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요   약 

 

최근 몇 년 동안 요리를 배우거나 메뉴를 기획하려는 사람들 사이에서 레시피 

공유 사이트가 많은 인기를 얻고 있다. 사용자들은 이 레시피를 이용해 자신의 

라이프스타일과 건강 상태에 맞는 재료를 선택할 수 있고, 온라인으로 올라온 

레시피의 정보는 다양한 음식, 영양, 그리고 건강 관리 응용 프로그램을 만드는 등 

다양하게 응용될 수 있다. 그러나 온라인으로 공유되는 레시피는 구조화된 정보가 

부족하다. 이 정보들을 잘 구성된 데이터로 추출하기 위해 명명된 엔티티 인식 또는 

NER 이라는 자연어 처리 기술을 사용할 수 있다. 이 기술은 텍스트에서 핵심정보 

또는 엔티티를 식별하고 이를 미리 정해진 범주로 분류하는 기술이다. 그러나 식품 

영역에서 NER 을 개발할 때 세 가지 주요 문제가 생기는데, 첫번째로 식품 영역에 

대한 데이터 세트의 가용성은 현재까지도 제한적인 것, 두번째로 식품 개체를 

인식하는 데 효과적이고 효율적인 기계 학습 모델을 설계하는 것에 대한 어려움, 

세번째로 기존의 NER 모델은 단일 모델에만 의존하고 있는데, NER 에 대해 앙상블 

학습을 사용하는 연구가 거의 없으며, 특히 식품 영역에 대한 연구는 없다고 볼 수 

있는 것이다. 

이 연구에서는 다양한 학습 알고리즘을 결합하여 기존 모델의 성능을 넘어서는 

집단적인 성능을 얻는 앙상블 학습 기법을 통해 이러한 문제를 해결하고자 한다. 
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앙상블 기법을 활용하여 위에서 언급한 문제에 대한 해결책을 다음과 같이 제안한다. 

첫 번째로, SMPT(준지도 다중 모델 예측 기법)라는 반복적인 자체 훈련 접근법을 

구축했다. SMPT 는 자체 훈련 개념을 채택하고 반복 데이터 레이블링 프로세스에서 

사전 훈련된 여러 언어 모델을 기반으로 하는 딥 앙상블 학습 모델로, 엔티티 

레이블을 결정하는 최종 결정으로 투표 메커니즘이 사용된다. 이 SMPT 를 활용하여 

FINER 데이터 세트라는 새로운 주석이 달린 성분 엔티티 데이터 세트를 만들었다. 

두 번째로, 이 연구에서는 Recurrent Network-based Ensemble Model 

(RNE)이라고 불리는 식품 성분 NER 모델을 제안한다. RNE 는 RNN, GRU 및 

LSTM 을 포함한 반복 네트워크 모델과 심층 앙상블 학습을 통합하여 식품 관련 

엔티티를 추출하기 위한 새로운 모델이다. 실험 결과를 통해서, 제안된 RNE 모델이 

단일 모델보다 식품 조리법에서 정보를 더 효과적으로 추출할 수 있음을 보여주고 

있고, 향후 추가적으로 생성되는 정보는 수많은 식품 관련 정보 시스템에 적용되어 

다양하게 활용할 수 있을 것이다. 
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Abstract 

 

In recent years, recipe-sharing websites are becoming popular among 

those who wish to learn how to cook or plan their menu. Individuals can 

choose ingredients that suit their lifestyle and health condition using online 

food recipes. The information from online recipes can be used to build various 

food, nutrition, and healthcare applications. However, the information 

collected from online food recipes lacks structured information. To extract 

such information into well-structured data, we can use a technique in natural 

language processing called Named Entity Recognition or NER. NER is a 

technique of recognizing key information or entities in a text and categorizing 

them into a predetermined category. However, three major issues arise when 

developing named-entity recognition in the food domain: (1) The availability 

of datasets for the food domain is still quite limited; (2) How to design a 

machine learning model that is effective and efficient in recognizing food 

entities; and (3) Existing NER models relied solely on a single model, and just 
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a few studies employ ensemble learning for NER, particularly none for the 

food domain. 

This study aims to solve these problems via an ensemble learning 

technique, combining various learning algorithms to obtain a collective 

performance beyond existing models' performance. Drawing upon the 

ensemble technique, we propose a solution to the challenges mentioned above 

in two stages: first, we built an iterative self-training approach called SMPT 

(Semi-supervised Multi-model Prediction Technique). SMPT is a deep 

ensemble learning model that employs the concept of self-training and builds 

on multiple pre-trained language models in the iterative data labeling process, 

with a voting mechanism used as the final decision to determine the entity's 

label. Utilizing the SMPT, we have created a new annotated dataset of 

ingredient entities named the FINER dataset; and second, we proposed a food 

ingredient NER model called the Recurrent Network-based Ensemble model 

or RNE. RNE is a novel model for extracting food-related entities by 

incorporating deep ensemble learning with recurrent network models, 

including RNN, GRU, and LSTM. The experimental findings demonstrate that 

the proposed RNE model could extract information from food recipes more 

effectively than a single model. In future development, such information can 

support numerous food-related information systems. 
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Chapter I  

Introduction 

1.1 Background 

The huge amounts of food data found on the internet provide a foundation for the 

development of artificial intelligence (AI) and contribute to the establishment of 

digital technology as an important part of food science and industries. Hence, to drive 

the development in the food domain, it is possible to replace every stage of this 

system, from food processing to food consumption, with a data-driven computational 

approach. However, these food data are still not being utilized to their full potential, 

and it is still difficult to meet the demand for efficient food data sharing, 

organization, and traceability which hinders the advancement of this domain. 

Organizing and integrating food data is important in food research and system 

development. Thus, developing a standard knowledge organization system for food, 

such as Food Knowledge Graph (FKG) proposed by Min et al. [1] in their research, 

is one step closer unveiled the full potential of food data utilization. Knowledge 

graphs offer a unified and standardized conceptual terminology presented in a 

structured form. As a result, they can properly organize the food data to benefit a 

wide range of applications effectively, as seen in Figure 1.1.  

However, to construct a food knowledge graph, we need to extract the food 

information from those heterogeneous sources and find the important key 

information or entity relevant to our desired application. In natural language 

processing, or NLP, there is a subtask called named entity recognition or NER. NER 

intends to find a word or an expression that uniquely describes an element among a 

set of other elements with similar attributes. It provides a piece of rough categorical 



 

 

2 

 

information related to the target. Named entities in the text usually play vital roles in 

a sentence functionally and semantically. Named entity recognition is an information 

extraction technique that identifies keywords or information units dispersed within 

a text with known labels [2]. 

 

Figure 1. 1 Food Knowledge Graph (FKG) applications [1] contains various applications 

utilizing food data. 
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Thus, once such food and nutrition entities are located in the text, we can further 

explore important information regarding the relationship between those entities. Such 

information can help build intelligent applications for the food industry, such as a 

personalized recommendation system for diets [3], [4], finding ingredient substitutes 

for people who are allergic to certain food or ingredients [5], or even calculating 

nutrient levels in food to prevent malnutrition [6]. However, when developing a 

reliable machine learning (ML) system, the biggest challenge comes from the need for 

extensive training data and a suitable model that can work perfectly with the data. 

Although numerous studies have been undertaken on creating food NER data [7]–[11] 

and related models [12]–[16], the food information domain is still relatively limited 

and therefore has much room for improvement.  

1.2 Motivations 

The importance of digital text data in food and nutrition has only recently drawn 

attention due to advance in food computing [17]. This development has brought a 

new dimension to food information processing. One technology that lies behind 

many applications and solutions is NER, a fundamental element for Natural 

Language Processing (NLP) in text.  Three major issues arise when developing 

named-entity recognition in the food domain: 

1) The availability of datasets for the food domain is still quite limited. 

2) How to design powerful machine learning model that is accurate and 

efficient in recognizing food entities. 

3) Existing NER models largely depended on a single model. There are only a 

few of studies utilizing ensemble learning for NER, and none for the food 

domain.
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Figure 1. 2 Overall system framework
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 Based on these issues, we propose a strategy for developing NER datasets and 

model for the food domain that combines deep learning with ensemble learning. 

Figure 1.2 is the overall system framework of our study. First is the technique called 

Semi-supervised Multi-Model Prediction Technique or SMPT for constructing food 

ingredient named entity recognition dataset named FINER. SMPT utilized three 

pretrained language models with ensemble voting for the final decision on token’s 

label. In the next study, this FINER dataset will be used as input in our second 

proposed method called Recurrent Network-based Ensemble model or RNE for 

short. RNE uses three recurrent network-based model in ensemble learning approach 

for predicting the entity’s label in ingredient NER task. 

1.3 Thesis Contributions 

In order to take advantage offered by deep learning and ensemble learning. A 

deep ensemble model consisting of various deep learning algorithms was considered 

to extract food entities from text recipes. The contribution of the dissertation 

includes: 

1) The SMPT method, a deep ensemble learning model that employs the 

concept of self-training that builds on pretrained language models (spaCy 

NER, BERT, and DistilBERT) in the iterative data labeling process with a 

voting scheme used as the final decision to determine the entity's label. 

2) The FINER dataset, an annotated dataset for food ingredient entities. The 

dataset is made public and accessible on Figshare [18]: 

https://doi.org/10.6084/m9.figshare.20222361.v3. 

3) RNE model [19], a novel model for extracting food-related entities by 

combining the deep ensemble method with recurrent network models such 

as RNN, GRU, and LSTM. According to the author's knowledge, this is the 
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first work to investigate a model that can benefit from an ensemble method 

based on deep learning used for food-related NER tasks. 

4) In comparison to single models for food-related NER, the suggested NER 

task strategy yields superior results. 

1.4 Outline of the Thesis 

This section presents an outline of the contents of the thesis as shown in the 

relationship diagram in Figure 1.3, and each chapter can be explained as follows: 

Chapter I Introduction: introduces the background of Named-Entity Recognition 

(NER), ensemble technique, and several deep-learning methods used in this thesis. 

In addition, this chapter also describes the research motivation, contribution, and the 

structure of this thesis.  

Chapter II Literature Reviews: describes the basic knowledge including natural 

language processing, named-entity recognition, and the theory behind the proposed 

methods for extracting the entities such as self-training, transfer learning, 

transformers-based pretrained language model, and the RNNs-based model. 

Chapter III Dataset Construction using SMPT method: presents the proposed 

method for constructing Food Ingredient NER dataset such as the data construction 

workflow, data preparation, NER labeling format, and our machine learning 

approach for annotating the dataset. 

Chapter IV Enhancing Food Ingredient NER using RNE method: presents the 

proposed method to enhanced NER model’s performance called Recurrent Network-

based Ensemble (RNE) method including the deep learning classifiers used, the 

organization of the proposed model. 
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Chapter V Results and Analysis: validates the effectiveness of the proposed 

method for constructing the dataset using SMPT as well as evaluate the RNE model 

with various evaluation metrics such as Recall, Precision and F1-score. 

Chapter VI Conclusion and Future Work: presents the conclusion of the thesis 

and some future works are described. 

 

 

 

Figure 1.3 Relationship diagram between chapters.
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Chapter II 

Literature Reviews 

2.1 Natural Language Processing 

 Natural Language Processing (NLP) is a subfield of Computer Science, Human 

language or linguistics, and Artificial Intelligence that focuses on the interaction 

between computers and human language as depicted in Figure 2.1 [20]. NLP is 

divided into two distinct subfields, namely Natural Language Understanding (also 

known as NLU) and Natural Language Generation or NLG, which respectively 

advance the goals of understanding and generating text [21].  

