer is then added to fine-tune the

representation in downstream NLP tasks. Fine-tuning involves modifying the

neural network architecture slightly for improved predictions in target tasks while

training the whole network. Pretrained BERT inherits the model weights learned

during the pre-training, allowing downstream tasks to benefit from these powerful

representations rather than learning from scratch.

Figure 2.16 Fine-tuned BERT for FINER.

29

We use the weights of a pretrained BERT model (bert-base-uncased) to initialize

the ingredient recognition task as shown in Figure 2.16. The BERT architecture

is preserved, but the input and output are adjusted to our NER task.

2.6.2.3 DistilBERT

Figure 2.17 Knowledge distillation from BERT with the combination of cross entropy and

the masked LM objectives.

DistilBERT [49] is a compact version of BERT and claimed to be lighter and

faster than BERT with roughly comparable performance. It has 40% fewer

parameters than bert-base-uncased and runs 60% faster at over 95% of BERT's

performance as measured on the GLUE language understanding benchmark in

30

Victor Sanh et al., paper [49]. To reduce the computational requirements of

modern large neural networks, DistilBERT uses a knowledge distillation

technique known as teacher-student learning [50]. Knowledge distillation is a

compression technique that involves training a small model to mimic the behavior

of a larger model.

Figure 2.17, The masked language model (MLM) loss is used to train the student

model, as well as the cross-entropy loss between the teacher and the student. This

mechanism encourages the student model to generate a probability distribution

over the predicted tokens as close to that of the teacher's as possible. During

teacher-student training, a student network is trained to replicate the distribution

of a teacher network's total output or knowledge. This assists the student in

generalizing in the same manner as the teacher. Instead of training with cross-

entropy over hard targets (one-hot encoding of the gold class), we transfer

knowledge from the teacher to the student using cross-entropy over soft targets

(probability of the teacher). Thus, the loss becomes:

𝐿  =   − ∑ 𝑡𝑖 ∗ 𝑙𝑜𝑔(𝑠𝑖)𝑖 , (5)

where 𝑡 represents the teacher's logits and 𝑠 the student's logits. This loss results

in a more robust training signal, as a single example imposes significantly more

constraints than a single hard target. Hinton et al. introduce a softmax-temperature

[51] to reveal more about the distribution's mass across the classes as follow:

pi  =  
𝑒𝑥𝑝(𝑧𝑖/𝑇)

∑ 𝑒𝑥𝑝(𝑧𝑗/𝑇)𝑗
 (6)

When 𝑇 tends to 0, the distribution becomes a Kronecker (equivalent to the one-

hot target vector), whereas it becomes a uniform distribution when 𝑇 → +∞.

31

During training, the same temperature parameter is applied to both the student

and the teacher, exposing more signals for each training example. In inference, 𝑇

is set to 1 , and the standard Softmax is recovered. Therefore, using teacher

signals, it allows us to train a smaller language model, which was later called

DistilBERT. In the implementation, we utilize the pretrained DistilBERT model

(distilbert-base-uncased) in the same way we implement the BERT model.

2.6.3 Recurrent Neural Networks (RNNs) based NER

2.6.3.1 Recurrent Neural Network (RNN)

RNNs [19], [52] are type of artificial neural network whose memory may hold

information about previous inputs in a sequence. The structure of basic RNN is

present in Figure 2.18. In RNN, each word of the input sequence 𝒙1, 𝒙2, … , 𝒙𝑛

turns into vector form 𝒚𝑡 by using the following equations:

Figure 2.18 RNN architecture.

𝒉𝑡   =  𝐇(𝑾𝑥ℎ𝒙𝑡  +  𝑾ℎℎ𝒉𝑡−1  +  𝒃ℎ) (7)

𝒚𝑡   =  𝑾ℎ𝑦𝒉𝑡  +  𝒃𝑦 (8)

32

where 𝑾𝑥ℎ , 𝑾ℎℎ , and 𝑾ℎ𝑦 denote the weight matrices, ℎ𝑡 is the vector of

hidden states that capture the information at time slice 𝑡(𝑡 = 1,2, . . ., 𝑇) , 𝒃

denote biases, and 𝑯 is collection of activation functions for the hidden layer. A

basic RNN with unidirectional flow transmits data from left to right with shared

parameters are used for each time step. 𝑾𝑥ℎ, 𝑾ℎℎ, and 𝑾ℎ𝑦 are the same for

each time step. When generating the prediction at time 𝒕, it uses not only the

current input 𝒙𝑡 at time 𝒕 but also the information from prior input at time 𝒕 − 𝟏

via activation parameter 𝑯 and weights 𝑾 , which passes from the previous

hidden layer to the current hidden layer. A drawback of RNN is that it can only

make predictions based on preceding information. In this case, RNN utilizes

information from earlier in the sequence to produce a prediction at a specific time,

but not information given later in the sequence. To train RNN, Back-propagation

through time (BPTT) is often used [53]. However, due to the gradient-vanishing

and exploding problem, it is not practical to train standard RNNs with BPTT [54].

It is difficult to propagate errors from later time steps back to previous time steps

enough to adjust network settings correctly. Thus, in the following development

of the RNNs, the gated recurrent unit (GRU) and the long short-term memory

(LSTM), have also been employed to resolve this concern [55]–[57].

2.6.3.2 Long-Short Term Memory (LSTM)

LSTM is an improved RNN type with memory cells [19], [57]. These memory

cells are developed to handle long-term temporal dependencies in the data. It

allows information to be added or removed from the current cell state. The input

gate (𝒊𝑡), forget gate (𝒇𝑡), and output gate (𝒐𝑡) is computed to control this

memory. Thus, LSTM units can propagate important features which appeared

early in the input sequence over extended distances and capture potential long-

distance relationships. LSTM, in contrast to RNN, contain three logistic sigmoid

33

gates and one tanh layer. Gates control the information that can passes through

the cell. They evaluate which data is relevant for the next cell and which data can

be disregarded. The output value normally falls between 0 to 1, where 0 indicates

"reject all" and 1 indicates "include all." The architecture of the LSTM unit is

visualized in Fig 2.19, and the formulas for calculating the time-step 𝑡 for each

hidden state in the LSTM unit are given in the following equations [58]:

𝒊𝑡   =  𝜎(𝑾𝑖 . [𝒉𝑡−1, 𝒙𝑡]  +  𝒃𝑖) (9)

𝒇𝑡   =  𝜎(𝑾𝑓  . [𝒉𝑡−1, 𝒙𝑡]  +  𝒃𝑓) (10)

𝒐𝑡   =  σ(𝑾𝑜 . [𝒉𝑡−1, 𝒙𝑡]  +  𝒃𝑜) (11)

𝑪̃𝑡  =  tanh(𝑾𝑐  . [𝒉𝑡−1, 𝑥𝑡]  +  𝒃𝑐) (12)

𝑪̃𝑡  =  𝒇𝑡  ∗  𝑪𝑡−1  +  𝒊𝑡   ∗  𝑪̃𝑡 (13)

𝒉𝑡   =  𝒐𝑡   ∗  tanh(𝑪𝑡) (14)

Figure 2.19 The LSTM unit architecture.

Each LSTM cell requires three inputs 𝒉𝑡−1 , 𝑪𝑡−1 , and input 𝒙𝑡 , as well as

generates two outputs 𝒉𝑡 and 𝑪𝑡. 𝒉𝑡 represent the hidden state, 𝑪𝑡 represent the

cell state or memory, and 𝒙𝑡 represent the current data point or input for a given

time 𝒕. The first sigmoid layer (𝝈) contains two inputs 𝒉𝑡−1 and 𝒙𝑡, where 𝒉𝑡−1

34

is the previous cell's hidden state. It is known as the forget gate (𝒇𝑡  ) since its

output determines how much information from the previous cell is included. The

output is a number within the range [0,1] multiplied (point-wise) by the previous

cell state 𝑪𝑡−1. The second sigmoid layer is the input gate (𝒊𝑡) which determines

what new information to add to the cell. 𝒉𝑡−1 and 𝒙𝑡. The tanh layer then creates

candidate vector 𝑪̃𝒕. Using a point-by-point multiplication of (𝒊𝑡   ∗  𝑪̃𝑡), these

two layers assess the data to be stored in the cell state. The result is then added

to the previous cell state of the forget gate (𝒇𝑡   ∗  𝑪𝑡−1) to generate current cell

state 𝑪𝑡. Next, the cell's output is calculated using a sigmoid and tanh layer. The

sigmoid layer determines the output cell state, whereas the tanh layer adjusts the

output within the interval [−1,1]. Finally, a point-wise multiplication of these

two layers produces the cell's output 𝒉𝑡.

2.6.3.3 Gated Recurrent Unit (GRU)

GRU first designed by [19], [56] to allow each recurrent unit to capture

dependencies at various time periods in an adaptive manner. It is similar to LSTM

but has simpler cell architecture. GRU consists of gating units that control the

information flow within the unit, but without memory cells. GRU computes the

update and reset gates that control the flow of information across each hidden

unit. Therefore, the update and reset gates, which are visualized by colored boxes

in the GRU cell in Figure 2.20, can be calculated using the following equations

[59], [60]:

𝒛𝑡  =  σ(𝑾𝑥𝑧𝒙𝑡   +  𝑾ℎ𝑧𝒉𝑡−1  +  𝒃𝑧) (15)

𝒓𝑡   =  σ(𝑾𝑥𝑟𝒙𝑡  +  𝑾ℎ𝑟𝒉𝑡−1  +  𝒃𝑟) (16)

𝒉̃𝑡   =  𝑡𝑎𝑛ℎ(𝑾𝒙hx𝑡   +  𝑾ℎℎ(𝒓𝑡  ⊙  𝒉𝑡−1)  +  𝒃ℎ) (17)

𝒉̃𝑡   =  𝒛𝑡  ⊙  𝒉𝑡−1 + (1  −  𝒛𝑡)  ⊙  𝒉̃𝑡 (18)

35

Figure 2.20 The GRU unit architecture.

where 𝒛𝒕 represent update gate, 𝒓𝒕 represent reset gate, 𝑾 represent the weight

vector, ⊙ is an element-wise multiplication and 𝜎 is the sigmoid function. At

each time 𝒕, it takes input 𝒙𝑡 and hidden state 𝒉𝑡−1 from the previous time 𝒕 − 𝟏.

Then, the outputs are a new hidden state 𝒉𝑡 for the next time 𝑡. In order to locate

𝒉𝑡, two steps are needed in GRU. First, the candidate hidden state is generated. It

multiplies the input and hidden state from the previous time 𝒕 − 𝟏 by the reset

gate output 𝒓𝑡. This information is sent through the tanh function, which returns

the hidden state of the candidate. The reset gate value in this equation determines

how much the previous hidden state influences the candidate state. If 𝒓𝑡 = 1, all

information from 𝒉𝑡−1 is considered. Otherwise, if 𝒓𝑡 = 0, the information from

the previous hidden state is ignored. Once the candidate state is obtained, it is

used to generate 𝒉𝑡, which involves the update gate. In GRU, instead of utilizing

a separate update gate like in LSTM, both the historical information (𝒉𝑡−1) and

the new information from the candidate state are controlled by a single update

gate. Moreover, 𝒛𝑡 is crucial in this equation. It can determine how much

information from the past must be passed to the future. The 𝒛𝑡 value within range

of 0 to 1.

36

Chapter III

Food Ingredient Named-Entity Data

Construction using Semi-Supervised Multi-

Model Prediction Technique

3.1 Background and Related Works

There have been several studies on food data construction being conducted with

various approaches and data sources [17]. Table 3.1 compares the existing food

datasets and the FINER dataset, which has been developed by the proposed method.

Among the datasets in Table 3.1, Recipe1M+ [10] and RecipeNLG [9] are containing

both image and text, they both used for multimodal machine learning tasks.

However, the goal of our study is extracting named entities from food recipe text.

There are datasets available for task, but they are usually small in terms of the

availability of training samples [12].

Table 3.1 Available food dataset compared to our FINER dataset.

