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A Bayesian state-space production assessment model for 15  

fish stocks in Java Sea, Indonesia 

 

Dwi Ramadya Risqiana Putri 

 

부경대학교 대학원 해양생물학과 

 

요 약 

 

베이지안 상태 공간 잉여 생산 모델은 일반적으로 어류의 연령과 신체 크기에 대한 

정보를 사용할 수 없는 데이터 제한 상황에서 개체군 크기와 어획 수준을 평가하는 데 

사용되고 있다. 이 모델에는 어업생산량과 단위 노력당 어획량 (CPUE) 또는 과학 조사 

지수 (survey indices)가 필요로 하다. 인도네시아는 어류의 연령과 신체 크기와 같은 

정보가 부족하여, 베이지안 상태 공간 잉여 생산 모델을 이용하여, 자원 평가하고자 

하였다. 2010년부터 2021년까지의 인도네시아 자바해의 15개 어류 자원을 평가 모델에 

적용했다. R 프로그래밍 환경 내의 TMB 패키지를 사용하여 모수를 추정하였다. 본 

연구에서는 자바해의 다양한 어족(예: 15개 어족)의 잉여 생산량을 구현하는 데 중점을 

두었다. 자원 평가 결과는 자바해의 15 개 어류 모두에 대한 수확률 (harvest rate)이 

MSY(FMSY)의 수확률 지점보다 낮고 각 개체군의 바이오매스가 𝐵𝑀𝑆𝑌 2⁄  이상임을 

나타낸다. 이는 어류 자원 중 어느 것도 개체군 크기 관점과 수확률 관점에서 남획의 

징후를 보이지 않았음을 나타낸다. 이는 수익을 극대화하기 위해서는 해당 개체군의 

어획량을 어느 정도 늘릴 수 있도록 허용해야 한다는 의미이다. 인도네시아의 어업 

관리가 지나치게 보수적이었을 수 있으며 어부들이 더 많이 어획할 수 있도록 

허용함으로써 더 큰 경제적 이익을 얻을 수 있다고 주장한다. 
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Abstract 

A Bayesian state-space surplus production assessment model has commonly been 

used to assess a fish population size, and its associated fishery exploitation level in data-

limited situations where information about ages and body sizes of fish is unavailable. The 

model simply requires two types of time series data: (i) fishery yields; and (ii) catch per 

unit effort, or survey indices from a scientific survey. I applied the assessment model for 

15 fish stocks from Java Sea, Indonesia, whose data ranged from 2010 to 2021. The 

estimation process was executed using the TMB package within the R programming 

environment. In this study, I focused on implementing the surplus production to the 

multiple fish stocks (i.e. 15 fish stocks) from the same ecosystem, namely Java Sea. For 

future reference, this will be very beneficial to fisheries management. The results indicated 

that the harvest rate for all 15 fish stocks from the Java Sea was below the point of harvest 

rate at MSY (FMSY), and their biomass was above 
𝐵𝑀𝑆𝑌

2⁄ . This indicates that none of the 

fish stocks showed signs of being overfished or undergoing overfishing. To maximize 
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earnings, the implication would be to permit the fisheries for those stocks to somewhat raise 

their catches. I would argue that Indonesia's fisheries management might have been overly 

conservative, and greater economic benefits might be achieved by allowing fishermen to 

harvest larger quantities of fish.  
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1. Introduction 

 Seated between the Pacific and Indian Oceans, Indonesia is an 

archipelagic country in Southeast Asia with a bigger sea area than land area. 

Indonesia faces significant challenges in managing its fishing resources. 

Fisheries management has numerous challenges due to the size of the nation and 

its tens of thousands of islands, including illegal fishing, unreported fishing, 

weak regulatory frameworks, and many more.   

There are many fishing grounds in Indonesia, one of the most active 

fishing grounds is the Java Sea. Java Sea has long been exploited, both by small-

scale fisheries and large-scale fisheries. Java Sea resources make an essential 

contribution to Indonesian fisheries, being the main supplier of fish protein for 

the population of Java Island, where most of Indonesian population lives. The 

main objective of this study is to assess the current status of the 15 fish stocks 

from Java Sea using hierarchically structured Bayesian state-space models 

because only two sets of annual CPUE and catch data were available.  I selected 

15 commercially important fish in Java Sea, (i.e. 7 pelagic fish, 6 demersal fish, 

1 crustacean, and 1 invertebrate). I looked at 15 significant commercial fish to 

see how the Java Sea fisheries are doing in terms of stock management, as this 

study, which involved various fish species in Indonesia, has never been done 

before.  
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Surplus production models are simple but robust non-linear models for 

stock assessment that are widely used to model biomass dynamics in state-space 

models for exploited fish populations. A useful feature of surplus production 

models is that they do not require analytic detailing about specific biological 

characteristics of target stocks under survey. This is important because detailed 

information about population dynamics may not be available for analysis of 

stock sustainability.  

 State-space models are a class of hierarchical models where the quantity 

of interest cannot be observed directly, but must be inferred from noisy, 

transformed observations. Since the state-space model is structured as a 

hierarchical Bayesian model, posterior distributions can be obtained using 

Markov Chain Monte Carlo (MCMC) stochastic simulation  (Sant’Ana et al., 

2017). Therefore, in this study, a Bayesian state-space modeling approach was 

employed to fit a stochastic population dynamics model for 15 fish stocks in the 

Java Sea, using available data on commercial harvest history and relative 

biomass indices.  
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2. Materials and Methods 

2.1.  Data on 15 Fishery stocks in Java Sea, Indonesia 

The total catch data (Yield) on 15 fish stocks from 2010 to 2021 and the 

catch per unit effort (CPUE) for each stock during the same period, expressed 

in metric tons (MT) and metric tons per number of fishing vessels (MT/number 

of fishing vessels), respectively, were employed in this study. Population 

abundance was estimated using CPUE data, which is a relative biomass index 

(Hilborn & Walters, 2013). Due to the unavailability of other data such as 

fishing hours or haul totals, the number of fishing vessels was utilized as a proxy 

for fishing effort. 