 

 

Figure 2.1 Natural Language Processing (NLP) is the intersection of computer science, 

artificial intelligence, and human language. 

 

 Figure 2.2 provides an overview of the various NLP categories. NLU and 

NLG are part of NLP. NLP aims to analyze and comprehend the text of a given 



 

 

9 

 

document, whereas NLU enables humans to have natural language conversations 

with computers. While both systems comprehend human language, NLU interacts 

with untrained humans to learn their intentions. In addition to recognizing words and 

interpreting their meaning, NLU is also designed to understand the meaning despite 

common human errors, including mispronunciations or transposed letters and words. 

 

 

Figure 2. 2 General classification of natural language processing (NLP) 

In contrast to traditional computer-generated writing, NLG enables computers to 

generate natural language text automatically, imitating how humans communicate 

naturally. In simple terms, computer-generated content lacks the fluency, emotion, 

and personality that make human-generated content engaging. NLG can utilize NLP 

so that computers can create human text in style replicating a human author. This 

human-like content is achieved by recognizing a document's main topic and applying 
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natural language processing to discover the optimal solution to compose the text in 

the user's native language. 

In summary, NLP fills the gap between human language and computer 

comprehension. Typically, NLP algorithms evaluate large amounts of unstructured 

text data, such as documents, log files, and transcripts. Depending on the targeted 

outcomes, the output of an NLP model can differ. For instance, Amazon designed 

Alexa to recognize voice patterns, infer meaning, and do tasks to assist the users. As 

shown in Figure 2.3, the recent advancements in NLP and computational linguistics 

have allowed the NLP industry to expand from simple tools such as spell checking 

to more complex applications like as customer service chatbots, real-time voice-to-

text translators, Google assistant, and others. 

 

Figure 2.3 NLP tasks and applications [22]. 

2.2 Named Entity Recognition 

Nowadays, people who are interested in learning how to cook or planning their 

menus have been referring more frequently to recipe-sharing websites for 
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inspiration. Likewise, in our daily meals, we expect to consume food and beverages 

with a complete nutritional content ranging from carbohydrates, proteins, vitamins, 

fats, and minerals. On the other hand, malnutrition is the root cause of a wide range 

of disorders, including anemia, sprue, goiter, as well as starvation and poor diet [23]. 

Therefore, it is necessary to be aware of food nutrition to have an accurate ingredient 

profile of food [6]. This ingredient profile will also provide information that will be 

helpful to individuals who follow a particular diet or have food allergies to certain 

ingredients or foods [3], [5]. One of the challenges those individuals face is finding 

food ingredients that perfectly fit the recipes. Due to various factors such as 

geography, climate, and time of year, certain recipe ingredients can be challenging 

to find or incredibly expensive in particular regions. As a result, we frequently search 

for alternative ingredients similar in taste, nutrition, and texture. Moreover, 

information regarding the ingredients of food recipes plays a critical role in the well-

being of people who are following particular diets or who suffer from food allergies. 

In recipes, a variety of cooking terminology are used. In addition to ingredients 

and utensils, cooking terms also include cooking actions and ingredient proportions. 

If we consider the cooking action of "cutting," there are a variety of cutting 

techniques, such as "cutting into chunks," "slicing in rounds," "chopping into small 

pieces," etc., depending on the cooking materials and purposes. If we can extract 

these cooking terms from recipe texts, we can use them to perform activities like 

extracting information from recipes and responding to questions. In this particular 

task, we make advantage of machine learning in order to perform automatic 

extraction of cooking terms. Among many different tasks that are involved in natural 

language processing, one of them is referred to as named entity recognition or NER 

for short. 
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Figure 2.4 NER examples for general entities (sentence 1) and food ingredient entities 

(sentence 2). 

Named entity is the method of extracting unique terms from natural language 

sentences, such as the names of people, places, and organizations, and many other 

[2]. This task can be expressed as a serial labeling problem. In sequential labeling 

for named entity recognition, input sentences are split into words, and each word is 

labeled with a name entity tag. The result of extracting labeled word strings is 

intrinsic expressions. In this study, instead of recognizing person and place names as 

intrinsic expressions, we train models to recognize the names of ingredients, product, 

quantities, unit, and cooking process or cooking state, as seen in the Figure 2.4. The 

figure presents the example of NER sentences with its recognized entities, sentence 

one contains general entities and sentence two contains food-related entities. 

In addition, the existing NER systems do not necessarily rely on a single 

technique, sometimes it uses processing pipelines with a series of stages. Figure 2.5 

presents a typical of NER process flow. The training set are transformed into a 

different features representation such as a vector space representation, on which base 

models are sometimes built with the assistance of external data. These models are 

applied to a testing set in order to evaluate their performance on previously unseen 

data [24]. According to Figure 2.5, the process starts with pre-processing by 
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preparing and refining the text to match the desired input. Next, employing NLP 

techniques for accurate sentence-splitting and POS tagging, and even adding 

annotation from other resources (e.g., dictionaries, gazetteers, Etc.) for better 

identification of entities. Later, several machine learning (ML) approaches are 

applied in parallel to label the entities. In the evaluation phase, we applied the model 

trained on the training set in the testing set to evaluate the model performance on 

unseen data. 

 

Figure 2.5 A typical NER process flow. 

NER is useful in any scenario where a high-level overview of a significant 

amount of text is required. NER allows to easily understand the subject or theme of 

a text's content and group texts based on their relevance or similarity. Table 2.1 is an 

example of various NER application use cases. 
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Table 2.1 Various NER application use cases. 

Use Case Details 

Human resources ▪ Accelerate the hiring process by summarizing 

applicants' resumes. 

▪ Enhance internal procedures by classifying employee 

concerns and complaints. 

Healthcare ▪ Improve the patient care standards and minimize 

workloads by obtaining essential information from 

laboratory reports. 

▪ This is being done by Roche with pathology and 

radiology reports. 

Content classification Identifying the topics and themes of blog posts and news 

stories helps with content discovery and provides insight into 

trends. 

Customer support/Help 

desk 

▪ Improve response times by classifying user requests, 

complaints, and queries and filtering them using priority 

keywords. 

Recommendation and 

search engine 

▪ Enhance the rate and relevancy of search results and 

suggestions by summarizing descriptive language, 

reviews, and comments 

▪ One prominent example of success in this field by using 

NER is Booking.com. 

Education (Academia) ▪ Enable students and researchers to locate relevant 

information easier and faster by summarizing papers 

and documents and highlighting key terms, topics, and 

themes. 

▪ For example: Europeana, the digital platform of the EU 

for cultural heritage, uses NER to make historical 

newspapers searchable. 
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2.3 Ensemble Deep Learning 

The goal of an ensemble learning algorithm is to create a classifier with an 

improved prediction performance by aggregating the predictions of various learners 

as indicated in the Figure 2.6. Using ensemble methods, multiple learners are trained 

to solve the same problem. Unlike conventional learning approaches, which attempt 

to construct a single learner from training data, ensemble methods attempt to 

construct and combine multiple learners. There are a number of base learners within 

an ensemble. Base learners are typically generated from training data by the base 

classifier (base model), which could be logistic regression, random forest, neural 

networks, or other learning algorithms [25]. Various strategies to effectively 

combine base classifiers have been developed [26], [27]. The most common methods 

include bagging, boosting, stacking, voting, and blending [25], [28], [29]. 

 

Figure 2.6 A typical ensemble architecture. 𝑥 is input data (in our case is text), and 𝑦 is the 

output prediction (in our case is class label or tag). 

While deep neural network (DNN) architectures are now becoming increasingly 

popular and have demonstrated superior performance when compared to shallow or 

traditional models [30], [31]. DNN are a nonlinear method. They provide more 

flexibility and are able to scale proportionally to the amount of available training 



 

 

16 

 

data. The consequence of this flexibility is that they are sensitive to the specifics of 

the training data and could encounter different weights each time they are trained, 

leading to different predictions. In general, these are referred to as DNNs with high 

variance, making it challenging to create the final model for making predictions. In 

order to successfully reduce the variance of a DNN model, it is necessary to train 

multiple models and combine their predictions. This technique is known as ensemble 

learning, and it not only reduces prediction variance but also produces more accurate 

predictions than a single model. The combination of deep learning and ensemble 

method is called ensemble deep learning [32]. There are various ways to apply the 

ensemble method in deep learning. However, in general, the ensemble can be 

implemented in the following ways: 

▪ Varying the training data: achieved by selecting different data to train each 

model in the ensemble.  

▪ Varying the models: achieved by selecting a different subset of models to 

employ in the ensemble. 

▪ Combination: achieved by selecting different combinations of ensemble 

member outputs. 

As shown in Figure 2.7, they are various strategies for constructing ensemble 

deep learning from traditional techniques, including bagging, boosting, and stacking, 

into general and fusion techniques [32]. Various studies have been carried out by 

utilizing ensemble deep learning techniques, and it has been proven that the use of 

ensemble methods combined with deep learning can produce better model 

performance [32]–[37]. Therefore, out of these strategies, we utilized two of them 

for building our proposed methods which are majority voting and concatenation. In 

the following chapter, we will elaborate on each of our recommended methods in 

further detail. 
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Figure 2. 7 Ensemble method strategies for deep learning [32]. 

2.4 Transfer Learning 

In recent years, various sophisticated machine learning models for audio, image, 

and text data with large volume of data have been introduced. Unfortunately, the 

performance degrades whenever we train a model on one dataset and then attempt to 

apply it to a different dataset. This occurs because the model fails to generalize and 

comprehend the fundamental data patterns. Even a minor change in the data can 

throw it off guard. It is important to address this issue because real-world data are 
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constantly evolving, and it is impractical to constantly retrain a model from scratch 

for new scenarios. Transfer learning comes into play in this situation.  

Transfer learning (TL) enables us to learn a task by employing labeled data from 

other tasks or domains that are related. The model's objective is to accomplish tasks. 

For example, recognizing the food entities in a recipe text, whereas the domain is the 

source of data. For example, all sample recipes are obtained from Allrecipes website. 

Figure 2.8 illustrates a comparison of TL with classic ML approach. Using TL 

approach, the knowledge acquired during task A for source domain A is saved and 

applied to the problem of interest in domain B [38]. 

 

Figure 2.8 Comparison of Traditional ML and Transfer Learning. 

Moreover, Figure 2.9 presents the concept of TL which involves utilizing the 

feature representation of a previously trained model so that a new model does not 

need to be trained from scratch. In ML, it is common to apply TL to NLP problems 

involving textual input or output. Typically, the pre-trained models are trained on 

large amounts of data that serve as a benchmark for the NLP frontier. The weights 
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derived from the models may be reapplied to other NLP tasks. These models can 

either be used directly to make predictions on new tasks or incorporated into the 

training process for a new model. Incorporating previously trained models into a new 

model reduces training time and generalization error. TL is particularly useful when 

the training dataset is small. In this instance, we initialize the weights of the new 

model with the weights of the pre-trained models.  

 

 

Figure 2.9 The concept of transfer learning (TL). 

There are several types of TL that are common in modern NLP. They are 

distinguished across three dimensions based on: 1) whether the source and target 

settings deal with the same task; 2) the origin of the source and target domains; and 

3) the order in which the tasks are learned [39]. Figure 2.10 explains a taxonomy that 

highlights the variations of TL in NLP. 
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Figure 2.10 Transfer learning taxonomy in NLP. 

Sequential transfer learning has produced the most significant gains to date. 