Dataset Method Source Dataset Size

(recipes)

Entities

FoodBase

[7]

Ruled-based

approach

Allrecipes 1000 curated

and 21.790

uncurated

version

Based on Hansard

corpus semantic tags:

AG (food and drink)

AE (animal)

AF (plant)

Recipe1M+

[10]

Deep learning

approach

Various cooking

sites and image

search engines

1 million

recipes and 13

-

37

Dataset Method Source Dataset Size

(recipes)

Entities

for image data

extension

million food

images

RecipeDB

[8]

Ruled-based

approach

Food.com

AllRecipes

Tarladalal

The Spruce Eats

Epicurious

Food Network

Taste

118.171 Name

State

Unit

Quantity

Size

Temp

Dry/Fresh

RecipeNLG

[9]

Deep learning

approach

Recipe1M+ and

auhtors private

data gathered

from various

cooking sites

Over 1 million

new data

-

TASTEset

[11]

Deep learning

approach

AllRecipes

Food.com

Tasty

Yummly

700 Food

Quantity

Unit

Process

Physical Quality

Color

Taste

Purpose

Part

FINER

(Our)

Deep learning

approach

Allrecipes 64.782 Ingredient

Product

Quantity

Unit

State

The problem of limited data on food and its attributes has recently been addressed

in several papers with proposals for building food NER datasets [7], [8]. Batra et al.

38

presented [8] while Popovski et al. discussed the FoodBase corpus, which was

developed using a rule-based approach [7]. While easily available, it is rather small,

consisting of 1000 recipes for the curated version (manually evaluated) and 21.790

for the uncurated version. Similar to FoodBase, a recently published dataset called

TASTEset [11] is an even smaller set of 700 recipes. On the other hand, the

RecipeDB dataset, built by Batra et al.,[8] is relatively large and covers a wide range

of recipes. It has been derived from numerous online food recipe sharing sites.

Unfortunately, the dataset cannot be use directly because it is intended for search

applications about recipes or food ingredients.

This study focuses on extracting various entities in the recipe texts from the

Allrecipes website, a popular online social media for sharing food recipes. In

particular, we propose a novel iterative framework to build a new dataset of annotated

ingredient entities in various recipes called Food Ingredients Named Entity

Recognition (FINER). This study proposes a generic method for building a food NER

dataset using ML techniques to address the data limitation issue called Semi-

supervised Multi-model Prediction Technique (SMPT). SMPT is an ensemble deep

learning model which employs the concept of self-training that builds on pretrained

language models (such as spaCy NER [47], BERT [40], and DistilBERT [49]) in the

iterative data labeling process [61] with a voting scheme used as the final decision to

determine the entity's label.

3.2 Data Construction Workflow

The data construction workflow in our study consists of four stages: (a) Data

preparation; (b) Manual data annotation; (c) Model training and automatic labeling;

and (d) Dataset evaluation. Several NLP libraries, including SpaCy [47], NLTK [62],

and Doccano annotation tools [63] were utilized throughout the building process.

39

The detailed data construction process shown in Figure 3.1 involves the following

four steps:

a) First stage is data preparation. We begin by cleaning the text data collected from

the Allrecipes website, followed by a number of preprocessing steps.

b) The second stage is the manual data annotation. We begin with a small set of

2,000 manually labeled data for initial training set and evaluation set (each of

1000 data). The first training set is utilized to create a baseline NER annotator,

while the evaluation set is held for the final evaluation of the complete dataset.

c) The third stage is model training and automatic labeling. In this stage, baseline

models are built utilizing the initial training set from the previous step. To

annotate and generate our dataset, we propose a semi-supervised technique

named Semi-Supervised Multi-Model Prediction Technique (SMPT). We will

explain in detail about the SMPT method in Subchapter 3.5. After baseline

model is created, we then used this model to predict labels for the remaining

unlabeled set. As of now, we have a newly created set of labeled data, some of

which have been incorporated into the previous set. This procedure is repeated

until no more unlabeled data are available.

d) The final stage is dataset evaluation. After multiple iterations, the Food

Ingredient NER (FINER) dataset is obtained. Using a set of classifiers including

CRF, Bi-LSTM, and BERT, we evaluate the dataset's quality indirectly. We

assess their performance using the reserved evaluation set.

40

Figure 3.1 Dataset construction flowchart.

3.3 Data Preparation

The dataset in this study is based on the recipe text scraped from the Allrecipes

website [64]. The structure of the data is illustrated in Figure 3.2 which consists of

recipe names, ingredients, direction, and nutrition. However, this study extracts

ingredient entities and their attributes, including ingredient name, product, quantity,

unit, and ingredient state, from the ingredient section. Figure 3.3 shows the recipe

41

data stored in csv file containing columns with information about recipes. After data

preprocessing, we parse and convert the data to the NER CoNLL format shown in

Table 3.2 and save it as a CoNLL file shown in Figure 3.4 as an input to the model.

Figure 3.2 A recipe structure and ingredient data extraction workflow.

42

Figure 3.3 An example of data scrapped from allrecipes.com.

Table 3.2 An example of a sentence in an NER CoNLL format.

Sentence Word Tag

Sentence #1 1 B-QUANTITY

Sentence #1 slice B-UNIT

Sentence #1 whole B-INGREDIENT

Sentence #1 wheat I-INGREDIENT

Sentence #1 bread I-INGREDIENT

1 B-QUANTITY

slice B-UNIT

whole B-INGREDIENT

wheat I-INGREDIENT

bread I-INGREDIENT

0.5 B-QUANTITY

(O

1 B-QUANTITY

ounce B-UNIT

) O

package B-UNIT

dry B-INGREDIENT

ranch I-INGREDIENT

- I-INGREDIENT

style I-INGREDIENT

dressing I-INGREDIENT

mix I-INGREDIENT

Figure 3.4 An example of an NER CONLL file format.

Overall, after data preprocessing, the dataset contains 64,782 raw recipes, a total

of 1,397,960 words, and 181,970 sentences (ingredient phrases), as detailed in Table

43

3.3. In addition, the recipe text dataset has eight food categories such as breakfast

and brunch, dinner, main dishes, side dishes, drinks, dessert, bread, and salad. It has

been cleaned up so that the data's format and structure match to the desired input.

The preprocessing comprised of several steps, starts by removing all special

characters, white spaces, stop words, punctuation symbols, tokenizing the data,

converting it into lower-case, followed by lemmatization. In addition, the following

rules are defined:

▪ Since our dataset is made up of a list of ingredients, stop words and

punctuation may not always be meaningless to the text's intent, but it may

help interpret entities. Therefore, we have constructed custom lists of stop

words and punctuation. For example, the sentence "1 (2 ounces) package

butter" means 1 package of butter equals 2 ounces. Thus, the parentheses are

kept because they contain information for converting the amount of

ingredient to standard units.

▪ Standardized the unit and quantity measurements. For example, in units, we

convert all abbreviations into their original form, such

as “tbsp” becomes “tablespoon”; and in quantities, we convert all numbers

from fractions into a decimal, such as “½” becomes “0.5”.

▪ To simplify the extraction, every phrase in the ingredients section is split

into individual sentences. In our experiment, only the ingredients section

was employed. This section contains all the ingredients for a particular

recipe. Figure 3.5 demonstrates the splitting of each list into ingredient

phrases. After the pre-processing procedure, the final dataset contains

181,970 ingredient phrases or sentences.

44

Table 3.3 The dataset information details.

Total number of sentences 181,970

Total number of words 1,397,960

Total number of entities (without O tags) 1,177,660

Total number of tags (without O tags) 10

Figure 3.5 Splitting process of ingredient lists into individual phrase.

After a series of pre-processing steps, the recipes text data is divided into three

sets as summarized in Table 3.4. For training and evaluation data, we manually

annotated the first two sets using Doccano annotation tools [63] and left the

remaining set unlabeled, which will be labeled recursively by the proposed method

of NER annotator.

Table 3.4 The organization of the initial dataset. Initial training set and evaluation set are

manually annotated.

Initial training set 1,000

Evaluation set 1,000

Unlabeled dataset 179,970

Total 181,970

45

3.4 Named Entity Labeling

Entities usually represent an important chunk of a particular sentence. Named

entity recognition is a technique to detect and classify atomic elements in a text into

predefined categories or classes that vary depending on the domain of interest.

People commonly classify them into names of persons, organizations, events, dates,

and many more in the general domain. This research aims to extract food ingredient

entities and its attributes from recipe texts. This study defines five different entity

classes, each of which corresponds to an entity tag listed in Table 3.5. To chunk the

entity word, we employed the IOB2 format [2], [65]. IOB2 format is similar to the

IOB format, except for the addition of the B-tag at the beginning of each chunk (i.e.,

all chunks start with a B-tag). Table 3.6 presents a details explanation of the IOB

format. In this format, a tag is prefixed by one of B, I, and O indicating the position

within the entity. "B-tag" indicates that the tag is the beginning of a chunk, "I-

tag" indicates that the tag is inside a chunk, and "O" indicates that a token is not a

chunk. The "tag" shall be replaced with a named entity label such as "ING" for

ingredients in our data.

Table 3.5 Entity classes with their respective definitions and examples.

Class Description Example

INGREDIENT Name of the food or ingredient. Carrots, garlic, vegetable oil, etc.

QUANTITY Measurement unit. Gram, pound, tablespoon, etc.

UNIT
Measurements of the food or

ingredient associated with the unit.

1 ½ , 25, 0.5, etc.

PRODUCT
Food or ingredient from specific

brand mention.

Tabasco brand chipotle pepper

sauce, Archer farms dark

chocolate hot cocoa mix, etc.

46

Class Description Example

STATE
Processing state of the food or

ingredient.

Minced, chopped, cut into 2-inch

strips, etc.

Table 3.6 IOB tagging scheme.

Tag Definition

B (Begin) indicates that the tag is the beginning of a chunk.

I (Inside) indicates that the tag is inside a chunk.

O (Outside) indicates that a token belongs to non-chunk (outside).

3.5 Semi-Supervised Multi-Model Prediction Technique

(SMPT)

Figure 3.6 depicts a general procedure of our proposed method for ingredient

named entity data annotation namely Semi-Supervised Multi-Model Prediction

Technique or SMPT. SMPT is an iterative step similar to the bootstrapping method

used by Kim et al. in [66]. However, instead of using CRF for bootstrapping and

automatic labeling the unlabeled data. We adopted the concept of self-training in the

data labeling process. Given the small labeled datasets, we train a baseline classifier

based on pretrained models of spaCy, BERT, or DistilBERT, and use them to

increase the labeled set to the final selection of the token (entity) classes made by

majority voting. The resulting set of labeled data is incorporated into the input for

the next iteration. The whole procedure is repeated until the unlabeled sample is

labeled.

A key component in the proposed method is the development of the classifiers

that will be trained in this section. The SMPT training process consists of two main

47

components: the training process itself and the dataset labeling scheme with the

dataset growth factor. Thus, we will explain these two components in the following

sections.

Figure 3.6 The SMPT method workflow.

48

3.5.1 Training

The core tasks of classifier training and data labeling in SMPT consists of three

steps:

(1) In the first step, we develop a set of C baseline classifiers using our initial

training set (1000 manually annotated instances). In our experiment, the

classifiers include: spaCy NER, BERT, and DistilBERT.

(2) In the second step, each classifier C makes its own predictions for the test

set. The final decisions on the unlabeled tokens are made by the majority

voting scheme:

𝑚̅ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚≤𝑀 ∑ 𝑑𝑐,𝑚
𝐶
𝑐=1 (19)

where 𝑚̅ is the final prediction label (class), 𝑀 is number of classes, 𝐶 =

|𝐶 | the number of classifiers, and 𝑑𝑐,𝑚 denotes the vote given to class 𝑚 by

classifier 𝑐. If the max vote is not unique, the token will be given “O” label

representing that the token is not a chunk.

(3) Finally, the above machine-labeled tokens with unanimous votes are

considered reliable and promoted into the training set of labeled instances

for the next generation of classifiers. These procedures were repeated until

no tokens are left unlabeled.