The data were obtained from the Directorate of Fish Resource 

Management, Indonesian Ministry of Marine Affairs and Fisheries. The yearly 

yield from 2010 to 2021 is displayed in Figure 1, and the CPUE of 15 

commercial fish stocks is displayed in Figure 2 for the same period.  

The following table presents a list of the 15 fish stocks assessed in this 

study, along with their scientific names and groups. Information regarding the 

scientific names and groups was sourced from FishBase (for fish) 

(https://www.fishbase.se/search.php) and SeaLifeBase (for crustacean and 

cephalopod) (https://www.sealifebase.ca/). These species are the main 

https://www.fishbase.se/search.php
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commodities of Java Sea fisheries, primarily targeted for both export and 

domestic consumption. 
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Table 1. List of 15 fish stocks. 

 

 

  

Fish Stock Scientific Name Group 

Indian anchovy Stolephorus indicus Pelagic 

Short mackerel Rastrelliger brachysoma Pelagic 

Mackerel scad Decapterus macarellus Pelagic 

Yellowtail scad Atule mate Pelagic 

Goldstripe sardinella Sardinella gibbosa Pelagic 

Longtail tuna Thunnus tonggol Pelagic 

Narrow-barred Spanish mackerel Scomberomorus commerson Pelagic 

Giant sea catfish Ariidae Demersal 

Black pomfret Parastromateus niger Demersal 

Pony fishes Leiognathus equulus Demersal 

Red snappers Lutjanus bitaeniatus Demersal 

Ornate threadfin bream Nemipterus hexodon Demersal 

Hairtails Trichiurus lepturus Demersal 

White shrimp Penaeus indicus Crustaceans 

Common squid Todarodes pacificus Invertebrates 
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Figure 1. The annual yield in metric tons (MT) of 15 fish stocks from 2010 to 

2021. Panel (A) show the yield of Indian anchovy, panel (B) Short mackerel, 

(C) Mackerel scad, (D) Yellowtail scad, (E) Goldstripe sardinella, (F) Longtail 

tuna, (G) Narrow-bared Spanish mackerel, (H) Giant sea catfish, (I) Black 

pomfret, (J) Pony fishes, (K) Red snappers, (L) Ornate threadfin bream, (M) 

Hairtails, (N) White shrimp, (O) Common squid. 
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Figure 2. The annual catch per unit effort (CPUE) data in MT per the number 

of fishing vessels about 15 fish stocks from 2010 to 2021. Panel (A) show CPUE 

data of Indian anchovy, panel (B) Short mackerel, (C) Mackerel scad, (D) 

Yellowtail scad, (E) Goldstripe sardinella, (F) Longtail tuna, (G) Narrow-bared 

Spanish mackerel, (H) Giant sea catfish, (I) Black pomfret, (J) Pony fishes, (K) 

Red snappers, (L) Ornate threadfin bream, (M) Hairtails, (N) White shrimp, (O) 

Common squid. 
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2.2. Surplus production model 

Surplus production models are the only method for stock assessment in 

situations in which the only data available are time series of catches (i.e. yield) 

and some index of abundance (i.e. CPUE) (Punt, 2003). Due to their fewer 

parameters compared to other models, surplus production models are popular 

and widely used in practical stock assessments (Graham, 1935; Meyer & Millar, 

1999; Millar & Meyer, 2000; Polacheck et al., 1993; Prager, 1994, 2002; 

Schaefer, 1954). 

Surplus production models are employed to assess the biomass and 

exploitation levels of marine populations in situations with limited data, 

particularly where age and size information is unavailable (Jiao et al., 2011; 

Marandel et al., 2016; Punt, 2003). Generally, these models utilize catches per 

unit effort (CPUE) data and catch data on target species to estimate population 

abundances. Determining the stock size for the upcoming year is calculated by 

adding the current year's biomass to the surplus production and then subtracted 

by the catch amount in the current year.  

𝐵𝑡+1 = 𝐵𝑡 + 𝑓(𝐵𝑡) − 𝑌𝑡     (1) 

 In equation (1), 𝐵𝑡  denotes the biomass quantity at time t, 𝑓(𝐵𝑡)  is 

representing the surplus production at time t, and 𝑌𝑡 represents the catch at time 
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t. This study employed the discrete form of the Schaefer surplus production 

model.  

𝐵𝑡+1 = 𝐵𝑡 + 𝑟 ∙ 𝐵𝑡 (1 −
𝐵𝑡

𝐾
) − 𝑌𝑡      (2) 

𝐼𝑡 = 𝑞 ∙ 𝐵𝑡     (3) 

The Schaefer model is applied to the model in equation (2), where K is the 

carrying capacity and r is the intrinsic growth rate. Equation (3) is derived from 

the assumption that CPUE and biomass have a direct proportional relationship. 

The variables 𝐼𝑡  and q represent the amount of catch per unit effort (CPUE) 

collected at time t and catchability coefficient, respectively. These notations are 

detailed in Table 2. 
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2.3. A state-space production model 

A state-space model describes the temporal dynamics of two linked 

processes that may include error in either process: (1) a state process that 

describes the unobserved population dynamics in terms of biomass or 

abundance and (2) an observation process based on population-specific survey 

data that are a function of the unobserved state process (Buckland et al., 2004).  

The state-space production model has both measurement sampling 

(observation error) and population dynamics (process error).  

