

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Thesis for the Degree of Master of Engineering

Research on Quantum Computer

Simulation Acceleration by using an

Emerging Memory Technology

by

Sang Hyeon Lee

Department of Artificial Intelligence

The Graduate School

Pukyong National University

 February, 2024

Research on Quantum Computer

Simulation Acceleration by using an

Emerging Memory Technology

(차세대 메모리 기술을 활용한 양자 컴퓨터

시뮬레이션 가속화 구조에 대한 연구)

Advisor: Prof. Young Sun Han

by

Sang Hyeon Lee

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Engineering

in Department of Artificial Intelligence, The Graduate School,

Pukyong National University

February, 2024

Research on Quantum Computer Simulation Acceleration by using an

Emerging Memory Technology

A dissertation

by

Sang Hyeon Lee

Approved by:

───────────────
Professor. Yong-Tae Kim,

(Chairman)

─────────────── ───────────────
Professor. Seung-Ho Yoo Professor. Young-Sun Han

(Member) (Member)

February 16th, 2024

I

Index

Table Index .. Ⅴ

Figure Index .. Ⅵ

Abstract .. Ⅶ

I. Introduction ... 1

II. Background .. 4

i. ReRAM crossbar ... 5

ii. Quantum computer simulation ... 7

iii. Realized state quantum computer simulation .. 10

III. Related works ... 11

IV. ReQUSA: Proposed architecture ... 13

i. Overall architecture ... 13

ii. Quantum processing unit .. 16

iii. Our proposed acceleration methodology .. 20

iv. Realization of quantum computer simulation in QPU 23

V. Hardware Implementation .. 20

i. ReRAM crossbar array ... 26

ii. Pulse width modulator .. 28

iii. Analog to digital converter ... 29

VI. Evaluation ... 32

i. Experimental setup ... 32

ii. Performance analysis .. 36

II

A. Simulation time ... 36

B. Hardware resource ... 40

C. Simulation accuracy ... 42

VII. Conclusion .. 46

III

Table Index

Table 1. An example of 2 x 2 size quantum gates in the LUT .. 18

Table 2. Quantum circuits used as benchmarks in the evaluation 34

Table 3. Parameters of the ReRAM simulation ... 35

Table 4. QPU hardware resource result when the crossbar size is doubled 41

Table 5. Simulation accuracies of different quantum circuits with different bit

precisions on ReQUSA. The accuracy is defined as the value of the vector relative

to the Qiskit simulation result vector. Accuracies above 0.9 are grayed out

...44

IV

Figure Index

Figure 1. Basic structure of the ReRAM crossbar array .. 4

Figure 2. Two different quantum computer simulation methods showing the structure and

operation of a three-qubit system: (a) Full-state quantum computer simulation method (b)

Realized-state quantum computer simulation method .. 9

Figure 3. Overall architecture of ReQUSA, which consists of several states 15

Figure 4. Proposed quantum processing unit (QPU) architecture 19

Figure 5. Example of a detailed process inside the QPU when each amplitude of RS uses

eight-bit precision .. 25

Figure 6. Eight-bit analog-to-digital converter circuit ... 31

Figure 7. Comparison of simulation times of QuEST, QPlayer, Qiskit, and our proposed

accelerator ReQUSA. The blue dashed line, Total(Tread), indicates the total time for the read

operation in the quantum computer simulation .. 39

V

Research on Quantum Computer Simulation Acceleration by using an Emerging

Memory technology

Sang-Hyeon Lee

Department of Artificial Intelligence Convergence, The Graduate School,

Pukyong National University

Abstract

Quantum computers are currently regarded as an emerging computing

technology that can solve problems more quickly than classical computers.

However, since constructing a general quantum computer is technically difficult,

quantum computer simulation has been used instead of real quantum computers.

Simulating quantum computers on classical computers is challenging because

the time and resources required for the vector–matrix multiplication (VMM)

increase exponentially with the number of qubits. This paper proposes a new

accelerator architecture called ReQUSA that leverages resistive random access

memory (ReRAM) to accelerate the quantum computer simulation. The ReQUSA

employs a ReRAM crossbar array structure, which is specialized for

implementing the VMM, and a realized state method for reduced VMM operation.

VI

To the best of our knowledge, ReRAM-based accelerators for quantum

computer simulator has not been previously reported. Here we describe the

hardware design of the architecture and compare the performances (hardware

resource, simulation time, and accuracy) of our accelerator with those of current

quantum computer simulators (QuEST, QPlayer, and Qiskit). On average, our

proposed architecture reduced the simulation times by factors of × 104 and

× 103(× 102) on average from those of QuEST and QPlayer (also Qiskit),

respectively. In addition, our architecture achieved 99% accuracy in 16-bit

fixed-point data representation.

