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Sentinel-2A-2B 위성 영상을 활용한 선박 및 후류 동시 탐지 연구 
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부 경 대 학 교 대 학 원 지 구 환 경 시 스 템 과 학 부  

공 간 정 보 시 스 템 공 학 전 공 

   

 

요   약 

선박탐지는 해상보안, 해상교통, 어업관리, 불법조업, 국경통제 등의 분야에서 널리 사

용되고 있으며, 최근 국제 해상교통량 증가로 선박사고율이 증가함에 따라 신속한 대응

과 피해 최소화를 위해 선박탐지가 중요하다. 현재 다수의 세계 및 국가 규정에 따르면 

특정 등급의 선박은 정기적으로 선박의 위치와 속도 등의 정보를 제공하는 자동 식별 

시스템(AIS)을 장착해야 한다. 그러나 대부분의 소형 선박(300톤 미만)은 트랜스폰더를 

설치할 의무가 없으며 의도적 또는 우발적으로 전송되지 않을 수 있습니다. 심지어 선

박의 위치정보를 악용한 사례도 있다. 따라서 본 연구에서는 주기적으로 넓은 범위를 

원격 탐지하고 소형 선박을 탐지할 수 있는 고해상도 광학위성 영상을 이용하여 선박 

탐지를 수행하였다.  

광학영상은 최근 극궤도, 정지궤도, 초소형 군집위성 등의 증가로 인해 이용 가능한 데

이터가 다량 축적되고 있으며, 공간해상도도 향상되고 있어 다수의 고해상도 광학위성

영상을 함께 사용할 경우 검출영역을 확대하고 관측빈도를 높일 수 있다. 그러나 광학 

영상은 구름과 후류같이 배와 유사한 밝기를 나타내는 요인으로 인해 거짓 경보를 유

발할 수 있으므로 선박 탐지의 정확도를 향상시키기 위해 이러한 요인들을 제거하는 

것이 중요하다. 본 연구에서는 해상도의 한계로 인해 탐지가 어려운 소형선박의 존재나 

선박의 방향과 속도를 추정하는 데 도움이 되는 후류를 제거하여 거짓 경보를 줄이고 

선박 탐지의 정확도를 향상시켰다. 선박 탐지 방법으로는 가장 많이 사용되는 물체 탐

지 방법인 Threshold 기반 알고리즘과 최근 물체 탐지 분야에서 널리 사용되고 있는 머
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신러닝 기반의 Random Forest, CNN 기법을 이용하여 선박 탐지를 수행하였으며, 모델별 

선박 탐지 결과를 비교 분석하였다. Threshold 기반 알고리즘은 선행연구의 선박탐지지

수 (Ship Detection Index, SDI)를 이용하여 본 연구영역에 적합한 경계값을 선정하고 선박 

탐지를 수행하였다. SDI로 미탐지된 후류를 제거하기 위해 후류와 선박의 분광 특성을 

분석하여 후류탐지지수 (Wake Detection Index, WDI)를 개발하였고, WDI를 이용하여 후류

를 제거하여 Threshold 기반 알고리즘의 선박 탐지 결과의 정확도를 향상시켰으며, RF는 

선박과 후류를 동시에 감지하기 위해 밴드별 반사도, 밴드비, SDI, WDI 및 NDWI 등 총 

7개의 feature를 활용하여 모델을 학습하였다. 마지막으로 CNN의 경우 Mask R-CNN 기

반 Detectron2를 사용하여 선박과 후류의 이미지를 학습하여 모델을 개발하고 선박과 

후류를 동시에 탐지하였다. CNN의 경우 선박이 소형으로 감지되는 경향이 있었고 

Threshold 와 RF는 선박이 끊어지는 현상이 발생하였다. 따라서 본 연구에서는 RF와 

CNN의 결과를 결합하여 선박끊김현상과 과소탐지현상을 개선하였다. 본 연구의 선박 

탐지 결과는 높은 정확도를 유지하면서 각 모델의 한계를 개선하였다는 점에서 의의가 

있다. 또한 향후 공간해상도가 향상된 위성영상을 활용할 경우 보다 정확도가 높은 선

박 및 후류 동시탐지가 가능할 것으로 기대된다.
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1. Introduction 

1.1. Background 

Ship detection is widely used in areas such as maritime security, 

maritime transportation, fisheries management, illegal fishing, and border 

control (Zou and Shi, 2016; Liu et al., 2017; Heiselberg, 2016; Li et al., 

2018). In addition, ship detection is important to respond quickly and 

minimize damage as the rate of ship accidents increases due to the recent 

increase in international sea traffic. 