3.5.2 Dataset Building Schemes

Following the iteration procedure described in the previous section, we build an

NER dataset of labeled tokens. In each iteration, we add up a fixed amount of newly

labeled samples to the current training set. We define 𝑠 as the growth factor. Here,

each time the amount of addition is set to be 𝑠 times that of the current training set 𝑡

49

where 𝑠 > 0 . The number of employed schemes may vary. However, in this

implementation we decided to use the following three schemes:

▪ Scheme 1: 𝑠 = 2

▪ Scheme 2: 𝑠 = 5

▪ Scheme 3: 𝑠 = 10

In each scheme, the labeled set grows at a different pace. Table 3.7 explain the

data size growth procedure for data training and labeling using scheme 1 with growth

factor 2 as an example. According to Table 3.7, we have an initial training set that

we have prepared in Section 3.3 with the size of 𝑡1 and use it to create a set of

baseline models or voting classifiers 𝑉𝐶. Then we start the iteration process using

𝑉𝐶1. We assign labels to the unlabeled data from which we pick up 𝑢1 = 𝑠 ∗ 𝑡1

for a promotion to the training set of size 𝑡2 = 𝑡1 + 𝑠 ∗ 𝑡1 for the next round.

Therefore, the size of the unlabeled data we will annotate will constantly increase by

two times the size of the training data used to train the models. The procedure is

repeated until the entire data are assigned and labeled. An example of this procedure

for the growth factor 𝑠 = 2 is demonstrated in Figure 3.7.

Table 3.7 The size of the sets and additions over iterations. 𝑡𝑛 is the training set size, 𝑢𝑛 is

the size of increments, 𝑠 is scheme factor, while 𝑛 = 1, 2, . . . , 𝑛.

Iteration The set Scheme 1 (𝑠 = 2)

1 𝑡1 = 1000 𝑢1 = 2 ∗ 𝑡1

2 𝑡2 = 𝑡1 + 2𝑡1 𝑢2 = 2 ∗ 𝑡2

3 𝑡3 = 𝑡2 + 2𝑡2 𝑢3 = 2 ∗ 𝑡3

4 𝑡4 = 𝑡3 + 2𝑡3 𝑢4 = 2 ∗ 𝑡4

. . .

. . .

50

Iteration The set Scheme 1 (𝑠 = 2)

𝑛 𝑡𝑛 = 𝑡𝑛−1 + 2𝑡𝑛−1 𝑢𝑛 = 𝑠 ∗ 𝑡𝑛

Figure 3.7 An example of data size growth procedure with growth factor 𝑠 = 2.

51

Chapter IV

Ensemble-based Recurrent Networks for

Food Ingredient Named Entity Recognition

4.1 Background and Related Works

This section will provide a brief overview of the background on developing NER

for food information extraction, including various studies employing the recurrent

networks model and ensemble methods to address NER challenges.

4.1.1 Food-Related NER

NER tools and frameworks use various approaches that can be classified into

three categories: machine learning, rule-based, and dictionary-based [67]. In the food

domain, there have been a few studies on the NER problem. In the ruled-based

approach, there are FoodIE [14] and drNER [68]. In addition, several databases for

food-related NER have also been developed, such as FoodBase [7] and RecipeDB

[13]. FoodBase raw data were obtained from the Allrecipes website, while RecipeDB

was from Allrecipes and Food.com websites. After the establishment of the

FoodBase corpus, the most recent study in [12] evaluated four distinct NER

techniques using this dataset, such as FoodIE, NCBO (SNOMED CT), NCBO

(OntoFood), and NCBO (FoodON). Moreover, to enhance the performance of the

FoodBase corpus, FoodNER [16] and BuTTER [15] were proposed. FoodNER uses

a bidirectional encoder representation from the transformers (BERTs) model to

extract food entities, whereas BuTTER uses bidirectional long short-term memory

(BiLSTM) and conditional random fields to extract food entities (CRFs).

52

4.1.2 Ensemble Method for NER

 Ensemble learning combines several base classifiers to obtain better

generalization performance. Diverse methods for effectively combining base

classifiers have been proposed [26], [27]. Voting, bagging, boosting, blending, and

stacking are the most frequent approaches [25], [28], [29]. In the NER task, several

research studies have used the ensemble method. These studies are summarized in

Table 4.1. Voting has been a preferred method for most NER investigations among

the ensemble strategy [69]–[75]. Voting is an ensemble method that combines the

performance of multiple classifiers and selects a class with the most votes [27].

Several of the studies in Table 4.1 employ several strategies, including concatenation

[76], stacking [73], and other approaches [77]. Interestingly, none of these studies

have yet been applied to the extraction of food-related entities. Thus, we proposed a

Recurrent Networks-based Ensemble or RNE model for extracting ingredient

entities and their attributes in this study [19].

Table 4.1 Comparative overview of prior studies on NER utilizing the ensemble method

Study
Ensemble

Scheme
Classifiers Dataset

Performance

Metrics

[71] Voting 5 NER systems: Stanford

NER, NER-Tagger,

Edinburgh Geoparser,

spaCy NER, Polyglot

The Marry Hamilton

Papers [78], The Samuel

Hartlib Papers [79]

Recall,

Precision,

F1 score

[69] Voting MLP, ABM1, J48 Reuters corpus [80] Recall,

Precision,

Error rate,

MCC, F1 score

[81] Majority Voting BERT, CNN,

CamemBERT,

CamemBERT-bio, XL-

ChEMU 2020 [82], DEFT

2020 [83], WNUT 2020

[84]

F1 score

53

Study
Ensemble

Scheme
Classifiers Dataset

Performance

Metrics

Net, RoBERTa,

BioBERT, Bio +

ClinicalBERT,

PubMedBERT, BioMed

RoBERTa

[74] Majority Voting BERT-base-cased,

BERT-based-uncased,

CNN

ChEMU NER Task [82] Recall,

Precision,

F1 score

[73] Majority Voting,

Stacking

SVM, CRF, ME i2b2 2010 corpus [85] Recall,

Precision,

F1 score

[70] Weighted Voting ME, CRF, SVM Bengali News corpus [86],

NERSSEAL [87], CoNLL-

2003 [88]

F1 score

[75] Plurality Voting,

Weighted Voting

HMM, CRF, MEM,

BiLSTM

Private (Authors private

data)

F1 score

[77] Arbitration

Rules, Stacked

Generalization,

Cascade

Generalization

Generalized Winnow,

ME, SVM, CRF

GENIA [89], JNLPBA

[90]

Recall,

Precision,

F1 score

[76] Concatenation Neural Networks OKE2016 [91],

AIDA/CoNLL [88],

NexGenTV corpus [92]

Recall,

Precision,

F1 score

4.1.3 Recurrent Model for NER

Deep learning for NLP has resulted in a new research paradigm. a number of

studies on deep learning-related models and methods have been applied to diverse

NLP tasks [93]. Among these are recurrent neural networks. In modeling sequential

54

data, RNNs and their variations, such as GRU and LSTM, have demonstrated

outstanding performance [94], [95]. Specifically, bidirectional RNNs efficiently

utilize past information (via forward states) and future information (through

backward states) for a given period [96]. The first work using RNNs for NER

problems was conducted using the LSTM–CRF architecture by [96]. After this,

several additional studies explored RNNs for sequence-labeling problems. In

completing their NER tasks, the authors of [97]–[100] used GRU, whereas the

authors of [101]–[104] used LSTM. In addition, the authors of [59] use RNNs for

NER in Chinese electronic medical records and the authors of [105] employ RNNs

for nested NER problems. In the case of food information extraction, BuTTER [15]

and MenuNER [3] were developed using Bi-LSTM-CRF.

4.2 Dataset

In this study, we used the FINER dataset [18] we constructed in Chapter 3. The

labels are spanned in the IOB chunking format of the data and have five kinds of

named entity tags such as: INGREDIENT, PRODUCT, UNIT, QUANTITY, and

STATE. The data set consists of 181,970 data or ingredient sentences, which are

split 80:20 between training and testing, respectively. It is approximately 145,576

data for training and 36,394 data for testing the system. The complete distribution of

the dataset across tags is further presented in Table 4.2.

Table 4.2 The distribution of the named entity dataset.

Named-entity type Count Ratio (%)

B-INGREDIENT 210,082 15.03

B-PRODUCT 17,325 1.24

B-QUANTITY 209,867 15.01

B-STATE 135,315 9.68

55

Named-entity type Count Ratio (%)

B-UNIT 174,993 12.52

I-INGREDIENT 240,436 17.20

I-PRODUCT 55,212 3.95

I- QUANTITY 1,919 0.14

I-STATE 130,158 9.31

I-UNIT 2,353 0.17

O (outside or non-entity chunk) 220,300 15.76

Total 1,397,960 100

4.3 Hyperparameter Optimization

As AI advances, deep learning techniques are becoming increasingly popular for

any ML problems. However, the training process for these models involves a large

number of hyperparameters, and the selection of these hyperparameters relies on

experience. Thus, adjusting hyperparameters is a tedious and time-consuming

process. This study uses the greedy search algorithm to find the best hyperparameter

in search space or a dictionary where the hyperparameter arguments and values are

used for the greedy hyperparameter search. In greedy search, the validation accuracy

for each hyperparameter is determined locally. The greedy search algorithm

maximizes each hyperparameter while keeping the others constant. In this strategy,

the local optimum solution is obtained by optimizing the local solution for each

hyperparameter using an iterative procedure that is repeated until all

hyperparameters are optimal [106], [107]. Since model performance depends on the

hyperparameters, all candidate classifiers are optimized prior to selection. The final

values for each classifier based on the greedy hyperparameter optimization are

presented in Table 4.3.

56

Table 4.3 Hyperparameter space for each model. The final value is determined by selecting

the optimal hyperparameter using greedy search.

Model Hyperparameter Values Final Value

RNN n_layers [1, 2, 4] 4

 hidden_dim [16, 32, 64] 16

 dropout [0.0, 0.3, 0.5] 0.0

GRU n_layers [1, 2, 4] 2

 hidden_dim [16, 32, 64] 64

 dropout [0.0, 0.3, 0.5] 0.3

LSTM n_layers [1, 2, 4] 2

 hidden_dim [16, 32, 64] 32

 dropout [0.0, 0.3, 0.5] 0.0

4.4 Recurrent Network-based Ensemble (RNE)

According to the wisdom of the crowd theory holds that collective knowledge is

superior to that of the few [108]. In light of this, the ensemble method aims to

improve prediction performance by aggregating the results of multiple models. A set

of model predictions from the first-level classifiers are used as inputs for the second-

level learning model in an ensemble approach. The second-level model is trained to

optimally incorporate the predictions of the first-level classifiers to generate the final

prediction. Thus, ensemble learning can transform a group of weak classifiers into a

strong classifier [28]. It has been demonstrated that the ensemble method provides

better accurate predictions than single models in a wide range of scenarios. When

the models produce different results, the potential for performance improvement is

higher when an ensemble method is used [109].

57

In this study, we develop a named-entity recognition model called the recurrent

network-based ensemble (RNE) method to extract ingredient entities and their

attributes from recipe text [19]. The RNE is comprised of recurrent network models

such as RNN, GRU, and LSTM. It was developed utilizing a deep ensemble-learning

framework. These models are independently trained on the same dataset and then

integrated to create more accurate predictions for the extraction of food entities, such

as ingredient names, products, units, quantities, and states for each ingredient in a

recipe. The RNE model architecture is shown in Figure 4.1.

Figure 4.1 The RNE model architecture.

58

Figure 4.2 Input and output data example.

The input data to RNE is a list of ingredient phrases from the FINER dataset,

named-entity dataset we have created in Chapter 3. In the first layer, we retrieved

the contextual meaning of words using pre-trained GloVe [110] word embeddings.

In this layer, the pre-trained word embedding is used to map each word (𝒘1, 𝒘2,

… 𝒘𝑛) in the sentence 𝑿 to a word vector. In the next layer, we independently train

three base classifiers on the same dataset using the Adam optimizer and cross-

entropy loss function so that the loss function converges to a better local minimum.

In this study, we use three bidirectional recurrent models, such as Bi-RNN, Bi-GRU,

and Bi-LSTM, as the base classifiers. Each model generates an output prediction

represented as 𝑷1, 𝑷2, and 𝑷3. Next, in the combiner layer, we concatenate the three

different predictions and obtain the final prediction 𝒀 , as shown in Figure 4.2.