𝐵1 = 𝑏 ∙ 𝐾 ∙ 𝑒𝑥𝑝(𝜀𝑡
𝑝

),   where 𝜀𝑡
𝑝

 ~ 𝑁(0, 𝜎𝑝
2)  (4) 

𝐵𝑡+1 = [𝐵𝑡 + 𝑟 ∙ 𝐵𝑡 (1 −
𝐵𝑡

𝐾
) − 𝑌𝑡] ∙ 𝑒𝑥𝑝(𝜀𝑡

𝑝), where 𝜀𝑡
𝑝 ~ 𝑁(0, 𝜎𝑝

2) (5) 

𝐼𝑡 = 𝑞 ∙ 𝐵𝑡 ∙ 𝑒𝑥𝑝(𝜀𝑡
𝑜),   where 𝜀𝑡

𝑜 ~ 𝑁(0, 𝜎𝑜
2)  (6) 

The process equations are (4) and (5), whereas the observation equation 

is equation (6). The terms "process error" and "observation error," respectively, 

are represented by the variables 𝜀𝑡
𝑝 and 𝜀𝑡

𝑜 . It is presumed that they are 

independent and identically distributed random variables having a normal 

(Gaussian) probability density with variances of 𝜎𝑝
2 and 𝜎𝑜

2, respectively, and a 

mean of 0. Equation (4) defines the initial biomass (𝐵1) as a value that takes 

into account the carrying capacity (𝐾), the constant (𝑏), and the process error. 
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The unknown population size (𝐵𝑡) can be regarded as a state variable or 

as a random effects when taking the process error into account. Assuming 𝐵𝑡  to 

be a state variable, both point estimates and the associated uncertainties of 𝐵𝑡  

were calculated. On the other hand, the observation errors or measurement 

errors in the catch per unit effort data were considered.  

However, in this study, to ensure the stability of numerical optimization, 

it was assumed that the variance of the process error (𝜎𝑝
2) and the variance of 

the observation error (𝜎𝑜
2) were equal (𝜎𝑝

2 = 𝜎𝑜
2), and this common value was 

subsequently denoted as (𝜎2). 

𝐵1 = 𝑏 ∙ 𝐾 ∙ 𝑒𝑥𝑝(𝜀𝑡
𝑝),   where 𝜀𝑡

𝑝 ~ 𝑁(0, 𝜎2)  (7) 

𝐵𝑡+1 = [𝐵𝑡 + 𝑟 ∙ 𝐵𝑡 (1 −
𝐵𝑡

𝐾
) − 𝑌𝑡] ∙ 𝑒𝑥𝑝(𝜀𝑡

𝑝),  where 𝜀𝑡
𝑝 ~ 𝑁(0, 𝜎2)    (8) 

𝐼𝑡 = 𝑞 ∙ 𝐵𝑡 ∙ 𝑒𝑥𝑝(𝜀𝑡
𝑜),   where 𝜀𝑡

𝑜 ~ 𝑁(0, 𝜎2)  (9) 

Therefore, the assumption was made that the variances of both the process 

error and the observation error are equal (𝜎2), as demonstrated in the equations 

above. Since the auto-correlation may exist in the state variable 𝐵𝑡, the model 

was restructured by dividing 𝐵𝑡  the state variable by the carrying capacity 

(𝑃𝑡 ≡ 𝐵𝑡/𝐾). 

 



 

12 
 

𝑃1 = 𝑏 ∙ 𝑒𝑥𝑝(𝜀𝑡
𝑝),   where 𝜀𝑡

𝑝 ~ 𝑁(0, 𝜎2)  (10) 

𝑃𝑡+1 = [𝑃𝑡 + 𝑟 ∙ 𝑃𝑡(1 − 𝑃𝑡) −
𝑌𝑡

𝐾
] ∙ 𝑒𝑥𝑝(𝜀𝑡

𝑝),  where 𝜀𝑡
𝑝 ~ 𝑁(0, 𝜎2) (11) 

𝐼𝑡 = 𝑞 ∙ 𝐾 ∙ 𝑃𝑡 ∙ 𝑒𝑥𝑝(𝜀𝑡
𝑜),   where 𝜀𝑡

𝑜 ~ 𝑁(0, 𝜎2)  (12) 
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Table 2. Notations. Note that NA (not applicable/no dimension), MT (metric 

ton). 

 

 

 

Notation Description Dimension 

t Time measured in discrete units Year 

Yt The number of fishery yield (catch) at time t MT 

It Catch per unit effort data at time t 

MT/number of 

fishing vessel 

b 

Coefficient for estimating the initial biomass: 

B1 (i.e., B1= b K) 

NA 

K Carrying capacity MT 

r Intrinsic growth rate NA 

q Catchability coefficient 

1/number of 

fishing vessel 

𝜎𝑝
2 Variance of the process error NA 

𝜎𝑜
2 Variance of the observation error NA 

Bt Biomass at time t MT 

Pt Rescaled population size (𝑃𝑡 ≡
𝐵𝑡

𝐾
) NA 
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2.4. Likelihood functions 

I constructed likelihood functions for the process equation and 

observation equation described in equations (10), (11), and (12) above. By 

taking log to both sides, the term 𝑙𝑜𝑔𝑃1, 𝑙𝑜𝑔𝑃𝑡+1, and 𝑙𝑜𝑔𝐼𝑡 follow a normally 

distribution, as shown in the following equations. 

𝑙𝑜𝑔𝑃1 ~ 𝑁(𝑙𝑜𝑔(𝑏), 𝜎2)                                           (13) 

𝑙𝑜𝑔𝑃𝑡+1 ~ 𝑁 (𝑙𝑜𝑔 [𝑃𝑡 + 𝑟 ∙ 𝑃𝑡(1 − 𝑃𝑡) −
𝑌𝑡

𝐾
] , 𝜎2)                       (14) 

𝑙𝑜𝑔𝐼𝑡  ~ 𝑁(𝑙𝑜𝑔[𝑞 ∙ 𝐾 ∙ 𝑃𝑡], 𝜎2)                                    (15) 

Equations (13), (14), and (15) together constitute 𝐿(𝜽, 𝑷|𝑰, 𝒀), which is 

the joint log-likelihood encompassing both random effects and parameters. 

