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Abstract 

 

The elastic waves generated in ultra-high strength steel (UHSS) under various 

corrosive solutions were investigated. The threshold stress intensity factor ( ) for 

HAC was obtained from ultra-high strength steel (SKD11: HV670) by applying different 

loads in a solution of 0.057M acetic acid. The frequency characteristics by hydrogen 

aggregation and crack propagation were analyzed by the time-frequency analysis method 

using LabVIEW. The   of the specimen was determined from the cumulative elastic 

wave and fracture surface, and the static fatigue limit based on the crack depth was 

determined using   . Regardless of the corrosion solution, elastic waves in a low 

frequency band, less than 40 kHz, and in a high frequency band, more than 60 kHz, were 

obtained. The low frequency below 40 kHz was caused by corrosion, while the high 

frequency above 60 kHz are caused by crack initiation and propagation. The elastic wave 

in the specimens under the acetic acid solution were caused by HAC-induced crack 

propagation, but the elastic wave in the specimens under 1.5M H2SO4 + NaCl 0.5M 

solution or distilled water were strongly affected by corrosion. The frequency band of the 

elastic wave was divided into dominant frequency below about 50 kHz and above about 

60 kHz, regardless of the value of Kc. The low-frequency band below about 50 kHz is 

the elastic wave due to corrosion, while the high-frequency band above about 60 kHz is 
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the elastic wave caused by crack occurrence and propagation. When   was the 

smallest, the crack in the surface direction propagated slightly, but the crack in the depth 

direction did not propagate at all. The stress intensity factor at this time was determined 

as the HAC threshold stress intensity factor ( ). That is,   was determined to be 

1.96 MPa√ . The static fatigue limit was determined to be 400 MPa, and the static 

fatigue limit of the crack specimen can be evaluated using  () = 1.96 MPa√). 

The experimental results agreed well with the evaluation results. 
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Chapter 1 

Introduction 

In general, when steel fractures in a hydrogen atmosphere or a hydrogen-generating 

atmosphere, it exhibits three fracture modes [1-5]: micro-void coalescence (MVC), quasi-

cleavage (QC), and inter-granular (IG) fracture modes depending on the conditions. In 

the case of steel with high yield strength, the propagation probability in IG mode is high, 

whereas the proportion of QC mode or MVC mode in the fracture surface increases as the 

yield strength decreases [3,4]. Among the fracture surface, since the fracture energy of 

IG mode is the lowest, high-strength steel is more sensitive to hydrogen-assisted cracking. 

Therefore, the study of hydrogen-assisted cracking is most important for structural 

maintenance. 

Griffith [6] was the first to propose an energetic criterion for the energy change 

associated with crack propagation. This criterion played a very important role in 

establishing and developing the concept of fracture mechanics. In particular, it has been 

widely used because it is very convenient to consider thermodynamic quantities and can 

be applied regardless of which process the crack propagation was governing. 

There are many studies of hydrogen-assisted cracking (HAC) on the dependence of   on hydrogen concentration or hydrogen fugacity [7-13]. However, there are few 

studies related to elastic waves [14,15]. The fugacity of a real gas, in chemical 

thermodynamics, is an effective partial pressure which replaces the mechanical partial 

pressure in an accurate computation of the chemical equilibrium constant. It is equal to 

the pressure of an ideal gas which has the same temperature and molar Gibbs free energy 

as the real gas. 

In the first study, elastic waves generated from ultra-high-strength steel (HV670) with 

different corrosion solutions were detected, and frequency characteristics were analyzed 

using time-frequency analysis using LabVIEW. In the second study, the threshold stress 

intensity factor ( ) for HAC of HV670 steel was obtained by applying different loads 

in the solution of 0.057M acetic acid. In addition, the elastic wave was detected from the 

crack and analyzed the frequency characteristics due to hydrogen aggregation and crack 

propagation by time-frequency analysis using LabVIEW. The crack propagation was 
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observed from the cumulative elastic wave and the fracture surface, and the   was 

determined. The third study evaluated the threshold stress intensity factor and static 

fatigue limit of HV670 steel in a corrosive environment to prevent structural damage due 

to HAC. In addition, elastic waves generated from the crack were detected, and frequency 

characteristics due to hydrogen aggregation and crack propagation were analyzed using 

time-frequency analysis using LabVIEW. KIHAC of the hydrogen-assisted stress corrosion 

cracking was determined from the cumulative elastic wave and the fracture surface, and 

the static fatigue limit according to the crack depth was determined from  . 
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Chapter 2 

Elastic Wave Properties in Ultra-High Strength Steel (HV670) 

exposed to Various Corrosive Solutions 

2.1 Introduction 
 

Due to its excellent resistance to fatigue, high strength, high toughness ultra-high-

strength steel is often chosen for use in the landing gears and fasteners of aircraft. For 

such components, if ultra-high-strength steel is used, the final product becomes lighter 

and the manufacturing cost can be reduced. However, these steels can experience severe 

hydrogen embrittlement after exposure to a corrosive environment [1]. Also, the 

components that use ultra-high-strength steels are constantly being stressed [2]. In 

hydrogen environments, if a steel component experiences stress that is higher than a 

certain critical value, hydrogen-assisted delayed fractures occur [3]. Hydrogen-assisted 

delayed fractures are one of the most serious threats to safety faced by the aerospace 

industry. Motivated by this, hydrogen-assisted cracking (HAC) of high-strength steel has 

been widely studied in various environments [4-16]. This study mainly focuses on 

qualitative hydrogen embrittlement, however, a quantitative study was also conducted 

[12-14]. In order to secure the safety of a structure at risk from hydrogen-assisted 

cracking, there have been some studies that analyzed how elastic waves in steel are 

affected by the initiation and propagation of cracks [15,16]. However, there are no studies 

that have attempted to detect and analyze elastic waves generated in steel while exposed 

to various solutions. 

In this chapter, the elastic waves generated in ultra-high-strength steel (UHSS) under 

various corrosive solutions were investigated, we paid particular attention to the 

frequency characteristics of the waves by conducting a time-frequency analysis using 

LabVIEW. The results from this analysis provide the basic data for monitoring crack 

initiation and propagation in UHSS structural components that have been exposed to 

various harsh environments. 
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2.2 Materials and experimental method 
 

The particular material investigated in this study was SKD11 cold-work mold steel, 

which was heat-treated to obtain UHSS. During heat treatment, the steel was kept at 

1,036°C for 2 hours and quenched, then tempered at 180°C for 3 hours. The Vickers 

hardness (HV) of the UHSS obtained after the heat treatment was 670. The chemical 

compositions of SKD11 are shown in Table 2.1. 

Fig. 2.1 shows the specimen used in this experiment. The slit in the specimen was 

machined in the center of a width of 10 mm by electric discharge machining (EDM). The 

semi-circle slit in the specimen used has 2c=1.4 mm and a=0.7 mm, the crack aspect ratio 

is a/c=1. The applied stresses at the free end of the specimen were 98 MPa, 104 MPa, and 

138 MPa. During testing, three types of solution were used: H2SO4 1.5M + NaCl 0.5M, 

distilled water, and 0.057M acetic acid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

７ 

 

Table 2.1 Chemical Compositions of SKD11 used in this study. 
 

