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A Study on the Data-Driven Approach for Anomaly Detection in Electric Power 

Steering System 

 

Alabe Lawal Wale 

 

Department of Artificial Intelligence Convergence, The Graduate School, 

Pukyong National University 

 

Abstract 

 

With the centralization of anomaly detection in electrical power steering 

(EPS) systems through modeling and knowledge-based methodologies, the EPS 

systems have evolved to become intricate and advanced, necessitating heightened 

levels of quality assurance and general safety. Given that the majority of existing 

detection methods are reliant on pre-existing knowledge, accurately identifying 

novel or previously unobserved anomalies poses a challenge.  In this study, a deep 

learning approach consisting of a dual-stage process involving an autoencoder 

and long short-term memory (LSTM) network for detecting anomalies within the 

data captured from the EPS sensor is presented.  

The model was trained on EPS data utilizing an autoencoder to extract and 

compress features into a latent representation. Subsequently, the compressed 

features are inputted into an LSTM network to capture interdependencies among 
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the features and then reconstructed to obtain an output. An anomaly score was 

computed based on the reconstruction loss of the output, enabling the detection 

of anomalies.  

The efficiency of the presented approach was substantiated through the 

collection and analysis of sample data obtained from an experiment conducted 

with an EPS test jig. Comparative results reveal that the proposed model 

outperforms other methods in anomaly detection, exhibiting an accuracy of 0.99 

and a higher region under the receiver operating characteristic curve. This 

establishes the proposed approach as a robust tool for EPS anomaly detection. 
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전동식 파워 스티어링 시스템의 이상 징후 감지를 위한 데이터 기반 

접근법에 관한 연구  

 

알라비 라왈 왈레  

 

부경대학교 대학원 인공지능융합 학과  

 

초 록 

모델링과 지식 기반 방법론을 통해 전동식 동력 조향(EPS) 시스템의 

이상 감지를 중앙 집중화 함에 따라 EPS 시스템은 더욱 복잡하고 고급화된 

형태로 발전하여 높은 수준의 품질 보증과 일반 안전이 요구된다. 기존의 

대다수 감지 방법이 이전에 감지된 경험적 지식에 의존하고 있다는 점을 

감안할 때, 새롭거나 이전에 관찰되지 않았던 이상 현상을 정확하게 

식별하는 것은 해결해야 할 과제이다. 본 연구에서는 EPS 센서에서 측정된 

데이터의 이상 현상을 감지하기 위해 오토인코더와 장단기 메모리(LSTM)  

네트워크로 구성된 2단계 프로세스의 딥러닝 접근법을 제시한다. 

이 모델은 오토인코더를 사용하여 EPS 데이터를 학습시켜 데이터 

특징을 추출하고 잠재 표현으로 압축한다. 그런 다음 압축된 특징을 

LSTM 네트워크에 입력하여 특징 간의 상호 의존성을 파악하고 

재구성하여 출력한다. 이상 점수는 출력의 재구성 손실을 기반으로 

계산되어 이상 현상을 감지하는데 사용된다. 
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제안된 접근법의 효율성은 EPS 테스트 장치를 사용하여 수집된 

샘플 데이터의 수집과 분석을 통해 입증되었다. 비교 결과, 제안된 모델은 

이상 감지에서 0.99 의 정확도와 수신기 동작 특성 곡선 아래에서 더 높은 

영역을 나타내어 다른 기존 방법보다 우수한 성능을 보였다. 이를 통해 

제안된 방식이 EPS 이상 감지를 위한 강력한 도구임을 확인하였다. 
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CHAPTER ONE 

1.1 Background and Motivation 

Early steering systems were characterized by either a heavy or softly 

gearing mechanism. This attribute raises several difficulties within the 

automotive system, including augmented driver exertion, which refers to the 

increased physical effort required by the driver to control the steering wheel. Also, 

it introduces delays in response time, impeding the driver's capacity to execute 

accurate and finely tuned steering maneuvers, diminished stability, and reduced 

agility. To address these limitations, a power-assisted steering system was 

developed. EPS enhanced the vehicle control system significantly compared to 

the hydraulic power steering system as it required less steering effort, resulting in 

power efficiency since it is powered by the alternator rather than the engine (when 

the vehicle is powered) [1,2]. According to [3], the EPS market is expected to 

increase significantly from $23.03 billion in 2021 to $35.30 billion by 2029 with 

the continuous popularity of hybrid and self-driving vehicles. In addition, EPS 

offers numerous advantages to this vehicle design including its ability to lower 

the vehicle weight, conserve fuel consumption, and reduce the risk of vehicle 

intrusion through the usage of the Internet of Things (IoT) [4,5]. 

As the implementation of EPS becomes more prevalent in the automotive 

sector, there is a heightened demand for increased safety, reliability, and 
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performance [6]. These objectives can be achieved through the implementation 

of an optimized system design during the manufacturing phase, improved 

anomaly detection methods, and the integration of EPS health monitoring and 

prognostics techniques. The EPS system is composed of various mechanical and 

electrical components, including a torque sensor, handwheel angle sensor, vehicle 

speed sensor, and an electronic control unit. These components operate in a 

synchronized manner [7]. Potential EPS system malfunctions can range from 

anomalies or failures in individual components such as sensors and actuators, to 

impending failures such as insulation degradation of the stator coil or bearing 

issues that affect friction. Early diagnosis of the component fault, specifically 

those resulting in erroneous steering assist due to sensor malfunction is 

considered crucial as the outcome of such failure often results in disastrous 

outcomes due to driver shock [7]. Nevertheless, the risk mitigation strategies for 

EPS failure have not been thoroughly examined, leaving the potential for critical 

issues impacting the reliability for quality assurance and safety design of the EPS 

system. 

Anomaly detection is a method used to identify abrupt deviations in system 

behavior from regular patterns. Such deviations usually arise from system failures 

that could be sudden or gradual in nature [8].  There are three primary methods 

for identifying these anomalies which are knowledge, model, and data-

driven.  Recently, the potential of the data-driven approach has increased 
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significantly due to the advancement in deep learning models and the advent of 

Industry 4.0. The emergence of Industry 4.0 has led to a transformative impact 

on the manufacturing sectors facilitated by the widespread use of Internet of 

Things (IoT) sensors that generate large-scale datasets. These types of datasets 

also known as time series data have been widely embraced for decision-making 

in the areas of anomaly detection [9], intrusion detection [10], and predictive 

maintenance [11].  However, the acquisition of a dataset that contains instances 

of anomalous events is a challenging and expensive task, which restricts the 

application of the conventional data-driven method. This limitation is now 

addressed with deep learning models using an unsupervised or semi-supervised 

learning method. 

In this thesis, an anomaly detection framework is proposed for the EPS 

system leveraging the capabilities of deep learning algorithms to eradicate 

inferior components. The architecture comprises a hybrid model: A long short-

term memory network, which is an extended version of the recurrent neural 

network, to retain temporary dependencies on each data point and an autoencoder 

to compress the high dimensional dataset into a latent space for calculating the 

reconstruction loss used as the anomaly detector. 
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1.2 Thesis Contribution 

1. The prevalent approach for anomaly detection in EPS parts is knowledge 

and modeling-based approaches. In this thesis, a data-driven method using 

deep learning is proposed.  