Within this framework, the parameters are denoted as 𝜽 = (𝑟, 𝐾, 𝜎2, 𝑏, 𝑞), while 

the random effects are presented as P = (𝑃1, 𝑃2, ⋯ , 𝑃𝑛+1) . The data are 

symbolized by Y and I, where Y consists of (𝑌2010, 𝑌2011, ⋯ , 𝑌2021)  and I 

comprises (𝐼2010, 𝐼2011, ⋯ , 𝐼2021). 
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𝑙𝑜𝑔𝐿(𝜽, 𝑷|𝑰, 𝒀) = 𝑙𝑜𝑔[𝑁(𝑙𝑜𝑔𝑃1|𝑙𝑜𝑔𝑏, 𝜎2)] 

+ ∑ 𝑙𝑜𝑔 [𝑁 (𝑙𝑜𝑔𝑃𝑡+1|𝑙𝑜𝑔 [𝑃𝑡 + 𝑟 ∙ 𝑃𝑡(1 − 𝑃𝑡) −
𝑌𝑡

𝐾] , 𝜎2)]
𝑛

𝑡=1
 

+ ∑ 𝑙𝑜𝑔[𝑁(𝑙𝑜𝑔𝐼𝑡|𝑙𝑜𝑔(𝑞 ∙ 𝐾 ∙ 𝑃𝑡), 𝜎2)]                                   (16)
𝑛

𝑡=1
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2.5. Prior distributions 

The Bayesian methodology views the parameters to be estimated as 

probability distributions rather than constants, in contrast to classical statistics, 

which treats the parameters to be estimated as unknown constants. Prior 

distributions contribute vital information, assist in model estimation, and help 

reduce the uncertainty of estimates. 

In this study, intrinsic growth rate (r) and carrying capacity (K) were 

assigned informative prior distributions. Other parameters were assigned non-

informative prior distributions, as detailed in Table 3. Under the assumption that 

the prior distributions in this study are mutually independent, the expression for 

the joint prior distribution is formulated as the following equation. 

𝑝(𝑟, 𝐾) = 𝑝(𝑟) ∙ 𝑝(𝐾) 

The process of numerical optimization was conducted through the TMB 

package in the R software environment, leading to the estimation of both 

random and fixed effects. The marginal likelihood function for 𝜃 =

(𝑟, 𝐾, 𝜎2, 𝑏, 𝑞)  is provided by the Laplace approximation. Following the 

principles of Bayes' theorem, the joint posterior distribution can be expressed as 

a function of the product of the joint likelihood function and joint prior 

distribution.   

𝑝(𝜽, 𝑷|𝑰, 𝒀) ∝ 𝐿(𝑰, 𝒀|𝜽, 𝑷) ∙ 𝑝(𝑟, 𝐾)   (17) 
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The process of MCMC sampling was carried out using the "tmbstan" R 

package, applied to the model object from "TMB" using "Stan”. A total of 

50,000 MCMC iterations were executed across four chains, with the initial 

5,000 samples from each chain being discarded as a burn-in phase. To diminish 

autocorrelation among the parameter samples, thinning was applied, selecting 

every 100th sample. 

After establishing the posterior distribution of the parameters, a diagnostic 

process is required to check whether the resultant MCMC draws were 

satisfactory or not. This diagnostic process was carried out using the R package 

“tmbstan” and “rstan”. In this study, two criteria were employed to judge the 

satisfactory: e.g., the number of divergent transitions and the potential-scale 

reduction statistic (𝑅̂)  which are standard diagnostic measures. MCMC 

posterior samples that failed to meet the diagnostic criteria were eliminated from 

consideration. Discarded set of MCMC draws which did not lead to no divergent 

transition which is 0, and the potential-scale reduction statistic (𝑅̂) must be 

around 1 (Best & Punt, 2020; Hyun & Kim, 2022; Lang, 1999). An 𝑅̂ value 

around 1 indicate the variance within each chain about same as the variance 

across the chains, which means the chains have converged to build posterior 

distribution through MCMC sampling.   

 

 



 

18 
 

Table 3. Prior distributions of parameter 

Parameter Prior Distribution 

𝐾 Log-normal (13.19 , 0.47) 

𝑟 Log-normal (0.27 , 0.47) 

𝑞 Non-informative 

𝑏 Non-informative 

𝜎2 Non-informative 
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2.6. Determining informative prior r and prior K 

In the Bayesian framework, the use of informative priors for parameters 

is essential. This study implemented such informative priors for the intrinsic 

growth rate (r) and the carrying capacity (K). The construction of prior 

distributions in this study was based on the fundamental concepts presented in 

(Froese et al., 2017). For establishing the prior on the intrinsic growth rate (r) 

of the species being evaluated, I used resilience information of the species as 

provided in FishBase. This information was then converted into r-ranges, as 

detailed in Table 4. 

Based on prior ranges of the intrinsic growth rate (r) presented in Table 4, 

a prior density function of the corresponding parameter r was derived. First, the 

intrinsic growth rate (r) was assumed to follow a log-normal distribution, where 

the mean of its prior range was treated as the mode of this prior distribution. The 

coefficient of variation (CV) for the prior r was set at 0.5, which corresponds to 

50%. 

Subsequently, the prior range for the carrying capacity parameter (K) was 

established, based on the r-range previously outlined in Table 4.  

 

𝐾𝑙𝑜𝑤 =
max (𝐶)

𝑟ℎ𝑖𝑔ℎ
, 𝐾ℎ𝑖𝑔ℎ =

4 max (𝐶)

𝑟𝑙𝑜𝑤
   (18) 

 

𝐾𝑙𝑜𝑤 =
2 max (𝐶)

𝑟ℎ𝑖𝑔ℎ
, 𝐾ℎ𝑖𝑔ℎ =

12 max (𝐶)

𝑟𝑙𝑜𝑤
   (19) 
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To establish the prior range for K, Equations (18) and (19) were applied. 