Figure 2.11 demonstrates the common practice of pretraining representations on a 

large unlabeled text corpus and then adapting these representations to a supervised 

target task using labeled data. In addition to Pre-training, another option in the TL 

step is Fine-tuning. In the standard transfer learning setup in Figure 2.11, a model is 

initially pre-trained on large amounts of unlabeled data using a language modeling 

loss such as MLM or masked language modeling [40]. However, in the fine-tuning 

procedure shown in Figure 2.12, using a standard cross-entropy loss, the pre-trained 

model is then fine-tuned using labeled data from a downstream task. While 

pretraining is computationally intensive, fine-tuning is relatively inexpensive [41]. 

Individual pre-trained models are downloaded, and fine-tuned multiple times based 
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on the target tasks/domains, which makes fine-tuning more important for the 

practical implementation. 

 

Figure 2.11 The standard TL procedure in NLP. 

 

 

Figure 2.12 The procedure of Fine-tuning a pre-trained language model (LM). 

2.5 Self Training 

Self-Training is a type of Semi-Supervised ML where a model learns from both 

labeled and unlabeled data. Combining labeled and unlabeled examples, Semi-

Supervised Learning increases the amount of training data available. As a result, we 

can improve model performance and save a substantial amount of time and money 

by eliminating the need to manually label thousands of examples [42]. 
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Self-training employs a labeled training set 𝐿 and an unlabeled data set 𝑈 to train 

a model 𝑚. At each iteration, the model generates predictions 𝑚(𝑥) as a probability 

distribution over the 𝐶 classes for all unlabeled examples 𝑥 in 𝑈. If the probability 

assigned to the most probable class is greater than a predetermined threshold 𝜏, 𝑥 is 

added to the labeled examples with the pseudo label 𝑝(𝑥)  =  𝑎𝑟𝑔𝑚𝑎𝑥 𝑚(𝑥). This 

process is typically repeated for a predetermined number of iterations or until no 

more confident predictions can be made on unlabeled examples. This concept is 

illustrated in Algorithm 1 [43]. 

Algorithm 1 Self-training 

1: repeat 

2: 𝑚 ←  𝑡𝑟𝑎𝑖𝑛_𝑚𝑜𝑑𝑒𝑙(𝐿) 

3: for 𝑥 ∈ 𝑈 do 

4: if max 𝑚(𝑥)  >  𝜏 then 

5: 𝐿 ←  𝐿 ∪ {(𝑥, 𝑝(𝑥))} 

6: until no more predictions are confident 

Figure 2.13 illustrates the steps of the Self-Training method. it starts with a set of 

labeled (𝐿) for training the baseline model while sparing set of unlabeled (𝑈) data 

for the next step. In the second step, we use the baseline model to predict the U. The 

part of results that meet our predefined criteria (e.g., prediction probability is greater 

than 90%) called pseudo-labeled data are combined with labeled data. And after that, 

we make new predictions and include newly selected observations in the pool of 

pseudo-labeled data. These steps are repeated until all data are labeled. 
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Figure 2.13 A step-by-step Self-Training procedure. 

2.6 Deep Learning Approaches for NER 

This section will presents a brief overview of the theory underlying the proposed 

methods for creating NER datasets and the algorithms used to develop the proposed 

deep ensemble model for food information extraction when addressing NER 

problems. 

2.6.1 Transformer Model  

The transformer model came from the research of Vaswani, et. al. in their paper 

titled “Attention is all you need” [44]. Transformer model utilized the encoder-

decoder architecture that commonly used in Neural Machine Translation (NMT) 

models, but does not rely on recurrence and convolutions in order to generate an 
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output. Figure 2.14 shows the overall Transformer architecture, which employs 

stacked self-attention and point-wise, follow by fully connected layers for both the 

encoder and decoder. 

 

Figure 2.14 The transformer model architecture [44]. 

First part is Encoder, it provides an attention-based representation capable of 

locating a specific piece of information from a large context. The encoder consists 

of six identical layers where each layer has two sublayers including a Multi-Head 

Attention layer and a Fully Connected Feed-Forward layer (𝐹𝐹𝑁). The first sublayer 

is the Multi-Head Attention layer. The Multi-Head Attention is a component of the 

Transformer that concatenates ℎ distinct attention layers with different initializations 

[40], [44], [45]. The function of a Multi-Head Attention can be calculated as 

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉)  =  𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂       (1) 

where, ℎ𝑒𝑎𝑑1 is 𝑖𝑡ℎ attention head which is given by: 
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ℎ𝑒𝑎𝑑𝑖  =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉)            (2) 

and is computed using these projection matrix parameters: 

▪ 𝑊𝑖
𝐾 ∈  ℝ𝑑𝑒𝑚𝑏×𝑑𝑘, 

▪ 𝑊𝑖
𝑉 ∈  ℝ𝑑𝑒𝑚𝑏×𝑑𝑉, 

▪ 𝑊𝑖
𝑄 ∈  ℝ𝑑𝑒𝑚𝑏×𝑑𝑘, and 

▪ 𝑊𝑖
𝑂 ∈  ℝℎ𝑑𝑣×𝑑𝑒𝑚𝑏 

Here 𝑄, 𝐾 and 𝑉 are input matrices for query, key, and values, respectively. The 

input matrix 𝑋 is used for all three matrices at the beginning. Then their projections 

𝑋𝑊𝑖
𝑄

, 𝑋𝑊𝑖
𝐾, and 𝑋𝑊𝑖

𝑉 become 𝑄𝑖, 𝐾𝑖, and 𝑉𝑖. These matrices are used to calculate 

the Scaled Dot-Product Attention for each head as follows 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
 𝑉)           (3) 

The second sublayer is the fully connected feed-forward layer which consists of two 

linear transformations with ReLU activation in between [44]. 

𝐹𝐹𝑁(𝑥)  =  𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1) 𝑊2  +  𝑏2            (4) 

Each of the six layers of the transformer encoder applies the same linear 

transformations to all the words in the input sequence but uses different weight (𝑊1, 

𝑊2) and bias (𝑏1, 𝑏2) parameters. In addition, unlike RNNs, transformer architecture 

cannot automatically determine where words are in a sequence. This information has 

to be added by incorporating positional encodings into the input embeddings. 

The second part of transformer is decoder. Decoder has similar components with 

the encoder but with additional one sublayer called masked multi-head self-attention 
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layer. Unlike the multi-head self-attention layer, this sublayer is masked to prevent 

positions from attending to the future. While the encoder is designed to process each 

word in the input sequence regardless of its location, the decoder is adjusted to 

process only the prior words. Thus, the prediction for a word at position can only be 

based on the known outputs of the preceding words. This is obtained by applying a 

mask over the values produced by the scaled multiplication of matrices 𝑄 and 𝐾 in 

the multi-head attention mechanism (which performs multiple single attention 

functions in parallel). This masking is conducted by eliminating matrix values 

corresponding to unauthorized connections.  

Prior to the release of the transformer, the majority of cutting-edge NLP models 

were based on RNN. RNN processes data sequentially or word by word to reach the 

last word's cell. RNN is inefficient at handling long sequences, and the sequential 

structure of RNNs makes it difficult to maximize the performance of modern fast 

computing devices such as TPUs and GPUs. On the other hand, the transformers do 

not rely on past hidden states to determine word dependencies. They avoid recursion 

by processing sentences as a whole with the help of attention mechanisms and 

positional embeddings. Therefore, there is no possibility of losing or forgetting past 

information. Shortly after the introduction of the transformer model, many pre-

trained language models that took advantage of the transformer model architecture 

became available and used to solve NLP problems, as an example is a decoder-only 

transformer which performs exceptionally well in language modeling tasks like GPT 

[46] and BERT [40]. 
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2.6.2 Transformer-based NER 

2.6.2.1 SpaCy NER 

SpaCy is a Python and Cython-based open-source library for natural language 

processing that provides various NLP tools for such tokenization, POS-tagging, 

and Named Entity Recognition in text. Figure 2.15 shows the procedure that 

spaCy is used to train a custom NER model. It employs word embedding and a 

multilayer CNN with residual connections. It supports pretrained models in 

multiple languages and provides a default classifier for a wide variety of named 

or numerical entities, such as a person, organization, date, location, and event. In 

addition, it allows us to extend the NER model with new classes for novel entities. 

 

 

Figure 2.15 spaCy NER custom model training. 

In this study, we design a neural network with a custom vector layer initialized 

with the pretrained spaCy's output layer. That layer is then trained using the spaCy 

library pre-training command [47], [48] on a domain-specific text corpus. Later, 

in the experiment, we also use the pretrained spaCy model (en_core_web_lg) and 

train our custom dynamic embedding model on our ingredient dataset. We apply 
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this domain-specific word embedding model to vectorize tokens while 

conducting transfer learning from the spaCy pretrained model over the annotated 

data. 

2.6.2.2 BERT 

BERT is a language representation model introduced by Devlin et al. [40]. It uses 

stacked transformer encoders that learn a deep bidirectional representation from 

a large unlabeled corpus. An additional output layer is then added to fine-tune the 

representation in downstream NLP tasks. Fine-tuning involves modifying the 

neural network architecture slightly for improved predictions in target tasks while 

training the whole network. Pretrained BERT inherits the model weights learned 

during the pre-training, allowing downstream tasks to benefit from these powerful 

representations rather than learning from scratch. 

 

Figure 2.16 Fine-tuned BERT for FINER. 
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We use the weights of a pretrained BERT model (bert-base-uncased) to initialize 

the ingredient recognition task as shown in Figure 2.16. The BERT architecture 

is preserved, but the input and output are adjusted to our NER task. 

2.6.2.3 DistilBERT 

 

 

Figure 2.17 Knowledge distillation from BERT with the combination of cross entropy and 

the masked LM objectives. 

DistilBERT [49] is a compact version of BERT and claimed to be lighter and 

faster than BERT with roughly comparable performance. It has 40% fewer 

parameters than bert-base-uncased and runs 60% faster at over 95% of BERT's 

performance as measured on the GLUE language understanding benchmark in 
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Victor Sanh et al., paper [49]. To reduce the computational requirements of 

modern large neural networks, DistilBERT uses a knowledge distillation 

technique known as teacher-student learning [50]. Knowledge distillation is a 

compression technique that involves training a small model to mimic the behavior 

of a larger model. 

Figure 2.17, The masked language model (MLM) loss is used to train the student 

model, as well as the cross-entropy loss between the teacher and the student. This 

mechanism encourages the student model to generate a probability distribution 

over the predicted tokens as close to that of the teacher's as possible. During 

teacher-student training, a student network is trained to replicate the distribution 

of a teacher network's total output or knowledge. This assists the student in 

generalizing in the same manner as the teacher. Instead of training with cross-

entropy over hard targets (one-hot encoding of the gold class), we transfer 

knowledge from the teacher to the student using cross-entropy over soft targets 

(probability of the teacher). Thus, the loss becomes: 

𝐿  =   − ∑ 𝑡𝑖 ∗ 𝑙𝑜𝑔(𝑠𝑖)𝑖 ,                (5) 

where 𝑡 represents the teacher's logits and 𝑠 the student's logits. This loss results 

in a more robust training signal, as a single example imposes significantly more 

constraints than a single hard target. Hinton et al. introduce a softmax-temperature 

[51] to reveal more about the distribution's mass across the classes as follow: 

pi  =  
𝑒𝑥𝑝(𝑧𝑖/𝑇)

∑ 𝑒𝑥𝑝(𝑧𝑗/𝑇)𝑗
                 (6) 

When 𝑇 tends to 0, the distribution becomes a Kronecker (equivalent to the one-

hot target vector), whereas it becomes a uniform distribution when 𝑇 → +∞. 
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During training, the same temperature parameter is applied to both the student 

and the teacher, exposing more signals for each training example. In inference, 𝑇 

is set to 1 , and the standard Softmax is recovered. Therefore, using teacher 

signals, it allows us to train a smaller language model, which was later called 

DistilBERT. In the implementation, we utilize the pretrained DistilBERT model 

(distilbert-base-uncased) in the same way we implement the BERT model. 