2. A two-stage approach is implemented in this proposed method. Firstly, 

normal data without anomalies is utilized for training the model and 

secondly, the anomaly detector is based on the reconstruction error using 

the mean absolute error.   

3. The Dataset used for conducting the experiment is obtained from an EPS 

test jig and verifies the performance analysis to similar methods for 

anomaly detection using deep learning.  

1.3 Thesis Outline 

The thesis begins with the introduction and motivation of the research topic in 

chapter one. In chapter two, the theoretical foundation for understanding the 

thesis is discussed.  Chapter three presents related works similar to this research 

theme. The methodology used in this research is described in chapter four, while 

chapter five presents the experimental results which comprise the dataset utilized, 

experimental setup, evaluation metrics, and performance analysis. Chapter six 

concludes the thesis and describes the direction for future works.  
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CHAPTER TWO 

In this chapter, the theoretical knowledge required for understanding this thesis 

topic is introduced. 

 2.1 Machine Learning  

Machine learning (ML) is a subset of artificial intelligence that enables 

computer systems to extract meaningful and potentially useful information 

without being explicitly programmed [12]. Artificial Intelligence (AI) is a field 

of study concerned with the development of intelligent agents- systems that can 

comprehend their environment and take action that enhances their chances of 

achieving their objective functions [13].  Essentially, AI encompasses the 

building of machines that are capable of performing tasks that are typically 

associated with human intelligence, such as problem-solving, and decision-

making. Machine learning algorithms employ perceptron-based, statistical 

methods to detect patterns and meaningful insights in data and use these patterns 

to make predictions or decisions [14]. The core procedure of this machine-

learning process can be categorized into three phases: training, testing, and 

application.   

In the training phase, ML models are trained using training data depending 

on the learning algorithms. The aim of this phase is to optimize the effectiveness 

of the learning algorithm for the accurate prediction of unseen data [15]. The 
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validation and test stage involve evaluating the training algorithm performance 

on a separate set of data that was not utilized during the training stage. This 

ensures that the algorithm is not overfitting to the training data and will eventually 

generalize to unseen data. The application phase is the integration of the trained 

model for prediction or decision-making in a specific domain for real-world use.  

Figure 2.1 illustrates the different ML approaches discussed in this thesis and the 

required training data.  

Figure 2.1: Different machine-learning approaches and data requirements. 

2.1.1 Supervised Learning  

 Supervised learning is a fundamental task in machine learning that involves 

training an algorithm that maps an input to an output based on a sample-labeled 

dataset [16]. A supervised learning algorithm aims to create a model that can 

accurately predict the output for new input data. Classification and regression are 

the two most common tasks performed with supervised learning. The nature of 

the output value distinguishes classification and regression. In classification, the 
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output value is categorical or discrete, i.e., classify received emails as either spam 

or not spam, cloudy or rainy [17].  While in regression, the output value is 

continuous, i.e., prediction of housing price and stock rate. This distinction 

influences the choice of algorithms and evaluation metrics used for each task.  

2.1.2 Unsupervised Learning   

 Unsupervised learning is a machine learning technique where the 

algorithm is trained to identify patterns and insights in the input data without 

being provided with explicit feedback or labeled samples [17-18]. The algorithm 

analyzes the input data to detect hidden structures and clusters, then uses this 

observation to create a model that can detect similar patterns in new data samples 

[18]. The aim of unsupervised learning is usually to explore and comprehend the 

underlying structure of the data rather than achieve a particular goal or prediction. 

Unsupervised learning is commonly used for clustering, i.e., splitting the samples 

in an untagged data collection into several typically separate subsets such as news 

stories and dimensionality reduction.  

2.1.3 Semi-supervised Learning 

Semi-supervised learning is a hybrid combination of both supervised and 

unsupervised learning approaches. Unlike the previous type of learning, where 

data samples are classified as either labeled or unlabeled, the state of data is not 

classified [19]. In the real-world use case labeled data are often limited, whereas 

unlabeled data is numerous, making semi-supervised learning effective. Hence, 
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the objective of semi-supervised learning algorithms is to deliver more effective 

prediction results than what can be achieved using only labeled data [19-20]. This 

learning method is widely applicable to fraud detection, machine translation, and 

anomaly detection where training instances are normal sample datasets.  

2.2 Deep Learning 

 Figure 2.2 illustrates the connection and interdependences between 

Machine learning (ML) and Deep learning (DL) as a subfield of Artificial 

intelligence (AI). 

 

Figure 2.2: The relationship between AI, ML, and DL. 

Deep learning is a subfield of machine learning that enables intelligence systems 

to leverage artificial neural networks to automatically extract, analyze and 

comprehend meaningful insights from a large dataset [21-22]. Unlike typical 

machine learning algorithms, deep learning models rely on multiple layers of 

interconnected neurons to automatically learn hierarchical data representation. 

Through the process of iteratively adjusting the neural network parameters, deep 
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learning models are able to identify and extract more abstract and relevant 

features from raw input data. Consequently, they have achieved remarkable 

success in tasks such as anomaly detection, image recognition, and natural 

language processing [22]. 

2.3 Anomaly Detection  

Anomaly detection is the process of identifying data patterns that diverge 

from expected behavior. Depending on the context of the application, such 

deviant patterns are referred to as novelty detection, outliers, and discordant 

observations [23]. It is an intriguing field of machine learning research that entails 

the discovery of rare and fascinating patterns within datasets and has been widely 

applied in domain areas such as fraud detection, intrusion detection, cyber-attack, 

medical diagnosis, and fault detection in both electrical and mechanical systems 

[23]. Anomalies may occur in data due to a variety of factors, including deliberate 

actions such as fraudulent transactions with debit cards, malware attacks, or 

incidental events such as system breakdowns. Regardless of the manifestations, 

anomalies possess the attribute of being significant and remarkable to the 

investigator or analyst [23-24].   

Generally, anomalies are categorized into point, contextual, and collective 

anomalies. Point anomaly occurs when a data instance significantly differs from 

the regular pattern of data [24]. A practical example can be observed when a 

house’s daily power consumption is 10kwh but on a random day, and it abruptly 



10 
 

becomes 25kwh; this instance is considered a point anomaly. An anomaly within 

a particular context is termed a contextual or conditional anomaly. This type of 

anomaly is often characterized by contextual and behavioral attributes [23]. The 

most realistic scenario is household expenditure during the winter season 

compared to other seasons. The collective anomaly occurs due to changes in a 

group of interrelated data instances compared to the overall dataset. For instance, 

prolonged periods of low readings in human ECG indicate an exceptional 

phenomenon [23]. Figures 2.3 illustrate a generic framework for anomaly 

detection.  

 

 

 

 

 

 

 

 

 

Figure 2.3: A generalized framework for detecting anomalies. 
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2.4 Working Principle of EPS 

Several variants of Electric Power Steering (EPS) systems have been proposed, 

but they all operate based on a similar fundamental principle. As depicted in 

Figure 5.1, the driver exerts torque manually on the steering wheel. Based on the 

driver's input, the torque sensor measures the amount of force applied and 

subsequently conveys it to the electronic control unit (ECU) in the form of an 

electrical signal [25]. The ECU processes and compares the received signal with 

the steering assist force, which takes into consideration a variety of distinct 

elements such as steering angle and vehicle speed. The amplification of steering 

assistance torque received from the electric motor is facilitated by the reduction 

gear that is connected to the steering column. The aforementioned steering 

assistance torque is transmitted to the pinion gear, which is connected to the 

steering rack, in order to convert the rotary motion derived from the steering 

wheel into a lateral motion. This mechanism enables the steering rack to move 

the vehicle's wheels laterally, thus allowing the driver to steer the vehicle in the 

desired direction. Figure 2.4 presents the workflow of an EPS system.  
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Figure 2.4: Workflow of EPS system. 
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CHAPTER THREE 

This chapter summarizes previous work on anomaly detection related to 

this thesis. The techniques explored include conventional machine learning and 

deep learning approaches.  