A number of global and national regulations require ships of a 

particular class to be equipped with a shipborne transponder that transmit 

the ship’s identity and location at particular repeat intervals (Kanjir et al., 

2018). One of the most common tracking systems is the Automatic 

Identification System (AIS), designed to automatically provide location 

information to other vessels and offshore authorities (Kanjir et al., 2018). 

These systems help a lot in tracking ships, but most small (less than 300 

tons) ships do not need to carry AIS. In addition, location information may 

not be transmitted intentionally or accidentally, and it has been observed 

that illegally operating vessels identify their locations and change ship 

orientation or even steal them (Heiselberg, 2016). Therefore, we cannot 
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rely entirely on systems such as AIS. This means that there is a need for a 

non-cooperative detection system, such as satellites. 

Satellite-based sensors have the advantages of remote detection, 

global reach, regular updates, and high data collection volumes (Kanjir et 

al., 2018). Therefore, the use of satellite images is the most economical 

and essential tool for detecting ships in the ocean (Kanjir et al., 2018). 

Currently, images of optical and reflected infrared, hyperspectral, thermal 

infrared, and radar are used a lot. Synthetic Aperture Radar (SAR) images 

are widely used in ship detection because they are little affected by 

weather and time (Zou and Shi, 2016; Eldhuset, 1996; Dragosevic and 

Vachon, 2008; Li and Chong, 2008). However, in the case of SAR images, 

the number of satellites on board is small, so there is a limit to the area 

that can be covered at the same time (Kanjir et al., 2018). On the other 

hand, optical sensors have recently increased polar orbits, geostationary 

orbits, and clustered microsatellites, making it possible to observe the 

global at the same time and the number of data generated is increasing 

rapidly, interest in the potential of optical images for ocean observation is 

increasing exponentially (Kanjir et al., 2018). Optical images can also 

provide valuable information for accurate ship identification and feature 

extraction (Liu et al., 2013) and are relatively consistent. Add, these 

images are affordable and simple, enabling classification and broad 
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application areas (Lan and Wan, 2009). In addition, the spatial resolution 

of optical images is improved, so when multiple high-resolution optical 

satellite images are used together, the detection area can be expanded and 

the frequency of observation can be increased. 

Ship detection in optical images can simply be considered to detect 

bright spots against a dark background. But the reality is that the ship may 

be darker than the surface of the surrounding sea, or there may be many 

other bright objects in the image that can be mistakenly detected as a ship. 

The main factors that cause false alarms are clouds, waves, and ship wakes 

(Yang et al., 2013). Elimination of false alarm factors is a key issue in ship 

detection in optical images. For example, Yang et al. (2014) compared 

ship detection results on a quiet-textured sea surface with a wavey sea 

surface and showed a marked decrease in accuracy on a noisy sea surface. 

Therefore, the importance of wake detection is emphasized in many 

studies to improve the accuracy of ship detection (Yang et al., 2011). In 

addition, wake detection can be used to estimate ship direction and speed 

and can help indicate the presence of small ships that are not identified in 

the image (Bouma et al., 2013; Buck et al., 2007). In other words, 

detecting the exact size of a ship in ship detection affects the maritime 

security aspect and the extent of damage to the ship's accident, so it is 

important to remove the obstructive wake. 
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The most commonly used ship detection technique distinguishes 

images according to the value of each pixel being higher or lower than the 

threshold. These methods perform relatively good performance on smooth 

sea surface or high contrast between ship targets and sea background, but 

a high increase in false alarm may occur if there is too much clutter on the 

image. Some studies propose methods based on shape and texture features, 

utilizing different characteristics of ships and sea, and typically include 

spectral information. Threshold-based algorithms provide relatively high 

detection accuracies, although false-alarm candidates (wake, clutter) still 

exist. The ship detection method that has been widely performed recently 

is a machine learning-based approach. Machine learning-based 

approaches are easy to learn and handle big data and yield results at very 

high speeds. Machine learning-based approaches are about how to 

organize computer programs that automatically improve with experience 

(Mitchell, 1997). Here, it is not necessary to explicitly define object 

features, but instead, the image data is used as direct input data to artificial 

neural network. This can be very powerful, but requires a large training 

set, and if the implementation is not done carefully, new objects that do 

not reproduce the training set may be misclassified (Kanjir et al., 2018). 