According to (Froese et al., 2017) it assumed that, if the last catch data in the 

time series is low relative to the maximum catch in the time series, use equation 

(18) to construct k-range. On the other hand, if the last catch in the time series 

is high relative to the maximum catch in the time series, use equation (19) to 

determine prior K-ranges. In this context, 𝑘𝑙𝑜𝑤  and 𝑘ℎ𝑖𝑔ℎ  represent the lower 

and upper limits, respectively, of the prior ranges for K. The term max (𝐶) 

refers to the maximum catch in the time series, while 𝑟𝑙𝑜𝑤 and 𝑟ℎ𝑖𝑔ℎ denote the 

lower and upper boundaries of the r-ranges in the Table 4.  

The prior for K was presumed to have a log-normal distribution, wherein 

the mean of the prior range was treated as the mode of this distribution. 

Furthermore, the coefficient of variation (CV) for this prior K was set at 0.5, 

corresponding to 50%. 

 

 

 

 

 

 



 

21 
 

Table 4. Prior r-range based on classification of resilience in FishBase (Froese 

et al., 2017). 

Resilience Prior r-range 

High 0.6 – 1.5 

Medium 0.2 – 0.8 

Low 0.05 – 0.5 

Very low 0.015 – 0.1 
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3. Results 

3.1. State space production model for 15 fish stocks 

In term of conservation, the results of this study revealed that the 15 

evaluated fish stocks are currently in a safe condition. The Maximum 

Sustainable Yield (MSY) points for these stocks were far above the annual yield. 

Detailed point estimates for the parameters concerning the 15 fish stocks are 

systematically displayed in Table 5. Successful estimation using Bayesian 

methods with the informative priors r and K, most of the resultant MCMC draws 

were satisfactory. The satisfactory percentage exceeded 87% for all evaluated 

stocks, with four fish stocks achieving perfect satisfaction, six fish stocks 

demonstrated approximately 99% satisfaction, three fish stocks were about 98% 

satisfied, one stock reached roughly 93% and on stock recorded 88% 

satisfaction, as detailed in Table 6. MCMC draw sets that did not pass the 

diagnostic test, specifically those with divergent transitions, were excluded. The 

potential-scale reduction statistic (𝑅̂) values for all 15 fish stocks consistently 

hovered around 1.0 (the range limits, 0.9999 – 1.006 rounded to 1.0). This 

indicates that all 15 fish stocks met the diagnostic criteria, signifying that the 

MCMC process for constructing the posterior distribution was successfully 

executed. 
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The observed annual CPUE were juxtaposed with the predicted CPUE 

indices derived from the model fit, as a measure of goodness of fit, depicted in 

Figure 3. This comparison serves to demonstrate the model's accuracy in fitting 

the observed data, with a closer alignment between predicted and observed data 

indicating a more precise numerical optimization process. The predicted CPUE 

for the 15 fish stocks closely approximated the observed CPUE time series, 

indicating effective model performance. Management reference points MSY, 

BMSY, and FMSY are presented in Figures 4, 5, and 6, respectively. Furthermore, 

the prior and posterior distributions for the parameters (r, K, q, b, 𝜎2 ) are 

illustrated in Figure 7 (7a, 7b, 7c). 

Overall, the Maximum Sustainable Yield (MSY) levels for the 15 

evaluated fish stocks were deemed satisfactory. However, exceptions as shown 

in Figure 4 include: the Short mackerel (panel B) and the Goldstripe sardinella 

(panel E), where the yields in 2020, 2010, and 2021 respectively exceeded the 

MSY levels; and the Common squid (panel O) in 2020, where the yield 

trajectory initially surpassed MSY before declining the next year. Additionally, 

Figure 6 indicates that in 2010, the annual harvest rates (FMSY) for the Short 

mackerel (panel B) and the Narrow-barred Spanish mackerel (panel G), both 

part of the Scombridae family, also exceeded their respective MSY levels.  

Figures 7a, 7b, and 7c display the prior distributions (depicted as curve 

lines) and the posterior distributions (represented by histograms) of parameters. 
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We could see that all posterior distributions assumed a unimodal form, 

indicating successful convergence of the MCMC sampling and effective 

construction of the posterior distribution. Additionally, the posterior 

distributions for the parameters r and K closely resembled the shape of their 

respective priors. Figure 8 illustrates the range of 𝑅̂ values for the MCMC draws 

that met the satisfactory criteria, clearly indicating their adequacy, as the 𝑅̂ 

values were predominantly around 1.  
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Table 5. Estimates of parameters in state space production models for 15 fish 

stocks (r, K, q, b, 𝜎2). Note that the units for K is metric ton (MT), r, b, 𝜎2 are 

dimensionless, and q is 1/the number of fishing vessels. 

Fish Stock 
Parameters 

r K q b 𝜎2 

Indian anchovy 1.36 1.77 x 105 3.83 x 10-5 0.87 0.15 

Short mackerel 0.88 3.79 x 105 2.36 x 10-4 0.25 0.26 

Mackerel scad 1.66 4.29 x 105 1.15 x 10-4 0.37 0.32 

Yellowtail scad 1.94 1.52 x 105 1.42 x 10-4 0.41 0.1 

Goldstripe sardinella 0.92 2.98 x 105 5.24 x 10-5 0.94 0.18 

Longtail tuna 0.29 1.24 x 106 8.68 x 10-6 0.53 0.35 

Narrow-barred Spanish mackerel 0.45 4.21 x 105 1.03 x 10-4 0.24 0.16 

Giant sea catfish 0.6 4.7 x 105 2.67 x 10-5 0.72 0.28 

Black pomfret 0.53 2.56 x 105 2.25 x 10-5 0.7 0.31 

Pony fishes 1.38 2.22 x 105 9.04 x 10-5 0.78 0.26 

Red snappers 0.54 4.07 x 105 4.5 x 10-6 0.84 0.34 

Ornate threadfin bream 0.49 2.7 x 105 1.83 x 10-5 0.87 0.46 

Hairtails 0.54 2.29 x 105 2.09 x 10-5 0.72 0.36 

White shrimp 1.26 1.08 x 105 8.92 x 10-5 0.53 0.24 

Common squid 0.83 4.03 x 105 3.88 x 10-5 0.2 0.31 
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Figure 3. Goodness of fit graphs of 15 fish stocks. Comparison between 

observed CPUE and predicted CPUE shows how fit the model is to the observed 

data. The black circles are the observed CPUE and the red lines are the predicted 