3.1 Traditional Machine Learning Approach  

 The efficiency of the classical machine learning approach for detecting 

anomalies is significantly influenced by the nature of the dataset being examined, 

as well as the training model employed. Depending on the specific application 

domain, these datasets may be labeled, partially labeled, or unlabeled.  In 

instances where labeled data is accessible, a supervised learning method is 

employed for binary classification tasks to provide a distinct difference between 

normal and anomalous events. 

 The deployment of cloud computing has risen to prominence across both 

software service and corporate entities, owing to the significant decrease in both 

capital and operation expenses. This technological innovation enables an 

organization to leverage third-party service providers for computing resources 

such as storage, and networking infrastructure rather than deploying on-premises 

data centers. Hence, the broad adoption of cloud computing has been impeded by 

major security concerns against intrusion attacks. Tara et al. [26] present the use 
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of two classical machine learning models, linear regression, and random forest, 

to detect anomalies in a multi-cloud system. The authors studied the detection 

and classification of anomalies rather than solely focusing on detection. A 

publicly available is utilized to train and test the proposed approach, resulting in 

a commendable accuracy rate of 99 percent.  

Assistive robotics holds immense potential for individuals with disabilities 

to carry out their daily tasks and activities independently. This concept is inspired 

by numerous instances, including but not limited to robot-supported feeding and 

clothing. Although robotic assistance provides substantial advantages in assisting 

people with daily chores, it is critical to ensure such systems' safe operation, 

efficiency, and reliability. This becomes extremely challenging when dealing 

with complex semi-autonomous systems that may occasionally experience 

anomalies, leading to potential safety risks and reduced system performance.  

Park et al. [27] proposed a technique to detect and classify anomalies in robot-

assisted feeding. They employed a hidden Markov model for the anomaly 

detector, and a conditional log-likelihood classifier was implemented with 

selected input features obtained from the hidden Markov models. The proposed 

anomaly detector demonstrated a detection accuracy of 83.27% in identifying 

abnormal instances among 352 feeding trials, along with the ability to classify the 

kinds and underlying causes of the detected anomalies with 90% and 81% 

accuracy, respectively. However, the classifier utilized conditional log-likelihood 
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extracted from input signal sequences that fall below a limit that varies with time. 

This approach frequently faces the issue of class imbalance as the number of 

anomalies is significantly lower than the number of normal data in the training 

set [28]. Generating precise labels, particularly for the anomaly class, necessitates 

the involvement of domain specialists, which results in a tedious and costly 

process. Furthermore, scaling datasets with high dimensions is often challenging. 

Due to this shortcoming, unsupervised learning methods are often preferred. 

Unsupervised learning methods exploit the spatial proximity of data points 

to identify anomalies, utilizing approaches such as density-based and distance 

techniques. A support vector machine (SVM) and density-based spatial clustering 

application with noise (DBSCAN) is proposed by Emadi et al. [29] to identify 

anomalies in wireless sensor networks using the IRLB dataset, which comprises 

eight features.  In this study, three features were selected (temperature, humidity, 

and voltage) for their high impact on wireless network anomaly detection. Prior 

to using DSCAN, it is essential to assess the accuracy of the input features. The 

author hypothesized that two clusters would be required for the detection of 

anomalies based on density. Hence, the correlation coefficient between the input 

and output variables is determined prior to classifying high-density clusters as 

normal. On completion of the data labeling, the training is performed using a 

support vector machine.  
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Detecting anomalies or outliers in streaming data poses significant 

challenges compared to static data since data streams are characterized by 

continuous, dynamic, and unbounded changes. Mistra et al. [30] examined the 

difficulties of detecting outliers in data streams as well as the results of various 

outlier detection methods. The research focused on analyzing density-based 

techniques for detecting outliers and conducted a detailed comparison of various 

local outlier factor (LOF) based algorithms. they attributed a numerical value, 

called an outlier factor, to each data instance. The LOF metric is assigned a value 

of 1 to data points that are highly integrated into a cluster, while data points that 

are not well-integrated have a LOF value greater than 1. The author conducted a 

comparison of several LOF models and found that the memory-efficient 

incremental LOF algorithm is the most effective and scalable method for 

detecting anomalies in data streams. 

 Liu et al. [31] present a hybrid approach for detecting anomalies in large 

system logs that combines the K-prototype clustering technique with the K-

nearest neighbor (KNN) classification algorithm. The K-prototype clustering 

algorithm uses both categorical and numerical data in the clustering phase, 

whereas the KNN classification model detects outliers by considering the 

distance of each log entry to its k-nearest neighbors in the dataset. The dataset is 

partitioned using k-prototype clustering into multiple clusters, based on the 
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extracted features attribute to precisely define usage patterns.  Following the 

removal of the normal instances, which were typically evident as highly cohesive 

clusters, the remaining events were identified as outliers and necessitated further 

analysis. Consequently, the authors introduced two distance-based attributes to 

measure local and global outlier levels and employed K-nearest neighbor 

classifiers to assess the effectiveness of their method. The application of the K-

mean clustering algorithm for network intrusion or anomaly detection is 

presented by Munz et al. [32].  The phrase "data mining" refers to a set of 

techniques and algorithms that aid the exploration of data with the aim to discover 

patterns and rules that can describe the intrinsic characteristic of the data.  

However, the all-encompassing nature of data mining has limitations as the 

insights obtained may not be significant or practical in real-world scenarios. K-

means clustering is a method that involves segregating features into K-distinct 

groups based on their unique attribute values. The grouping approach is designed 

to ensure that each group differs and is non-overlapping [33].  The training 

dataset was segmented into distinct clusters of temporals representing normal and 

anomalous traffic in their study. Subsequently, the corresponding cluster 

centroids are employed as templates for distance-based detection of anomalies in 

the investigated dataset. This method involves calculating the distance between 

the monitoring data and the established centroids, allowing anomalous patterns 

to be identified. An instance is considered an anomaly if its proximity to the 
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anomalous cluster centroid is closer than its proximity to the normal centroid or 

if its distance to the normal cluster centroid exceeds the predetermined threshold 

score. 

In several fields of study, the prevalence of large-scale datasets has grown 

significantly.  To effectively analyze and comprehend such datasets, there is a 

need for methods that can substantially reduce their dimensionality in a 

comprehensible manner while retaining most of the information contained therein. 