C Si Mn P S Ni Cr Mo V 

1.489 0.272 0.329 0.024 0.001 0.239 11.29 0.843 0.236 

 

 

 
 

Fig. 2.1 SKD11 specimen used in this experiment. 
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The acquisition equipment used to record the elastic wave signals was the NI PXIe 

SYSTEM which supports up to 8 channels. The equipment digitizes and saves all elastic 

waves detected. The sampling rate used was 1MHz with a sampling size of 4,096. The 

sensor used 1MHz broadband with a wide frequency response range, the detected signals 

were passed through a 28dB preamplifier.  

The sensor was fixed to the specimen with the contact medium. Fig. 2.2 shows the 

experimental apparatus used for elastic wave acquisition. The elastic wave signals were 

analyzed for their time-frequency using LabVIEW. After the experiment, a cross-section 

of the specimen was observed using SEM. 
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Fig. 2.2 Experimental apparatus for elastic wave acquisition. 
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2.3 Results and Discussion 
 

2.3.1 Frequency band under corrosive solution 

 

Fig. 2.3 shows the results of the waveform, frequency spectrum, and time-frequency 

analysis obtained under a corrosive solution of 1.5M H2SO4 + 0.5M NaCl. The results 

were obtained while under the corrosive solution but without any applied stress. The 

frequency band of the detected was is approximately 30 kHz. 
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(a)  

                   
 (b) 

 
(c) 

 

Fig. 2.3 Elastic wave signal obtained under a corrosive solution of 1.5M H2SO4 + 0.5M 

NaCl (no stress applied, only a corrosive environment). 
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2.3.2 Frequency band under a corrosive solution of 1.5M H2SO4 + 0.5M NaCl 

 

Figs. 2.4 and 2.5 show the waveform, frequency spectrum, and time-frequency analysis 

obtained under a corrosive solution of 1.5M H2SO4 + 0.5M NaCl. These results were 

obtained while tensile stress of 13.5% was applied. Figs. 2.4 and 2.5 show the results 

obtained after 20 and 27 hours, respectively. In these figures, (a) shows the waveform, 

(b) shows the power spectrum, and (c) shows the time-frequency analysis. 
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(a) 

 
(b) 

  
(c) 

 

Fig. 2.4 Elastic wave signal obtained after 20 hours under a corrosive solution of 1.5M 

H2SO4 + 0.5M NaCl. 
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(a) 

 
(b) 

       
(c) 

 

Fig. 2.5 Elastic wave signal obtained after 27 hours under a corrosive solution of 1.5M 

H2SO4 + 0.5M NaCl. 
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Fig. 2.6 shows the cumulative count and the dominant frequency of the elastic waves 

obtained from steel specimen while under a corrosive solution of 1.5M H2SO4 + 0.5M 

NaCl. The dominant frequencies were obtained from Figs. 2.4 and 2.5. Elastic waves were 

not seen until 19 hours into the experiment. This period is thought to be the time it takes 

for hydrogen aggregation to occur at the crack tip. The elastic waves accumulated rapidly 

and continuously from 19 to 32 hours. In this period, a lot of low-frequency band f(1) 

waves were recorded, but high-frequency band f(2) waves were not continuously present 

but just appeared from time to time. From 32 hours to the end of the experiment, we were 

still seeing occasional waves in the f(1) band, but none were seen in the f(2) band during 

the same period. We believe that no f(2) signals were obtained because the crack tip had 

become covered with a corrosive film due to excessive corrosion. A lot of low-frequency 

band f(1) waves between roughly 29 to 32 kHz were obtained due to corrosion, and high-

frequency band f(2) waves around 95 kHz were obtained around 19 hours into the 

experiment. In addition, a lot of high-frequency band f(2) waves from 104 to 136kHz 

were obtained after 25 hours. 
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Fig. 2.6 Relationship between cumulative count, dominant frequency, and test time under 

a corrosive solution of 1.5M H2SO4 + 0.5M NaCl. 
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Fig. 2.7 shows SEM photographs of the fracture surface from the experiment using the 

corrosive solution of 1.5M H2SO4 + 0.5M NaCl. (a) shows the portion of the slit created 

by electrical discharge machining and the specimen surface. It can be seen that the surface 

is bumpy due to corrosion caused by the strong acid. (b) shows a portion of the slit after 

being exposed to strong acid, here we can see the presence of dents and corrosion. (c) 

shows a portion of the slit tip, we believe that the cracks were seen here propagated due 

to the corrosion and applied stress. The frequency band f(1) around 30 kHz is the 

dominant frequency for elastic waves occurring due to corrosion, the frequency band f(2) 

around 50 kHz or more is thought to be the dominant frequency related to crack initiation 

and propagation. 
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Fig. 2.7 SEM photograph of specimen under a corrosive solution of 1.5M H2SO4 + 0.5M 

NaCl. (a) Portion of slit created by EDM and specimen surface, (b) Portion of the 

corroded slit, (c) Portion of the slit tip. 
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2.3.3 Frequency band under distilled water 

 

Figs. 2.8 and 2.9 show the results of the waveform, frequency spectrum, and time-

frequency analysis obtained from specimen under distilled water while the tensile stress 

of 18% was applied. Figs. 2.8 and 2.9 show the elastic wave signal obtained after 23 and 

61 hours, respectively. In these figures, (a) shows the waveform, (b) shows the power 

spectrum, and (c) shows the time-frequency analysis. 
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(a) 

 
(b) 

       
(c) 

 

Fig. 2.8 Elastic wave signal obtained after 23 hours from specimen under distilled water. 
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(a) 

 
(b) 

       
(c) 

 

Fig. 2.9 Elastic wave signal obtained after 61 hours from specimen under distilled water. 
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Fig. 2.10 shows the cumulative count and dominant frequency of the elastic waves 

obtained from specimen under distilled water according to test time. No elastic waves 

were detected from roughly 19 to 22 hours, 26 to 40 hours, and 46 to 61 hours. It is 

thought that this in this period corrosion products and hydrogen aggregation at the slit tip 

were occurring. Elastic wave signals were obtained in the periods from 0-19 hours, 22-

26 hours, and 40-46 hours as well as at about 61 hours. It is considered that this period 

fractured the corrosion products due to hydrogen aggregation and stress concentration at 

the slit tip, and cracks initiated and was propagated. From 61 hours to the end of the 

experiment, none were seen elastic wave signal. In distilled water, the dominant 

frequency of the elastic waves was obtained either in the low-frequency band f(1) from 

about 34 to 39 kHz or in the high-frequency band f(2) from about 91 to 149 kHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

２３ 

 

 
 