CPUE by the model. Panel (A) Indian anchovy, (B) Short mackerel, (C) 

Mackerel scad, (D) Yellowtail scad, (E) Goldstripe sardinella, (F) Longtail tuna, 

(G) Narrow-bared Spanish mackerel, (H) Giant sea catfish, (I) Black pomfret, 
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(J) Pony fishes, (K) Red snappers, (L) Ornate threadfin bream, (M) Hairtails, 

(N) White shrimp, (O) Common squid. 
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Figure 4. Maximum sustainable yield points of 15 fish stocks. (MSY, dashed 

line) with the annual yield (solid black line). Panel (A) Indian anchovy, (B) 

Short mackerel, (C) Mackerel scad, (D) Yellowtail scad, (E) Goldstripe 

sardinella, (F) Longtail tuna, (G) Narrow-barred Spanish mackerel, (H) Giant 

sea catfish, (I) Black pomfret, (J) Pony fishes, (K) Red snappers, (L) Ornate 

threadfin bream, (M) Hairtails, (N) White shrimp, (O) Common squid. 
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Figure 5. Estimated annual biomass of 15 fish stocks. The graphs above depict 

the predicted annual biomass (solid black line) with carrying capacity (K, two-

dashed line), biomass at MSY (BMSY, dashed line) and 95% credible intervals 

(dotted lines). Panel (A) Indian anchovy, (B) Short mackerel, (C) Mackerel 

scad, (D) Yellowtail scad, (E) Goldstripe sardinella, (F) Longtail tuna, (G) 
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Narrow-bared Spanish mackerel, (H) Giant sea catfish, (I) Black pomfret, (J) 

Pony fishes, (K) Red snappers, (L) Ornate threadfin bream, (M) Hairtails, (N) 

White shrimp, (O) Common squid. 
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Figure 6. Estimated annual harvest rate of 15 fish stocks. The annual harvest 

rate (solid black line) and the harvest rate that corresponds to MSY (FMSY, 

dashed line). Panel (A) Indian anchovy, (B) Short mackerel, (C) Mackerel scad, 

(D) Yellowtail scad, (E) Goldstripe sardinella, (F) Longtail tuna, (G) Narrow-

bared Spanish mackerel, (H) Giant sea catfish, (I) Black pomfret, (J) Pony fishes, 

(K) Red snappers, (L) Ornate threadfin bream, (M) Hairtails, (N) White shrimp, 

(O) Common squid. 
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Figure 7a. Prior distributions (curve lines, only r and K) and posterior 

distributions (histogram) of parameters (r, K, b, q, 𝜎2) of Indian anchovy (first 

row), Short mackerel (second row), Mackerel scad (third row), Yellowtail scad 

(fourth row), and Goldstripe sardinella (fifth row).   
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Figure 7b. Prior distributions (curve lines, only r and K) and posterior 

distributions (histogram) of parameters (r, K, b, q, 𝜎2) of Longtail tuna (first 

row), Narrow-barred Spanish mackerel (second row), Giant sea catfish (third 

row), Black pomfret (fourth row), and Pony fishes (fifth row). 
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Figure 7c. Prior distributions (curve lines, only r and K) and posterior 

distributions (histogram) of parameters (r, K, b, q, 𝜎2) of Red snappers (first 

row), Ornate threadfin bream (second row), Hairtails (third row), White shrimp 

(fourth row), and Common squid. (fifth row). 
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Table 6. Successful convergence rate of MCMC sample.  

 

 

 

  

Indian 

anchovy 

Short 

mackerel 

Mackerel 

scad 

Yellowtail 

scad 

Goldstripe 

sadrdinella 

Longtail 

tuna 

Narrow-bared 

Spanish 

mackerel 

100% 99.3% 88% 99.1% 100% 99.8% 100% 

Giant sea 

catfish 

Black 

pomfret 

Pony 

fishes 

Red 

snappers 

Ornate 

threadbream 
Hairtails 

White 

shrimp 

Common 

squid 

100% 99.8% 99.1% 98.2% 93.8% 98% 99.8% 98% 
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Figure 8. Potential-scale-reduction statistics (𝑅̂ ) of the satisfactory MCMC 

draws. The limit of the range 𝑅̂ (0.998 to 1.01 are rounded to 1.0). The numbers 

on the x-axis represent the fish stock under assessment (i.e. A. Indian anchovy, 

B. Short mackerel, C. Mackerel scad, D. Yellowtail scad, E. Goldstripe 

sardinella, F. Longtail tuna, G. Narrow-barred Spanish mackerel, H. Giant sea 

catfish, I. Black pomfret, J. Pony fishes, K. Red snappers, L. Ornate threadfin 

bream, M. Hairtails, N. White shrimp, O. Common squid). 
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4. Discussion 

4.1. Resilience level 

Resilience denotes the ability of a species to endure and maintain its 

population despite disruptions or challenges arising from environmental factors. 