Numerous methodologies have been developed to achieve this objective, but 

Principal Component Analysis (PCA) is one of the earliest and perhaps widely 

adopted methods. The underlying principle of PCA is relatively straightforward: 

it involves the reduction of the dataset's dimensionality while retaining the 

maximum amount of variability within the dataset [34].  Kudo et al. [35] present 

a resilient principal component analysis (PCA) technique designed to identify 

anomalies in data traffic that exhibit daily or weekly periodic patterns. While  

PCA is an efficient technique for identifying traffic anomalies, it may be prone 

to contamination of the normal subspace when dealing with extremely large 

anomalies. This contamination could potentially degrade the effectiveness of the 

anomaly detector. In the proposed approach, the author leverages the cyclic 

characteristics of network traffic to detect anomalies at fixed intervals (e.g., daily). 

At the commencement of each period, a reference covariance matrix is 

formulated using normal traffic data from the preceding period. This reference 
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matrix serves as a benchmark for identifying deviations in the subsequent period's 

network traffic. Prior to employing PCA, outliers in the present period are 

eliminated by assessing them against the reference covariance matrix using the 

Mahalanobis distance technique. The presented approach effectively mitigated 

the issues of subspace leakage and a high false negative rate in detecting 

anomalies. 

The efficiency of real-time mobile health applications is heavily reliant on 

the accuracy of sensor readings, which is imperative for delivering exceptional 

health care. Hence, concurrent sensor readings may be erroneous and lead to 

anomalous physiological measurements resulting from internal and external 

influences. As a result, anomalous readings have a noteworthy impact on the 

dependability of these applications and consequently impact the patient's well-

being. Given the immense volume of data, novel data-driven approaches that 

incorporate dimensionality reduction techniques are necessary for detecting 

anomalous measurements and delivering reliable, personalized medical services. 

Lamia [36] et al. proposed an anomaly detection method for medical wireless 

body area networks. This approach utilizes PCA to analyze biomedical signals 

collected from sensors and detect abnormalities based on the prediction squared 

error.  The proposed method integrates two crucial features: firstly, it integrates 

a sophisticated dimension reduction algorithm that utilizes the temporal and 

spatial correlations between observed vital signs with a multivariant anomaly 
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detection technique. This differs from classical PCA which is insusceptible to 

anomalies and eliminates the need for training with a reliable and annotated 

dataset, resulting in a significant operational advantage. Secondly, both processes 

employ an unsupervised approach that is robust and lightweight. Their 

experimental evaluation on a real-world medical dataset shows a high sensitivity 

rate (recall) and a low rate of incorrect identifications (false positives).  

3.2 Deep Learning Approach  

 Deep learning has been utilized for resolving anomaly detection challenges 

through its advanced neural network architectures. Yunli et al. [37] present an 

innovative approach leveraging deep learning methodologies to enable efficient 

health monitoring of both heating and cooling equipment, thereby enhancing the 

overall reliability and performance of such systems. Condition monitoring is an 

integral component of system health management, serving as the primary stage 

in the process of defect detection, assessment, and prognosis. Thus, it plays a 

pivotal role in assuring the optimal operation and performance of complex 

systems, especially in the context of predictive maintenance and quality assurance. 

The process of conditional monitoring typically entails the observation and 

analysis of time series data captured by sensors, which commonly exhibit 

abnormalities such as outliers and transition instances that require close detailed 

examination and identification to enable effective monitoring and maintenance 

of the system. The approach adopted by the authors comprised a two-stage 
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process, wherein the first stage involved data prediction via an LSTM network, 

followed by anomaly detection through the utilization of the exponential 

weighted moving average (EWMA), leveraging the prediction errors generated 

by the LSTM model to facilitate accurate and efficient identification of anomalies 

in the data. The comparative analysis of performance demonstrates the superior 

efficacy of the LSTM algorithm over the alternative technique in accurately 

predicting and generalizing the detection of anomalies. Rui et al. [38] present a 

deep-learning method for machine health monitoring using the LSTM network. 

To conduct a robust empirical validation of the effectiveness of LSTMs, an 

experimental study was undertaken involving the operation of a high-speed 

computer numerical control machine in a dry milling environment. This enabled 

the collection of comprehensive data that served as a basis for examining the 

performance of the methodology under practical operating conditions, thereby 

enhancing the reliability and applicability of the findings. The approach adopted 

by the author demonstrated notable success in analyzing raw sensor data, utilizing 

both shallow and deep long short-term memory networks. The experimental 

findings provided compelling evidence that LSTM networks are capable of 

generating meaningful representations from raw sensor signals without the need 

for extensive feature engineering, thereby outperforming other deep learning 

models evaluated. 
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 Kim et al. [39] introduced a novel method for web traffic anomaly 

detection that leverages the ability of convolutional neural networks (CNN) and 

the LSTM model, resulting in a unique convolutional long short-term memory 

(C-LSTM) framework. This cutting-edge approach enables the effective 

modeling of both spatial and temporal information within the traffic data, which 

is crucial for maintaining optimal system performance and ensuring a secure and 

reliable network infrastructure. In order to effectively capture the temporal 

information of the data, the LSTM network is used, while the CNN is utilized to 

mitigate the impact of spatial information frequency variation.  Furthermore, to 

enhance the discriminative capacity of the model, a Deep Neural Network (DNN) 

is employed to map the input data into a more distinct feature space. Through a 

series of parametric trials, comparative model analyses, and comprehensive data 

evaluations, the authors identified the optimal model for their proposed method 

compared to existing machine learning models. As the proposed model employs 

a sliding window technique for data pre-processing, there is a delay in detecting 

anomalies in real-time data streams.  

Although existing models for unsupervised anomaly detection that utilize 

dimensionality reduction followed by density estimation have shown notable 

advancements, they often encounter challenges such as disjointed model learning, 

irregular optimization objectives, and inadequate retention of critical information 

in the lower-dimensional space.  Zong et al. [40] presented a novel approach to 



23 
 

address this issue by utilizing a deep autoencoding Gaussian mixture model for 

unsupervised anomaly detection. The proposed technique incorporates a deep 

autoencoder to create a low-dimensional entity and reconstruction error for each 

input instance, which is subsequently injected into the Gaussian combined model 

for anomaly detection. This method has the advantage of allowing the deep 

autoencoder to learn a robust feature representation that captures the essential 

data characteristics while eliminating the effects of noise. Malhotra et al. [41] 

introduced the long short-term memory autoencoder model (LSTM-AE) as a 

potential solution for detecting outliers in mechanical devices, utilizing the 

reconstructed output of sensor data. This method employs LSTM to develop an 

autoencoder model that extracts significant features from time-series data, which 

is then used to produce the reconstructed output for anomaly detection. Four real-

world datasets were used to train the model: power demand, ECG, engine, and 

valve. According to the maximum likelihood estimation, it is hypothesized that 

any anomaly will result in a higher reconstruction output. The experimental 

outcome demonstrates that autoencoder is a robust technique capable of detecting 

anomalies in various types of time-series datasets, including regular, irregular, 

cyclical, non-cyclical, and semi-cyclical trends. 

The swift development of the Industrial Internet of Things has brought a 

transformation in the traditional electrical grid, leading it towards a new digital 

era known as the Smart Grid. This paradigm shift has resulted in numerous 
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advantages, including optimized usage of the existing system, widespread control, 

and autonomous healing capabilities. Despite the advantages of smart grid 

technology, the proliferation of digital solutions has resulted in significant 

cybersecurity challenges, given the need to integrate with exiting vulnerable 

systems such as industrial control systems and supervisory control and data 

acquisition systems (SCADA).  Ilas et al. [42] introduced a mechanism for 

detecting network-based threats and anomalies called MENSA that utilizes an 

innovative deep-learning framework combining autoencoders and generative 

adversarial network models. The proposed model aims to identify and classify 

operational anomalies in the system, such as those leveraging the Modbus/TCP 

protocol and Distributed Network Protocol 3. A generative adversarial network 

[43] is composed of two networks, namely the generator and the discriminator. 