Fig. 2.10 Relationship between cumulative count, dominant frequency, and test time 

under distilled water. 
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Fig. 2.11 is an SEM photograph of the fracture surface from the experiment with 

distilled water. (a) shows a portion of the slit created by electric discharge machining, (b) 

shows a portion of the corroded slit, and (c) and (d) shows the slit tip. In (b), we can see 

pitting in several places due to corrosion by the distilled water. In (c), HAC can be seen 

in some places due to the distilled water and applied stress. In the enlarged figure, we can 

clearly see grains caused by the embrittlement of the interface, and cracks can be observed 

in the cross-section of some parts. In addition, a lot of corrosion can be observed in this 

portion of the slit. In (d), a lot of corrosion can also be seen in this portion of the slit, and 

it is considered that the crack shown here initiated at the slit tip. In distilled water, HAC 

occurred due to hydrogen aggregation, while the crack propagated due to the applied 

stress. It is thought that no elastic waves were detected after 61 hours due to the closure 

of the crack tip by corrosion. 
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Fig. 2.11 SEM photographs of the specimen after experiment under distilled water. (a) 

Portion of slit created by EDM, (b) Portion of the corroded slit, (c), and (d) Portion of 

slit tip. 
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2.3.4 Frequency band under 0.057M acetic acid 

 

Figs. 2.12 and 2.13 show the results of the waveform, frequency spectrum, and time-

frequency analysis from the specimen under a solution of 0.057M acetic acid while the 

tensile stress of 12.4% was applied. Figs. 2.12 and 2.13 show the elastic wave signal 

obtained after 21 and 283 hours, respectively. In these figures, (a) shows the waveform, 

(b) shows the power spectrum, and (c) shows the time-frequency analysis. 
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(a) 

 
(b) 

      
(c) 

 

Fig. 2.12 Elastic wave signal obtained after 21 hours under a corrosive solution of 0.057M 

acetic acid. 
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(a) 

 
(b) 

      
(c) 

 

Fig. 2.13 Elastic wave signal obtained after 283 hours under a corrosive solution of 

0.057M acetic acid. 
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Fig. 2.14 shows the cumulative count and dominant frequency of elastic waves obtained 

from specimens under 0.057M acetic acid according to test time. (a) shows the cumulative 

count and dominant frequency in steel specimen under a corrosive solution of 0.057M acetic acid 

according to test time up to about 500 hours, and (b) shows a magnification of the period 

from 0-282 hours. No elastic waves were detected in the periods from 0 to 18 hours, 63 

to 137 hours, and 235 to 282 hours. During these periods it is considered that hydrogen 

aggregation was occurring at the slit tip. Elastic wave signals were obtained in periods 

from 18 to 63 hours, 137 to 235 hours, and from 282 hours to the end of the experiment. 

It is considered that during this period cracks had initiated due to hydrogen aggregation 

and were propagating. The dominant frequency of the elastic waves was either in the low-

frequency band f(1) around 32-40 kHz or in the high-frequency band f(2) around 59-177 

kHz. After 282 hours only waves in the low-frequency band f(1) around 32 kHz were 

detected, we believe these low-frequency elastic waves are the result of corrosion. 
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(a) 

 

 
(b) 

 

Fig. 2.14 (a) Relationship between cumulative count, dominant frequency, and test time 

under a corrosive solution of 0.057M acetic acid, (b) Magnification of 0∼282 

hours. 
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Fig. 2.15 shows SEM photographs of the fracture surface from the experiment with 

0.057M acetic acid. (a) shows a portion of the slit created by electric discharge machining. 

(b) to (d) show the tip portion of the slit where hydrogen embrittlement crack initiates. It 

is believed that the crack that initiated at the slit tip propagated due to some corrosion and 

the applied stress. In the enlarged figure of (b)-(d), we can see the interface of the HAC 

portion was embrittled and the grains can be clearly observed, we can see a crack in some 

part of the cross-section. Elastic waves in the frequency band below about 40 kHz were 

caused by corrosion, while elastic waves in the frequency band above about 60 kHz are 

judged to be caused by crack initiation and propagation. 
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Fig. 2.15 SEM photograph under a corrosive solution of 0.057M acetic acid. (a) Portion 

of slit created by EDM, (b)∼(d) Slit tip 
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2.4 Summary 
 

In this chapter, elastic waves in an SKD11 (HV670) specimen under three types of 

corrosive solution were investigated, in particular, the frequency characteristics of these 

elastic waves were studied by time-frequency analysis using LabVIEW. 

1)  Regardless of the corrosion solution, elastic waves in a low-frequency band, less 

than 40 kHz, and elastic waves in a high-frequency band, more than 60 kHz, were 

obtained. 

2)  The low frequency below 40 kHz is caused by corrosion, while the high frequency 

above 60 kHz is caused by crack initiation and propagation. 

3)  The causes of elastic wave signal were differed according to the corrosive solution 

used. Generally, the elastic wave in the specimens under the acetic acid solution was 

caused by HAC-induced crack propagation, but the elastic wave in the specimens 

under 1.5M H2SO4 + NaCl 0.5M solution or distilled water was strongly affected by 

corrosion. 
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Chapter 3 

Threshold Stress Intensity Factor of Ultra-High Strength Steel 

(HV670) containing Surface Crack by Hydrogen-Assisted 

Cracking and Cumulative Elastic Wave 

3.1 Introduction 
 

Metal components, such as power plants, offshore structures, and the pressure vessels 

or pipes of hydrogen vehicles, when exposed to active hydrogen atmosphere during 

service, show hydrogen embrittlement that degrades mechanical properties [1-5]. When 

the structure is exposed to a hydrogen atmosphere or an acidic substance, and a 

mechanical load is applied, the risk of failure may increase, due to hydrogen intrusion 

into and interaction with the microstructure. Hydrogen-assisted cracking (HAC) due to 

hydrogen embrittlement is likely to occur in ultra-high-strength steel (UHSS) [6-15]. 

HAC is not observed below the threshold stress intensity factor () [15] and shows the 

crack growth rate /  at a stress intensity factor () above .  

Hydrogen damage is caused by the reduction of bond strength or interactions of 

hydrogen plasticity [6,7,16-20].  and Stage II are affected by the steel sensitivity and 

many parameters [6,15,21]. The parameters are the microstructure characteristics, 

hydrostatic stress of the crack tip, and the amount of hydrogen accumulated in the process 

zone [7,15]. As yield strength increases for hydrogen concentration,  decreases, and 

Stage II rate increases [12,15]. High-strength steel AISI 4340 is susceptible to 

intergranular HAC. The separation of impurities at the grain boundary results in them 

interacting with hydrogen and decreases the cohesion at the boundary. Therefore,  is 

much lower than the plane strain fracture toughness   without hydrogen [7,8,10,12]. 

After the theory of HAC was introduced by Zapfe and Sims in the 40s, various 

mechanisms and theories have been proposed to explain the microstructure of metal 

structures under mechanical load and the hydrogen concentration of specific metals [22-

26]. Li et al were examined elastic wave activity increased during hydrogen charging 

using low-carbon steel [27]. Bae et al were used to evaluate the dynamic behavior of the 
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hydrogen charged austenitic stainless steel specimen using the acoustic emission (AE) 

technique [28]. However, it is necessary to study the elastic wave characteristics and 

threshold stress intensity factors according to crack occurrence and propagation in the 

HAC atmosphere. 