2.6.3 Recurrent Neural Networks (RNNs) based NER 

2.6.3.1 Recurrent Neural Network (RNN) 

RNNs [19], [52] are type of artificial neural network whose memory may hold 

information about previous inputs in a sequence. The structure of basic RNN is 

present in Figure 2.18. In RNN, each word of the input sequence 𝒙1, 𝒙2, … , 𝒙𝑛 

turns into vector form 𝒚𝑡 by using the following equations: 

 

 

 

 
Figure 2.18 RNN architecture. 

 

𝒉𝑡   =  𝐇(𝑾𝑥ℎ𝒙𝑡  +  𝑾ℎℎ𝒉𝑡−1  +  𝒃ℎ)             (7) 

𝒚𝑡   =  𝑾ℎ𝑦𝒉𝑡  +  𝒃𝑦                  (8) 
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where 𝑾𝑥ℎ , 𝑾ℎℎ , and 𝑾ℎ𝑦  denote the weight matrices, ℎ𝑡  is the vector of 

hidden states that capture the information at time slice 𝑡(𝑡 = 1,2, . . ., 𝑇) , 𝒃 

denote biases, and 𝑯 is collection of activation functions for the hidden layer. A 

basic RNN with unidirectional flow transmits data from left to right with shared 

parameters are used for each time step. 𝑾𝑥ℎ, 𝑾ℎℎ, and 𝑾ℎ𝑦 are the same for 

each time step. When generating the prediction at time 𝒕, it uses not only the 

current input 𝒙𝑡 at time 𝒕 but also the information from prior input at time 𝒕 − 𝟏 

via activation parameter 𝑯  and weights 𝑾 , which passes from the previous 

hidden layer to the current hidden layer. A drawback of RNN is that it can only 

make predictions based on preceding information. In this case, RNN utilizes 

information from earlier in the sequence to produce a prediction at a specific time, 

but not information given later in the sequence. To train RNN, Back-propagation 

through time (BPTT) is often used [53]. However, due to the gradient-vanishing 

and exploding problem, it is not practical to train standard RNNs with BPTT [54]. 

It is difficult to propagate errors from later time steps back to previous time steps 

enough to adjust network settings correctly. Thus, in the following development 

of the RNNs, the gated recurrent unit (GRU) and the long short-term memory 

(LSTM), have also been employed to resolve this concern [55]–[57]. 

2.6.3.2 Long-Short Term Memory (LSTM) 

LSTM is an improved RNN type with memory cells [19], [57]. These memory 

cells are developed to handle long-term temporal dependencies in the data. It 

allows information to be added or removed from the current cell state. The input 

gate (𝒊𝑡 ), forget gate (𝒇𝑡 ), and output gate (𝒐𝑡 ) is computed to control this 

memory. Thus, LSTM units can propagate important features which appeared 

early in the input sequence over extended distances and capture potential long-

distance relationships. LSTM, in contrast to RNN, contain three logistic sigmoid 
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gates and one tanh layer. Gates control the information that can passes through 

the cell. They evaluate which data is relevant for the next cell and which data can 

be disregarded. The output value normally falls between 0 to 1, where 0 indicates 

"reject all" and 1 indicates "include all." The architecture of the LSTM unit is 

visualized in Fig 2.19, and the formulas for calculating the time-step 𝑡 for each 

hidden state in the LSTM unit are given in the following equations [58]: 

𝒊𝑡   =  𝜎(𝑾𝑖 . [𝒉𝑡−1, 𝒙𝑡]  +  𝒃𝑖)             (9) 

𝒇𝑡   =  𝜎(𝑾𝑓  . [𝒉𝑡−1, 𝒙𝑡]  +  𝒃𝑓)               (10) 

𝒐𝑡   =  σ(𝑾𝑜 . [𝒉𝑡−1, 𝒙𝑡]  +  𝒃𝑜)               (11) 

𝑪̃𝑡  =  tanh(𝑾𝑐  . [𝒉𝑡−1, 𝑥𝑡]  +  𝒃𝑐)              (12) 

𝑪̃𝑡  =  𝒇𝑡  ∗  𝑪𝑡−1  +  𝒊𝑡   ∗  𝑪̃𝑡                (13) 

𝒉𝑡   =  𝒐𝑡   ∗  tanh(𝑪𝑡)                  (14) 

 
Figure 2.19 The LSTM unit architecture. 

Each LSTM cell requires three inputs 𝒉𝑡−1 , 𝑪𝑡−1 , and input 𝒙𝑡 , as well as 

generates two outputs 𝒉𝑡 and 𝑪𝑡. 𝒉𝑡 represent the hidden state, 𝑪𝑡 represent the 

cell state or memory, and 𝒙𝑡 represent the current data point or input for a given 

time 𝒕. The first sigmoid layer (𝝈) contains two inputs 𝒉𝑡−1 and 𝒙𝑡, where 𝒉𝑡−1 
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is the previous cell's hidden state. It is known as the forget gate (𝒇𝑡  ) since its 

output determines how much information from the previous cell is included. The 

output is a number within the range [0,1] multiplied (point-wise) by the previous 

cell state 𝑪𝑡−1. The second sigmoid layer is the input gate (𝒊𝑡) which determines 

what new information to add to the cell. 𝒉𝑡−1 and 𝒙𝑡. The tanh layer then creates 

candidate vector 𝑪̃𝒕. Using a point-by-point multiplication of ( 𝒊𝑡   ∗  𝑪̃𝑡 ), these 

two layers assess the data to be stored in the cell state.  The result is then added 

to the previous cell state of the forget gate (𝒇𝑡   ∗  𝑪𝑡−1) to generate current cell 

state 𝑪𝑡. Next, the cell's output is calculated using a sigmoid and tanh layer. The 

sigmoid layer determines the output cell state, whereas the tanh layer adjusts the 

output within the interval [−1,1]. Finally, a point-wise multiplication of these 

two layers produces the cell's output 𝒉𝑡. 

2.6.3.3 Gated Recurrent Unit (GRU) 

GRU first designed by [19], [56] to allow each recurrent unit to capture 

dependencies at various time periods in an adaptive manner. It is similar to LSTM 

but has simpler cell architecture. GRU consists of gating units that control the 

information flow within the unit, but without memory cells. GRU computes the 

update and reset gates that control the flow of information across each hidden 

unit. Therefore, the update and reset gates, which are visualized by colored boxes 

in the GRU cell in Figure 2.20, can be calculated using the following equations 

[59], [60]: 

𝒛𝑡  =  σ(𝑾𝑥𝑧𝒙𝑡   +  𝑾ℎ𝑧𝒉𝑡−1  +  𝒃𝑧)             (15) 

𝒓𝑡   =  σ(𝑾𝑥𝑟𝒙𝑡  +  𝑾ℎ𝑟𝒉𝑡−1  +  𝒃𝑟)             (16) 

𝒉̃𝑡   =  𝑡𝑎𝑛ℎ(𝑾𝒙hx𝑡   +  𝑾ℎℎ(𝒓𝑡  ⊙  𝒉𝑡−1)  +  𝒃ℎ)         (17) 

𝒉̃𝑡   =  𝒛𝑡  ⊙  𝒉𝑡−1 + (1  −  𝒛𝑡)  ⊙  𝒉̃𝑡             (18) 
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Figure 2.20 The GRU unit architecture. 

where 𝒛𝒕 represent update gate, 𝒓𝒕 represent reset gate, 𝑾 represent the weight 

vector, ⊙ is an element-wise multiplication and 𝜎 is the sigmoid function. At 

each time 𝒕, it takes input 𝒙𝑡 and hidden state 𝒉𝑡−1 from the previous time 𝒕 − 𝟏. 

Then, the outputs are a new hidden state 𝒉𝑡 for the next time 𝑡. In order to locate 

𝒉𝑡, two steps are needed in GRU. First, the candidate hidden state is generated. It 

multiplies the input and hidden state from the previous time 𝒕 − 𝟏 by the reset 

gate output 𝒓𝑡. This information is sent through the tanh function, which returns 

the hidden state of the candidate. The reset gate value in this equation determines 

how much the previous hidden state influences the candidate state. If 𝒓𝑡 = 1, all 

information from 𝒉𝑡−1 is considered. Otherwise, if 𝒓𝑡 =  0, the information from 

the previous hidden state is ignored. Once the candidate state is obtained, it is 

used to generate 𝒉𝑡, which involves the update gate. In GRU, instead of utilizing 

a separate update gate like in LSTM, both the historical information (𝒉𝑡−1) and 

the new information from the candidate state are controlled by a single update 

gate. Moreover, 𝒛𝑡  is crucial in this equation. It can determine how much 

information from the past must be passed to the future. The 𝒛𝑡 value within range 

of 0 to 1. 
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Chapter III 

Food Ingredient Named-Entity Data 

Construction using Semi-Supervised Multi-

Model Prediction Technique 

3.1 Background and Related Works 

There have been several studies on food data construction being conducted with 

various approaches and data sources [17]. Table 3.1 compares the existing food 

datasets and the FINER dataset, which has been developed by the proposed method. 

Among the datasets in Table 3.1, Recipe1M+ [10] and RecipeNLG [9] are containing 

both image and text, they both used for multimodal machine learning tasks. 

However, the goal of our study is extracting named entities from food recipe text. 

There are datasets available for task, but they are usually small in terms of the 

availability of training samples [12]. 

Table 3.1 Available food dataset compared to our FINER dataset. 

Dataset Method Source Dataset Size 

(recipes) 

Entities 

FoodBase 

[7] 

Ruled-based 

approach 

Allrecipes 1000 curated 

and 21.790 

uncurated 

version 

Based on Hansard 

corpus semantic tags: 

AG (food and drink) 

AE (animal) 

AF (plant) 

Recipe1M+ 

[10] 

Deep learning 

approach 

Various cooking 

sites and image 

search engines 

1 million 

recipes and 13 

- 
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Dataset Method Source Dataset Size 

(recipes) 

Entities 

for image data 

extension 

million food 

images 

RecipeDB 

[8] 

Ruled-based 

approach 

Food.com 

AllRecipes 

Tarladalal 

The Spruce Eats 

Epicurious 

Food Network 

Taste 

118.171 Name 

State 

Unit 

Quantity 

Size 

Temp 

Dry/Fresh 

RecipeNLG 

[9] 

Deep learning 

approach 

Recipe1M+ and 

auhtors private 

data gathered 

from various 

cooking sites 

Over 1 million 

new data 

- 

TASTEset 

[11] 

Deep learning 

approach 

AllRecipes 

Food.com 

Tasty 

Yummly 

700 Food 

Quantity 

Unit 

Process 

Physical Quality 

Color 

Taste 

Purpose 

Part 

FINER 

(Our) 

Deep learning 

approach 

Allrecipes 64.782 Ingredient 

Product 

Quantity 

Unit 

State 

The problem of limited data on food and its attributes has recently been addressed 

in several papers with proposals for building food NER datasets [7], [8]. Batra et al. 
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presented [8] while Popovski et al. discussed the FoodBase corpus, which was 

developed using a rule-based approach [7]. While easily available, it is rather small, 

consisting of 1000 recipes for the curated version (manually evaluated) and 21.790 

for the uncurated version. Similar to FoodBase, a recently published dataset called 

TASTEset [11] is an even smaller set of 700 recipes. On the other hand, the 

RecipeDB dataset, built by Batra et al.,[8] is relatively large and covers a wide range 

of recipes. It has been derived from numerous online food recipe sharing sites. 