The generator is responsible for creating synthetic data from random noise that 

mimics the distribution of real data. Meanwhile, the discriminator evaluates the 

generated data and determines whether it is genuine or fabricated. 

The importance of Structural Health Monitoring (SHM) in maintaining the 

safety and sustainability of infrastructure, such as buildings and bridges, is 

escalating at a rapid rate. To this end, Son et.al [44] proposed a deep learning-

based approach to identify outliers and classify incorrect data in a cable-stayed 

bridge. Cable-stayed bridges are prone to damage and potential collapse due to 

diverse factors such as environmental conditions, vehicular weights, and 
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corrosion of materials. The stayed cables in these structures are a critical 

component that significantly impacts structural soundness by transferring the 

bridge deck load to the supporting towers. Structural deterioration resulting from 

damaged cables can lead to a decrease in load-bearing capacity [45].  They 

employed a two-step method for detecting anomalies in a cable-stayed bridge, 

which involves utilizing an LSTM-autoencoder algorithm. In the initial stage, the 

anomalies were classified into two categories, namely persistent anomalies 

caused by structural damage and transient anomalies resulting from inaccurate 

data. The cables that contribute to the transient abnormalities are identified, and 

the abnormal data points are replaced with interpolation instances.  In the second 

stage, the authors assessed the interpolated values for accuracy and suitability to 

determine if they were correctly classified and replaced with appropriate values. 
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CHAPTER FOUR 

This chapter presents the overall structure of the proposed approach, with 

a specific focus on detecting EPS anomalies using an LSTM autoencoder. 

Previous studies have concentrated primarily on fault diagnosis, tolerance, and 

control of the EPS system using model-based and knowledge-driven 

methodologies. However, employing deep learning, particularly LSTM-AE, 

offers a distinct advantage by leveraging a data-driven approach. This method 

proves advantageous as it enables the detection of subtle abnormalities and 

progressive system degradation, which overcomes the constraints of traditional 

modeling-based approaches. 

Figure 4.1 depicts the architecture of the proposed framework for 

identifying anomalies in EPS data. We employ a deep learning model on torque 

sensor time-series data. Torque sensors are often responsible for common sensor 

anomalies in EPS, which can result in difficulty turning the steering wheel, 

uneven power steering assist on the left and right sides, and decreased levels of 

assistive torque while driving [46].   Prior to the data being input into the LSTM-

autoencoder model, the input data is preprocessed, and the model is trained using 

preprocessed data that solely consists of normal data from the obtained datasets 

of an EPS test jig.   Finally, to detect anomalies in EPS data, the model's 

reconstruction errors are evaluated using test samples that include both normal 

and anomalous data.   



27 
 

 

Figure 4.1: Layout of our proposed method for anomaly detection in EPS. 

4.1 Pre-processing of Data   

The first step in the implementation of deep learning models typically 

involves analyzing datasets to uncover initial patterns, identifying missing or 

incorrect values, and standardizing or normalization of data in preparation for the 

application of anomaly detection algorithms. Adopting such an approach is 

imperative as it helps to avoid a situation where specific data samples 

disproportionately affect the results, especially in algorithms that calculate 

feature distances, particularly when the datasets do not conform to a normal 

distribution. Such a skewed dataset can lead to suboptimal model performance, 

which highlights the necessity of preparing the data in a careful and systematic 

manner before it is used for training or testing purposes [47,48]. To avert such a 
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situation, the proposed framework employs normalization techniques to scale the 

dataset. Specifically, the sci-kit-learn MinMaxScaler is used to normalize the data 

between the range of 0 to 1. This scaling process is applied consistently to the 

training, validation, and testing datasets to ensure that the actual values are not 

altered during normalization. The equation for normalization is given below: 

𝑍𝑖 =  
𝑥𝑖−𝑚𝑖𝑛𝑥𝑖

𝑚𝑎𝑥𝑥𝑖− 𝑚𝑖𝑛𝑥𝑖
       (1) 

In the above equation, 𝑍𝑖  refers to the normalized value while 𝑥𝑖  represents an 

individual data point from the original dataset. 

 

4.2 Model Training 

The training methodology entails utilizing a hybrid model that comprises 

both LSTM and autoencoder components. 

4.2.1 LSTM Network 

The LSTM network represents an advanced variant of the RNN 

architecture incorporating a long-term memory cell. In time-series data, the 

LSTM network supports the regulation of information flow, retains long-term 

dependencies, and identifies temporal correlations. This enables the LSTM 

network to perform significantly better than traditional RNN models with short-

term memory [49], especially in scenarios where the data exhibits long-term 
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dependencies or recurring patterns. There exist several types of LSTM networks, 

with the two most prevalent variants being the vanilla and peephole architectures. 

The fundamental distinction between peephole and vanilla networks is in the 

connectivity across gates and memory cells. The cell state is updated in vanilla 

LSTM based on the input, output, and forget gates, which are determined by the 

current input, previous output, and prior cell state. The gates, however, do not 

have immediate access to the cell state. By contrast, Peephole LSTM allows gates 

to directly access the state of the cells through added connections. This enables 

gate values to be determined not only by the current input and prior output but 

also by the past cell state. Peephole LSTM networks have not been extensively 

utilized in research, despite their potential benefits. This is due to the divergent 

results that have been reported in recent studies, which have produced 

contradictory conclusions regarding the effectiveness of peephole networks in 

diverse applications [50,51].  

Also, peephole LSTMs are computationally expensive to train and assess 

due to the additional parameters that result from the additional linkages between 

the cell state and the gates. Consequently, while peepholes tend to be an active 

area of research and development, researchers and practitioners continue to rely 

on vanilla LSTM networks for the vast majority of application cases. The 

introduction of working memory connections (WMC) is intended to enable 

accurate control of the gates and to mitigate the inconsistency associated with 
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peephole connection training [51]. Although the proposed model incorporating 

WMC has shown some promise, its efficiency appears to be limited, as there was 

only a substantial performance improvement observed during the training of the 

stacked LSTM model.  In this proposed framework, I have opted to implement 

the widely used vanilla network, as detailed in [50]. The vanilla LSTM 

architecture, as depicted in Figure 4.2, consists of a memory cell, an input gate, 

an output gate, and a forget gate. The memory cell preserves information for 

arbitrary periods, while the three gates control the flow of information across the 

cell. Each gate in the vanilla LSTM model is constructed using a sigmoid layer 

that is preceded by a point-wise multiplication computation. The output of the 

sigmoid layer ranges between one and zero, this determines which instance from 

the prior hidden state and new input data are permitted to flow into the network. 

Figure 4.2: Schematic illustration of the LSTM architecture. 
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When an input vector 𝑥𝑡 is introduced to the neural network at time 𝑡, the 

forget gate is responsible for regulating the information flow within the cell state, 

taking into consideration the previous hidden state and new input data. In general, 

the gate decides the relevance of the information that should be retained and the 

information that should be discarded. The relevant component is amplified and 

output as 1, while any unnecessary component of the input data is suppressed and 

output as 0. The forget gate's selective operation can be mathematically 

represented as follows: 

𝑓𝑡 =  𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓 )   (2) 

In the given context, the activation function, denoted by σ, is associated 

with the weight and bias of the forget gate, represented by 𝑤𝑓 and 𝑏𝑓, respectively. 