Specifically, we draw the final predicted label 𝒀 through 𝒀 = 𝓕([𝑷1 ∘ 𝑷2 ∘

 𝑷3]) , with ∘ representing the concatenation operator and 𝓕: ℝ(𝐷×3) → ℝ𝐾

representing a linear layer without any non-linear activation function. Note that we

indicate 𝐷 as the output dimension from each recurrent model and 𝐾 as the number

of classes that shall be predicted by the ensemble model. In practice, we set 𝐷 equal

to 𝐾, and in this way we impose each recurrent model to predict the named entities

while aggregating each prediction through this ensemble layer to obtain a more

precise prediction. Figure 4.2 illustrates an NER sentence input and output. All

implementation details for the experiments conducted in this study are detailed in

the experimental section.

59

Chapter V

Results and Analysis

5.1 Experimental Setup

All experiments are performed on a computer with an Intel(R) Core

(TM) i9-10900KF processor running at 3.70 GHz, a NVidia GeForce RTX

3090 graphics processing unit, and 32 GB of RAM. And the Pytorch

python package in an open-source Anaconda GPU environment with

Python version 3.9.

5.2 Evaluation Metrics

To evaluate our model performance, we employ three different metrics

[111]: Precision, Recall, and F1-score. We count the true positives (𝑇𝑃𝑡),

false positives (𝐹𝑃𝑡), and false negatives (𝐹𝑁𝑡). 𝑇𝑃𝑡 occurs when the

outputs of the NER for input tokens exactly matches the same ingredient

entity in the ground truth dataset, 𝐹𝑃𝑡 or falsely predicted positive occurs

when something that is not an ingredient entity is classified as being one,

and 𝐹𝑁𝑡 occurs when a specific annotation is omitted when the entity

should be classified as an ingredient entity and this happens when the

ingredient entity is not properly extracted using the NER method. In

addition, we use the one-against-all method to convert the multiclass

60

confusion matrix of each dataset into a binary confusion matrix [112].

These metrics for evaluation are calculated as follows:

Precision = ∑
𝑇𝑃𝑡

(𝑇𝑃𝑡+ 𝐹𝑃𝑡)𝑡∈𝑇 (20)

Recall = ∑
𝑇𝑃𝑡

(𝑇𝑃𝑡+ 𝐹𝑁𝑡)𝑡∈𝑇 (21)

F1 = ∑
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡𝑅𝑒𝑐𝑎𝑙𝑙𝑡

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡+ 𝑅𝑒𝑐𝑎𝑙𝑙𝑡)𝑡∈𝑇 (22)

where:

▪ Precision is the ratio between the number of true positives and

the total number of predicted positives.

▪ Recall is the proportion of actual positives to true positives.

▪ F1-Score represents the harmonic mean of precision and

recall.

5.3 Analysis and Evaluation for SMPT method

This section presents the analysis and then discuss the results of the

experiments performed in this study to verify the effectiveness of the

SMTP method in generating the FINER dataset and assess the dataset’s

quality using the existing NER models. In addition, the dataset of this

study can be accessed in Figshare [18] (URL:

https://doi.org/10.6084/m9.figshare.20222361.v3).

61

5.3.1 Test Results with Training Schemes

The SMPT grows the labeled dataset by multiplying the set by a certain

factor. This paper considers three typical growth schemes to show the

effect of the amount of training data with respect to the data quality and

process efficiency. Figures 5.1, 5.2, and 5.3 gives a detailed picture about

the performance of the three schemes with growth factor of 2, 5, and 10

respectively. These three figures show that the annotators' performances

were increased as the dataset grows over iterations. This matches our

expectation that the models improve with more training data, which is a

strong indicator about the dataset quality.

Figure 5.1 The performance results in each iteration with growth factor 2

(scheme 1).

62

Figure 5.2 The performance results in each iteration with growth factor 5

(scheme 2).

Figure 5.3 The performance results in each iteration with growth factor 10

(scheme 3).

63

Figure 5.4 presents the boxplot that compares the three schemes in

terms of the average performance measured by the F1 score. The peak of

the box represents the data point with the highest value, while the bottom

shows the data point with the lowest value. A horizontal red line within

the rectangle indicates all values' median, and the white diamond indicates

the mean value. Figure 5.4 does not have outliers for all models. The

length of the box plot indicates a more varied model distribution.

According to the box plot, Scheme 3 outperforms all other models, with

the distribution's median value being within the third quartile. It implies

that 75% of the results are beneath the upper quartile.

Figure 5.4 The average performance in each scheme.

In addition, Table 5.1 shows the computation time spent in each

iteration to label the data for each scheme. When training time is included,

scheme 1 is the slowest due to the increased number of iterations which is

five. Scheme 2 is faster but has the lowest performance among all

schemes, according to Figure 5.4. On the other hand, scheme 3 takes a

64

similar amount of time but with fewer iterations and shows superior

performance to the other two. Hence, scheme 3 is the preferred method for

time efficiency and performance.

Table 5.1 Computation time of each scheme. As the training set grows, labeling

time increases. Note that the three schemes increased the labeled set differently.

Iteration

Scheme 1 (𝑠 = 2) Scheme 2 (𝑠 = 5) Scheme 3 (𝑠 = 10)

Data
Time

(second)
Data

Time

(second)
Data

Time

(second)

1 2,000 146 5,000 268 10,000 914

2 6,000 392 30,000 1,757 110,000 10,134

3 18,000 1,365 144,970 12,099 59,970 5,018

4 54,000 4,916 - - - -

5 99,970 9,436 - - - -

Total 179,970 16,255 179,970 14,124 179,970 16,066

Meanwhile, as for the scenario of the sample generated by Scheme 3

over three iterations, see Figure 5.5 in particular. The sample input was

the sentence: "1 pound mixed domestic and wild mushrooms such as

shiitake oyster or cremini, trimmed and quartered, salt and freshly ground

pepper". In the first iteration, all three models over-generated entities,

some with wrong labels as highlighted in the red boxes, and the correct

prediction is highlighted in the blue boxes. For instance, the model

returned a number of "O" tags for non-entity words. In the second

iteration, the model began to learn, although, in the spaCy NER model,

one error is still found in classifying "shiitake oyster," which is an

65

"INGREDIENT", as a "PRODUCT" class. However, in the last iteration,

all models managed to detect all entities correctly in the sentence.

Figure 5.5 An example of NER sentence generated in scheme 3 over three

iterations.

66

5.3.2 Evaluation on ML Models

To demonstrate the quality of the FINER dataset generated by the

SMPT. We indirectly evaluate this dataset using three popular NER

models to infer the dataset's quality. Those models are CRF [113]–[115],

BiLSTM-CRF [15], [101]–[103], [116], [117], and BERT [3], [66], [118].

They have proven to be effective for token classification tasks like NER

[94], [95], [119].

The three models were trained on our FINER dataset, and we utilized

the reserved evaluation set of 1,000 annotated samples, which we have

prepared in Subchapter 3.3. Table 5.2 summarizes the performance of the

models on the evaluation dataset in terms of precision, recall, and F1

score. BERT achieved the best performance in both micro and macro

averages. BERT’s micro-average yields precision, recall, and F1-score of

0.978, 0.980, and 0.979, respectively. Its macro-average metrics were

slightly lower than the micro-averages. We attribute this to the imbalanced

data among classes where only a few inside tags are observed for some

classes in the training set. The macro-average simply takes the mean of

the score of classes, whereas the micro-average takes the class proportion

into account. As a consequence, the poor performance of a small class has

a disproportionate impact on the overall performance when using the

macro versions.

67

Table 5.2 Performance of each model with the best performance is emphasized in bold.

Evaluation

metrics

CRF Bi-LSTM-CRF BERT

micro-avg macro-avg micro-avg macro-avg micro-avg macro-avg

Precision 0.953 0.950 0.973 0.956 0.978 0.961

Recall 0.964 0.957 0.974 0.962 0.980 0.971

F1-score 0.958 0.953 0.973 0.959 0.979 0.966

Table 5.3 The classification report for each models and the best performance is emphasized in bold.

Class
CRF Bi-LSTM-CRF BERT

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

B-INGREDIENT 0.948 0.951 0.949 0.969 0.974 0.972 0.979 0.981 0.980

B-PRODUCT 0.909 0.896 0.902 0.932 0.959 0.946 0.963 0.972 0.967

B-QUANTITY 0.998 0.998 0.998 0.999 0.999 0.999 1 0.999 0.999

B-STATE 0.955 0.947 0.951 0.969 0.971 0.970 0.981 0.979 0.980

B-UNIT 0.994 0.994 0.994 0.996 0.997 0.997 0.999 0.998 0.998

68

Class
CRF Bi-LSTM-CRF BERT

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

I-INGREDIENT 0.929 0.956 0.942 0.958 0.975 0.967 0.979 0.976 0.977

I-PRODUCT 0.846 0.923 0.883 0.918 0.973 0.945 0.927 0.986 0.956

I- QUANTITY 0.992 0.958 0.975 0.982 0.985 0.989 0.992 0.994 0.993

I-STATE 0.929 0.951 0.940 0.952 0.978 0.965 0.964 0.983 0.974

I-UNIT 1 1 1 0.999 0.998 0.999 1 1 1

69

Additionally, the CRF model used in this experiment achieved the

scores listed in Tables 5.2 and Table 5.3 with an appropriate

hyperparameter tuning as the CRF contained a number of parameters that

need fine-tuning to improve performance. However, when compared to

BiLSTM-CRF and BERT, the CRF performed the poorest, which is

expected given that BiLSTM-CRF has a more complex architecture than

CRF and has been demonstrated to be superior due to the use of a

bidirectional (forward and backward) LSTM for learning the hidden text

representation and a CRF for tag decoding. Along with the FINER

evaluation of the three models, we compare the results of our study with

similar studies such as RecipeDB and TASTEset. We choose RecipeDB

and TASTEset for our comparison because of the similar entities and data

source description to our FINER dataset. Compared to them, the FINER

dataset outperformed both performances by an F1 score of 97.9%, as

shown in Table 5.4.

Table 5.4 Comparative analysis of the FINER dataset with other similar datasets

from previous work with the best performance is emphasized in bold.

Dataset Model
Performance

(F1-score)

RecipeDB [8], [13] K-Means Clustering 0.961

TASTEset [11] BERT 0.935

FINER (Our) BERT 0.979

For further analysis and verification, we presented a detailed

evaluation of each entity tag of these models in Table 5.3. Classes such as

70

UNIT and QUANTITY were recognized with very high performance for

both beginning (B) and inside (I) chunks due to their distinct

morphological characteristics and the inclusion of numerical characters.

Moreover, UNIT has a high probability of occurring promptly after

QUANTITY, making it relatively easy for the model to predict them.

Overall, BERT performed better than other models in most cases. The

BERT has been pre-trained on a large corpus and it preserves powerful

representations of the language, so it is not surprising that it performs best

in most downstream tasks like NER. Based on these experiments, we

conclude that our method is helpful and beneficial in building a reasonably

good data set for typical NER tasks

5.4 Analysis and Evaluation for RNE model

The proposed model is evaluated using evaluation metrics including

precision, recall, and F1-score. Using these metrics, we analyzed and

compared the proposed Recurrent Network-based Ensemble method

(RNE) model with the single models of RNN, GRU, and LSTM. Table 5.5

provides a summary of the performance of both unidirectional and

bidirectional models. A unidirectional or one-way network stores only

forward information (past to future). While the bidirectional approach

utilizes information from both sides and accepts input flows in both

directions (past to future and vice versa).

71

Table 5.5 A comparison of the models of unidirectional and bidirectional

recurrent networks. The best performance is emphasized in bold.

Model
F1-score (%)

Unidirectional Bidirectional

RNN 94.26 95.60

GRU 94.86 95.83

LSTM 94.18 95.59

RNE 94.83 96.00

According to Table 5.5, we observe that that RNE with a bidirectional

network type achieved the highest performance of 96%, outperformed all

single models by 0.2-0.4% in F1-score. The results indicate that the

bidirectional network type is superior to the unidirectional network type.