Information on resilience can be sourced from FishBase, where each species is 

classified according to its level of resilience. This classification encompasses 

four distinct resilience categories: high, medium, low, and very low. The 

resilience information is very helpful for the management perspective (i.e. as 

information which is then transformed into a prior distribution based on 

Froese’s theory). Species classified as endangered often exhibit very low 

resilience levels, possibly indicating their reduced capacity to cope with 

surrounding environmental disturbances. In this research, I used the resilience 

levels, converting them into prior information, as elaborated in detail in the 

methodology section.  
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4.2. Management perspective 

As per NOAA Fisheries (National Oceanic and Atmospheric 

Administration), stock status can be categorized into two distinct concepts: 

"overfishing" and "overfished." Overfishing refers to a situation in which the 

harvest rate (F) of a stock exceeds the Maximum Sustainable Yield's harvest 

rate (FMSY). In contrast, a stock is considered “overfished” when its biomass (B) 

falls below half the biomass level that generates the Maximum Sustainable 

Yield (BMSY): 𝐵𝑡 <
𝐵𝑀𝑆𝑌

2⁄ . The trajectories of the harvest rate, as depicted in 

Figure 6, distinctly indicate that for the current year, all the stocks were below 

the Maximum Sustainable Yield's (MSY) harvest rate point. Regarding the 

assessment of being overfished, as shown in Figure 9, it is observed that the 

biomass trajectories remain above 
𝐵𝑀𝑆𝑌

2⁄ .  

Considering the previously discussed concepts, in the current year (the 

terminal year of time series) there are no signs of either overfishing or stocks 

being overfished among the 15 fish stocks in the Java Sea. Consequently, a more 

advantageous management approach might be to moderately increase catch 

levels to optimize profits. Each specific area possesses unique characteristics, 

necessitating tailored solutions for effective management. Factors such as 

regulations, local conditions, country-specific nuances, and others, should be 

taken into account by managers when determining the most suitable strategy for 

each area.  
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Figure 9. Predicted annual biomass (solid line) and biomass that produces MSY 

divided by two (BMSY/2, dashed line). Panel (A) Indian anchovy, (B) Short 

mackerel, (C) Mackerel scad, (D) Yellowtail scad, (E) Goldstripe sardinella, (F) 

Longtail tuna, (G) Narrow-bared Spanish mackerel, (H) Giant sea catfish, (I) 

Black pomfret, (J) Pony fishes, (K) Red snappers, (L) Ornate threadfin bream, 

(M) Hairtails, (N) White shrimp, (O) Common squid. 
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4.3. Kobe plot on 15 fish stocks 

The Kobe plot, also known as the phase plot, is a tool for assessing stock 

status by examining the harvest rate (F) and biomass (B) concerning the 

Maximum Sustainable Yield (MSY; i.e. FMSY and BMSY) (Maunder & Aires-da-

Silva, 2011). This approach is predicated on keeping the harvest rate below FMSY 

and ensuring that stock biomass remains above BMSY. Such a framework offers 

methodologies for encapsulating results from stock assessments and evaluations 

of management strategies in the Kobe format. 

The Kobe plot comprises a four-quadrant display, each quadrant 

represented by different colors (red, orange, yellow, and green), facilitating the 

classification of stock status into four distinct categories: (1) Green, indicating 

stocks that are neither overfished (B > 
𝐵𝑀𝑆𝑌

2⁄ ) nor undergoing overfishing (F 

< FMSY); (2) Orange (or upper-right yellow), for stocks that are not overfished 

(B > 
𝐵𝑀𝑆𝑌

2⁄ ) but are experiencing overfishing (F > FMSY); (3) Yellow (lower-

left), where stocks are overfished (B < 
𝐵𝑀𝑆𝑌

2⁄ ) but not undergoing overfishing 

(F < FMSY); and (4) Red, signifying stocks that are both overfished (B < 
𝐵𝑀𝑆𝑌

2⁄ ) 

and undergoing overfishing (F > FMSY) (Merino et al., 2020). 
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Figure 10. Kobe plot of 15 fish stocks. F represents the harvest rate, FMSY is the 

harvest rate at the MSY point, B represents of Biomass, and BMSY is biomass at 

the MSY point. Panel (A) Indian anchovy, panel (B) Short mackerel, (C) 

Mackerel scad, (D) Yellowtail scad, (E) Goldstripe sardinella, (F) Longtail tuna, 
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(G) Narrow-bared Spanish mackerel, (H) Giant sea catfish, (I) Black pomfret, 

(J) Pony fishes, (K) Red snappers, (L) Ornate threadfin bream, (M) Hairtails, 

(N) White shrimp, (O) Common squid.
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 Analyzing the Kobe plots depicted in Figure 10, it's evident that all 15 

fish stocks were located within the green quadrant, indicating that they were 

neither overfished nor undergoing overfishing. However, there were instances 

where both the Short mackerel and the Narrow-barred Spanish mackerel 

temporarily fell into the red quadrant, signifying periods of being overfished 

and undergoing overfishing, although they predominantly remained in the green 

quadrant. Additionally, the Mackerel scad and Common squid were once 

positioned in the yellow quadrant, reflecting a state of being overfished but not 

actively undergoing overfishing. Crucially, in the most recent years of the time 

series, there was no evidence of either overfishing or being overfished among 

the 15 fish stocks from the Java Sea. Overall, these 15 fish stocks can be 

summarized as maintaining a satisfactory condition. 
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5. Conclusions 

The implementation of a state-space production model effectively 

estimated the model parameters (r, K, q, b, 𝜎2 ) and calculated the annual 

biomass of 15 fish stocks in the Java Sea from 2010 to 2021. This model applied 

informative prior distributions for the intrinsic growth rate (r) and carrying 

capacity (K), utilizing the TMB package in R software. The outcomes of this 

study have facilitated a deeper understanding of the current status of the 15 fish 

stocks in the Java Sea, Indonesia. 