The primary function of the input gate can be attributed to two major objectives. 

Firstly, it is responsible for validating the significance of new information, which 

includes both the previous hidden state and the current input, with respect to the 

updated cell state. Secondly, it is responsible for updating the memory cell with 

the help of the aforementioned information. The input gate successfully 

accomplished these objectives by implementing a two-stage process. This process 

is similar to the forget gate; the initial step involves the determination of the 

information that holds relevance in the present memory cell. This procedure is 

described mathematically as follows: 
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𝑖𝑡 =  𝜎(𝑤𝑖 [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖  )   (3) 

The activation function, denoted by σ, is accompanied by the weight and 

bias of the input gate, represented by 𝑤𝑖  and 𝑏𝑖, respectively. The subsequent step 

involves the creation of a memory cell, denoted as  𝑐𝑡̃, which is accomplished by 

integrating the previous hidden state with the present input data. This operation 

employs a tanh activation function to create the memory update vector, the 

constituent values of which are confined within the interval of [1, -1]. The 

memory cell is characterized by the following definition: 

𝑐𝑡̃  =  𝑡𝑎𝑛ℎ(𝑤𝑐 [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑐  )   (4) 

The weight matrices and bias of the memory cell are represented in the above 

equation by 𝑤𝑐  and 𝑏𝑐, respectively. To update the prior cell state 𝑐𝑡−1, Equation 

(2) and (3) are multiplied pointwise. The pointwise operation enables the network 

to selectively update cell state by blending previous cell state and the candidate 

cell state.  The new cell state 𝑐𝑡  is therefore obtained by adding the result of 

𝑓𝑡 ⨀ 𝑐𝑡−1  and 𝑖𝑡 ⨀ 𝑐𝑡̃. This process is defined as follows:   

  𝑐𝑡  =  𝑓𝑡 ⨀ 𝑐𝑡−1  +  𝑖𝑡 ⨀ 𝑐𝑡̃    (5) 

The output gate which is the last gate is computed as shown in Equation (6). The 

primary function is to determine the new hidden state by incorporating the current 

input data, the preceding hidden state, and the new memory cell. This is achieved 

by subjecting the old hidden state and the current input data to a sigmoid function.  
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𝑜𝑡 =  𝜎(𝑤𝑜 [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜 )   (6) 

where, 𝑤𝑜 and 𝑏𝑜 represent the weight and bias of the output gate, respectively. 

The new hidden state is obtained by performing a pointwise multiplication of the 

filter vector 𝑜𝑡 and the updated memory cell state 𝑐𝑡 after it passes through the 

tanh activation function. 

ℎ𝑡 =  𝑜𝑡 ⨀ 𝑡𝑎𝑛ℎ(𝑐𝑡)    (7) 

The updated hidden state ℎ𝑡 and current memory cell 𝑐𝑡 become the prior hidden 

state ℎ𝑡−1 and previous memory cell in the subsequent LSTM network. This 

iterative procedure continues until the whole sequence of input data has been 

processed.   

4.2.2 Autoencoder 

 

 

 

 

 

 

 

Figure 4.3: Schematic illustration of the autoencoder architecture.  
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  Figure 4.3 illustrate the ability of an autoencoder to perform unsupervised 

encoding and decoding of input data with high efficiency, without the need for 

external guidance or labeling. The encoding process generates a compressed 

latent representation of the inputs via feature space reduction, and subsequently, 

the decoder utilizes this representation to reconstruct the initial inputs [52]. With 

this method, the autoencoder learns the most critical characteristics and patterns 

of the data without explicitly labeling it, providing a powerful tool for anomaly 

detection and image generation. The autoencoder consists of several components, 

such as an input block, encoder, latent space, decoder, and output block. The 

primary goal of the encoder is to transform high-dimensional input data 𝑥 the 

form of a vector [𝑥 𝜖 𝑅𝑚] into a lower-dimensional feature space representation 

𝑧 by eliminating any irrelevant data, commonly referred to as noise, from the 

features space. The input equation is represented by Equation (8) as follows: 

z =  𝑓(𝑤𝑥 +  𝑏 )   (8) 

The activation function 𝑓 operates on a low-dimensional data sequence 𝑧, with 

weight and bias denoted by 𝑤 and 𝑏, respectively. The decoder takes the latent 

representation as input and transforms it to produce the reconstructed value of the 

original input data, denoted as 𝑥̂. This transformation is represented by an output 

equation, which is defined as follows: 
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𝑥̂  =  𝑓′(𝑤 
′𝑧 +  𝑏′)   (9) 

In the above equation, 𝑓 ′ is the activation function, 𝑤 
′and 𝑏′ represent the weight 

and bias of the reconstructed input 𝑥̂ sample instance. In the standard autoencoder 

architecture, the objective is to minimize the reconstruction loss, which measures 

the dissimilarity between the input and output data. The loss function used for 

this purpose is the mean absolute error (MAE), which calculates the average 

absolute difference between the reconstructed output and the original input. The 

reconstruction loss can be expressed as follows: 

𝐿(𝑥 − 𝑥̂ ) =  
1

𝑛
∑ /𝑥̂𝑡 − 𝑥𝑡/𝑛

𝑛=1    (10) 

The variable 𝑛 represents the number of samples in the training dataset, while 𝑥 

and 𝑥̂ denote the input and output data, respectively. To maximize the benefits of 

an autoencoder and an LSTM, the proposed model combines their capabilities. 

Important features are extracted from data using an autoencoder while the 

dimensionality of the features is reduced. These characteristics are then fed into 

an LSTM network, which identifies temporal dependencies. This method enables 

the autoencoder to function as a feature extractor, which can be used in 

conjunction with a supervised learning model to improve performance [53]. 

Figure 4.4 depicts the various model architectures used during the training 

process. 
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Figure 4.4: Model training architectures 

4.3 Anomaly Detection Approach  

 Following model training on a non-anomalous dataset, the anomaly 

classifier is utilized to assess the reconstructed data sample for abnormal events 

and identify them. The reconstruction loss is calculated using the mean absolute 

error (MAE) method, as shown in Equation (10). Alternative metrics utilized in 

the computation of reconstruction loss encompass the mean square error; 

nonetheless, the choice of MAE is strongly suggested because it has demonstrated 

(a) 1- Layer LSTM 

(b) N - Layer 

LSTM 
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enhanced resilience in various studies and a reduced incidence of erroneous 

positive predictions generated by the model [54]. In order to establish the 

threshold for detecting anomalies, the highest value of MAE is utilized as the 

benchmark. Consequently, during instances where the sensor data conform to the 

standard behavior, the reconstruction loss calculated for the testing set falls below 

the determined anomaly threshold. When anomalies are detected within the data, 

the reconstruction loss exceeds the designated threshold. Typically, a sensor 

anomaly includes various types such as drift, gap, outlier, and noise. The drift 

anomaly type manifests as a continuous deviation in a single feature value within 

a time step or multiple time steps. Gaps and outliers occur when a value abruptly 

jumps across several time steps. Noise refers to deterministic and irregular 

variations in the dataset. In the context of this study, we specifically focus on drift 

and outlier anomalies, as depicted in Figure 4.5. These types of anomalies are 

frequently encountered in EPS systems, A comprehensive description of the 

approach pertaining to these anomalies is provided in chapter five. 