Unfortunately, the dataset cannot be use directly because it is intended for search 

applications about recipes or food ingredients.  

This study focuses on extracting various entities in the recipe texts from the 

Allrecipes website, a popular online social media for sharing food recipes. In 

particular, we propose a novel iterative framework to build a new dataset of annotated 

ingredient entities in various recipes called Food Ingredients Named Entity 

Recognition (FINER). This study proposes a generic method for building a food NER 

dataset using ML techniques to address the data limitation issue called Semi-

supervised Multi-model Prediction Technique (SMPT). SMPT is an ensemble deep 

learning model which employs the concept of self-training that builds on pretrained 

language models (such as spaCy NER [47], BERT [40], and DistilBERT [49]) in the 

iterative data labeling process [61] with a voting scheme used as the final decision to 

determine the entity's label. 

3.2 Data Construction Workflow 

The data construction workflow in our study consists of four stages: (a) Data 

preparation; (b) Manual data annotation; (c) Model training and automatic labeling; 

and (d) Dataset evaluation. Several NLP libraries, including SpaCy [47], NLTK [62], 

and Doccano annotation tools [63] were utilized throughout the building process. 
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The detailed data construction process shown in Figure 3.1 involves the following 

four steps: 

a) First stage is data preparation. We begin by cleaning the text data collected from 

the Allrecipes website, followed by a number of preprocessing steps. 

b) The second stage is the manual data annotation. We begin with a small set of 

2,000 manually labeled data for initial training set and evaluation set (each of 

1000 data). The first training set is utilized to create a baseline NER annotator, 

while the evaluation set is held for the final evaluation of the complete dataset. 

c) The third stage is model training and automatic labeling. In this stage, baseline 

models are built utilizing the initial training set from the previous step. To 

annotate and generate our dataset, we propose a semi-supervised technique 

named Semi-Supervised Multi-Model Prediction Technique (SMPT). We will 

explain in detail about the SMPT method in Subchapter 3.5. After baseline 

model is created, we then used this model to predict labels for the remaining 

unlabeled set. As of now, we have a newly created set of labeled data, some of 

which have been incorporated into the previous set. This procedure is repeated 

until no more unlabeled data are available. 

d) The final stage is dataset evaluation. After multiple iterations, the Food 

Ingredient NER (FINER) dataset is obtained. Using a set of classifiers including 

CRF, Bi-LSTM, and BERT, we evaluate the dataset's quality indirectly. We 

assess their performance using the reserved evaluation set. 
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Figure 3.1 Dataset construction flowchart. 

3.3 Data Preparation 

The dataset in this study is based on the recipe text scraped from the Allrecipes 

website [64]. The structure of the data is illustrated in Figure 3.2 which consists of 

recipe names, ingredients, direction, and nutrition. However, this study extracts 

ingredient entities and their attributes, including ingredient name, product, quantity, 

unit, and ingredient state, from the ingredient section. Figure 3.3 shows the recipe 
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data stored in csv file containing columns with information about recipes. After data 

preprocessing, we parse and convert the data to the NER CoNLL format shown in 

Table 3.2 and save it as a CoNLL file shown in Figure 3.4 as an input to the model. 

 

Figure 3.2 A recipe structure and ingredient data extraction workflow. 
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Figure 3.3 An example of data scrapped from allrecipes.com. 

 

Table 3.2 An example of a sentence in an NER CoNLL format. 

Sentence Word Tag 

Sentence #1 1 B-QUANTITY 

Sentence #1 slice B-UNIT 

Sentence #1 whole B-INGREDIENT 

Sentence #1 wheat I-INGREDIENT 

Sentence #1 bread I-INGREDIENT 

 

1 B-QUANTITY 

slice B-UNIT 

whole B-INGREDIENT 

wheat I-INGREDIENT 

bread I-INGREDIENT 

  

0.5 B-QUANTITY 

( O 

1 B-QUANTITY 

ounce B-UNIT 

) O 

package B-UNIT 

dry B-INGREDIENT 

ranch I-INGREDIENT 

- I-INGREDIENT 

style I-INGREDIENT 

dressing I-INGREDIENT 

mix I-INGREDIENT 

Figure 3.4 An example of an NER CONLL file format. 

Overall, after data preprocessing, the dataset contains 64,782 raw recipes, a total 

of 1,397,960 words, and 181,970 sentences (ingredient phrases), as detailed in Table 
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3.3. In addition, the recipe text dataset has eight food categories such as breakfast 

and brunch, dinner, main dishes, side dishes, drinks, dessert, bread, and salad. It has 

been cleaned up so that the data's format and structure match to the desired input. 

The preprocessing comprised of several steps, starts by removing all special 

characters, white spaces, stop words, punctuation symbols, tokenizing the data, 

converting it into lower-case, followed by lemmatization. In addition, the following 

rules are defined: 

▪ Since our dataset is made up of a list of ingredients, stop words and 

punctuation may not always be meaningless to the text's intent, but it may 

help interpret entities. Therefore, we have constructed custom lists of stop 

words and punctuation. For example, the sentence "1 (2 ounces) package 

butter" means 1 package of butter equals 2 ounces. Thus, the parentheses are 

kept because they contain information for converting the amount of 

ingredient to standard units.  

▪ Standardized the unit and quantity measurements. For example, in units, we 

convert all abbreviations into their original form, such 

as “tbsp” becomes “tablespoon”; and in quantities, we convert all numbers 

from fractions into a decimal, such as “½” becomes “0.5”. 

▪ To simplify the extraction, every phrase in the ingredients section is split 

into individual sentences. In our experiment, only the ingredients section 

was employed. This section contains all the ingredients for a particular 

recipe. Figure 3.5 demonstrates the splitting of each list into ingredient 

phrases. After the pre-processing procedure, the final dataset contains 

181,970 ingredient phrases or sentences. 
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Table 3.3 The dataset information details. 

Total number of sentences 181,970 

Total number of words 1,397,960 

Total number of entities (without O tags) 1,177,660 

Total number of tags (without O tags) 10 

 

 

Figure 3.5 Splitting process of ingredient lists into individual phrase. 

After a series of pre-processing steps, the recipes text data is divided into three 

sets as summarized in Table 3.4. For training and evaluation data, we manually 

annotated the first two sets using Doccano annotation tools [63] and left the 

remaining set unlabeled, which will be labeled recursively by the proposed method 

of NER annotator. 

Table 3.4 The organization of the initial dataset. Initial training set and evaluation set are 

manually annotated. 

Initial training set 1,000 

Evaluation set 1,000 

Unlabeled dataset 179,970 

Total 181,970 
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3.4 Named Entity Labeling 

Entities usually represent an important chunk of a particular sentence. Named 

entity recognition is a technique to detect and classify atomic elements in a text into 

predefined categories or classes that vary depending on the domain of interest. 

People commonly classify them into names of persons, organizations, events, dates, 

and many more in the general domain. This research aims to extract food ingredient 

entities and its attributes from recipe texts. This study defines five different entity 

classes, each of which corresponds to an entity tag listed in Table 3.5. To chunk the 

entity word, we employed the IOB2 format [2], [65]. IOB2 format is similar to the 

IOB format, except for the addition of the B-tag at the beginning of each chunk (i.e., 

all chunks start with a B-tag). Table 3.6 presents a details explanation of the IOB 

format. In this format, a tag is prefixed by one of B, I, and O indicating the position 

within the entity. "B-tag" indicates that the tag is the beginning of a chunk, "I-

tag" indicates that the tag is inside a chunk, and "O" indicates that a token is not a 

chunk. The "tag" shall be replaced with a named entity label such as "ING" for 

ingredients in our data.  

Table 3.5 Entity classes with their respective definitions and examples. 

Class Description Example 

INGREDIENT Name of the food or ingredient. Carrots, garlic, vegetable oil, etc. 

QUANTITY Measurement unit. Gram, pound, tablespoon, etc. 

UNIT 
Measurements of the food or 

ingredient associated with the unit. 

1 ½ , 25, 0.5, etc. 

PRODUCT 
Food or ingredient from specific 

brand mention. 

Tabasco brand chipotle pepper 

sauce, Archer farms dark 

chocolate hot cocoa mix, etc. 
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Class Description Example 

STATE 
Processing state of the food or 

ingredient. 

Minced, chopped, cut into 2-inch 

strips, etc. 

 

Table 3.6 IOB tagging scheme. 

Tag Definition 

B (Begin) indicates that the tag is the beginning of a chunk. 

I (Inside) indicates that the tag is inside a chunk. 

O (Outside) indicates that a token belongs to non-chunk (outside). 

 
 

3.5 Semi-Supervised Multi-Model Prediction Technique 

(SMPT) 

Figure 3.6 depicts a general procedure of our proposed method for ingredient 

named entity data annotation namely Semi-Supervised Multi-Model Prediction 

Technique or SMPT. SMPT is an iterative step similar to the bootstrapping method 

used by Kim et al. in [66]. However, instead of using CRF for bootstrapping and 

automatic labeling the unlabeled data. We adopted the concept of self-training in the 

data labeling process. Given the small labeled datasets, we train a baseline classifier 

based on pretrained models of spaCy, BERT, or DistilBERT, and use them to 

increase the labeled set to the final selection of the token (entity) classes made by 

majority voting. The resulting set of labeled data is incorporated into the input for 

the next iteration. The whole procedure is repeated until the unlabeled sample is 

labeled.  

A key component in the proposed method is the development of the classifiers 

that will be trained in this section. The SMPT training process consists of two main 
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components: the training process itself and the dataset labeling scheme with the 

dataset growth factor. Thus, we will explain these two components in the following 

sections. 

 

Figure 3.6 The SMPT method workflow. 
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3.5.1 Training 

The core tasks of classifier training and data labeling in SMPT consists of three 

steps: 

(1) In the first step, we develop a set of C baseline classifiers using our initial 

training set (1000 manually annotated instances). In our experiment, the 

classifiers include: spaCy NER, BERT, and DistilBERT. 

(2) In the second step, each classifier C makes its own predictions for the test 

set. The final decisions on the unlabeled tokens are made by the majority 

voting scheme: 

 

𝑚̅ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚≤𝑀 ∑ 𝑑𝑐,𝑚
𝐶
𝑐=1                 (19) 

 

where 𝑚̅ is the final prediction label (class), 𝑀 is number of classes, 𝐶 =

|𝐶 | the number of classifiers, and 𝑑𝑐,𝑚 denotes the vote given to class 𝑚 by 

classifier 𝑐. If the max vote is not unique, the token will be given “O” label 

representing that the token is not a chunk. 

(3) Finally, the above machine-labeled tokens with unanimous votes are 

considered reliable and promoted into the training set of labeled instances 

for the next generation of classifiers. These procedures were repeated until 

no tokens are left unlabeled. 