This chapter obtained the threshold stress intensity factor ( ) for HAC in ultra-

high-strength steel (SKD11: HV670) by applying different loads in a solution of 0.057M 

acetic acid. Elastic wave from the crack propagation of the specimen was detected, and 

the frequency characteristics by hydrogen aggregation and crack propagation were 

analyzed by the time-frequency analysis method using LabVIEW. The crack propagation 

of the specimen was observed from the cumulative elastic wave and the fracture surface, 

and    was determined. These results will provide basic data for monitoring 

structures in which HAC occurs, and for predicting the HAC behavior of UHSS. 
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3.2 Material and Experiment Method 
 

The material used in this study was SKD11 for cold mold steel, which was heat-treated 

to obtain UHSS for the HAC experiments. The heat-treatment conditions were quenching 

at 1,036 °C for 2h and tempering at 180 °C. The Vickers hardness (HV) of UHSS obtained 

by heat treatment was 670. Table 3.1 shows the chemical composition and the mechanical 

properties of SKD11. Fig. 3.1 shows the specimen with which the HAC experiment was 

carried out. 
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Table 3.1 Chemical compositions (wt.%) and mechanical properties of SKD11.  

 

C Si Mn P S Ni Cr Mo V 

1.489 0.272 0.329 0.024 0.001 0.239 11.29 0.843 0.236  (MPa)            (MPa)         E (GPa) 

1158              1034              207 

 

 

 
 

Fig. 3.1 Ultra-high-strength steel specimen for HAC. 
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The slit of the specimen was machined onto the center of a width of 10 mm by electric 

discharge machining (EDM). The semicircular slit of the specimen used in this study was 

2c=1.4 mm, a=0.7 mm, and the crack aspect ratio (a/c) was 1.0. The static stress loaded 

on the free end of the specimen was determined by the Newman–Raju equation [29] as 

following Eq. (3.1). That is, stress intensity factors ( and ) of the surface (c) and 

depth (a) of the slit were calculated. Acetic acid (0.057M) was used as the solution for 

the HAC experiment. 

 K = ( + ) F                                          (3.1) 

Q = 1 + 1.464 .
  

 

where  is tension stress,  is bending stress. The functions F and H are boundary-

correction factors. 

The NI PXIe SYSTEM, which supports up to 8 channels, was used to detect the 

waveform and frequency characteristics of the elastic wave signal. The equipment 

digitizes and saves all obtained elastic waves. The detection sampling rate of the elastic 

wave is 1MHz, and the sampling size is 4,096. The elastic wave detection sensor is a 

wideband sensor of 1MHz with a wide range of frequency response characteristics. The 

elastic wave was detected through a 28dB preamplifier. Time-frequency analysis of the 

detected elastic wave signal was carried out using LabVIEW. Fig. 3.2 shows a schematic 

of the experimental setup. The cross-section of the specimen was observed using SEM. 

 

 
Fig. 3.2 Schematic of the experimental apparatus. 
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3.3 Results and discussion 
 

3.3.1 Elastic wave obtained from the stress intensity factor =.   √ and = .   √ 

 

Figs. 3.3 and 3.4 show the results of the waveform, frequency spectrum, and time-

frequency analysis obtained when stresses, such as the stress intensity factor =8.11 MPa√m and = 5.56 MPa√m, are applied to the surface crack. Figs. 3.3 and 

3.4 show the results obtained at 27 and 430 hours, respectively. In each figure, (a) is the 

waveform, (b) is the power spectrum, and (c) is the time-frequency analysis. 
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Fig. 3.3 Elastic wave signal obtained from 27 hours of  = 8.11  MPa√m and  =5.56  MPa√m. (a) Waveform, (b) Power spectrum, (c) Time-frequency analysis. 
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Fig. 3.4 Elastic wave signal obtained from 430 hours of  = 8.11  MPa√m and  =5.56  MPa√m. (a) Waveform, (b) Power spectrum, (c) Time-frequency analysis. 
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Fig. 3.5 shows the cumulative elastic wave obtained in the experiment, and the 

dominant frequency obtained in Figs. 3.3 and 3.4. The elastic wave showed no signal 

detection at about 0–21 hours, 74–138 hours, and 263–310 hours. These are the regions 

where the hydrogen aggregated at the slit tip. Elastic wave signals were detected at 21–

74 hours, 138–263 hours, and 310–430 hours. These are the regions where HAC occurred 

and was propagated by hydrogen aggregation. A lot of elastic wave signals occurred by 

corrosion and HAC at 21–74 hours. This is because large stress acts on the slit, and crack 

due to HAC being initiated. This can be seen in Fig. 3.5. The dominant frequency of the 

elastic wave was detected in the low-frequency band f(1) of about 30–43 kHz, due to 

corrosion; and in the high-frequency band f(2) of about 59–150 kHz, due to crack 

occurrence and propagation. 
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Fig. 3.5 Relationship of cumulative elastic wave, dominant frequency, and test time for  = 8.11  MPa√m and  = 5.56  MPa√m. 
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Fig. 3.6 shows SEM image of the fracture surface after the experiment, where (a) 

shows the slit part of EDM, while (b)–(d) shows the slit tip portions where HAC has 

occurred. The HAC propagated due to a little corrosion and applied stress in the slit tip 

portion; (b) and (c) show enlarged images of the HAC portion. The grain boundary was 

embrittled, the grain was clearly observed, and cracks were observed in some cross-

sections. In particular, (c) shows that crack has propagated towards the surface direction. 

It is judged that many elastic waves occurred in the 21–74 hours period during which 

stress was applied. The frequency band of about 40 kHz is the dominant frequency due to 

corrosion, and the frequency band above about 60 kHz is the dominant frequency due to 

crack occurrence and propagation. 
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Fig. 3.6 SEM image from  = 8.11  MPa√m and  = 5.56  MPa√m. (a) EDM slit, 

(b)–(d) slit–tip portion. 
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3.3.2 Elastic wave obtained from the stress intensity factor =.  √ and = .   √ 

 

Figs. 3.7 and 3.8 show the results of the waveform, frequency spectrum, and time-

frequency analysis obtained when stresses are applied to the surface crack. Figs. 3.7 and 

3.8 show the results obtained at 21 and 283 hours, respectively. In each figure, (a) is the 

waveform, (b) is the power spectrum, and (c) is the time-frequency analysis. 
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Fig. 3.7 Elastic wave signal detected from 21 hours of  = 3.02  MPa√m and  =2.07 MPa√m. (a) Waveform, (b) Power spectrum, (c) Time-frequency analysis. 
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Fig. 3.8 Elastic wave signal detected from 283 hours of  = 3.02  MPa√m and  =2.07 MPa√m. (a) Waveform, (b) Power spectrum, (c) Time-frequency analysis. 
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Fig. 3.9 shows the cumulative elastic wave obtained in the experiment and the 

dominant frequency obtained in Figs. 3.7 and 3.8, in which (a) shows the whole up to 

about 500 h, while (b) shows the enlarged plot up to 282 h. The elastic wave had no signal 

detection at about 0–18 hours, 63–135 hours, and 235–282 hours. These are the regions 

where the hydrogen aggregated at the slit tip. Elastic wave signals were detected at 18–

63 hours, 135–235 hours, and after 282 hours. This is the region where HAC occurred 

and has propagated by hydrogen aggregation. The dominant frequency of the elastic wave 

was detected in the low-frequency band f(1) of about 32–40 kHz due to corrosion and in 

the high-frequency band f(2) of about 59–177 kHz due to crack occurrence and 

propagation. The frequency after 282 hours is about 32 kHz, which is an elastic wave due 

to corrosion. 
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Fig. 3.9 (a) Relationship of cumulative elastic wave, dominant frequency, and test time 

for  = 3.02  MPa√m  and  = 2.07 MPa√m . (b) Magnification of 0–282 

hours. 
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Fig. 3.10 shows SEM image of the fracture surface after the experiment, where (a) 

shows the slit part of EDM, and (b)–(d) are the slit tip portions where HAC has occurred. 