 

 

 

 

Figure 4.5: Patterns of detected anomalies in EPS torque sensor 

(b) Outlier  

(a) Drift  
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CHAPTER FIVE 

The chapter provides all the necessary information regarding experimental 

design, such as the data collection process, the training environment setup, model 

hyperparameters, detailed description of performance metrics. The result analysis 

and discussion. 

 

5.1 Dataset Collection 

 To validate the effectiveness of the proposed approach, the torque sensor 

data of an EPS test jig is obtained. This objective is achieved with the aid of a 12-

bit analog-to-digital converter to ensure precise and accurate measurements. 

Figure 5.1 depicts the schematic representation of the experimental setup. The 

operational speed ranged from 0 to 50 km/h, and the data acquisition board was 

implemented using a field-programmable gate array. A total of 87,555 data 

instances were collected by transferring the sample data at 10-ms intervals via the 

board's general-purpose input and output pins.  
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Figure 5.1: Schematic illustration of dataset collection 

5.2 Experimental Setup and Model Hyperparameters  

In this thesis, the model is trained on non-anomalous EPS torque sensor 

data sets. Obtaining data with anomalies is often challenging due to several 

factors. Firstly, anomalies are often rare events captured in a working system, 

making it difficult to have a sufficient number of instances for comprehensive 

training of models. Secondly, the annotation of dataset is expensive because it 

requires domain expert and time-consuming. A semi-supervised learning 

approach provides a solution to this setback through the use of normal dataset.  

This process of training with normal data has previously demonstrated adequate 

results with deep learning models [41,44,55]. However, the testing dataset 
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incorporated both normal and abnormal data. The dataset was partitioned into 

training, validation, and testing subsets before commencing the training of the 

model. To reduce the reconstruction loss, the training process employs both the 

training and validation datasets. This method can optimize the parameters based 

on the training dataset. Their generalizability and performance can be verified on 

the validation dataset at the same time. Deep learning models require this 

approach, as overfitting can undermine the generalization of new data when 

models are overtrained on the training dataset. As illustrated in Figure 5.2, the 

training and validation errors were plotted against the number of epochs to 

evaluate the effectiveness of model training on EPS sensor data.  The graph shows 

rapid stabilization of the training loss at around 10 epochs, as well as subsequent 

stability of the validation loss. The hyperparameters employed for training the 

model are presented in Table 1, which includes an encoder and decoder, each 

with three LSTM layers and 128 units. 

 

Figure 5.2: Epoch graph of training and validation loss for EPS torque sensor  
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Table 1. Model training Parameters 

Parameter Value Description 

Model Framework Pytorch 

Layers 2 

Learning Rate 0.0009 

Optimizer Adam [56] 

Loss Function MAE 

Epoch size 50 

 

5.3 Evaluation Metrics  

Generally, in the field of deep learning, the utilization of evaluation metrics 

is a prevalent approach to ascertain whether the learning algorithm has met the 

desired or anticipated level of performance. In cases where the algorithm falls 

short of expectations, tuning measures may be necessary to optimize the model's 

objective. The analysis includes information on the models' ability to accurately 

identify real anomalies and differentiate them from false positives, as measured 

by sensitivity and specificity.  

Thus, the comparative analysis of various algorithms based on benchmark 

evaluation provides valuable insights into selecting the most appropriate model. 
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The procedure for distinguishing between correct and incorrect classifications in 

relation to actual anomalies in a dataset is depicted in Table 2. This specific kind 

of table is referred to as a confusion matrix. True positive (TP) denotes the count 

of accurately detected anomalies, whereas true negative (TN) signifies the count 

of precisely detected normal data that does not contain any anomalies. The 

misclassification of anomalies is indicated by false positive (FP) refers to the 

percentage of normal data that is erroneously classified as anomalous, while false 

negative (FN) corresponds to the portion of anomalous data that is not classified 

as anomalous. 

Table 2 provides an overview of the confusion matrix, when examining the 

output of an anomaly detection classification model. 

 Anomaly Detection Model 

1 0 
 

Real Anomaly?  1 True positive False negative 

0 False positive True Negative 

 

An evaluation of the proposed techniques is conducted using several 

metrics, including classification accuracy (A), precision (P), recall (R), and F-

score (F).  The accuracy of the anomaly detection algorithm is the proportion of 

correctly detected anomalies to all data in the dataset as shown in the following 

equation. 

𝐴 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
   (11) 
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Precision, as denoted by the equation below, is defined as the proportion of actual 

anomalies to predicted anomalies identified by the model. It characterizes the 

accuracy of identified anomalies and distinguishes them from false anomalies. 

 𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (12) 

Recall, represented by equation 13, denotes the proportion of anomalies 

forecasted by the model out of the entire set of anomalies. Sensitivity is a 

synonym used to describe recall and conveys the model's ability to detect the 

actual anomalies in the dataset. 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (13) 

A comprehensive metric that balances the trade-off between precision and recall 

is the F-score, which is calculated as the harmonic mean using Equation 14. 

Through evaluation of the model's effectiveness in anomaly detection by taking 

into account both the accuracy of identified anomalies (precision) and the 

capacity to identify actual anomalies (recall). 

𝑅 = 2 ∙
𝑃 ∙𝑅

𝑃+𝑅
        (13) 

Hence, higher accuracy signifies a more precise detection of normal and 

abnormal data by the model. Moreover, increased recall reflects a larger number 

of detected anomalies, while higher precision results in fewer false alarms. The 

experiment was conducted on the EPS dataset with three models, and the 
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corresponding metric scores are reported in Table 3. The model with the greatest 

performance analysis score is highlighted in bold letters. 

Table 3. performance comparison considering the values of true positive (TP), 

false positive (FP), false negative (FN), and true negative (TN), as well as 

detection accuracy, precision, recall, and F1-score. 

Model TP FP FN TN Accuracy Precision Recall F1-

score 

BiLSTM-AE 423 0 78 12,632 0.9950 0.9999 0.8443 0.9155 

GRU-AE 446 0 55 12,632 0.9968 0.9999 0.8902 0.9419 

LSTM-AE 492 0 9 12,632 0.9993 0.9999 0.9823 0.9809 
 

5.4 Performance Results 

5.4.1 EPS Data Anomaly Detection  

The test datasets are employed to detect deviations or abnormalities by 

making inferences from the trained LSTM-AE model. The model's performance 

is gauged by calculating the reconstruction error. This measures the discrepancy 

between the model's reconstructed and original input data. A threshold for 

identifying anomalies was determined through Equation (10) in conjunction with 

the scaling magnitude approach described in [57]. The samples obtained from 

this process are labeled as ground truth anomalies and used to assess the model's 

ability to detect anomalies. Figure 5.3 visually presents the maximum acceptable 

range of the EPS torque sensor data, where the red dashed line represents the 
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benchmark, and the red spots represent the detected anomalies. Typically, the 

range of data scores is between 0.00 and 0.01.  