This architecture has several advantages for solving real-world issues,

particularly in NLP. Each component of the input sequence contains past

and present information. Because the bidirectional type combines network

layers from both directions, it can produce more relevant output. In

contrast, RNN performed the worst of all models, which was to be

expected considering that GRU, LSTM, and RNE have more complex

architectures than RNN. We believe these findings suggest that GRU and

LSTM are superior to RNN due to the use of memory cells with a gate

mechanism for controlling the flow of information in sequential data [94].

In addition, we analyzed and compared the computing cost of each

model in Figure 5.6. The figure demonstrates the average training time for

four models on a computer with an Intel(R) Core (TM) i9-10900KF

72

processor running at 3.70 GHz, a NVidia GeForce RTX 3090 graphics

processing unit, and 32 GB of RAM. The Bi-LSTM and Bi-RNN model

outperformed all other models in terms of time efficiency. Both models

performed, on average, 36.14% % faster than the second-fastest model,

Bi-GRU, and 143,4% faster than RNE. Thus, it makes RNE is 239.6%

slower than both of Bi-RNN and Bi-LSTM. Due to the expertise and time

required to train and maintain several models instead of a single model,

the RNE model is the most time-consuming as.

Figure 5.6 The computational cost comparison for each model.

Table 5.6 presents detailed performance for each entity for the

bidirectional type of RNN, GRU, LSTM, and RNE models. Model

performance ranges from 89% for B-PRODUCT and 100% for I-UNIT.

For inside-tag UNIT or I-UNIT, most models attain perfect performance,

and this is because I-UNITs are very rare (account for 0.17% of the overall

dataset), and the majority of them correspond to the "fluid ounces" token,

73

making prediction relatively easy for the model. The same holds true for

the performance of B-STATE, which has nearly 100 percent accuracy

across all models, despite the fact that the number of entities in the dataset

is around 9.7%, they have a small number of unique tokens, making it

relatively easy to predict. In contrary, the B-PRODUCT entity has the

lowest performance, not only due to its limited annotation distribution in

the data set (about 1.2%) but also due to the difficulty in detecting the

beginning tag of the PRODUCT. The PRODUCT entity is often long,

unique, and scarce. It consists of many tokens, as shown in an example of

product entity extraction in Figure 3.2 on the previous Subchapter 3.3.

Therefore, it appears that the amount of training data samples for this

entity is insufficient for automatic entity learning.

Figures 5.7, 5.8, 5.9, and 5.10 demonstrate that across all models, most

misclassifications were due to incorrect predictions of both the beginning

and inside chunk of the class INGREDIENT, PRODUCT, and

QUANTITY against all entities, except the class I-UNIT. To improve the

model’s performance, one should focus on the predictive results of these

three classes, which is the highest misclassification rate among all the

classes. In contrast, class I-UNIT has zero misclassifications across all

entity models. Overall, the performance findings presented in Table 5.5,

Table 5.6, and the confusion matrix in Figures 5.7, 5.8, 5.9, and 5.10 show

that RNE can be the method of choice for NER. It can be seen that

compared to the single models, our proposed model enhances the

detection of ingredient entities by 0.2 to 0.4%.

74

Table 5.6 The classification report for each NER model with their highest performance emphasized in bold. P is precision, R is

recall, and F1 is F1-score.

Class
Bi-RNN Bi-GRU Bi-LSTM RNE

P R F1 P R F1 P R F1 P R F1

B-INGREDIENT 0.962 0.970 0.966 0.962 0.973 0.968 0.954 0.975 0.964 0.968 0.971 0.970

B-PRODUCT 0.890 0.922 0.910 0.910 0.927 0.918 0.902 0.918 0.911 0.899 0.935 0.916

B- QUANTITY 0.967 0.974 0.971 0.950 0.978 0.963 0.959 0.976 0.967 0.954 0.978 0.966

B-STATE 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999

B-UNIT 0.997 0.997 0.997 0.995 0.998 0.997 0.996 0.998 0.997 0.997 0.998 0.997

I-INGREDIENT 0.966 0.970 0.968 0.965 0.978 0.971 0.966 0.972 0.969 0.968 0.976 0.972

I-PRODUCT 0.925 0.976 0.950 0.950 0.970 0.960 0.941 0.968 0.954 0.951 0.970 0.960

I-QUANTITY 0.926 0.968 0.946 0.920 0.971 0.945 0.929 0.970 0.944 0.925 0.974 0.949

I-STATE 0.937 0.964 0.951 0.917 0.967 0.941 0.881 0.968 0.922 0.925 0.970 0.947

I-UNIT 1 1 1 1 1 1 1 1 1 1 1 1

75

Figure 5.7 The confusion matrix analysis for Bi-RNN model.

Figure 5.8 The confusion matrix analysis for Bi-GRU model.

76

Figure 5.9 The confusion matrix analysis for Bi-LSTM model.

Figure 5.10 The confusion matrix analysis for RNE model.

77

However, the computational cost illustrated in Figure 5.6 implies that,

given the model’s simplicity and computational time, a single model such

as Bi-RNN or Bi-LSTM could be the second-best alternative after RNE.

Although Bi-GRU performs marginally better, Bi-RNN and Bi-LSTM are

faster at training and computationally less expensive than Bi-GRU and

RNE. In addition, it is important to note that there is no guarantee that the

combination of several classifiers will always exceed the ensemble’s best

individual classifier, with the exception of certain cases [120]. Therefore,

combining classifiers may not always outperform the best classifier in the

ensemble, but it reduces the likelihood of making a very poor selection.

78

Chapter VI

Conclusions and Future Work

6.1 Conclusions

To address the limited resources available for food information extraction,

particularly for NER tasks. We construct a named entity recognition dataset for food

ingredients. In constructing the dataset, we introduced a method based on self-

training and ensemble learning called SMPT (Semi-supervised Multi-Model

Prediction Technique). SMPT is a semi-supervised method for building a NER

dataset iteratively by incorporating the concept of self-training applied to pretrained

models such as spaCy NER, BERT, and DistilBERT under a voting scheme

mechanism for improved prediction. After a series of experiments, a new dataset

named FINER was constructed for food entity recognition and tested to verify its

quality. The FINER dataset of this study is presented as a public dataset for named

entity recognition in the food domain and can be accessed at Figshare [18].

Furthermore, in order to enhance the performance of NER model in extracting

ingredient entities from recipe text, a recurrent network-based ensemble model

(RNE) was proposed. For the final prediction, we aggregated the predicted results of

bidirectional RNN, GRU, and LSTM using the ensemble concatenation approach for

the final prediction. The evaluation findings indicate that the ensemble model

performs better than a single model. Due to the reduction of the variance component

of the prediction error made by the contributing model, the ensemble model achieves

a higher performance. Thus, it can be said that the ensemble method can enhance the

classifier’s performance and reduce variance.

79

6.2 Future Work

As we highlighted in section 5.4 regarding the efficiency of the RNE model, a

single model such as Bi-RNN and Bi-LSTM can be the second option after RNE due

to its simplicity and computational time. Although Bi-GRU performs slightly better,

Bi-RNN and Bi-LSTM are faster at training and less expensive computationally than

other models. Furthermore, it may be possible in the future to improve these values

and design a more robust model that maintains a balance between computational cost

and model performance by incorporating additional factors such as exploring better

architectures, increasing the size of the dataset, and selecting a more appropriate

hyperparameters setting. As a result, we offer the following suggestions for future

research.

(1) In the future this model can be leverage for cross-domain adaptation with

adding one or more layer before the base classifiers layer. The new layer can

be a neural adaptation layer using domain specific pre-trained word

embeddings coupled with character level CNN or LSTM.

(2) For better understanding of the words and its context in a particular sentence,

in word embeddings layer part instead of using pre-trained word embedding

like Word2vec and GloVE, we can utilize ELMo or BERT for feature

extraction. Word2vec and GloVE word embeddings are context independent.

Thus, these models output just one vector (embedding) for each word,

combining all the different senses of the word into one vector. On the other

hand, ELMo and BERT is context dependent which can generate different

word embeddings for a word that captures the context of a word based on its

position in a sentence.

(3) In the final layer, instead of using concatenation we can employed stacking

ensemble with CRF layer as the final layer. In stacking ensemble, we take the

80

probability from the 3 models and using it as an input to the second layer. In

the second layer we can utilize meta-classifier such as MLR (multinomial

linear regression) or RF (random forest). And then in the final layer for better

prediction we add CRF layer. Other than stacking, we can employ other

ensemble learning approach to enhance the model performance and

effectiveness in detecting entities.

(4) For future development, we can further enlarge the dataset by incorporating

additional information from multiple food-sharing websites such as

food.com, yummly.com, cookpad.com, and many more.

(5) In the future, we can use the FINER dataset to develop chatbot systems for

food-related applications, such as a personalized diet Q&A chatbot. In

addition, we can integrate this data set to a personalized food

recommendation system to calculate the nutrition intake.

81

References

[1] W. Min, C. Liu, L. Xu, and S. Jiang, “Applications of knowledge graphs for

food science and industry,” Patterns, vol. 3, no. 5, p. 100484, May 2022, doi:

10.1016/j.patter.2022.100484.

[2] V. Krishnan and V. Ganapathy, “Named Entity Recognition,” 2005.

http://cs229.stanford.edu/proj2005/KrishnanGan apathy-

NamedEntityRecognition.pdf. (accessed Feb. 04, 2021).

[3] M. H. Syed and S.-T. Chung, “MenuNER: Domain-Adapted BERT Based

NER Approach for a Domain with Limited Dataset and Its Application to Food

Menu Domain,” Applied Sciences, vol. 11, no. 13, p. 6007, Jun. 2021, doi:

10.3390/app11136007.

[4] Kokoy Siti Komariah and Bong-Kee Sin, “Nutrition-Based Food

Recommendation System for Prediabetic Person,” in Korea Software Congress

2020, Pyeongchang, Rep. of Korea, 2021.

[5] C. Pellegrini, E. Özsoy, M. Wintergerst, and G. Groh, “Exploiting Food

Embeddings for Ingredient Substitution,” in HEALTHINF, 2021.

[6] J. Kalra, D. Batra, N. Diwan, and G. Bagler, “Nutritional Profile Estimation in

Cooking Recipes,” in 2020 IEEE 36th International Conference on Data

Engineering Workshops (ICDEW), Dallas, TX, USA, Apr. 2020, pp. 82–87.

doi: 10.1109/ICDEW49219.2020.000-3.

[7] G. Popovski, B. K. Seljak, and T. Eftimov, “FoodBase corpus: a new resource

of annotated food entities,” Database, vol. 2019, p. baz121, Jan. 2019, doi:

10.1093/database/baz121.

[8] D. Batra et al., “RecipeDB: a resource for exploring recipes,” Database, vol.

2020, p. baaa077, Nov. 2020, doi: 10.1093/database/baaa077.

[9] M. Bień, M. Gilski, M. Maciejewska, W. Taisner, D. Wisniewski, and A.

Lawrynowicz, “RecipeNLG: A Cooking Recipes Dataset for Semi-Structured

Text Generation,” in Proceedings of the 13th International Conference on

Natural Language Generation, Dublin, Ireland, Dec. 2020, pp. 22–28.

[Online]. Available: https://aclanthology.org/2020.inlg-1.4

[10] J. Marin et al., “Recipe1M+: A Dataset for Learning Cross-Modal Embeddings

for Cooking Recipes and Food Images,” 2018, doi:

10.48550/ARXIV.1810.06553.

[11] A. Wróblewska, A. Kaliska, M. Pawłowski, D. Wiśniewski, W. Sosnowski,

and A. Ławrynowicz, “TASTEset -- Recipe Dataset and Food Entities

Recognition Benchmark,” 2022, doi: 10.48550/ARXIV.2204.07775.

82

[12] G. Popovski, B. K. Seljak, and T. Eftimov, “A Survey of Named-Entity

Recognition Methods for Food Information Extraction,” IEEE Access, vol. 8,

pp. 31586–31594, 2020, doi: 10.1109/ACCESS.2020.2973502.

[13] N. Diwan, D. Batra, and G. Bagler, “A Named Entity Based Approach to

Model Recipes,” in 2020 IEEE 36th International Conference on Data

Engineering Workshops (ICDEW), 2020, pp. 88–93. doi:

10.1109/ICDEW49219.2020.000-2.