The HAC propagated due to a little corrosion and applied stress in the slit tip portion; (b)–

(d) show enlargements of the HAC portion. The grain boundary is embrittled, the grain is 

clearly observed, and cracks are observed in some cross-sections. The low-frequency 

band f(1) of about 40 kHz is the dominant frequency due to corrosion, while the high-

frequency band f(2) above about 60 kHz is the dominant frequency due to crack 

occurrence and propagation. 
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Fig. 3.10 SEM image from  = 3.02  MPa√m and  = 2.07 MPa√m. (a) EDM slit, 

(b)–(d) slit–tip portion. 
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3.3.3 Elastic wave obtained from the stress intensity factor =.  √ and = .   √ 

 

Fig. 3.11 shows the results of the waveform, frequency spectrum, and time-frequency 

analysis obtained when stresses, such as the stress intensity factor K=2.86 MPa√m and K=1.96 MPa√m are applied to the surface crack. Fig. 3.11 is the result obtained at 168 

hours; in each figure, (a) is the waveform, (b) is the power spectrum, and (c) is the time-

frequency analysis. 
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Fig. 3.11 Elastic wave signal detected from 168 hours of  = 2.86  MPa√m and  =1.96 MPa√m. (a) Waveform, (b) Power spectrum, (c) Time-frequency analysis. 
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Fig. 3.12 shows the cumulative elastic wave obtained in the experiment and the 

dominant frequency obtained in Fig. 3.11. Even though this specimen was tested for 320 

hours, no valid signal was detected from 240 hours. No elastic wave signals were detected 

at about 0–160 hours and 180–238 hours. These are the regions where the hydrogen 

aggregated at the slit tip. The elastic wave signal was detected at 160–180 hours and 238–

239 hours. These are the regions where HAC has occurred and is propagated by hydrogen 

aggregation. Less elastic waves occurred in this specimen than in others specimen. A 

slight elastic wave was detected in the low-frequency band f(1) of about 30 kHz due to 

corrosion and in the high-frequency band f(2) of about 100–150 kHz due to crack 

occurrence and propagation. The reason why a slight signal was detected can be observed 

in the fracture surface of Figure 3.13. 

 

 

 

 

 

 

 

 

 

 

 



 

 

５８ 

 

0 50 100 150 200 250 300 350

0
1
2
3
4
5
6
7
8
9

10

f(2)

f(1)

Dom
inant frequency (kH

z)
Cu

m
ul

at
iv

e e
la

st
ic 

wa
ve

Time (h)

0

50

100

150

200Hydrogen aggregation
No signal

 
 

Fig. 3.12 Relationship of cumulative elastic wave, dominant frequency, and test time for  = 2.86  MPa√m and  = 1.96 MPa√m. 
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Fig. 3.13 shows SEM image of the fracture surface after the experiment, in which (a) 

shows the slit part of EDM, and (b) and (c) shows the slit surface where HAC occurred, 

while (d) shows the deepest part of the slit. A little HAC occurred in the surface side of 

the slit, due to corrosion and bending stress. However, crack propagation was not evident 

in the deepest part of the slit (d). Due to this phenomenon, a slight elastic wave during 

the initial crack occurrence portion was detected due to corrosion, and after 240 hours, 

was not detected. Therefore, the HAC threshold stress intensity factor (  ) of the 

surface crack specimen used in this study was determined to be  = 1.96MPa√m. 
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Fig. 3.13 SEM image from  = 2.86  MPa√m and  = 1.96 MPa√m. (a) EDM slit, 

(b)~(d) slit–tip part. 
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Fig. 3.14 shows the relationship between hydrogen aggregation time and elastic wave 

detection time according to the stress intensity factor of the slit surface. In the figure, the 

square symbol (□) shows the hydrogen aggregation time, while the circle symbol (○) 

shows the elastic wave detection time. It is evident that as   becomes smaller, the 

hydrogen aggregation time becomes longer, and the elastic wave detection time becomes 

shorter. When  is large, large stress acts on the slit tip, so that HAC occurs rapidly, 

and the time of elastic wave occurrence becomes long. However, when  is small, it 

takes a long time for HAC to occur due to the application of small stress on the slit tip, 

and the time of elastic wave occurrence is shortened. As described above, the occurrence 

time of HAC differed according to the applied stress. 
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Fig. 3.14 Hydrogen aggregation time and elastic wave detection time depending on stress 

intensity factor () of surface crack. 
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3.4 Summary 
 

This chapter analyzed the elastic wave properties of hydrogen-assisted cracking (HAC) 

of ultra-high-strength steel (SKD11: HV670) under different loads in a solution of acetic 

acid 0.057M and determined the threshold stress intensity factor ( ). 

1) The frequency band of the elastic wave was divided into dominant frequency below 

about 50 kHz and above about 60 kHz, regardless of the value of  . The low-

frequency band below about 50 kHz is the elastic wave due to corrosion, while the 

high-frequency band above about 60 kHz is the elastic wave caused by crack 

occurrence and propagation. 

2) In the acetic acid solution atmosphere, as   becomes smaller, the hydrogen 

aggregation time of the slit tip becomes longer, the elastic wave detection time 

becomes shorter, and slight elastic waves are detected. 

3) The fracture surface due to the static bending stress acting on the end of the cantilever 

beam showed the shape by corrosion and HAC. In the crack propagation part, grain 

boundaries were embrittled by corrosion, and grains were clearly observed. In some 

zones, cracks were observed in the cross-section. 

4)  When  was the smallest, the crack in the surface direction propagated slightly, 

but the crack in the depth direction did not propagate at all. The stress intensity factor 

at this time was determined as the HAC threshold stress intensity factor( ). That 

is,   was determined to be 1.96 MPa√m. 