3.5.2 Dataset Building Schemes 

Following the iteration procedure described in the previous section, we build an 

NER dataset of labeled tokens. In each iteration, we add up a fixed amount of newly 

labeled samples to the current training set. We define 𝑠 as the growth factor. Here, 

each time the amount of addition is set to be 𝑠 times that of the current training set 𝑡 



 

 

49 

 

where 𝑠 > 0 . The number of employed schemes may vary. However, in this 

implementation we decided to use the following three schemes: 

▪ Scheme 1: 𝑠 = 2 

▪ Scheme 2: 𝑠 = 5 

▪ Scheme 3: 𝑠 = 10 

In each scheme, the labeled set grows at a different pace. Table 3.7 explain the 

data size growth procedure for data training and labeling using scheme 1 with growth 

factor 2 as an example. According to Table 3.7, we have an initial training set that 

we have prepared in Section 3.3 with the size of 𝑡1 and use it to create a set of 

baseline models or voting classifiers 𝑉𝐶. Then we start the iteration process using 

𝑉𝐶1. We assign labels to the unlabeled data from which we pick up 𝑢1  =  𝑠 ∗  𝑡1 

for a promotion to the training set of size 𝑡2 = 𝑡1 + 𝑠 ∗  𝑡1  for the next round. 

Therefore, the size of the unlabeled data we will annotate will constantly increase by 

two times the size of the training data used to train the models. The procedure is 

repeated until the entire data are assigned and labeled. An example of this procedure 

for the growth factor 𝑠 = 2 is demonstrated in Figure 3.7.  

Table 3.7 The size of the sets and additions over iterations. 𝑡𝑛 is the training set size, 𝑢𝑛 is 

the size of increments, 𝑠 is scheme factor, while 𝑛 =  1, 2, . . . , 𝑛. 

Iteration The set Scheme 1 (𝑠 = 2) 

1 𝑡1 = 1000 𝑢1 = 2 ∗ 𝑡1 

2 𝑡2 = 𝑡1 + 2𝑡1 𝑢2 = 2 ∗ 𝑡2 

3 𝑡3 = 𝑡2 + 2𝑡2 𝑢3 = 2 ∗ 𝑡3 

4 𝑡4 = 𝑡3 + 2𝑡3 𝑢4 = 2 ∗ 𝑡4 

. . . 

. . . 
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Iteration The set Scheme 1 (𝑠 = 2) 

𝑛 𝑡𝑛 = 𝑡𝑛−1 + 2𝑡𝑛−1 𝑢𝑛 = 𝑠 ∗ 𝑡𝑛 

Figure 3.7 An example of data size growth procedure with growth factor 𝑠 = 2. 
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Chapter IV 

Ensemble-based Recurrent Networks for 

Food Ingredient Named Entity Recognition 

4.1 Background and Related Works 

This section will provide a brief overview of the background on developing NER 

for food information extraction, including various studies employing the recurrent 

networks model and ensemble methods to address NER challenges. 

4.1.1 Food-Related NER 

NER tools and frameworks use various approaches that can be classified into 

three categories: machine learning, rule-based, and dictionary-based [67]. In the food 

domain, there have been a few studies on the NER problem. In the ruled-based 

approach, there are FoodIE [14] and drNER [68]. In addition, several databases for 

food-related NER have also been developed, such as FoodBase [7] and RecipeDB 

[13]. FoodBase raw data were obtained from the Allrecipes website, while RecipeDB 

was from Allrecipes and Food.com websites. After the establishment of the 

FoodBase corpus, the most recent study in [12] evaluated four distinct NER 

techniques using this dataset, such as FoodIE, NCBO (SNOMED CT), NCBO 

(OntoFood), and NCBO (FoodON). Moreover, to enhance the performance of the 

FoodBase corpus, FoodNER [16] and BuTTER [15] were proposed. FoodNER uses 

a bidirectional encoder representation from the transformers (BERTs) model to 

extract food entities, whereas BuTTER uses bidirectional long short-term memory 

(BiLSTM) and conditional random fields to extract food entities (CRFs). 
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4.1.2 Ensemble Method for NER 

 Ensemble learning combines several base classifiers to obtain better 

generalization performance. Diverse methods for effectively combining base 

classifiers have been proposed [26], [27]. Voting, bagging, boosting, blending, and 

stacking are the most frequent approaches [25], [28], [29]. In the NER task, several 

research studies have used the ensemble method. These studies are summarized in 

Table 4.1. Voting has been a preferred method for most NER investigations among 

the ensemble strategy [69]–[75]. Voting is an ensemble method that combines the 

performance of multiple classifiers and selects a class with the most votes [27]. 

Several of the studies in Table 4.1 employ several strategies, including concatenation 

[76], stacking [73], and other approaches [77]. Interestingly, none of these studies 

have yet been applied to the extraction of food-related entities. Thus, we proposed a 

Recurrent Networks-based Ensemble or RNE model for extracting ingredient 

entities and their attributes in this study [19]. 

Table 4.1 Comparative overview of prior studies on NER utilizing the ensemble method 

Study 
Ensemble 

Scheme 
Classifiers Dataset 

Performance 

Metrics 

[71] Voting 5 NER systems: Stanford 

NER, NER-Tagger, 

Edinburgh Geoparser, 

spaCy NER, Polyglot 

The Marry Hamilton 

Papers [78], The Samuel 

Hartlib Papers [79] 

Recall,  

Precision,  

F1 score 

[69] Voting MLP, ABM1, J48 Reuters corpus [80] Recall,  

Precision,  

Error rate,  

MCC, F1 score 

[81] Majority Voting BERT, CNN, 

CamemBERT, 

CamemBERT-bio, XL-

ChEMU 2020 [82], DEFT 

2020 [83], WNUT 2020 

[84] 

F1 score 
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Study 
Ensemble 

Scheme 
Classifiers Dataset 

Performance 

Metrics 

Net, RoBERTa, 

BioBERT, Bio + 

ClinicalBERT,  

PubMedBERT, BioMed  

RoBERTa 

[74] Majority Voting BERT-base-cased, 

BERT-based-uncased, 

CNN 

ChEMU NER Task [82] Recall,  

Precision,  

F1 score 

[73] Majority Voting, 

Stacking 

SVM, CRF, ME i2b2 2010 corpus [85] Recall,  

Precision,  

F1 score 

[70] Weighted Voting ME, CRF, SVM Bengali News corpus [86],  

NERSSEAL [87], CoNLL-

2003 [88] 

F1 score 

[75] Plurality Voting, 

Weighted Voting 

HMM, CRF, MEM, 

BiLSTM 

Private (Authors private 

data) 

F1 score 

[77] Arbitration 

Rules, Stacked 

Generalization, 

Cascade 

Generalization 

Generalized Winnow, 

ME, SVM, CRF 

GENIA [89], JNLPBA 

[90] 

Recall,  

Precision,  

F1 score 

[76] Concatenation Neural Networks OKE2016 [91], 

AIDA/CoNLL [88], 

NexGenTV corpus [92] 

Recall,  

Precision,  

F1 score 

 

4.1.3 Recurrent Model for NER 

Deep learning for NLP has resulted in a new research paradigm. a number of 

studies on deep learning-related models and methods have been applied to diverse 

NLP tasks [93]. Among these are recurrent neural networks. In modeling sequential 
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data, RNNs and their variations, such as GRU and LSTM, have demonstrated 

outstanding performance [94], [95]. Specifically, bidirectional RNNs efficiently 

utilize past information (via forward states) and future information (through 

backward states) for a given period [96]. The first work using RNNs for NER 

problems was conducted using the LSTM–CRF architecture by [96]. After this, 

several additional studies explored RNNs for sequence-labeling problems. In 

completing their NER tasks, the authors of [97]–[100] used GRU, whereas the 

authors of [101]–[104] used LSTM. In addition, the authors of [59] use RNNs for 

NER in Chinese electronic medical records and the authors of [105] employ RNNs 

for nested NER problems. In the case of food information extraction, BuTTER [15] 

and MenuNER [3] were developed using Bi-LSTM-CRF. 

4.2 Dataset 

In this study, we used the FINER dataset [18] we constructed in Chapter 3. The 

labels are spanned in the IOB chunking format of the data and have five kinds of 

named entity tags such as: INGREDIENT, PRODUCT, UNIT, QUANTITY, and 

STATE. The data set consists of 181,970 data or ingredient sentences, which are 

split 80:20 between training and testing, respectively. It is approximately 145,576 

data for training and 36,394 data for testing the system. The complete distribution of 

the dataset across tags is further presented in Table 4.2. 

Table 4.2 The distribution of the named entity dataset. 

Named-entity type Count Ratio (%) 

B-INGREDIENT 210,082 15.03 

B-PRODUCT 17,325 1.24 

B-QUANTITY 209,867 15.01 

B-STATE 135,315 9.68 
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Named-entity type Count Ratio (%) 

B-UNIT 174,993 12.52 

I-INGREDIENT 240,436 17.20 

I-PRODUCT 55,212 3.95 

I- QUANTITY 1,919 0.14 

I-STATE 130,158 9.31 

I-UNIT 2,353 0.17 

O (outside or non-entity chunk) 220,300 15.76 

Total 1,397,960 100 

 

4.3 Hyperparameter Optimization 

As AI advances, deep learning techniques are becoming increasingly popular for 

any ML problems. However, the training process for these models involves a large 

number of hyperparameters, and the selection of these hyperparameters relies on 

experience. Thus, adjusting hyperparameters is a tedious and time-consuming 

process. This study uses the greedy search algorithm to find the best hyperparameter 

in search space or a dictionary where the hyperparameter arguments and values are 

used for the greedy hyperparameter search. In greedy search, the validation accuracy 

for each hyperparameter is determined locally. The greedy search algorithm 

maximizes each hyperparameter while keeping the others constant. In this strategy, 

the local optimum solution is obtained by optimizing the local solution for each 

hyperparameter using an iterative procedure that is repeated until all 

hyperparameters are optimal [106], [107]. Since model performance depends on the 

hyperparameters, all candidate classifiers are optimized prior to selection. The final 

values for each classifier based on the greedy hyperparameter optimization are 

presented in Table 4.3. 
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Table 4.3 Hyperparameter space for each model. The final value is determined by selecting 

the optimal hyperparameter using greedy search. 

Model Hyperparameter Values Final Value 

RNN n_layers [1, 2, 4] 4 

 hidden_dim [16, 32, 64] 16 

 dropout [0.0, 0.3, 0.5] 0.0 

GRU n_layers [1, 2, 4] 2 

 hidden_dim [16, 32, 64] 64 

 dropout [0.0, 0.3, 0.5] 0.3 

LSTM n_layers [1, 2, 4] 2 

 hidden_dim [16, 32, 64] 32 

 dropout [0.0, 0.3, 0.5] 0.0 

 

4.4 Recurrent Network-based Ensemble (RNE) 

According to the wisdom of the crowd theory holds that collective knowledge is 

superior to that of the few [108]. In light of this, the ensemble method aims to 

improve prediction performance by aggregating the results of multiple models. A set 

of model predictions from the first-level classifiers are used as inputs for the second-

level learning model in an ensemble approach. The second-level model is trained to 

optimally incorporate the predictions of the first-level classifiers to generate the final 

prediction. Thus, ensemble learning can transform a group of weak classifiers into a 

strong classifier [28]. It has been demonstrated that the ensemble method provides 

better accurate predictions than single models in a wide range of scenarios. When 

the models produce different results, the potential for performance improvement is 

higher when an ensemble method is used [109]. 
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In this study, we develop a named-entity recognition model called the recurrent 

network-based ensemble (RNE) method to extract ingredient entities and their 

attributes from recipe text [19]. The RNE is comprised of recurrent network models 

such as RNN, GRU, and LSTM. It was developed utilizing a deep ensemble-learning 

framework. These models are independently trained on the same dataset and then 

integrated to create more accurate predictions for the extraction of food entities, such 

as ingredient names, products, units, quantities, and states for each ingredient in a 

recipe. The RNE model architecture is shown in Figure 4.1. 