As per the theories of NOAA Fisheries, there were no signs of either 

overfishing or stocks being overfished among the evaluated stocks. Considering 

all factors, all 15 fish stocks under analysis were not found to be in an 

unfavorable condition. To achieve the stock assessment goal, which is 

maximizing the catch is still necessary to maximize profits from the catch while 

effectively conserving fish stocks. I would argue that the fisheries management 

in Indonesia might have been excessively cautious. Allowing fishermen to 

capture a larger quantity of fish could result in economic benefits. 
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Appendix: TMB code for the state-space production 

model with informative priors 

CPP.file 

sspmWithPrior <- " 

//a state-space production model for Indonesia 15 fish stocks 

//applying informative priors for parameter r and K 

 

#include <TMB.hpp> 

 

 // pass missing values 

template<class Type> 

bool isNA(Type x){ 

return R_IsNA(asDouble(x)); 

} 

  

// square 

template<class Type> 

Type square(Type x){ 

return pow(x,2.0);  

} 

  

// dlnorm 

template<class Type> 

Type dlnorm(Type x, Type meanlog, Type sdlog, int give_log=0) { 

    //return 1/(sqrt(2*M_PI)*sd)*exp(-.5*pow((x-mean)/sd,2)); 

    Type logres = dnorm( log(x), meanlog, sdlog, true) - log(x); 

     if(give_log)  

              return logres;  

     else  

              return exp(logres); 

  } 

  

//objective function 
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template<class Type> 

Type objective_function<Type>::operator() () { 

//data 

DATA_VECTOR(Yt);          //Yt: yield (in weight) at time t 

DATA_VECTOR(It);          //It: index or cpue at time t 

DATA_VECTOR(modeCV_r);    //mode and CV of r, which are used for 

informative prior for r;  

DATA_VECTOR(modeCV_K); //mode and CV of K, which are used for 

informative prior for K; 

 

//parameters 

PARAMETER(logsig_o);      //previously a=sig_o/sig_p; 

PARAMETER(logb);       //P1 = b*lognormal(0, sigma_p^2) (note that 

B1=b*K*lognormal(0, sigma_p^2), therefore E(logP1)=log(b), where B1 = 

the initial biomass) 

PARAMETER(logK);          //K: carrying capacity 

PARAMETER(logb);          //q: scaling role, where It = q*Bt 

PARAMETER(logr);          //r: intrinsic growth rate; 

PARAMETER_VECTOR(logPt);  //log(Pt), where Pt=Bt/K; //Latent random 

variable (i.e., random effect parameters) 

  

//Derived quantities 

int nyrs=It.size();       //nyrs: the number of years 

Type sig_o=exp(logsig_o); 

Type b=exp(logb); 

Type sig_p=sig_o; //variance of process error = variance of observation 

error 

Type K=exp(logK); 

Type q=exp(logq);  

Type r=exp(logr); 

Type logMSY=logr+logK-log(4); 

Type MSY=exp(logMSY);  

  

vector<Type> Pt=exp(logPt); 

vector<Type> E_logPt(nyrs+1);   //Expected values of log(Pt)'s 

//vector<Type> E_logPt(nyrs); 

vector<Type> logBt=logPt+logK; 
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vector<Type> logpredIt=logq+logPt+logK; 

vector<Type> Bt=exp(logPt+logK); 

vector<Type> predIt=exp(logq+logPt+logK);             //predicted It; 

vector<Type> nll(5);   //negative log likelihoods that have three components 

  

//objective function 

nll.setZero(); 

  

//process equation 

for(int i=1;i<=nyrs;i++) { 

if(!isNA( Yt(i-1) )) {                                          //a zero-based indexing scheme 

   E_logPt(i)=log( Pt(i-1)+r*(1.0-Pt(i-1))*Pt(i-1)-Yt(i-1)/K );  //because 

Yt(nyrs) does not exist;  

                                                                 //Yt(0), Yt(1), ..., Yt(nyrs-1). 

   nll(0) -= dnorm(logPt(i), E_logPt(i), sig_p, true); 

   } 

 } 

  

//observation equation 

for(int i=0;i<nyrs;i++) {   //a zero-based indexing scheme 

if(!isNA( It(i) )) { 

  nll(1) -= dnorm(log(It(i)), (logq+logPt(i)+logK), sig_o, true);  

  } 

} 

  

//Only for the initial biomass, which is treated as the fixed effect parameter 

//logPt(0) ~ normal(log(b), its variance), where its variance is assumed to be 

sig_p; 

nll(2)-= dnorm(logPt(0), log(b), sig_p, true); 

    

//Informative prior for r 

//r ~ lognormal;  

Type prior_mode_r=modeCV_r(0); 

Type prior_CV_r=modeCV_r(1); 

Type sig2_r=log(square(prior_CV_r)+1);   

Type mu_r=log(prior_mode_r)+sig2_r; 

//=log(prior_mode_r*(square(prior_CV_r)+1));  
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nll(3)-=dlnorm(r,mu_r,sqrt(sig2_r), true);  

    

//Informative prior for K;  

//K ~ lognormal;  

Type prior_mode_K=modeCV_K(0); 

Type prior_CV_K=modeCV_K(1); 

Type sig2_K=log(square(prior_CV_K)+1);   

Type mu_K=log(prior_mode_K)+sig2_K;  

nll(4)-=dlnorm(K,mu_K,sqrt(sig2_K),true); 

       

Type jnll = nll.sum();                //joint negative loglikelihoods 

  

//Reporting 

REPORT(jnll);  

REPORT(Bt); 

REPORT(predIt); 

REPORT(sig_o); 

REPORT(b); 

REPORT(sig_p); 

REPORT(K); 

REPORT(q); 

REPORT(r); 

REPORT(MSY); 

  

ADREPORT(b); 

ADREPORT(sig_o); 

ADREPORT(sig_p); 

ADREPORT(K); 

ADREPORT(q); 

ADREPORT(r); 

  

ADREPORT(logb); 

ADREPORT(logsig_o); 

ADREPORT(logK);  

ADREPORT(logq); 

ADREPORT(logr);  
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ADREPORT(logBt); 

ADREPORT(logpredIt); 

ADREPORT(Bt);     

ADREPORT(predIt); 

ADREPORT(logMSY); 

ADREPORT(MSY); 

  

return jnll;  

  

} " 

 

#compile 

write(sspmWithPrior, file="sspmWithPrior.cpp");  

compile("sspmWithPrior.cpp");  

dyn.load(dynlib("sspmWithPrior")) 
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