5) HAC can be prevented by minimizing contact between the high-strength metal and 

hydrogen. However, when HAC occurs, it can be monitored through elastic wave 

detection. 
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Chapter 4 

Evaluation of Fatigue Life of Ultra-High Strength Steel Under 

Stress Corrosion Environment 

4.1 Introduction 
 

Ultra-high strength steel (UHSS) is developed for lightweight structures. When these 

structures are exposed to a hydrogen atmosphere and applied with acidic substances and 

stress, hydrogen embrittlement occurs, in which the mechanical properties are degraded 

due to the hydrogen attack on the microstructures. Hydrogen-assisted cracking (HAC) is 

likely to occur in UHSS. McEvily et al. [1] reviewed a number of case studies involving 

HAC in steel. HAC is based on bond weakening and strain localization. Beachem [2] 

presented HAC based on an observed decrease in microscopic plasticity and changes in 

fracture modes with decreasing stress intensities at crack tips during the stress-corrosion 

cracking and HAC of quenched and tempered steels. He suggested that the presence of 

sufficiently concentrated hydrogen dissolved in the lattice immediately ahead of the crack 

tip aids the deformation of the microstructure. Van Leeuwen [3] developed equations 

describing the diffusion to and the subsequent precipitation of hydrogen into lenticular 

voids resulting from the stress-induced decohesion of grain boundary precipitates. Oriani 

et al. [4] investigated the direct and important effects of hydrogen on the decohesioning 

mode at regions directly at the crack tip and at regions of high stress due to dislocation 

interactions within the plastic enclave. Briant [5] reported that the most detrimental effect 

of increasing the susceptibility of a material to hydrogen cracking is the formation of 

martensite upon deformation. Gerberich et al. [6] investigated the effects of internal 

hydrogen on stage II crack growth rates in AISI 4340 steel as a function of test 

temperature. McMahon [7] reported that the hydrogen-induced intergranular brittle 

fracture of steels is caused by a combination of hydrogen dissolved in the crystal lattice 

and embrittling impurities that had previously segregated at grain boundaries. Symons [8] 

reported that degradation due to hydrogen can be classified into two categories: internal 

hydrogen embrittlement and hydrogen environment embrittlement. Thomas et al. [9] and 
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Lee et al. [10] explained hydrogen embrittlement based on ultra-high-strength AERMET 

100. Meng et al. [11] reported that X80 pipeline steel is susceptible to hydrogen-induced 

embrittlement in natural gas/hydrogen mixtures, and that hydrogen embrittlement 

susceptibility increases with the hydrogen partial pressure. Additionally, the hydrogen 

embrittlement susceptibility depends on the textured microstructure caused by hot rolling, 

particularly for notch specimens. Calculation based on measured fatigue data revealed 

that the fatigue life of an X80 steel pipeline was degraded substantially by the added 

hydrogen. HAC was not observed below the threshold stress intensity factor ( ) [12], 

and the crack growth rate was indicated above  . 

Haddad et al.[13] proposed an equation to evaluate the fatigue limit of microcracked 

materials. Kitagawa et al. [14] experimentally demonstrated that the threshold stress 

intensity factor range of the fatigue crack propagation for microcracks decreased as the 

crack length shortened. Tange et al. [15] suggested by modification of Haddad’s equation. 

Ando et al. [16] was proposed the equation that focuses on nonlinear behavior at the 

fatigue limit, which is substantially lower than the yield stress. It was possible to 

quantitatively evaluate the fatigue limit according to the size of microcracks using the 

Ando et al. equation. Therefore, it is necessary to review the applicability of the fatigue 

limit evaluation according to the size of microcracks in the corrosive environments. 

In this study, Static fatigue limit of HV670 (UHSS) in a corrosive environment for 

preventing structural fracture due to HAC were evaluated from experimental and 

calculation. The static fatigue limit based on the crack depth was determined using  . 

This result can be applied to the fatigue limit evaluation of UHSS under corrosive 

environments and data for securing the stability of chemical plants. 

 

 

 

 

 

 

 

 

 



 

 

６９ 

 

4.2 Material and experimental method 
 

4.2.1 Specimen  

 

SKD11, which was heat treated to obtain UHSS for the HAC experiments, was used 

as the material for cold mold steel. The heat-treatment conditions were as follows: 

quenching at 1,036 °C for 2 h, and tempering at 180 °C. The Vickers hardness (HV) of 

the UHSS obtained by the heat treatment was 670. The fatigue limit of smooth specimen 

was used for 13 specimens. The fatigue limit of cracked specimen was used for 18 

specimens. The crack was made at the smallest cross section of the specimen by electrical 

discharge machining. The crack aspect ratio (a/c) was 1.0. The crack depth (a) was 0.05, 

0.1, and 0.2mm, respectively. Six specimens were experimented for each crack depth, and 

used total 18 specimens. Table 4.1 shows the chemical composition of SKD11. Fig. 4.1 

shows the shape and dimensions of the specimen subjected to the HAC experiment. Three 

holes of ϕ6 on left side are for fixing the specimen. One hole of ϕ3 on right side is to 

operate the stress on the free end of the specimen. The round part of the R24 is to install 

the container to induce the HAC. 
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Table 4.1 Chemical compositions of SKD11. (wt.%) 

 

 

 

 

 

 
 

Fig. 4.1 Ultra-high strength steel specimen for HAC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C Si Mn P S Ni Cr Mo V 

1.489 0.272 0.329 0.024 0.001 0.239 11.29 0.843 0.236 
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4.2.2 Determination of   based on elastic wave 

 

The slit of the specimen was machined at the center with a width of 10 mm using 

electric discharge machining. The semicircular slit of the specimen for determining   

was 2c = 1.4 mm. Meanwhile, the depth a = 0.7 mm, and the crack aspect ratio (a/c) = 

1.0. The static loads applied to the free end of the specimen based on c and a are denoted 

as  and , respectively, and they are calculated using the Newman–Raju equation 

[13]. 

The NI PXIe SYSTEM, which supports up to eight channels, was used to detect the 

waveform and frequency characteristics of the elastic wave signal. The detection 

sampling rate of the elastic wave was 1 MHz, and the sampling size was 4,096. The elastic 

wave detection sensor was a wideband sensor with a sampling rate of 1 MHz with a wide 

range of frequency response characteristics. The elastic wave was detected using a 28dB 

preamplifier. Time-frequency analysis of the detected elastic wave signal was performed 

using LabVIEW. Fig. 4.2 shows a schematic illustration of the experimental setup. The 

cross section of the specimen was observed using SEM. 
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Fig. 4.2 Schematic illustration of experimental apparatus. 
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4.2.3 Determination of static fatigue limit 

 

The smooth specimen, as shown in Fig. 4.1, was immersed in a 0.057M (pH 3) acetic 

acid solution. Acetic acid is primarily used in the products making as well as food 

industry. The wastewater containing acetic acid is discharged from chemical industries 

[17]. It cause water, soil and air pollution. This cause the HAC. Therefore, the HAC was 

simulated using the strong pH acetic acid. Static fatigue due to bending stress was 

imposed by applying a load to the free end. Fig. 2 shows a schematic illustration of the 

experimental setup. 

 

 

4.2.4 Fatigue limit evaluation of stress corrosion cracking 

 

To evaluate the fatigue limit of hydrogen-assisted stress corrosion cracking, 

semicircular slits with crack depths (a) of 0.1 and 0.2 mm were created via electric 

discharge machining. The crack aspect ratio (a/c) was set to 1.0. 

The stress intensity factor (K) of a semi-elliptical surface crack of a finite plate can 

be evaluated using the Newman–Raju equation [18]. 

When the static fatigue bending stress () is imposed on the semicircular surface 

crack of a finite plate, the dependence of the microcrack size of the threshold stress 

intensity factor  () can be evaluated using Eq. (4.1) [16]. 

  () = 2 cos   ()  + 1         (4.1)                                                  

 

Here,  () is the threshold stress intensity factor for any microcrack size, and 

its value changes depending on the angle of the crack tip. 