Therefore, this study aims to perform ship detection in optical images 

using Threshold-based algorithms, machine learning-based RF and CNN 
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models, and to compare and analyze the performance and ship detection 

results of the three models. 
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2. Study Area and Data 

2.1. Study Area 

The study area is 35.03806°N - 35.07056°N and 129.0278°E - 

129.0878°E, including waters near Yeongdo, Busan. Korea has a high rate 

of ship accidents due to its complicated coastline (Song et al., 2013). 

According to the National Port Entry and Exit Ship Statistics (Table 1) 

provided by the Ministry of Maritime Affairs and Fisheries, Busan has the 

largest number of ships coming in and out with 292,873 ships over the 

past two years. Fig. 1 shows the location of ports across the country. And 

Yeongdo is an area with a lot of ship flow as many docks and terminals 

are located, such as Busan Port Coastal Passenger Terminal, Nambu Out 

Port, Busan International Cruise Terminal, Hari Port, and Buk Port. 

Therefore, we designated the Yeongdo area of Busan as a study area and 

conducted ship detection. 
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Fig. 1. The location of ports located in Korea, and (a) is the study area of this thesis. 
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Table 1. Ship statistics by port for the last 2 years. 

 

Busan Incheon 
Pyeongtaek. 

Dangjin 
Gyeongin Donghae 

Samcheo

k 
Sokcho Okpye Hosan Daesan 

292,873 101,925 57,940 1,596 25,810 7,472 1,697 8,101 1,416 45,870 

Boryung Taean Gunsan Janghang Mokpo Wando Yeosu Gwngyang Pohang Masan 

2,970 2,029 23,572 3,554 50,339 6,286 57,032 155,605 40,867 35,976 

Samcheon

po 
Okpo Jangseungpo Jinhae Tongyeong Gohyeon Hadong Ulsan Jeju Seogwipo 

5,105 13,053 93 10,817 7,368 11,069 1,430 159,187 38,062 18,458 
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2.2. Sentinel-2A-2B/MSI Satellite Data 

The Sentinel-2 satellite was developed by the European Space Agency 

(ESA) for Earth observation and is currently operated by two satellites, 

Sentinel-2A and Sentinel-2B. Sentinel-2A and Sentinel-2B were launched 

on 23 June 2015 and 7 March 2017, respectively. Sentinel-2A-2B revisit 

period is 5 days. Table 2 shows the specification of Sentinel-2A-2B 

Multispectral Instrument (MSI). 

Information on Sentinel-2A-2B/MSI images (Scene 1-20) for the 

research area shown in Fig. 1(a) is shown in Tables 3 and 4, and this 

information describes the date, time. The scenes in Table 3 were used as 

training data for the three ship detection models, and the scenes in Table 

4 were used as test data for the accuracy evaluation of the prediction 

results of the three ship detection models. Sentinel-2A-2B/MSI images 

used in this study are Level 2 data, and these images are used in the study 

of Blue (Band2), Green (Band3), Red (Band4), and NIR (Band8) bands 

with cloudless spatial resolution of 10 m. 
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Table 2. Sentinel-2A-2B/MSI channel data. 

 

Sentinel-2 

bands 

Sentinel-2A Sentinel-2B  

Central 

wavelength 

(㎚) 

Band 

width 

(㎚) 

Central 

wavelength 

(㎚) 

Band 

width 

(㎚) 

Spatial 

resolution  

(m) 

Band 1 442.7 21 442.2 21 60 

Band 2 492.4 66 492.1 66 10 

Band 3 559.8 36 559.0 36 10 

Band 4 664.6 31 664.9 31 10 

Band 5 704.1 15 703.8 16 20 

Band 6 740.5 15 739.1 15 20 

Band 7 782.8 20 779.7 20 20 

Band 8 835.8 106 832.9 106 10 

Band 8A 864.7 21 864.0 22 20 

Band 9 945.1 20 943.2 21 60 

Band 10 1373.5 31 1376.9 30 60 

Band 11 1613.7 91 1610.4 94 20 

Band 12 2202.4 175 2185.7 185 20 
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Table 3. Information on images of Sentinel-2A-2B used in the study training data. 