 

 

Figure 4.1 The RNE model architecture. 
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Figure 4.2 Input and output data example. 

The input data to RNE is a list of ingredient phrases from the FINER dataset, 

named-entity dataset we have created in Chapter 3. In the first layer, we retrieved 

the contextual meaning of words using pre-trained GloVe [110] word embeddings. 

In this layer, the pre-trained word embedding is used to map each word (𝒘1, 𝒘2,

… 𝒘𝑛) in the sentence 𝑿 to a word vector. In the next layer, we independently train 

three base classifiers on the same dataset using the Adam optimizer and cross-

entropy loss function so that the loss function converges to a better local minimum. 

In this study, we use three bidirectional recurrent models, such as Bi-RNN, Bi-GRU, 

and Bi-LSTM, as the base classifiers. Each model generates an output prediction 

represented as 𝑷1, 𝑷2, and 𝑷3. Next, in the combiner layer, we concatenate the three 

different predictions and obtain the final prediction 𝒀 , as shown in Figure 4.2. 

Specifically, we draw the final predicted label 𝒀  through 𝒀 =  𝓕([𝑷1  ∘  𝑷2  ∘

 𝑷3]) , with ∘  representing the concatenation operator and 𝓕: ℝ(𝐷×3) → ℝ𝐾 

representing a linear layer without any non-linear activation function. Note that we 

indicate 𝐷 as the output dimension from each recurrent model and 𝐾 as the number 

of classes that shall be predicted by the ensemble model. In practice, we set 𝐷 equal 

to 𝐾, and in this way we impose each recurrent model to predict the named entities 

while aggregating each prediction through this ensemble layer to obtain a more 

precise prediction. Figure 4.2 illustrates an NER sentence input and output. All 

implementation details for the experiments conducted in this study are detailed in 

the experimental section. 
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Chapter V 

Results and Analysis 

5.1 Experimental Setup 

All experiments are performed on a computer with an Intel(R) Core 

(TM) i9-10900KF processor running at 3.70 GHz, a NVidia GeForce RTX 

3090 graphics processing unit, and 32 GB of RAM. And the Pytorch 

python package in an open-source Anaconda GPU environment with 

Python version 3.9. 

5.2 Evaluation Metrics 

To evaluate our model performance, we employ three different metrics 

[111]: Precision, Recall, and F1-score. We count the true positives (𝑇𝑃𝑡), 

false positives (𝐹𝑃𝑡 ), and false negatives (𝐹𝑁𝑡 ). 𝑇𝑃𝑡  occurs when the 

outputs of the NER for input tokens exactly matches the same ingredient 

entity in the ground truth dataset, 𝐹𝑃𝑡 or falsely predicted positive occurs 

when something that is not an ingredient entity is classified as being one, 

and 𝐹𝑁𝑡  occurs when a specific annotation is omitted when the entity 

should be classified as an ingredient entity and this happens when the 

ingredient entity is not properly extracted using the NER method. In 

addition, we use the one-against-all method to convert the multiclass 
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confusion matrix of each dataset into a binary confusion matrix [112]. 

These metrics for evaluation are calculated as follows: 

Precision = ∑
𝑇𝑃𝑡

(𝑇𝑃𝑡+ 𝐹𝑃𝑡)𝑡∈𝑇              (20) 

Recall = ∑
𝑇𝑃𝑡

(𝑇𝑃𝑡+ 𝐹𝑁𝑡)𝑡∈𝑇                  (21) 

F1 = ∑
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡𝑅𝑒𝑐𝑎𝑙𝑙𝑡

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡+ 𝑅𝑒𝑐𝑎𝑙𝑙𝑡)𝑡∈𝑇            (22) 

where: 

▪ Precision is the ratio between the number of true positives and 

the total number of predicted positives. 

▪ Recall is the proportion of actual positives to true positives. 

▪ F1-Score represents the harmonic mean of precision and 

recall. 

5.3 Analysis and Evaluation for SMPT method 

This section presents the analysis and then discuss the results of the 

experiments performed in this study to verify the effectiveness of the 

SMTP method in generating the FINER dataset and assess the dataset’s 

quality using the existing NER models.  In addition, the dataset of this 

study can be accessed in Figshare [18] (URL: 

https://doi.org/10.6084/m9.figshare.20222361.v3). 
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5.3.1 Test Results with Training Schemes 

The SMPT grows the labeled dataset by multiplying the set by a certain 

factor. This paper considers three typical growth schemes to show the 

effect of the amount of training data with respect to the data quality and 

process efficiency. Figures 5.1, 5.2, and 5.3 gives a detailed picture about 

the performance of the three schemes with growth factor of 2, 5, and 10 

respectively. These three figures show that the annotators' performances 

were increased as the dataset grows over iterations. This matches our 

expectation that the models improve with more training data, which is a 

strong indicator about the dataset quality. 

 

Figure 5.1 The performance results in each iteration with growth factor 2 

(scheme 1). 
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Figure 5.2 The performance results in each iteration with growth factor 5 

(scheme 2). 

 

Figure 5.3 The performance results in each iteration with growth factor 10 

(scheme 3). 
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Figure 5.4 presents the boxplot that compares the three schemes in 

terms of the average performance measured by the F1 score. The peak of 

the box represents the data point with the highest value, while the bottom 

shows the data point with the lowest value. A horizontal red line within 

the rectangle indicates all values' median, and the white diamond indicates 

the mean value. Figure 5.4 does not have outliers for all models. The 

length of the box plot indicates a more varied model distribution. 

According to the box plot, Scheme 3 outperforms all other models, with 

the distribution's median value being within the third quartile. It implies 

that 75% of the results are beneath the upper quartile. 

 

Figure 5.4 The average performance in each scheme. 

In addition, Table 5.1 shows the computation time spent in each 

iteration to label the data for each scheme.  When training time is included, 

scheme 1 is the slowest due to the increased number of iterations which is 

five. Scheme 2 is faster but has the lowest performance among all 

schemes, according to Figure 5.4. On the other hand, scheme 3 takes a 
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similar amount of time but with fewer iterations and shows superior 

performance to the other two. Hence, scheme 3 is the preferred method for 

time efficiency and performance. 

Table 5.1 Computation time of each scheme. As the training set grows, labeling 

time increases. Note that the three schemes increased the labeled set differently. 

Iteration 

Scheme 1 (𝑠 = 2) Scheme 2 (𝑠 = 5) Scheme 3 (𝑠 = 10) 

Data 
Time 

(second) 
Data 

Time 

(second) 
Data 

Time 

(second) 

1 2,000 146 5,000 268 10,000 914 

2 6,000 392 30,000 1,757 110,000 10,134 

3 18,000 1,365 144,970 12,099 59,970 5,018 

4 54,000 4,916 - - - - 

5 99,970 9,436 - - - - 

Total 179,970 16,255 179,970 14,124 179,970 16,066 

Meanwhile, as for the scenario of the sample generated by Scheme 3 

over three iterations, see Figure 5.5 in particular. The sample input was 

the sentence: "1 pound mixed domestic and wild mushrooms such as 

shiitake oyster or cremini, trimmed and quartered, salt and freshly ground 

pepper". In the first iteration, all three models over-generated entities, 

some with wrong labels as highlighted in the red boxes, and the correct 

prediction is highlighted in the blue boxes. For instance, the model 

returned a number of "O" tags for non-entity words. In the second 

iteration, the model began to learn, although, in the spaCy NER model, 

one error is still found in classifying "shiitake oyster," which is an 
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"INGREDIENT", as a "PRODUCT" class. However, in the last iteration, 

all models managed to detect all entities correctly in the sentence. 

 

Figure 5.5 An example of NER sentence generated in scheme 3 over three 

iterations. 

 



 

 

66 

 

5.3.2 Evaluation on ML Models 

To demonstrate the quality of the FINER dataset generated by the 

SMPT. We indirectly evaluate this dataset using three popular NER 

models to infer the dataset's quality. Those models are CRF [113]–[115], 

BiLSTM-CRF [15], [101]–[103], [116], [117], and BERT [3], [66], [118]. 

They have proven to be effective for token classification tasks like NER 

[94], [95], [119]. 

The three models were trained on our FINER dataset, and we utilized 

the reserved evaluation set of 1,000 annotated samples, which we have 

prepared in Subchapter 3.3. Table 5.2 summarizes the performance of the 

models on the evaluation dataset in terms of precision, recall, and F1 

score. BERT achieved the best performance in both micro and macro 

averages. BERT’s micro-average yields precision, recall, and F1-score of 

0.978, 0.980, and 0.979, respectively. Its macro-average metrics were 

slightly lower than the micro-averages. We attribute this to the imbalanced 

data among classes where only a few inside tags are observed for some 

classes in the training set. The macro-average simply takes the mean of 

the score of classes, whereas the micro-average takes the class proportion 

into account. As a consequence, the poor performance of a small class has 

a disproportionate impact on the overall performance when using the 

macro versions. 
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Table 5.2 Performance of each model with the best performance is emphasized in bold. 

Evaluation 

metrics 

CRF Bi-LSTM-CRF BERT 

micro-avg macro-avg micro-avg macro-avg micro-avg macro-avg 

Precision 0.953 0.950 0.973 0.956 0.978 0.961 

Recall 0.964 0.957 0.974 0.962 0.980 0.971 

F1-score 0.958 0.953 0.973 0.959 0.979 0.966 

 

Table 5.3 The classification report for each models and the best performance is emphasized in bold. 

Class 
CRF Bi-LSTM-CRF BERT 

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

B-INGREDIENT 0.948 0.951 0.949 0.969 0.974 0.972 0.979 0.981 0.980 

B-PRODUCT 0.909 0.896 0.902 0.932 0.959 0.946 0.963 0.972 0.967 

B-QUANTITY 0.998 0.998 0.998 0.999 0.999 0.999 1 0.999 0.999 

B-STATE 0.955 0.947 0.951 0.969 0.971 0.970 0.981 0.979 0.980 

B-UNIT 0.994 0.994 0.994 0.996 0.997 0.997 0.999 0.998 0.998 
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Class 
CRF Bi-LSTM-CRF BERT 

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

I-INGREDIENT 0.929 0.956 0.942 0.958 0.975 0.967 0.979 0.976 0.977 

I-PRODUCT 0.846 0.923 0.883 0.918 0.973 0.945 0.927 0.986 0.956 

I- QUANTITY 0.992 0.958 0.975 0.982 0.985 0.989 0.992 0.994 0.993 

I-STATE 0.929 0.951 0.940 0.952 0.978 0.965 0.964 0.983 0.974 

I-UNIT 1 1 1 0.999 0.998 0.999 1 1 1 
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Additionally, the CRF model used in this experiment achieved the 

scores listed in Tables 5.2 and Table 5.3 with an appropriate 

hyperparameter tuning as the CRF contained a number of parameters that 

need fine-tuning to improve performance. However, when compared to 

BiLSTM-CRF and BERT, the CRF performed the poorest, which is 

expected given that BiLSTM-CRF has a more complex architecture than 

CRF and has been demonstrated to be superior due to the use of a 

bidirectional (forward and backward) LSTM for learning the hidden text 

representation and a CRF for tag decoding. Along with the FINER 

evaluation of the three models, we compare the results of our study with 

similar studies such as RecipeDB and TASTEset. We choose RecipeDB 

and TASTEset for our comparison because of the similar entities and data 

source description to our FINER dataset. Compared to them, the FINER 

dataset outperformed both performances by an F1 score of 97.9%, as 

shown in Table 5.4. 