[14] G. Popovski, S. Kochev, B. Seljak, and T. Eftimov, “FoodIE: A Rule-based

Named-entity Recognition Method for Food Information Extraction:,” in

Proceedings of the 8th International Conference on Pattern Recognition

Applications and Methods, Prague, Czech Republic, 2019, pp. 915–922. doi:

10.5220/0007686309150922.

[15] G. Cenikj, G. Popovski, R. Stojanov, B. K. Seljak, and T. Eftimov, “BuTTER:

BidirecTional LSTM for Food Named-Entity Recognition,” in 2020 IEEE

International Conference on Big Data (Big Data), 2020, pp. 3550–3556. doi:

10.1109/BigData50022.2020.9378151.

[16] R. Stojanov, G. Popovski, G. Cenikj, B. Koroušić Seljak, and T. Eftimov, “A

Fine-Tuned Bidirectional Encoder Representations From Transformers Model

for Food Named-Entity Recognition: Algorithm Development and

Validation,” J Med Internet Res, vol. 23, no. 8, p. e28229, Aug. 2021, doi:

10.2196/28229.

[17] W. Min, S. Jiang, L. Liu, Y. Rui, and R. Jain, “A Survey on Food Computing,”

ACM Comput. Surv., vol. 52, no. 5, pp. 1–36, Sep. 2020, doi:

10.1145/3329168.

[18] K. Siti Komariah, B.-K. Sin, and A. Tulus Purnomo, “FINER: Food Ingredient

NER Dataset.” Apr. 07, 2022. Accessed: May 09, 2022. [Online]. Available:

https://doi.org/10.6084/m9.figshare.20222361.v3

[19] K. S. Komariah and B.-K. Sin, “Enhancing Food Ingredient Named-Entity

Recognition with Recurrent Network-Based Ensemble (RNE) Model,”

Applied Sciences, vol. 12, no. 20, p. 10310, Oct. 2022, doi:

10.3390/app122010310.

[20] “Natural language processing.” Accessed: Oct. 12, 2022. [Online]. Available:

https://en.wikipedia.org/wiki/Natural_language_processing

[21] D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing:

state of the art, current trends and challenges,” Multimed Tools Appl, Jul. 2022,

doi: 10.1007/s11042-022-13428-4.

[22] Sowmya V. B, B. Majumder, A. Gupta, and H. Surana, Practical natural

language processing: a comprehensive guide to building real-world NLP

systems, First edition. Sebastopol, CA: O’Reilly Media, 2020.

83

[23] J. Saunders and T. Smith, “Malnutrition: causes and consequences,” Clin Med,

vol. 10, no. 6, pp. 624–627, Dec. 2010, doi: 10.7861/clinmedicine.10-6-624.

[24] U. Leser and J. Hakenberg, “What makes a gene name? Named entity

recognition in the biomedical literature,” Briefings in Bioinformatics, vol. 6,

no. 4, pp. 357–369, Jan. 2005, doi: 10.1093/bib/6.4.357.

[25] Z.-H. Zhou, Ensemble methods: foundations and algorithms. Boca Raton, FL:

Taylor & Francis, 2012.

[26] R. Maclin and D. W. Opitz, “Popular Ensemble Methods: An Empirical

Study,” CoRR, vol. abs/1106.0257, 2011, [Online]. Available:

http://arxiv.org/abs/1106.0257

[27] T. G. Dietterich, “Ensemble Methods in Machine Learning,” in Multiple

Classifier Systems, 2000.

[28] C. C. Aggarwal, Ed., Data classification: algorithms and applications. Boca

Raton: CRC Press, Taylor & Francis Group, 2014.

[29] D. Sarkar and V. Natarajan, Ensemble machine learning cookbook: over 35

practical recipes to explore ensemble machine learning techniques using

Python. Birmingham Mumbai: Packt, 2019.

[30] H. Abdel-Jaber, D. Devassy, A. Al Salam, L. Hidaytallah, and M. EL-Amir,

“A Review of Deep Learning Algorithms and Their Applications in

Healthcare,” Algorithms, vol. 15, no. 2, p. 71, Feb. 2022, doi:

10.3390/a15020071.

[31] S. Ali, K. Masood, A. Riaz, and A. Saud, “Named Entity Recognition using

Deep Learning: A Review,” in 2022 International Conference on Business

Analytics for Technology and Security (ICBATS), Dubai, United Arab

Emirates, Feb. 2022, pp. 1–7. doi: 10.1109/ICBATS54253.2022.9759051.

[32] M. A. Ganaie, M. Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan,

“Ensemble deep learning: A review,” Engineering Applications of Artificial

Intelligence, vol. 115, p. 105151, Oct. 2022, doi:

10.1016/j.engappai.2022.105151.

[33] L. K. Smirani, H. A. Yamani, L. J. Menzli, and J. A. Boulahia, “Using

Ensemble Learning Algorithms to Predict Student Failure and Enabling

Customized Educational Paths,” Scientific Programming, vol. 2022, pp. 1–15,

Apr. 2022, doi: 10.1155/2022/3805235.

[34] Y. Cao, T. A. Geddes, J. Y. H. Yang, and P. Yang, “Ensemble deep learning

in bioinformatics,” Nat Mach Intell, vol. 2, no. 9, pp. 500–508, Aug. 2020, doi:

10.1038/s42256-020-0217-y.

[35] V. Akpokiro, T. Martin, and O. Oluwadare, “EnsembleSplice: ensemble deep

learning model for splice site prediction,” BMC Bioinformatics, vol. 23, no. 1,

p. 413, Oct. 2022, doi: 10.1186/s12859-022-04971-w.

84

[36] O. A. Malik, M. Faisal, and B. R. Hussein, “Ensemble Deep Learning Models

for Fine-grained Plant Species Identification,” in 2021 IEEE Asia-Pacific

Conference on Computer Science and Data Engineering (CSDE), Brisbane,

Australia, Dec. 2021, pp. 1–6. doi: 10.1109/CSDE53843.2021.9718387.

[37] H. Saleh, S. Mostafa, A. Alharbi, S. El-Sappagh, and T. Alkhalifah,

“Heterogeneous Ensemble Deep Learning Model for Enhanced Arabic

Sentiment Analysis,” Sensors, vol. 22, no. 10, p. 3707, May 2022, doi:

10.3390/s22103707.

[38] C. Becker et al., Modern Approaches in Natural Language Processing.

Department of Statistics, LMU Munich, 2020. Accessed: Oct. 19, 2022.

[Online]. Available: https://slds-lmu.github.io/seminar_nlp_ss20/index.html

[39] S. Ruder, “Neural Transfer Learning for Natural Language Processing,”

National University of Ireland, Galway, Ireland, 2019.

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding,” 2018, doi:

10.48550/ARXIV.1810.04805.

[41] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans. Knowl.

Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010, doi:

10.1109/TKDE.2009.191.

[42] M.-R. Amini, V. Feofanov, L. Pauletto, E. Devijver, and Y. Maximov, “Self-

Training: A Survey,” 2022, doi: 10.48550/ARXIV.2202.12040.

[43] S. Ruder and B. Plank, “Strong Baselines for Neural Semi-supervised Learning

under Domain Shift,” 2018, doi: 10.48550/ARXIV.1804.09530.

[44] A. Vaswani et al., “Attention Is All You Need,” 2017, doi:

10.48550/ARXIV.1706.03762.

[45] J. Thickstun, “The Transformer Model in Equations.” Accessed: Mar. 15,

2022. [Online]. Available: https://johnthickstun.com/docs/transformers.pdf

[46] A. Radford and K. Narasimhan, “Improving Language Understanding by

Generative Pre-Training,” 2018.

[47] M. Honnibal and I. Montani, “spaCy 2: Natural language understanding with

Bloom embeddings, convolutional neural networks and incremental parsing,”

2017. [Online]. Available: https://spacy.io

[48] E. Partalidou, E. Spyromitros-Xioufis, S. Doropoulos, S. Vologiannidis, and

K. I. Diamantaras, “Design and implementation of an open source Greek POS

Tagger and Entity Recognizer using spaCy,” 2019, doi:

10.48550/ARXIV.1912.10162.

[49] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version

of BERT: smaller, faster, cheaper and lighter,” 2019, doi:

10.48550/ARXIV.1910.01108.

85

[50] M. Hagiwara, Real-world natural language processing. Shelter Island:

Manning Publications, 2022.

[51] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural

Network,” 2015, doi: 10.48550/ARXIV.1503.02531.

[52] “Understanding LSTM Networks -- colah’s blog.”

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed May

03, 2022).

[53] R. J. Williams and J. Peng, “An Efficient Gradient-Based Algorithm for On-

Line Training of Recurrent Network Trajectories,” Neural Computation, vol.

2, no. 4, pp. 490–501, Dec. 1990, doi: 10.1162/neco.1990.2.4.490.

[54] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with

gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157–

166, Mar. 1994, doi: 10.1109/72.279181.

[55] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling.” arXiv, Dec. 11, 2014.

Accessed: Aug. 15, 2022. [Online]. Available: http://arxiv.org/abs/1412.3555

[56] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the Properties

of Neural Machine Translation: Encoder–Decoder Approaches,” in

Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure

in Statistical Translation, Doha, Qatar, 2014, pp. 103–111. doi:

10.3115/v1/W14-4012.

[57] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:

10.1162/neco.1997.9.8.1735.

[58] Y. Deng, Y. Jiao, and B.-L. Lu, “Driver Sleepiness Detection Using LSTM

Neural Network,” in Neural Information Processing, vol. 11304, L. Cheng, A.

C. S. Leung, and S. Ozawa, Eds. Cham: Springer International Publishing,

2018, pp. 622–633. doi: 10.1007/978-3-030-04212-7_55.

[59] S. Chowdhury et al., “A multitask bi-directional RNN model for named entity

recognition on Chinese electronic medical records,” BMC Bioinformatics, vol.

19, no. S17, p. 499, Dec. 2018, doi: 10.1186/s12859-018-2467-9.

[60] K. Cho et al., “Learning Phrase Representations using RNN Encoder–Decoder

for Statistical Machine Translation,” in Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP), Doha,

Qatar, 2014, pp. 1724–1734. doi: 10.3115/v1/D14-1179.

[61] S. S. Boushehri, A. B. Qasim, D. Waibel, F. Schmich, and C. Marr,

“Annotation-efficient classification combining active learning, pre-training

and semi-supervised learning for biomedical images,” bioRxiv, p.

2020.12.07.414235, Jan. 2020, doi: 10.1101/2020.12.07.414235.

86

[62] S. Bird, E. Klein, and E. Loper, Natural language processing with Python:

analyzing text with the natural language toolkit. O’Reilly Media, Inc., 2009.

[Online]. Available: https://www.nltk.org

[63] H. Nakayama, T. Kubo, J. Kamura, Y. Taniguchi, and X. Liang, “doccano:

Text Annotation Tool for Human.” 2018. [Online]. Available:

https://github.com/doccano/doccano

[64] “Allrecipes.” https://www.allrecipes.com/ (accessed Sep. 10, 2021).

[65] L. A. Ramshaw and M. P. Marcus, “Text Chunking Using Transformation-

Based Learning,” in Natural Language Processing Using Very Large Corpora,

vol. 11, S. Armstrong, K. Church, P. Isabelle, S. Manzi, E. Tzoukermann, and

D. Yarowsky, Eds. Dordrecht: Springer Netherlands, 1999, pp. 157–176. doi:

10.1007/978-94-017-2390-9_10.

[66] J. Kim, Y. Ko, and J. Seo, “Construction of Machine-Labeled Data for

Improving Named Entity Recognition by Transfer Learning,” IEEE Access,

vol. 8, pp. 59684–59693, 2020, doi: 10.1109/ACCESS.2020.2981361.

[67] Y. Wen, C. Fan, G. Chen, X. Chen, and M. Chen, “A Survey on Named Entity

Recognition,” in Communications, Signal Processing, and Systems, vol. 571,

Q. Liang, W. Wang, X. Liu, Z. Na, M. Jia, and B. Zhang, Eds. Singapore:

Springer Singapore, 2020, pp. 1803–1810. doi: 10.1007/978-981-13-9409-

6_218.