Satellite Scene number Date Time (UTC) 

Sentinel-2A 

Scene 4 2019-04-20 02:07:01 

Scene 8 2020-01-05 02:10:51 

Scene 9 2020-01-15 02:10:31 

Scene 10 2020-02-04 02:09:01 

Scene 11 2020-02-14 02:08:01 

Scene 12 2020-05-04 02:07:01 

Scene 15 2020-11-30 02:10:41 

Scene 16 2021-01-09 02:10:51 

Sentinel-2B 

Scene 1 2019-02-04 02:08:59 

Scene 2 2019-03-16 02:06:49 

Scene 3 2019-04-15 02:06:59 

Scene 5 2019-11-01 02:08:29 

Scene 6 2019-11-21 02:09:59 

Scene 7 2019-12-31 02:10:59 

Scene 13 2020-10-06 02:06:59 

Scene 14 2020-11-25 02:10:19 
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Table 4. Information on images of Sentinel-2A used in the study test data. 

Satellite Scene number Date Time (UTC) 

Sentinel-2A 

Scene 17 2021-01-19 02:10:21 

Scene 18 2021-01-29 02:09:31 

Scene 19 2021-02-08 02:08:51 

Scene 20 2021-02-18 02:07:31 
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2.3. Ship Reference Data 

In this paper, since the Instance Segmentation method will be used for 

ship detection, annotation work is required for the learning dataset. 

Therefore, Labelme, one of the Annotation tools used for data labeling, 

was used to build ship reference data. Labelme is an Open Annotation 

Tool that can manually label the desired area through the polygon in the 

image. Fig. 2 shows the reference data constructed using Labelme in this 

study in RGB images. The area marked with a red border is a ship built 

with reference data. 
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Fig. 2. Ship reference data built with Labelme and enlarged images, red border is the area of the ship reference 

data.
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3. Methods for Ship Detection 

3.1. Threshold-Based Algorithm 

Ship detection based on the threshold is performed by utilizing the 

difference in reflectivity between the ship and the background 

(surrounding sea). Fig. 3 shows that ships exhibit higher reflectivity than 

the sea in all channels Red (Band 4), Green (Band 3), Blue (Band 2), and 

NIR (Band 8). The threshold - based algorithm in previous study proposed 

the Ship Detection Index (SDI, (Park et al., 2018)) as a combination of 

Red and NIR, using the characteristic that the difference between ship and 

sea reflectance values in Red and NIR channels is relatively greater than 

that of Green and Blue channels. 
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Fig. 3. Ship reflectance at Red, Green, Blue and NIR. 
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𝑆𝐷𝐼 =  
𝑅𝑒𝑓0.66 − 𝑅𝑒𝑓0.66_𝑚𝑖𝑛

𝑅𝑒𝑓0.66_𝑚𝑎𝑥 − 𝑅𝑒𝑓0.66_𝑚𝑖𝑛

×
𝑅𝑒𝑓0.94 − 𝑅𝑒𝑓0.94_𝑚𝑖𝑛

𝑅𝑒𝑓0.94_𝑚𝑎𝑥 − 𝑅𝑒𝑓0.94_𝑚𝑖𝑛
 

(1) 

 

Equation 1 is the threshold-based Ship Detection Index (SDI, (Park et 

al., 2018)). 𝑅𝑒𝑓0.66  and 𝑅𝑒𝑓0.94  of Equation 1 represent the Red 

reflectance value and the NIR reflectance value of the pixel to be 

distinguished, respectively. 𝑅𝑒𝑓0.66_𝑚𝑖𝑛  and 𝑅𝑒𝑓0.94_𝑚𝑖𝑛  represent the 

minimum reflectance values of Red and NIR in each scene, while 

𝑅𝑒𝑓0.66_𝑚𝑎𝑥 and 𝑅𝑒𝑓0.94_𝑚𝑎𝑥 represent the maximum reflectance values 

of Red and NIR in each scene. In this study, SDI was calculated using 

𝑅𝑒𝑓0.66_𝑚𝑖𝑛 and 𝑅𝑒𝑓0.94_𝑚𝑖𝑛 as the bottom 5% values for each scene and 

𝑅𝑒𝑓0.66_𝑚𝑎𝑥 and 𝑅𝑒𝑓0.94_𝑚𝑎𝑥 as the top 95% values for each scene to 

remove outliers and consider seasonal spectral properties during the study 

period. To select the optimized threshold value for this study area, we 

empirically modified the threshold value using the evaluation indices 

Probability of Detection (POD) and False Alarm Ratio (FAR). POD 

means that the closer to 1, the higher the accuracy, and FAR means that 

the closer to 0, the higher the accuracy. Fig. 4 shows the change in POD 

and FAR values by changing the SDI threshold value from 0.08 to 0.129 
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in units of 0.001. Overall, as the threshold increases, the accuracy 