The fatigue limit (σwc) of microcracks in the finite plate can be obtained by 

substituting the  () obtained in Eq. (4.1) and the crack depth (a) into Eq. (4.2) [16]. 

  () =  √            (4.2)                                                                                                              
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4.2.5 Fracture surface observation 

 

The fracture surfaces after static fatigue testing were examined using a scanning 

electron microscope (TESCAN (VEGA II LSU)). 
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4.3 Results and discussion 
 

4.3.1  () 
 

Stress was applied such that the stress intensity factor of the crack became  () =2.86  √ and  () = 1.96  √ at the surface and depth, respectively [15]. 

Fig. 4.3 shows the waveform, frequency spectrum, and time–frequency analysis results 

obtained based on those values. Fig. 4.3 shows the results obtained at 268 hours. In each 

figure, (a) shows the waveform, (b) the power spectrum, and (c) the time–frequency 

analysis. 
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(a) 

 

(b) 

 
(c) 

 

Fig. 4.3 Elastic wave signal detected from 21 hours of  () = 2.86  √ ,  () = 1.96  √ . (a) Waveform, (b) power spectrum, (c) time–frequency 

analysis. 
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Fig. 4.4 shows the time based on the accumulated elastic wave obtained in the 

experiment and the dominant frequency obtained in Fig. 4.3. The specimen was tested for 

320 hours, but no valid signal was detected after 240 hours; therefore, the test was stopped 

at 320 hours. The elastic wave signal was not detected at 0–160 hours and 180–238 hours. 

These time periods were considered as the hydrogen agglomeration time at the tip of the 

slit. The elastic wave signals were detected at 160–180 hours and 238–239 hours. At these 

time periods, HAC was initiated and propagated owing to hydrogen aggregation. As 

shown in Fig. 4.4, the elastic wave signal generated was less. However, a low-frequency 

band f(1) of approximately 30 kHz due to corrosion and a high-frequency band f(2) of 

100–150 kHz due to crack initiation and propagation were detected. The less signal 

generated can be explained by the fracture surface shown in Fig. 4.5. 
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Fig. 4.4 Relationship of cumulative count between dominant frequency  
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Fig. 4.5 shows an SEM image of the fracture surface after the experiment. (a) shows 

the slit portion of the electric discharge machining. (b) and (c) show the slit surfaces where 

HAC occurred, and (d) shows the deepest section of the slit. At the tip of the slit, the crack 

of the HAC propagated slightly owing to the slight corrosion and applied bending stress. 

However, in the deepest section of the slit (d), no crack propagation was observed. Hence, 

no elastic wave signal was detected after 240 hours, and only a slight amount of elastic 

wave due to corrosion at the initial cracking area was detected. 

Therefore, the   of the surface crack specimen used in this study was determined 

as  () = 1.96  √ based on the depth direction without crack propagation. 
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Fig. 4.5 SEM image from  () = 2.86  √ ,  () = 1.96  √ . (a) 

EDM slit, (b)–(d) Slit-tip region. 
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4.3.2 Static fatigue limit of smooth specimen 

 

The bending stress of the static fatigue was applied to the free end of the specimen 

immersed in the corrosion solution. Fig. 4.6 shows the relationship between the 

immersion time and the applied bending stress. It was discovered that when 580 MPa was 

applied, fracture occurred at 200 h; 550 MPa, 300 h; 500 MPa, 524.5 and 650 h; 450 MPa, 

1132.5 h; 420 MPa, 984 h; 410 MPa, 1344 h. However, when 390, 400, and 410 MPa was 

applied, fracture did not occur at 2280, 2235, and 2260 h, respectively. Therefore, average 

400 MPa was determined as the static fatigue limit of SKD11 (HV670). 

This is small than about 600 MPa, the result of fully reversed, axial fatigue tests (R = -

1) by Fukaura et al. [19]. In addition, it was smaller than the result of the ultrasonic fatigue 

testing machine under axial tension-compression with the stress ratio R = -1 by Akiniwa 

et al. [20]. The fatigue limit of SKD11-L and SKD11-T was approximately 480MPa and 

580MPa, respectively.  Since this was obtained at the stress ratio R = -1, it can be 

compared with the fatigue limit of this study as a positive value. The static fatigue limit 

of a corrosive environment is 69-83% the fatigue limit of the atmosphere. The results of 

this study show that the fatigue limit was small by HAC affect in a corrosive environment 

of strong acid. Therefore, in the corrosive environment where HAC occurs, the structure 

subject to fatigue load needs attention in design to ensure safety and reliability. 
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Fig. 4.6 Relationship between applied bending stress and immersion time. 
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4.3.3 Static fatigue limit of cracked specimen 

 

Fig. 4.7 shows the static fatigue limit with respect to the crack depth. The solid line 

was obtained by substituting the static fatigue limit (400 MPa) obtained experimentally 

(solid line) and the threshold stress intensity factor  () = 1.96 MPa√ based on 

the crack depth [21]. The results obtained from the static fatigue test and the calculation 

using Eq. (4.2) are shown in the figure. The solid line and circle symbol is results of 

calculation and test, respectively. The fatigue limit (solid line) of the crack specimen was 

almost constant up to a crack depth of 0.001 mm but decreased significantly thereafter. 

That is, the threshold stress at a microcracks approaches the fatigue limit of the material. 

The steep slope after 0.001mm converges to the threshold stress intensity factor of large 

crack. The under portion and the upper portion of the solid line in the figure indicate non-

fracture and fracture, respectively. The open and solid symbols indicate non-fracture and 

fracture, respectively. Three non-fractures and three fractures were obtained for each 

crack depth (0.05, 0.1, and 0.2mm). The experimental results agreed well with the 

calculation results obtained using Eq. (4.2). 

Eq. (4.2) can evaluate the fatigue limit of microcrack even under the condition that 

HAC occurs under stress corrosive environment using static fatigue limit and the 

threshold stress intensity factor   . Eq. (4.2) evaluated the fatigue limit of 

microcracks regardless of the steel type [22,23]. Therefore, the fatigue limit of the 

structure in service can be evaluated with the crack size detected by nondestructive 

inspection, and the safety of the structure can be secured. The fatigue limit of the crack 

specimen is highly dependent on the material properties, the threshold stress intensity 

factor of the long crack and the fatigue limit of the smooth specimen. When the threshold 

stress intensity factor and the fatigue limit of the smooth material are small, the crack size 

which converges to fatigue limit of the smooth specimen have the large. That is, the crack 

size of STS316L is larger than that of SUP9A [22]. 
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Fig. 4.7 Relationship between fatigue limit and crack depth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

８５ 

 

Fig. 4.8(a)(b) shows the fracture surface of depth (a) of 0.2 mm obtained in the static 

fatigue experiment. (a) shows the fracture that occurred under a stress of 150 MPa. (b) 

shows a non-fractured surface under a stress of 110 MPa. The fracture surface (a) showed 

slight pitting on the surface, and the slit surface was corroded significantly. The fracture 

began from the slit, and the fracture surface exhibited a large trough. The surface shown 

in (b) was fractured owing to a large stress, and the slit surface was corroded. 
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(a) 

 

(b) 
 

Fig. 4.8 Images of surfaces after static fatigue test. (a) Fracture, (b) non-fracture. 
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4.4 Summary  
 

In this study, the elastic wave characteristics and  () for HAC were determined 

by immersing UHSS (SKD11: HV670) in a solution of acetic acid 0.057M (pH 3). In 

addition, the behavior of HAC was confirmed, and the static fatigue limit of a smooth 

specimen and the static fatigue limit of microcracks were evaluated. 