Table 5.4 Comparative analysis of the FINER dataset with other similar datasets 

from previous work with the best performance is emphasized in bold. 

Dataset Model 
Performance 

(F1-score) 

RecipeDB [8], [13] K-Means Clustering 0.961 

TASTEset [11] BERT 0.935 

FINER (Our) BERT 0.979 

For further analysis and verification, we presented a detailed 

evaluation of each entity tag of these models in Table 5.3. Classes such as 
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UNIT and QUANTITY were recognized with very high performance for 

both beginning (B) and inside (I) chunks due to their distinct 

morphological characteristics and the inclusion of numerical characters. 

Moreover, UNIT has a high probability of occurring promptly after 

QUANTITY, making it relatively easy for the model to predict them. 

Overall, BERT performed better than other models in most cases. The 

BERT has been pre-trained on a large corpus and it preserves powerful 

representations of the language, so it is not surprising that it performs best 

in most downstream tasks like NER. Based on these experiments, we 

conclude that our method is helpful and beneficial in building a reasonably 

good data set for typical NER tasks 

5.4 Analysis and Evaluation for RNE model 

The proposed model is evaluated using evaluation metrics including 

precision, recall, and F1-score. Using these metrics, we analyzed and 

compared the proposed Recurrent Network-based Ensemble method 

(RNE) model with the single models of RNN, GRU, and LSTM. Table 5.5 

provides a summary of the performance of both unidirectional and 

bidirectional models. A unidirectional or one-way network stores only 

forward information (past to future). While the bidirectional approach 

utilizes information from both sides and accepts input flows in both 

directions (past to future and vice versa). 
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Table 5.5 A comparison of the models of unidirectional and bidirectional 

recurrent networks. The best performance is emphasized in bold. 

Model 
F1-score (%) 

Unidirectional Bidirectional 

RNN 94.26 95.60 

GRU 94.86 95.83 

LSTM 94.18 95.59 

RNE 94.83 96.00 

According to Table 5.5, we observe that that RNE with a bidirectional 

network type achieved the highest performance of 96%, outperformed all 

single models by 0.2-0.4% in F1-score. The results indicate that the 

bidirectional network type is superior to the unidirectional network type. 

This architecture has several advantages for solving real-world issues, 

particularly in NLP. Each component of the input sequence contains past 

and present information. Because the bidirectional type combines network 

layers from both directions, it can produce more relevant output. In 

contrast, RNN performed the worst of all models, which was to be 

expected considering that GRU, LSTM, and RNE have more complex 

architectures than RNN. We believe these findings suggest that GRU and 

LSTM are superior to RNN due to the use of memory cells with a gate 

mechanism for controlling the flow of information in sequential data [94]. 

In addition, we analyzed and compared the computing cost of each 

model in Figure 5.6. The figure demonstrates the average training time for 

four models on a computer with an Intel(R) Core (TM) i9-10900KF 
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processor running at 3.70 GHz, a NVidia GeForce RTX 3090 graphics 

processing unit, and 32 GB of RAM. The Bi-LSTM and Bi-RNN model 

outperformed all other models in terms of time efficiency. Both models 

performed, on average, 36.14% % faster than the second-fastest model, 

Bi-GRU, and 143,4% faster than RNE. Thus, it makes RNE is 239.6% 

slower than both of Bi-RNN and Bi-LSTM. Due to the expertise and time 

required to train and maintain several models instead of a single model, 

the RNE model is the most time-consuming as. 

 

Figure 5.6 The computational cost comparison for each model. 

Table 5.6 presents detailed performance for each entity for the 

bidirectional type of RNN, GRU, LSTM, and RNE models. Model 

performance ranges from 89% for B-PRODUCT and 100% for I-UNIT. 

For inside-tag UNIT or I-UNIT, most models attain perfect performance, 

and this is because I-UNITs are very rare (account for 0.17% of the overall 

dataset), and the majority of them correspond to the "fluid ounces" token, 
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making prediction relatively easy for the model. The same holds true for 

the performance of B-STATE, which has nearly 100 percent accuracy 

across all models, despite the fact that the number of entities in the dataset 

is around 9.7%, they have a small number of unique tokens, making it 

relatively easy to predict. In contrary, the B-PRODUCT entity has the 

lowest performance, not only due to its limited annotation distribution in 

the data set (about 1.2%) but also due to the difficulty in detecting the 

beginning tag of the PRODUCT. The PRODUCT entity is often long, 

unique, and scarce. It consists of many tokens, as shown in an example of 

product entity extraction in Figure 3.2 on the previous Subchapter 3.3. 

Therefore, it appears that the amount of training data samples for this 

entity is insufficient for automatic entity learning. 

Figures 5.7, 5.8, 5.9, and 5.10 demonstrate that across all models, most 

misclassifications were due to incorrect predictions of both the beginning 

and inside chunk of the class INGREDIENT, PRODUCT, and 

QUANTITY against all entities, except the class I-UNIT. To improve the 

model’s performance, one should focus on the predictive results of these 

three classes, which is the highest misclassification rate among all the 

classes. In contrast, class I-UNIT has zero misclassifications across all 

entity models. Overall, the performance findings presented in Table 5.5, 

Table 5.6, and the confusion matrix in Figures 5.7, 5.8, 5.9, and 5.10 show 

that RNE can be the method of choice for NER. It can be seen that 

compared to the single models, our proposed model enhances the 

detection of ingredient entities by 0.2 to 0.4%.
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Table 5.6 The classification report for each NER model with their highest performance emphasized in bold. P is precision, R is 

recall, and F1 is F1-score. 

Class 
Bi-RNN Bi-GRU Bi-LSTM RNE 

P R F1 P R F1 P R F1 P R F1 

B-INGREDIENT 0.962 0.970 0.966 0.962 0.973 0.968 0.954 0.975 0.964 0.968 0.971 0.970 

B-PRODUCT 0.890 0.922 0.910 0.910 0.927 0.918 0.902 0.918 0.911 0.899 0.935 0.916 

B- QUANTITY 0.967 0.974 0.971 0.950 0.978 0.963 0.959 0.976 0.967 0.954 0.978 0.966 

B-STATE 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999 

B-UNIT 0.997 0.997 0.997 0.995 0.998 0.997 0.996 0.998 0.997 0.997 0.998 0.997 

I-INGREDIENT 0.966 0.970 0.968 0.965 0.978 0.971 0.966 0.972 0.969 0.968 0.976 0.972 

I-PRODUCT 0.925 0.976 0.950 0.950 0.970 0.960 0.941 0.968 0.954 0.951 0.970 0.960 

I-QUANTITY 0.926 0.968 0.946 0.920 0.971 0.945 0.929 0.970 0.944 0.925 0.974 0.949 

I-STATE 0.937 0.964 0.951 0.917 0.967 0.941 0.881 0.968 0.922 0.925 0.970 0.947 

I-UNIT 1 1 1 1 1 1 1 1 1 1 1 1 
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Figure 5.7 The confusion matrix analysis for Bi-RNN model. 

 

Figure 5.8 The confusion matrix analysis for Bi-GRU model. 
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Figure 5.9 The confusion matrix analysis for Bi-LSTM model. 

 

Figure 5.10 The confusion matrix analysis for RNE model. 
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However, the computational cost illustrated in Figure 5.6 implies that, 

given the model’s simplicity and computational time, a single model such 

as Bi-RNN or Bi-LSTM could be the second-best alternative after RNE. 

Although Bi-GRU performs marginally better, Bi-RNN and Bi-LSTM are 

faster at training and computationally less expensive than Bi-GRU and 

RNE. In addition, it is important to note that there is no guarantee that the 

combination of several classifiers will always exceed the ensemble’s best 

individual classifier, with the exception of certain cases [120]. Therefore, 

combining classifiers may not always outperform the best classifier in the 

ensemble, but it reduces the likelihood of making a very poor selection.
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Chapter VI 

Conclusions and Future Work 

6.1 Conclusions 

To address the limited resources available for food information extraction, 

particularly for NER tasks. We construct a named entity recognition dataset for food 

ingredients. In constructing the dataset, we introduced a method based on self-

training and ensemble learning called SMPT (Semi-supervised Multi-Model 

Prediction Technique). SMPT is a semi-supervised method for building a NER 

dataset iteratively by incorporating the concept of self-training applied to pretrained 

models such as spaCy NER, BERT, and DistilBERT under a voting scheme 

mechanism for improved prediction. After a series of experiments, a new dataset 

named FINER was constructed for food entity recognition and tested to verify its 

quality. The FINER dataset of this study is presented as a public dataset for named 

entity recognition in the food domain and can be accessed at Figshare [18]. 

Furthermore, in order to enhance the performance of NER model in extracting 

ingredient entities from recipe text, a recurrent network-based ensemble model 

(RNE) was proposed. For the final prediction, we aggregated the predicted results of 

bidirectional RNN, GRU, and LSTM using the ensemble concatenation approach for 

the final prediction. The evaluation findings indicate that the ensemble model 

performs better than a single model. Due to the reduction of the variance component 

of the prediction error made by the contributing model, the ensemble model achieves 

a higher performance. Thus, it can be said that the ensemble method can enhance the 

classifier’s performance and reduce variance. 
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6.2 Future Work 

As we highlighted in section 5.4 regarding the efficiency of the RNE model, a 

single model such as Bi-RNN and Bi-LSTM can be the second option after RNE due 

to its simplicity and computational time. Although Bi-GRU performs slightly better, 

Bi-RNN and Bi-LSTM are faster at training and less expensive computationally than 

other models. Furthermore, it may be possible in the future to improve these values 

and design a more robust model that maintains a balance between computational cost 

and model performance by incorporating additional factors such as exploring better 

architectures, increasing the size of the dataset, and selecting a more appropriate 

hyperparameters setting. As a result, we offer the following suggestions for future 

research. 

(1) In the future this model can be leverage for cross-domain adaptation with 

adding one or more layer before the base classifiers layer. The new layer can 

be a neural adaptation layer using domain specific pre-trained word 

embeddings coupled with character level CNN or LSTM. 

(2) For better understanding of the words and its context in a particular sentence, 

in word embeddings layer part instead of using pre-trained word embedding 

like Word2vec and GloVE, we can utilize ELMo or BERT for feature 

extraction. Word2vec and GloVE word embeddings are context independent. 

Thus, these models output just one vector (embedding) for each word, 

combining all the different senses of the word into one vector. On the other 

hand, ELMo and BERT is context dependent which can generate different 

word embeddings for a word that captures the context of a word based on its 

position in a sentence. 

(3) In the final layer, instead of using concatenation we can employed stacking 

ensemble with CRF layer as the final layer. In stacking ensemble, we take the 
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probability from the 3 models and using it as an input to the second layer. In 

the second layer we can utilize meta-classifier such as MLR (multinomial 

linear regression) or RF (random forest). And then in the final layer for better 

prediction we add CRF layer. Other than stacking, we can employ other 

ensemble learning approach to enhance the model performance and 

effectiveness in detecting entities. 

(4) For future development, we can further enlarge the dataset by incorporating 

additional information from multiple food-sharing websites such as 

food.com, yummly.com, cookpad.com, and many more. 

(5) In the future, we can use the FINER dataset to develop chatbot systems for 

food-related applications, such as a personalized diet Q&A chatbot. In 

addition, we can integrate this data set to a personalized food 

recommendation system to calculate the nutrition intake. 
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