The anomalies detected in the sensors encompassed various types as stated 

in chapter four, such as gap, drift, break, and outlier anomalies, with varying 

degrees of occurrence. This was achieved by scaling the magnitude value within 

a range of 1 to 1.5, where a magnitude of 1 denoted the absence of anomalies and 

a magnitude of 1.5 signified a 50% increase in the value. Drift anomalies and 

outliers were deemed to be present when alterations in the overall distribution or 

individual data points of the sample data were observed, as such changes could 

be indicative of mechanical degradation or deterioration, as described in reference 

[58]. 

Figure 5.3: Anomaly detection on EPS  torque sensor data 
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5.4.2 Models Result Analysis 

In order to assess the performance of the model, an analysis is conducted 

using the earlier discussed confusion matrix, which included the proposed 

approach, the gated recurrent unit autoencoder (GRU-AE), and the bi-directional 

long short-term memory autoencoder (BiLSTM-AE). As shown in Figure 5.3, 

most of the non-anomalous sample generalized between 0.01. Hence, the 

anomalous scenario is distinguished to be any instance above the MAE value. 

The confusion matrix for the test samples is illustrated in Figure 5.4.   The total 

number of test samples amounts to 13,133, with 12,632 classified as non-

anomalous samples and 501 classifieds as anomalous. The proposed approach 

(LSTM-AE) correctly recognized 492 aberrant data points out of a total of 501 

abnormal samples, detecting 12,632 normal samples with an accuracy of 0.99. 

The model exhibited zero false positives, implying precise categorization of 

normal samples. However, there were nine false negatives, indicating the 

incorrect classification of abnormal samples as normal. GRU-AE detected 12,632 

normal samples (specificity: 0.99) but identified 446 abnormal samples 

(sensitivity: 0.89) out of 501 samples. Additionally, the Bi-LSTM model 

effectively identified a total of 12,632 normal samples with a specificity of 0.99 

and only 423 aberrant data points with a sensitivity of 0.84 out of a total of 501 

anomalous samples. Table 3 provides a summary of the models' performance. 
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(a). LSTM-AE Model 

 

 

 

 

 

(b). GRU-AE Model 

  

 

 

 

 

 

 

 
 

(c). BiLSTM-AE Model 

Figure 5.4: Confusion matrix of model detection on EPS data 
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Furthermore, a graphical representation of the Area Under the Curve (AUC) 

is generated to assess the discriminative performance of the three models on EPS 

toque sensor, as illustrated in Figure 5.5. AUC serves as a quantitative measure 

of the distinction between the True Positive (TP) and False Positive (FP) rates in 

the LSTM-AE model. The plotted curve explicitly exhibits the high anomaly 

detection capability of our model, with a remarkable AUC score of 0.99. The 

GRU-AE model exhibited a slightly inferior performance with a score of 0.95 

compared to the LSTM-AE model, primarily attributed to the absence of 

regulatory memory cells. In contrast, the LSTM unit's output gate effectively 

governs the extent of memory content that is accessible or utilized by other 

network units, contributing to the superior performance of the LSTM-AE model. 

GRU, due to its fewer training parameters, is characterized by lower memory 

usage and faster execution compared to LSTM. Conversely, LSTM tends to 

demonstrate higher accuracy when dealing with larger datasets, owing to its 

inherent capability to capture long-term dependencies. 

The BiLSTM-AE model yielded a score of 0.92, albeit with a relatively 

lower True Positive (TP) rate. The contrasting performance between BiLSTM-

AE and LSTM-AE models can be attributed to the direction of information flow. 

Unlike LSTM-AE, which processes input sequentially from past to future, 

BiLSTM-AE takes into account both directions by processing input in both 
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forward and backward directions during network training. This bidirectional 

processing approach of BiLSTM-AE could potentially impact the TP rate and 

overall performance of the model. Training a BiLSTM incurs higher 

computational costs compared to a unidirectional LSTM. Furthermore, a larger 

amount of data is typically necessary to achieve performance levels comparable 

to those of a unidirectional LSTM. This result analysis shows the robustness of 

the threshold selection and quantitative evaluation of the model’s performance to 

enable fair comparison on the EPS dataset for anomaly detection.  To evaluate 

the efficiency of the model in comparison to similar anomaly detection techniques 

that utilize distinctive features of LSTM, AE, or a fusion of both, Table 4 provides 

a comprehensive assessment of their respective performances using metrics such 

as model accuracy, precision, recall, and F1-score. 

Figure 5.5: Model receiver operation characteristic curve  
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Table 4:  Benchmarking performance against similar models 

Model Dataset Source Accuracy Precision Recall F1-

score 

LSTM-AE IPC-

SHM2020 

[44] 0.9998 0.9568 0.9201 0.9382 

C-LSTM Web S5 [39] 98.6 96.2 89.7 92.3 

LSTM-AE ECG [53] 98.57 97.74 98.85 Nil 

LSTM-AE Solar plant [59] 0.8963 0.9474 0.9432 0.9453 

BiLSTM-AE Smart meter [60] 0.9957 0.9958 0.9999 0.9978 

LSTM-AE BOU [54] 0.9444 0.9794 0.5877 0.9145 

BiLSTM-AE UNM [61] 90.01 84259 97.87 90.75 

LSTM-AE EPS Ours 0.9993 0.9999 0.9820 0.9809 

 

By comparing the values of these metrics across different models that applied the 

distinct feature of LSTM or AE, we can assess the relative performance and 

effectiveness of the models in anomaly detection for sensor datasets. For example, 

the LSTM-AE model achieves high metrics scores in the ECG dataset, solar plant, 

structural health monitoring, and brake operation unit indicating its effectiveness 

in detecting anomalies. Similarly, the BiLSTM-AE model performs exceptionally 

well in the Smart meter dataset and UNM dataset. These benchmark comparisons 

help ascertain the efficiency of the proposed approach for EPS torque sensor 

anomaly detection.   
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CHAPTER SIX 

This chapter concludes the thesis and describes the direction for future works.  

6.1 Conclusion and Future Work 

This study proposes an innovative anomaly detection framework for EPS 

sensor devices utilizing an LSTM-based autoencoder. The autoencoder includes 

an encoding algorithm that captures the unique input data representation while 

being implemented with an LSTM network to accurately simulate the dataset's 

temporal dependencies. This strategy eliminates the requirement for significant 

feature engineering expertise or intricate preprocessing techniques to extract 

meaningful features from the sensor signal. The proposed framework adopts a 

semi-supervised learning approach, which solely necessitates training the model 

with normal data, thus alleviating the burden of obtaining labeled data for 

anomaly detection. 

Hence, the proposed framework effectively captures the anticipated 

distribution of the sensor signal, with the maximum mean absolute error of the 

reconstruction loss from the trained model serving as the anomaly score for 

inference on test data samples. The performance of the proposed model is 

evidenced by its accurate detection of simulated drift and outlier anomalies, 

validating its robustness in anomaly detection tasks. This study simulates drift 

and outlier anomaly events using EPS torque sensor data. Future research needs 

to explore real-world anomalous conditions collected from EPS systems, 
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including anomalies such as gaps in non-contact torque sensor coil signals with 

significant differences between primary and auxiliary signals and a sharp drop 

from higher to lower magnitude in speed sensor readings. These investigations 

aim to enhance the resilience of the proposed framework in identifying anomalies 

in EPS systems. 
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