[68] T. Eftimov, B. Koroušić Seljak, and P. Korošec, “A rule-based named-entity

recognition method for knowledge extraction of evidence-based dietary

recommendations,” PLoS ONE, vol. 12, no. 6, p. e0179488, Jun. 2017, doi:

10.1371/journal.pone.0179488.

[69] R. Speck and A.-C. Ngonga Ngomo, “Ensemble Learning for Named Entity

Recognition,” in The Semantic Web – ISWC 2014, vol. 8796, P. Mika, T.

Tudorache, A. Bernstein, C. Welty, C. Knoblock, D. Vrandečić, P. Groth, N.

Noy, K. Janowicz, and C. Goble, Eds. Cham: Springer International

Publishing, 2014, pp. 519–534. doi: 10.1007/978-3-319-11964-9_33.

[70] A. Ekbal and S. Saha, “Weighted Vote-Based Classifier Ensemble for Named

Entity Recognition: A Genetic Algorithm-Based Approach,” ACM

Transactions on Asian Language Information Processing, vol. 10, no. 2, pp.

1–37, Jun. 2011, doi: 10.1145/1967293.1967296.

[71] M. Won, P. Murrieta-Flores, and B. Martins, “Ensemble Named Entity

Recognition (NER): Evaluating NER Tools in the Identification of Place

Names in Historical Corpora,” Front. Digit. Humanit., vol. 5, p. 2, Mar. 2018,

doi: 10.3389/fdigh.2018.00002.

[72] N. Naderi, J. Knafou, J. Copara, P. Ruch, and D. Teodoro, “Ensemble of Deep

Masked Language Models for Effective Named Entity Recognition in Health

87

and Life Science Corpora,” Front. Res. Metr. Anal., vol. 6, p. 689803, Nov.

2021, doi: 10.3389/frma.2021.689803.

[73] H. Nayel and H. L. Shashirekha, “Improving NER for Clinical Texts by

Ensemble Approach using Segment Representations,” in Proceedings of the

14th International Conference on Natural Language Processing (ICON-2017),

Kolkata, India, Dec. 2017, pp. 197–204. [Online]. Available:

https://aclanthology.org/W17-7525

[74] J. Copara, N. Naderi, J. Knafou, P. Ruch, and D. Teodoro, “Named Entity

Recognition in Chemical Patents using Ensemble of Contextual Language

Models,” ArXiv, vol. abs/2007.12569, 2020.

[75] Z. Jiang, “The Application of Ensemble Learning on Named Entity

Recognition for Legal Knowledgebase of Properties Involved in Criminal

Cases,” in 2020 IEEE International Conference on Advances in Electrical

Engineering and Computer Applications(AEECA), Dalian, China, Aug. 2020,

pp. 701–705. doi: 10.1109/AEECA49918.2020.9213660.

[76] L. Canale, P. Lisena, and R. Troncy, “A Novel Ensemble Method for Named

Entity Recognition and Disambiguation Based on Neural Network,” in The

Semantic Web – ISWC 2018, vol. 11136, D. Vrandečić, K. Bontcheva, M. C.

Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee, and E.

Simperl, Eds. Cham: Springer International Publishing, 2018, pp. 91–107. doi:

10.1007/978-3-030-00671-6_6.

[77] H. Wang, T. Zhao, H. Tan, and S. Zhang, “Biomedical Named Entity

Recognition Based on Classifiers Ensemble,” Int. J. Comput. Sci. Appl., vol. 5,

pp. 1–11, 2008.

[78] A.-C. Gardner, M. Hundt, and M. Kindlimann, “Digitization of the Mary

Hamilton Papers,” ICAME Journal, vol. 41, no. 1, pp. 83–110, Mar. 2017, doi:

10.1515/icame-2017-0004.

[79] D. R Dickson, “The Hartlib Papers: A Complete Text and Image Database of

the Papers of Samuel Hartlib (ca. 1600-1662),” Isis, vol. 88, no. 3, pp. 536–

536, Sep. 1997, doi: 10.1086/383797.

[80] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A New Benchmark

Collection for Text Categorization Research,” Journal of Machine Learning

Research, vol. 5, pp. 361–397, 2004.

[81] N. Naderi, J. Knafou, J. Copara, P. Ruch, and D. Teodoro, “Ensemble of deep

masked language models for effective named entity recognition in multi-

domain corpora,” Health Informatics, preprint, Apr. 2021. doi:

10.1101/2021.04.26.21256038.

[82] J. He et al., “ChEMU 2020: Natural Language Processing Methods Are

Effective for Information Extraction From Chemical Patents,” Front. Res.

Metr. Anal., vol. 6, p. 654438, Mar. 2021, doi: 10.3389/frma.2021.654438.

88

[83] S. Spala, N. A. Miller, F. Dernoncourt, and C. Dockhorn, “SemEval-2020 Task

6: Definition extraction from free text with the DEFT corpus,” in SemEval-

2020 Task 6: Definition extraction from free text with the DEFT corpus,

Florence, Italy, Aug. 2019, pp. 124–131. [Online]. Available:

https://www.aclweb.org/anthology/W19-4015

[84] “2020 The 6th Workshop on Noisy User-generated Text (W-NUT).” [Online].

Available: http://noisy-text.github.io/2020/wlp-task.html

[85] “Fourth i2b2/VA Shared-Task and Workshop Challenges in Natural Language

Processing for Clinical Data.” [Online]. Available:

https://www.i2b2.org/NLP/Relations/

[86] A. Ekbal and S. Bandyopadhyay, “A web-based Bengali news corpus for

named entity recognition,” Lang Resources & Evaluation, vol. 42, no. 2, pp.

173–182, May 2008, doi: 10.1007/s10579-008-9064-x.

[87] “IJCNLP-08 NERSSEAL shared task.” [Online]. Available:

http://ltrc.iiit.ac.in/ner-ssea-08/

[88] E. F. T. K. Sang and F. De Meulder, “Introduction to the CoNLL-2003 Shared

Task: Language-Independent Named Entity Recognition,” 2003, doi:

10.48550/ARXIV.CS/0306050.

[89] J.-D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii, “GENIA corpus--a semantically

annotated corpus for bio-textmining,” Bioinformatics, vol. 19, no. Suppl 1, pp.

i180–i182, Jul. 2003, doi: 10.1093/bioinformatics/btg1023.

[90] M.-S. Huang, P.-T. Lai, P.-Y. Lin, Y.-T. You, R. T.-H. Tsai, and W.-L. Hsu,

“Revised JNLPBA Corpus: A Revised Version of Biomedical NER Corpus for

Relation Extraction Task,” Briefings in Bioinformatics, vol. 21, no. 6, pp.

2219–2238, Dec. 2020, doi: 10.1093/bib/bbaa054.

[91] F. Nooralahzadeh, C. Lopez, E. Cabrio, F. Gandon, and F. Segond, “Adapting

Semantic Spreading Activation to Entity Linking in Text,” in Natural

Language Processing and Information Systems, vol. 9612, E. Métais, F.

Meziane, M. Saraee, V. Sugumaran, and S. Vadera, Eds. Cham: Springer

International Publishing, 2016, pp. 74–90. doi: 10.1007/978-3-319-41754-7_7.

[92] P. Torino, L. Farinetti, and R. Troncy, “NERD for NexGenTV Ensemble

Learning for Named Entity Recognition and Disambiguation,” 2018.

Accessed: Dec. 20, 2022. [Online]. Available:

https://www.semanticscholar.org/paper/NERD-for-NexGenTV-Ensemble-

Learning-for-Named-and-Torino-

Farinetti/757cbfcb4a57c84ad09830bf9753269241793199

[93] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent Trends in Deep

Learning Based Natural Language Processing,” CoRR, vol. abs/1708.02709,

2017, [Online]. Available: http://arxiv.org/abs/1708.02709

89

[94] J. Li, A. Sun, J. Han, and C. Li, “A Survey on Deep Learning for Named Entity

Recognition,” IEEE Transactions on Knowledge and Data Engineering, vol.

34, no. 1, pp. 50–70, 2022, doi: 10.1109/TKDE.2020.2981314.

[95] V. Yadav and S. Bethard, “A Survey on Recent Advances in Named Entity

Recognition from Deep Learning models,” in Proceedings of the 27th

International Conference on Computational Linguistics, Santa Fe, New

Mexico, USA, Aug. 2018, pp. 2145–2158. [Online]. Available:

https://aclanthology.org/C18-1182

[96] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF Models for Sequence

Tagging,” ArXiv, vol. abs/1508.01991, 2015.

[97] Y. Gao, R. Wang, and E. Zhou, “Stock Prediction Based on Optimized LSTM

and GRU Models,” Scientific Programming, vol. 2021, pp. 1–8, Sep. 2021,

doi: 10.1155/2021/4055281.

[98] N. Banik and Md. H. H. Rahman, “GRU based Named Entity Recognition

System for Bangla Online Newspapers,” in 2018 International Conference on

Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh, Dec.

2018, pp. 1–6. doi: 10.1109/CIET.2018.8660795.

[99] S. Yan, J. Chai, and L. Wu, “Bidirectional GRU with Multi-Head Attention for

Chinese NER,” in 2020 IEEE 5th Information Technology and Mechatronics

Engineering Conference (ITOEC), 2020, pp. 1160–1164. doi:

10.1109/ITOEC49072.2020.9141551.

[100] Z. Yang, R. Salakhutdinov, and W. W. Cohen, “Multi-Task Cross-Lingual

Sequence Tagging from Scratch,” CoRR, vol. abs/1603.06270, 2016, [Online].

Available: http://arxiv.org/abs/1603.06270

[101] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,

“Neural Architectures for Named Entity Recognition,” in Proceedings of the

2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, San Diego,

California, Jun. 2016, pp. 260–270. doi: 10.18653/v1/N16-1030.

[102] X. Ma and E. Hovy, “End-to-end Sequence Labeling via Bi-directional LSTM-

CNNs-CRF,” in Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, Aug.

2016, pp. 1064–1074. doi: 10.18653/v1/P16-1101.

[103] R. Panchendrarajan and A. Amaresan, “Bidirectional LSTM-CRF for Named

Entity Recognition,” in Proceedings of the 32nd Pacific Asia Conference on

Language, Information and Computation, Hong Kong, 2018. [Online].

Available: https://aclanthology.org/Y18-1061

[104] A. Goyal, V. Gupta, and M. Kumar, “Recurrent Neural Network-Based Model

for Named Entity Recognition with Improved Word Embeddings,” IETE

90

Journal of Research, pp. 1–7, Dec. 2021, doi:

10.1080/03772063.2021.2006805.

[105] H. Soltau, I. Shafran, M. Wang, and L. E. Shafey, “RNN Transducers for

Nested Named Entity Recognition with constraints on alignment for long

sequences,” 2022, doi: 10.48550/ARXIV.2203.03543.

[106] D. S. Soper, “Greed Is Good: Rapid Hyperparameter Optimization and Model

Selection Using Greedy k-Fold Cross Validation,” Electronics, vol. 10, no. 16,

p. 1973, Aug. 2021, doi: 10.3390/electronics10161973.

[107] A. A. Chowdhury, M. A. Hossen, M. A. Azam, and M. H. Rahman,

“DeepQGHO: Quantized Greedy Hyperparameter Optimization in Deep

Neural Networks for on-the-Fly Learning,” IEEE Access, vol. 10, pp. 6407–

6416, 2022, doi: 10.1109/ACCESS.2022.3141781.

[108] H. Alizadeh, M. Yousefnezhad, and B. M. Bidgoli, “Wisdom of Crowds cluster

ensemble,” IDA, vol. 19, no. 3, pp. 485–503, Jun. 2015, doi: 10.3233/IDA-

150728.

[109] N. C. Oza and S. Russell, “Online Ensemble Learning,” PhD Thesis,

University of California, Berkeley, 2001.

[110] J. Pennington, R. Socher, and C. D. Maning, “GloVe: Global Vectors for Word

Representation,” GloVe: Global Vectors for Word Representation.

https://nlp.stanford.edu/projects/glove/ (accessed May 03, 2022).