decreases. Based on the SDI threshold of 0.0875, the slope of the POD 

becomes relatively gentle, and the slope of the FAR drops sharply. 

Therefore, in this study, the threshold of the SDI was empirically 

designated as 0.0875. In other words, if the SDI value is 0.0875 or more, 

it is classified as a ship, and if it is less than 0.0875, it is classified as a sea. 

 

Fig. 4. Changes in POD and FAR according to SDI threshold. 
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Fig. 5 is the result of ship detection applying SDI to the research area, 

and Fig. 6, the reference data and ship detection results are shown together 

by expanding the ship. Through Fig. 5, it can be confirmed that ship 

detection using SDI is well detected in the presence or absence of a ship. 

But in the enlarged ship detection result of Fig. 6, it was found that the 

wake was detected as ship compared to the reference data, and the ship 

was detected larger than the original size. This means that SDI alone 

cannot separate the wake showing spectral characteristics like that of the 

ship. Therefore, we determined the area, which was classified as a ship in 

the SDI ship detection result but was not a ship, as wake and performed 

an additional analysis (Fig. 7).
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Fig. 5. Ship detection results using SDI. (a) is 2021-01-19 and (b) is 

2021-01-29. 
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Fig. 6. Comparison of expanded reference data and Fig. 5 ship detection results. 
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In SDI, ship and wake show similar values and are not distinguished 

from each other. In addition, in Fig. 7, the wake has similar reflectance 

values of the ship and the Blue channel, but there is a large difference in 

reflectance values in the Red and NIR channels. In particular, in the case 

of ship, NIR channel reflectance has a greater value than Red channel 

reflectance, Conversely, in the case of wake, the red reflectance tends to 

be greater than the NIR reflectance. Therefore, based on the spectral 

characteristics of the wake, we developed the Wake Detection Index (WDI, 

Equation 2) with a combination of SDI, Blue, Red, and NIR and utilized 

it for the classification of the wake and the ship (Fig. 8). 

 𝑊𝐷𝐼 =  (
𝑅𝑒𝑓0.46 − 𝑅𝑒𝑓0.84

𝑆𝐷𝐼 + 𝑅𝑒𝑓0.84
) + (

𝑅𝑒𝑓0.66 − 𝑅𝑒𝑓0.84

𝑆𝐷𝐼
) − 0.3 (2) 
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Fig. 7. Comparison of spectral characteristics of Ship and Wake in 

Red, Green, Blue and NIR. 
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Fig. 8. Wake Detection Index (WDI) 
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3.2. Random Forest 

Random Forest (RF) is a representative ensemble classifier based on 

several decision trees trained with randomly selected data subsets and 

feature sets (Breiman, 2001). The RF makes two random choices when 

generating many decision trees. First, sample a subset of training sets 

randomly from the training dataset and generate a decision tree from each 

dataset. For example, assuming that there are 1000 data in the training set, 

only 100 data can be arbitrarily selected to create a tree when each tree is 

created. That is, all trees are formed based on different data, but they are 

all subsets of training dataset. Second, when forming RF, it does not only 

change the dataset, but also changes the feature selection. When selecting 

a feature, a subset of existing features is used. In general, when M features 

exist, the number of randomly selected features utilizes the square root of 

M. What is important at this time is that duplication is allowed when 

randomly selecting data. This method is called bagging (Breiman, 1996). 

As a result, the problem of overfitting occurring in one decision tree model 

can be solved because the variance is reduced while maintaining the bias 

of each tree (Breiman, 2001). The final classification decision is 

determined by the class with the most votes among the classes calculated 

by all the trees generated. To estimate how well the model performed, the 
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RF uses approximately 2/3 of the samples (referred to as in-bag samples) 

for tree learning and the remaining 1/3 (referred to as out-of-bag) for 

internal cross-validation (Breiman, 2001). This estimate is called OOB 

(Out-of-Bag) score, and the closer the OOB score is to 1, the better the 

model is learned. 