1) The frequency band of the elastic wave was partitioned into a dominant frequency of 

approximately 50 kHz or less and approximately 60 kHz or more. The low-frequency 

band of approximately 50 kHz or less indicated an elastic wave due to corrosion, and 

the high-frequency band of approximately 60 kHz or more indicated an elastic wave 

due to crack initiation and propagation by HAC. 

2) The fracture surface due to static fatigue bending stress exerting on the tip of the 

cantilever indicated corrosion and HAC. In the crack propagation portion, the grain 

boundaries were embrittled by corrosion, and grains were clearly observed. In some 

cases, cracks appeared on the fracture surface. 

3) The HAC threshold stress intensity factor when cracks in the surface propagated 

slightly but not along the depth was determined to be  () = 1.96  √. 

 4) The static fatigue limit of UHSS (SKD11:HV670) was determined to be 400 MPa, 

and the static fatigue limit of the crack specimen can be evaluated using Eqs. (2) and 

(3). The experimental results agreed well with the evaluation results. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

８８ 

 

References 
 

1. A. J. McEvily, I Le May, Hydrogen-assisted cracking, Materials Characterization,26 

(1991) 253-268. 

2. C. B. Beachem, A new model for hydrogen-assisted cracking (hydrogen 

“embrittlement”, Metallurgical and Materials Transactions B, 3 (1972) 441-455. 

3. H. P. Van Leeuwen, A Quantitative Model of Hydrogen Induced Grain Boundary 

Cracking , Corrosion, 29 (1973) 197–204. 

4. R. A. Oriani and P. H. Josephic, Equilibrium and kinetic studies of the hydrogen-

assisted cracking of steel, Acta Metalurgica, 25 (1977) 979-988. 

5. C. L. Briant, Hydrogen assisted cracking of type 304 stainless steel, Metallurgical 

Transactions A, 10 (1979) 181–189 

6. W. W. Gerberich, T. Livne, X. F. Chen, M. Kaczorowski, Crack growth from internal 

hydrogen—Temperature and microstructural effects in 4340 steel, Metallurgical and 

Materials Transactions A, 19 (1988) 1319-1334. 

7. C. J. McMahon Jr., Hydrogen-induced intergranular fracture of steels, Engineering 

Fracture Mechanics, 68 (2001) 773-788. 

8. D. Symons, A comparison of internal hydrogen embrittlement and hydrogen 

environment embrittlement of X-750, Engineering Fracture Mechanics, 68 (2001) 

751-771. 

9. R. L. S. Thomas, J. R. Scully and R. P. Gangloff, Internal hydrogen embrittlement of 

ultrahigh-strength AERMET 100 steel, Metallurgical and Materials Transactions A, 

34 (2003) 327-344. 

10. Y. Lee, R. P. Gangloff, Measurement and modeling of hydrogen environment-assisted 

cracking of ultra-high-strength steel, Metallurgical and Materials Transactions A, 38 

(2007) 2174-2190. 

11. B. Meng, C. Gu, L. Zhang, C. Zhou, X. Li, Y. Zhao, J. Zheng, X. Chen and Y. Han. 

Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen 

mixtures, International Journal of Hydrogen Energy, 42 (2017) 7404-7412. 

12. R. P. Gangloff, Comprehensive Structural Integrity-Environmentally Assisted Failure, 

Elsevier Ltd, Oxford, United Kingdom, (2003) 31-101. 

13. J. C. Newman Jr, I. S. Raju, An Empirical Stress-Intensity Factor Equation for the 



 

 

８９ 

 

Surface Crack, Engineering Fractured Mechanics, 15 (1981) 185-192. 

14. K. Ando, R. Fueki, K. W. Nam, K. Matsui, K. Takahashi, A Study on the Unification 

of the Threshold Stress Intensity Factor for Micro Crack Growth, Japan Society of 

Spring Engineers, 64 (2019) 39-44. 

15. K. S. Lee, J. E. Paeng, K. G. Gu, K. W. Nam, Threshold stress intensity factor of ultra-

high strength steel (HV670) containing surface crack by hydrogen assisted cracking 

and cumultive elastic wave, Journal of Mechanical Science and Technology, 35 

(2021) 2441-2447. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

９０ 

 

Chapter 5 

 Conclusions 

The elastic waves generated in ultra-high strength steel (UHSS) under various 

corrosive solutions were investigated. The threshold stress intensity factor ( ) for 

HAC was obtained from ultra-high strength steel (SKD11: HV670) by applying different 

loads in a solution of 0.057M acetic acid. The frequency characteristics by hydrogen 

aggregation and crack propagation were analyzed by the time-frequency analysis method 

using LabVIEW. The   of the specimen was determined from the cumulative elastic 

wave and fracture surface, and the static fatigue limit based on the crack depth was 

determined using  . 

 

1. Regardless of the corrosion solution, elastic waves in a low frequency band, less than 

40 kHz, and in a high frequency band, more than 60 kHz, were obtained. 

2. The low frequency below 40 kHz was caused by corrosion, while the high frequency 

above 60 kHz are caused by crack initiation and propagation. 

3. The elastic wave in the specimens under the acetic acid solution were caused by HAC-

induced crack propagation, but the elastic wave in the specimens under 1.5M H2SO4 

+ NaCl 0.5M solution or distilled water were strongly affected by corrosion. 

4. The frequency band of the elastic wave was divided into dominant frequency below 

about 50 kHz and above about 60 kHz, regardless of the value of Kc. The low-

frequency band below about 50 kHz is the elastic wave due to corrosion, while the 

high-frequency band above about 60 kHz is the elastic wave caused by crack 

occurrence and propagation. 

5. When  was the smallest, the crack in the surface direction propagated slightly, but 

the crack in the depth direction did not propagate at all. The stress intensity factor at 

this time was determined as the HAC threshold stress intensity factor ( ). That 

is,   was determined to be 1.96 MPa√. 

6. The static fatigue limit was determined to be 400 MPa, and the static fatigue limit of 

the crack specimen can be evaluated using  ()  = 1.96 MPa √ ). The 

experimental results agreed well with the evaluation results. 



 

 

９１ 

 

 

The frequency characteristics of elastic wave will be provided the basic data for 

monitoring crack initiation and propagation in UHSS structural components that have 

been exposed to various harsh environments. These results will provide basic data for 

monitoring structures in which HAC occurs, and for predicting the HAC behavior of 

UHSS. HAC can be prevented by minimizing contact between the high-strength metal 

and hydrogen. However, when HAC occurs, it can be monitored through elastic wave 

detection. These results can be used as data to evaluate the fatigue limit of UHSS under a 

corrosive environment and to secure the stability of chemical plants. 
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