[111] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures

for classification tasks,” Information Processing & Management, vol. 45, no.

4, pp. 427–437, Jul. 2009, doi: 10.1016/j.ipm.2009.03.002.

[112] E. L. Allwein, R. E. Schapire, and Y. Singer, “Reducing Multiclass to Binary:

A Unifying Approach for Margin Classifiers,” J. Mach. Learn. Res., vol. 1, pp.

113–141, Sep. 2001, doi: 10.1162/15324430152733133.

[113] C. Sutton and A. McCallum, “An Introduction to Conditional Random Fields,”

2010, doi: 10.48550/ARXIV.1011.4088.

[114] N. Patil, A. Patil, and B. V. Pawar, “Named Entity Recognition using

Conditional Random Fields,” Procedia Computer Science, vol. 167, pp. 1181–

1188, 2020, doi: 10.1016/j.procs.2020.03.431.

[115] K. S. Komariah and B.-K. Shin, “Medical Entity Recognition in Twitter using

Conditional Random Fields,” in 2021 International Conference on

Electronics, Information, and Communication (ICEIC), Jeju, Korea (South),

Jan. 2021, pp. 1–4. doi: 10.1109/ICEIC51217.2021.9369799.

[116] J. P. C. Chiu and E. Nichols, “Named Entity Recognition with Bidirectional

LSTM-CNNs.” arXiv, Jul. 19, 2016. Accessed: Oct. 03, 2022. [Online].

Available: http://arxiv.org/abs/1511.08308

91

[117] C. Lee, “LSTM-CRF Models for Named Entity Recognition,” IEICE Trans.

Inf. & Syst., vol. E100.D, no. 4, pp. 882–887, 2017, doi:

10.1587/transinf.2016EDP7179.

[118] G. Cenikj, B. Korousic Seljak, and T. Eftimov, “FoodChem: A food-chemical

relation extraction model,” in 2021 IEEE Symposium Series on Computational

Intelligence (SSCI), Orlando, FL, USA, Dec. 2021, pp. 1–8. doi:

10.1109/SSCI50451.2021.9660161.

[119] A. Goyal, V. Gupta, and M. Kumar, “Recent Named Entity Recognition and

Classification techniques: A systematic review,” Computer Science Review,

vol. 29, pp. 21–43, Aug. 2018, doi: 10.1016/j.cosrev.2018.06.001.

[120] G. Fumera and F. Roli, “A theoretical and experimental analysis of linear

combiners for multiple classifier systems,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 27, no. 6, pp. 942–956, Jun. 2005, doi: 10.1109/TPAMI.2005.109.

92

Acknowledgement

Alhamdulillah, first and foremost, all praises are to Allah, the Merciful, the All

Beneficent, for His showers of blessings throughout my life. And for this opportunity to

study and research in the AI Lab with the best and kindest professor, Prof. Sin Bong-

Kee. I would like to express my gratitude to my advisor, Professor Sin Bong-Kee, for

his guidance and support throughout my Ph.D. studies in AI Lab. During my time in the

Lab, I received a great amount of knowledge not only in the AI area, but also in other

areas, which he shared with me for my future developments. Prof. Sin Bong-Kee is not

only my mentors, but also wonderful parents, friends, and teachers. He is really sincere

to all of his students, and I am grateful to have him as my advisor and life mentor.

Extending my thanks and deepest appreciation to my thesis defense committee: Prof.

Ha-Joo Song, Prof. Chang-Soo Kim, Prof. Hoon-Hee Kim, and Prof. Kyeongbo Kong,

for their constructive comments and valuable suggestions, which allowed me to revise

my thesis thoroughly and appropriately.

Furthermore, I would like to thanks all my colleagues in Artificial Intelligence Lab:

Yang Woo-Hee, Nasim, Nepo, Nodira and Lee Tae-Ho. My sincere gratitude also goes

to my best friends: Ahmad Wisnu M, Sandi Rahmadika and Vanda PW (and wife, Ifrina)

for their support and valuable advice. I had a lot of unforgettable and happy moment

with them and thanks for always helping each other in all situation and condition.

Lastly, my very special thanks to my family, especially my wonder women in my

life which is my mother Anik, my late father Robasa (almarhum), my sisters Siti

Nurfaedah and Annita Siti Fatimah as well as my step father Bapak Ara for their

continuous support and encouragement. I am fully aware that without their unwavering

support and prayers throughout my life, I would not have gotten to where I am today in

pursuit of my dream.

93

List of Publications (SCI Journals)

(1) Ariana Tulus Purnomo, Kokoy Siti Komariah, Ding-Bing Lin, Willy Fitria

Hendria, Bong-Kee Sin, and Nur Ahmadi, “Non-contact Supervision of

COVID-19 Breathing Behaviour with FMCW Radar and Stacked Ensemble

Learning Model in Real-Time”, IEEE Transactions on Biomedical Circuits and

Systems, (SCI, ISSN: 1932-4545), Published on 19 July 2022.

(2) Kokoy Siti Komariah and Bong-Kee Sin, “Enhancing Food Ingredient

Named-Entity Recognition with Recurrent Network-based Ensemble (ERN)

Model”, MDPI Journal of Applied Science, (SCIE, ISSN: 2076-3417),

Published on 13 October 2022.

(3) Yudi Widhiyasana, Maisevli Harika, Fahmi Faturahman Nul Hakim, Fitri

Diani, Kokoy Siti Komariah, and Diena Rauda Ramdania, “Genetic Algorithm

for Artificial Neural Networks in Real-Time Strategy Games”, International

Journal on Informatics Visualization (JOIV), Vol. 6, No. 2, (SCOPUS, ISSN:

2227-9707). Published on 30 June 2022.

(4) Kokoy Siti Komariah, Ariana Tulus Purnomo, and Bong-Kee Sin, “SMPT: A

Semi-Supervised Multi-Model Prediction Technique for Food Ingredient NER

(FINER) dataset construction”, MDPI Journal of Informatics, (ESCI, ISSN:

2227-9707). Will published soon.

(5) Ariana Tulus Purnomo, Kokoy Siti Komariah, Ding-Bing Lin, Willy Fitria

Hendria, Bong-Kee Sin, and Nur Ahmadi, “Breathing Behavior Detection using

Boosting Algorithm for Imbalance Dataset Collected with FMCW Radar”,

Hindawi Journal of Electrical and Computer Engineering, (SCIE, ISSN: 2090-

0147). Will published soon.

94

List of Publications (Conference Papers)

(1) Kokoy Siti Komariah and Bong-Kee Sin, “BERT Pre-trained Models for Data

Augmentation in Twitter Medical Named-Entity Recognition”, in Korea

Computer Congress (KCC) 2021, Jeju, Rep. of Korea.

(2) Kokoy Siti Komariah and Bong-Kee Sin, “Medical Entity Recognition in

Twitter using Conditional Random Fields”, in International Conference on

Electronics, Information, and Communication (ICEIC) 2021, Jeju, Rep. of

Korea.

(3) Kokoy Siti Komariah and Bong-Kee Sin, “Nutrition-based Food

Recommendation System for Prediabetic Person”, in Korean Software

Congress (KCC) 2020, Pyongchang, Rep. of Korea.

(4) Kokoy Siti Komariah, Woo-Hee Yang, and Bong-Kee Sin, “Achored-LDA:

Topic Modeling with Word Representation for Medical Discourse on Twitter”,

in Ubiquitous Computing and Web Information Technology (UCWIT) 2019,

Andong, Rep. of Korea.

(5) Sandi Rahmadika, Kokoy Siti Komariah, Kyeongmo Lee, and Kyung-Hyune

Rhee, “Collaborative Federated Learning with Blockchain”, in the 4th

International Symposium on Mobile Internet Security (MobiSec 2019),

Taichung, Taiwan.

(6) Kokoy Siti Komariah and Bong-Kee Sin, “Health State Modeling and

Prediction based on Hidden Markov Models”, in 2019 11th International

Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Kroasia.

	Chapter I Introduction
	1.1 Background
	1.2 Motivations
	1.3 Thesis Contributions
	1.4 Outline of the Thesis

	Chapter II Literature Reviews
	2.1 Natural Language Processing
	2.2 Named Entity Recognition
	2.3 Ensemble Deep Learning
	2.4 Transfer Learning
	2.5 Self Training
	2.6 Deep Learning Approaches for NER
	2.6.1 Transformer Model
	2.6.2 Transformer-based NER
	2.6.2.1 SpaCy NER
	2.6.2.2 BERT
	2.6.2.3 DistilBERT

	2.6.3 Recurrent Neural Networks (RNNs) based NER
	2.6.3.1 Recurrent Neural Network (RNN)
	2.6.3.2 Long-Short Term Memory (LSTM)
	2.6.3.3 Gated Recurrent Unit (GRU)

	Chapter III Food Ingredient Named-Entity Data Construction using Semi-Supervised Multi-Model Prediction Technique
	3.1 Background and Related Works
	3.2 Data Construction Workflow
	3.3 Data Preparation
	3.4 Named Entity Labeling
	3.5 Semi-Supervised Multi-Model Prediction Technique (SMPT)
	3.5.1 Training
	3.5.2 Dataset Building Schemes

	Chapter IV Ensemble-based Recurrent Networks for Food Ingredient Named Entity Recognition
	4.1 Background and Related Works
	4.1.1 Food-Related NER
	4.1.2 Ensemble Method for NER
	4.1.3 Recurrent Model for NER

	4.2 Dataset
	4.3 Hyperparameter Optimization
	4.4 Recurrent Network-based Ensemble (RNE)

	Chapter V Results and Analysis
	5.1 Experimental Setup
	5.2 Evaluation Metrics
	5.3 Analysis and Evaluation for SMPT method
	5.3.1 Test Results with Training Schemes
	5.3.2 Evaluation on ML Models

	5.4 Analysis and Evaluation for RNE model

	Chapter VI Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References

<startpage>18
Chapter I Introduction 1
 1.1 Background 1
 1.2 Motivations 3
 1.3 Thesis Contributions 5
 1.4 Outline of the Thesis 6
Chapter II Literature Reviews 8
 2.1 Natural Language Processing 8
 2.2 Named Entity Recognition 10
 2.3 Ensemble Deep Learning 15
 2.4 Transfer Learning 17
 2.5 Self Training 21
 2.6 Deep Learning Approaches for NER 23
 2.6.1 Transformer Model 23
 2.6.2 Transformer-based NER 27
 2.6.2.1 SpaCy NER 27
 2.6.2.2 BERT 28
 2.6.2.3 DistilBERT 29
 2.6.3 Recurrent Neural Networks (RNNs) based NER 31
 2.6.3.1 Recurrent Neural Network (RNN) 31
 2.6.3.2 Long-Short Term Memory (LSTM) 32
 2.6.3.3 Gated Recurrent Unit (GRU) 34
Chapter III Food Ingredient Named-Entity Data Construction using Semi-Supervised Multi-Model Prediction Technique 36
 3.1 Background and Related Works 36
 3.2 Data Construction Workflow 38
 3.3 Data Preparation 40
 3.4 Named Entity Labeling 45
 3.5 Semi-Supervised Multi-Model Prediction Technique (SMPT) 46
 3.5.1 Training 48
 3.5.2 Dataset Building Schemes 48
Chapter IV Ensemble-based Recurrent Networks for Food Ingredient Named Entity Recognition 51
 4.1 Background and Related Works 51
 4.1.1 Food-Related NER 51
 4.1.2 Ensemble Method for NER 52
 4.1.3 Recurrent Model for NER 53
 4.2 Dataset 54
 4.3 Hyperparameter Optimization 55
 4.4 Recurrent Network-based Ensemble (RNE) 56
Chapter V Results and Analysis 59
 5.1 Experimental Setup 59
 5.2 Evaluation Metrics 59
 5.3 Analysis and Evaluation for SMPT method 60
 5.3.1 Test Results with Training Schemes 61
 5.3.2 Evaluation on ML Models 66
 5.4 Analysis and Evaluation for RNE model 70
Chapter VI Conclusions and Future Work 78
 6.1 Conclusions 78
 6.2 Future Work 79
References 81
</body>