In this study, Sentinel-2A-2B images (Scene 1–16, 8423 ship pixels, 

639 wake pixels and 2612224 sea pixels) of Table 3 were used. If the data 

is used as it is, learning biased toward sea characteristics can be performed 

due to the imbalance of the data, resulting in an overfitting model for the 

sea. Therefore, we adjusted the data imbalance by increasing the number 

of wake pixels and reducing the number of sea pixels based on the number 

of ship pixels. Finally, 8670 ship pixels, 7469 wake pixels and 18698 sea 

pixels were used as RF input data sets. First, a total of 14 input features 

were selected. Band reflectance and band ratio to reflect spectral 

characteristics, SDI that distinguishes the sea from the ship well by 

reflecting the spectral characteristics of the ship, and WDI that separates 

the wake, that is detected as the ship and generates false alarms, from the 

ship. Lastly, since the ship exhibits spectroscopic characteristics similar to 

that of the land, the Normalized Difference Water Index (NDWI), which 

is mainly used to analyze the water body, was used and NDVI 

(Normalized Difference Vegetation Index) was used to perform double 
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check on land. We simply made feature selection based on the relative 

feature importance provided by the RF. Fig. 9 shows the feature 

importance of 14 features. Finally, 7 parameters were selected (Fig. 10) 

and this was used for RF development, which simultaneously detects ships 

and wake and effectively removes false alarms. The OOB score of the 

final RF model was 0.985. 

 

Fig. 9. Feature importance of 14 features. 
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Fig. 10. Feature importance of the final selected features. 
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3.3. CNN-Detectron2 

As a state-of-the-art method for detecting objects, models using deep 

neural networks are being used and performing well. Recent technologies 

generally relate to two models: Region-based Convolutional Neural 

Networks (R-CNNs) and You Only Look Once (YOLO). The R-CNNs 

(Ross Girschick et al., 2014) approach utilizes three modules. The first is 

a region proposal module that creates bounding boxes using computer 

vision techniques. The second is a feature extraction module. The feature 

extraction module uses a Convolutional Neural Network (CNN) to extract 

features from the candidate region. Finally, the third module is a classifier 

that predicts a class of proposed candidates using the extracted features. 

R-CNNs take a long time to train because training takes place in several 

stages. Therefore, Girschick proposes another model called Fast R-CNN 

(R. Girschick., 2015) to solve these problems. Fast R-CNNs are trained 

with a single model rather than three individual modules. This architecture 

input an image and proposes a candidate region, and then extracts features 

from the candidate via a popular pre-trained image classification model 

(e.g., ResNet (K He et al., 2016), VGG-16 (K Simonyan et al., 2014). The 

biggest difference from R-CNNs is that each proposal does not go through 

CNN but performs object detection in the output feature map step after 
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going through CNN once for the entire image. Fast R-CNN improves 

training and prediction time, but still requires local suggestions as input. 

In other words, regional proposals for each image still need to be made 

separately. Thus, Ren et al., proposes Faster R-CNN (S Ren et al., 2015) 

to address this problem. A major improvement is the ability to incorporate 

region proposals as part of the final model using the Region Proposal 

Network (RPN). In other words, there are two smaller networks in this 

architecture. The first is RPN and the second is Fast R-CNN. These two 

subnetworks are trained simultaneously on two different tasks: 1) local 

proposal and 2) bounding box classification and regression. These 

strategies help improve training and object detection time and accuracy. 

Another famous object detection product is YOLO. Depending on the 

YOLO version, there may be differences in terms of the architecture and 

technology used. The advantage of this method is that training and 

prediction are faster. However, this model is slightly less accurate than 

Faster R-CNN (V Pham et al., 2020). Therefore, this work explores the 

Faster R-CNN approach to perform ship detection. Instead of developing 

the Faster R-CNN model from scratch, we use Detectron2 to shorten the 

development cycle. Detectron2 is a training/inference platform for 

Pytorch-based object detection and semantic segmentation created by 

Facebook Artificial Intelligence Research (FAIR). Detectron2 has a 
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structure that adds a classification branch that predicts the class of an 

object and a mask branch that predicts the segmentation mask parallel to 

the bbox regression branch that performs the bbox regression for RoI 

obtained from the RPN of the Faster R-CNN. The Detectron2 architecture 

is shown in Fig. 11. The input data is in COCO JSON format. We tested 

and evaluated all the proposed related algorithms with the following 

settings. (i) different number of iterations (500 to 7000), (ii) different 

number of images per batch (2–32), (iii) different batch size per image (8–

512), (iv) different learning rates (0.00025–0.01). The total loss value for 

the final learning model is 0.5517.
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Fig. 11. Detectron2 architecture based on Mask R-CNN. 
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4. Results and Discussion 

(a), (b), and (c) of Fig. 12 are the ship detection results of the 

Threshold-based algorithm, Random Forest, and CNN models, 

respectively. The part marked with a red border represents the edge of the 

pixel detected by the model as a ship. All three models were well detected 

without missing ships.  

To analyze the results of ship detection by model in more detail, we 

analyzed them by dividing them into two groups: ships that do not include 

wake and ships that include wake. In addition, by expanding the ship, it 

was compared and analyzed how the area where the ship and wake were 

detected by model was different. In addition, in this study, Precision, 

Recall, F1-score, and Intersection over Union (IoU) were used to perform 

Evaluation for each model. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (3) 

Precision is the ratio of what the model classifies as Ture to what is 

actually Ture. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑢𝑟𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (4) 
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Recall is the ratio of what the model predicts to be true among what is 

actually True. Therefore, it is possible to determine how similar the 

reference data and the result predicted by the model are through the Recall. 

 𝐹1_𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

F1_score is the harmonic average of Precision and Recall. F1_score 

means that when the data label is an unbalanced structure, the performance 

of the model can be accurately evaluated, and the closer it is to 1, the 

higher the accuracy, and the closer it is to 0, the lower the accuracy. 

 

𝐼𝑜𝑈 =
𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑅𝑒𝑔𝑖𝑜𝑛

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑅𝑒𝑔𝑖𝑜𝑛

=
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑛𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 

(6) 

IoU is an index that measures the similarity between the reference data 

and the result predicted by the model and has a value between 0 and 1. It 

is evaluated that the wider the overlapping area, the better the prediction. 
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Fig. 12. Ship detection results of three models, (a) is threshold-based 

algorithm, (b) is Random Forest and (c) is CNN. 
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4.1. Ship Detection Results (without wake) 

Fig. 13 is a qualitative comparison of reference data and ship detection 

results by model for ships that do not include a wake. The shape and area 

of the ship were detected differently for each model. Because Threshold-

based algorithm and RF perform detection based on pixel-specific spectral 

characteristics, as in (i) and (n) of Fig. 13, a phenomenon in which one 

ship is cut off may occur. On the other hand, CNN uses Anchor box, a 

bounding box with various aspect ratios, by introducing RPN in the 

process of performing candidate region extraction tasks, so it extracts 

region proposals more precisely. Therefore, there was no phenomenon in 

which one ship was cut off, such as the threshold-based algorithm and RF. 

However, compared to the reference data, the size of the ship tended to be 

detected as small. 



37 

 

 

Fig. 13. Ship detection results that do not include the wake of three models. 
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4.2. Ship Detection Results (including wake) 

Fig. 14 is a qualitative comparison of reference data and ship detection 

results by model for ships that include wake at the rear of the ship. Since 

the wake is included, the boundary between the ship and the wake is 

ambiguous, so there was a greater difference in the shape and area of the 

ship detected by model than the result of ship detection without the wake 

of Fig. 13. The results of threshold-based algorithm and RF ship detection 

showed similar results in terms of the shape and area of the ship, and 

compared to the reference data, the results of the two models showed a 

tendency for ships to be largely detected by classifying wake as ships. In 

the case of RF ship detection results, a phenomenon in which one ship was 

cut off also occurred. CNN ship detection results showed that the shape 

and area of the ship were the smallest among the three models, but among 

the three models, the ship detection results were the most similar to the 

reference data, and there was no phenomenon in which one ship was cut 

off. But, as in Fig. 13 the vessel was detected smaller than the reference 

data. 
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Fig. 14. Ship detection results including the wake of three models. 
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4.3. Combination of RF and CNN Results 

To solve the phenomenon of disconnection of ships between the 

threshold-based algorithm and RF and the detection of ships of CNN 

smaller than the reference data, this study combines the RF ship detection 

results and the detection results of CNN ships. Fig. 15 qualitatively 

compares the reference data, the ship detection results of the three models, 

and the fusion results of RF and CNN ship detection for ships that do not 

contain wake. Fig. 16 qualitatively compares the reference data, the ship 

detection results of the three models, and the fusion results of RF and CNN 

ship detection for ships containing the wake. As a result of RF-CNN 

fusion, the area where the ship was cut off and the point where the ship 

was detected small have improved. Therefore, the fusion result of RF and 

CNN showed the shape and area of the ship most similar to the reference 

data. 

Table. 5 shows the performance evaluation results of the three models 

and the combined RF and CNN results. As a result of combining RF and 

CNN, Recall showed the highest value of 0.97. In addition, it is significant 

in that the F1-score value and the IoU value-maintained accuracy similar 

to the other three models, even though the phenomenon of ship 

disconnection and the tendency of ship detection were improved. 
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Fig. 15. Ship detection results that do not include the wake of three models and ship detection results that 

combine RF and CNN. 
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Fig. 16. Ship detection results including the wake of three models and ship detection results combining RF and 

CNN. 
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Table 5. Detection performance. 

 

 Threshold RF CNN RF + CNN 

Precision 0.79 0.73 0.87 0.74 

Recall 0.88 0.95 0.78 0.97 

F1-score 0.83 0.83 0.82 0.84 

IoU 0.72 0.7 0.7 0.72 
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5. Summary and conclusions 

Ship detection is widely used in areas such as maritime security, 

maritime transportation, illegal fishing, and border control. In addition, 

ship detection is important to respond quickly to ship accidents that 

continue to occur due to an increase in maritime traffic and to minimize 

damage. According to a number of international regulations, ships of a 

particular class must be equipped with transponders that transmit the ship's 

ID and location at certain repetitive intervals. However, small vessels (less 

than 300 tons) are not obligated to carry them, and location information 

may not be transmitted intentionally or accidentally. Therefore, it is 

economical to perform ship detection using data that can be observed 

periodically in a wide range remotely, such as satellite images. Recently, 

due to the increase in optical satellites, ship detection using optical images 

with a large amount of data that can be used and a simple structure has 

been performed a lot. However, ship detection in optical images has the 

possibility that objects with similar brightness to ships, such as clouds and 

wake, may generate false alarms. Therefore, in this study, the accuracy of 

ship detection was improved by removing the wake, which is the main 

element of false alarm. Ship detection was performed by learning three 

models using Sentinel-2A-2B/MSI channel data. First, the Threshold-
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based algorithm performed ship detection based on SDI using the ship's 

spectral characteristics, and the wake that were not distinguished by SDI 

were further analyzed to develop WDI to remove the wake that generate 

false alarms. Second, ships and wake detection were performed using RF 

with high efficiency and prediction accuracy for large-capacity dataset. 

Finally, among CNN techniques, an image-based object detection method, 

ship and wake detection were performed using Detectron2. All three 

models had good detection of all vessels without undetected vessels in 

relation to the presence or absence of the vessel. However, in the case of 

Threshold-based algorithms and RF, one ship was cut, distinguished for 

each pixel based on the spectral characteristics of each pixel. On the other 

hand, although it did not occur in the results of CNN, which performs 

object detection based on images, there was a tendency to detect ships 

smaller than the reference data. Therefore, in this study, the ship 

disconnection phenomenon and the ship small detection phenomenon 

were improved by fusing the RF and CNN ship detection results. The 

quantitative verification of the final RF-CNN fusion results showed the 

accuracy of Precision 0.74, Recall 0.97, F1-score 0.84, and IoU 0.72.  

This study performed ship detection using three models from optical 

images. It is significant in that it has increased accuracy by simultaneously 

removing wake when performing ship detection. In addition, it is 
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significant in that the ship detection results were compared and analyzed 

by model, and the results were combined to supplement the limitations of 

each model while maintaining accuracy. The resolution of the optical 

image continues to improve. In the future, using optical satellite images 

with improved spatial resolution is expected to perform ship detection and 

wake detection with higher accuracy. It is also expected to be used for 

monitoring illegal China fishing boats and small North Korea's ships.  
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