1

1. Introduction

Recently, quantum computing technology has rapidly evolved and has

attracted much attention and investment from various fields. Quantum

computing promises to solve problems that are too complex and time-

consuming on classical computers, such as quantum searching [10],

quantum sorting [12], quantum oracle algorithms [2, 6, 8], and quantum

machine learning [3, 26]. Quantum computation solves complex and

massive operations quickly and efficiently using quantum mechanics.

Unlike classical computers that use bits (binary digits) to perform

operations, quantum computers use qubits (quantum bits) to perform

quantum operations. Exploiting the superposition phenomenon of

quantum mechanics, a qubit can simultaneously store |0⟩ and |1⟩ in a

quantum computer system. Therefore, a qubit can simultaneously exist

in both states until it is measured. When a qubit is measured, it collapses

into one of the basis states with a certain probability. The state of a qubit

can be represented by a one-dimensional column vector of unit norms

[𝛼 𝛽], where 𝛼 and 𝛽 are complex numbers satisfying |𝛼|2 + |𝛽|2 = 1. A

qubit can be manipulated through quantum gates, unitary matrices that

transform the state vector of the qubit. For example, the Pauli- X (X)

gate flips the state of a qubit from |0⟩ to |1⟩ and vice versa. The

Hadamard gate places a qubit in an equal superposition state of |0⟩ and

|1⟩. The Pauli- Z (Z) gate changes the phase of the qubit by π radians.

Many other single-qubit and multi-qubit gates perform various quantum

2

operations. By utilizing quantum properties such as superposition and

entanglement, quantum computers perform certain types of calculations

that are intractable for classical computers. Moreover, algorithms

designed for quantum computers can potentially solve complex problems

much faster than classical computing methods. However, in today’s noise

intermediate-scale quantum (NISQ) era, the scalability, error correction

capability, coherence, and interoperability of quantum computing remain

problematic [27]. These problems are avoided by employing quantum

computer simulations rather than actual quantum computers.

A quantum computer simulation applies a quantum gate to a qubit

following the mathematical principles of quantum physics [16, 28]. The

qubit and quantum gate can be represented as a state vector and a

quantum gate matrix, respectively. Accordingly, a quantum computer

simulation repeatedly multiplies the matrix by the vector. To enable

vector–matrix multiplication (VMM), the quantum gate matrix should be

expanded to fit the dimension of the state vector, which increases with

the number of qubits. This process is widely accepted although it

dramatically slows the quantum computer simulation. Among the existing

quantum simulators are Qiskit, which can simulate up to 30 qubits and

run quantum programs on classical computers, and QuEST [15], which

performs the simulation by utilizing a multiprocessor. To accelerate

quantum computer simulations, researchers have investigated more

efficient computing methods such as general-purpose computing on

graphics processing units (GPGPU) or multi- processing [1, 7]. However,

these approaches are resource-intensive and provide no inherent

improvement other than the division of the repetitive VMM operations

3

into multiple processors. Here we propose a novel architecture of

ReQUSA based on a resistive random access memory (ReRAM) crossbar,

which accelerates the quantum computer simulation by leveraging the

characteristics of ReRAM. In particular, the ReRAM is specialized for

VMM operations in the analog domain. To avoid dimensional expansion

of the state vector and quantum gate, we adopt the reduced VMM

operation method based on the realized state (RS) described in [14]. The

simulation time of our proposed architecture is × 104 shorter than that

of QuEST, × 103 and × 102 shorter than those of QPlayer and Qiskit,

respectively. The key contributions of our paper are summarized below:

 We propose a novel architecture that efficiently handles many qubits

in quantum computer simulations using the ReRAM crossbar structure.

 We develop a detailed hardware structure at the circuit level for

manipulating the reduced VMM operations.

 We demonstrate the superior simulation time and feasible accuracy of

the simulation results generated by our proposed architecture.

The remainder of this paper is organized as follows. Section 2 describes

the background of the ReRAM crossbar and quantum computer

simulation. Related works are summarized in Section 3. Section 4

discusses the architecture and behavior of the proposed accelerator and

Section 5 describes the hardware implementation of the accelerator. In

Section 6, we evaluate the performance of the architecture in terms of

simulation time, hardware resources, and accuracy. The paper

conclusion with Section 7.

4

2. Background

This section provides the background of ReRAM, quantum computer

simulations, and the RS method.

Figure 1. Basic structure of the ReRAM crossbar array. An input

voltage 𝑽𝒊 is applied equally to all bit lines along the word line.

Subsequently, the read operations (red lines) are performed

concurrently through the bit lines.

5

2.1 ReRAM crossbar

ReRAM crossbar Conventional memories such as dynamic and static

RAM rely on the storage of charge; therefore, they are volatile memories

that lose their data when the power supply is turned off. In contrast,

ReRAM is a next-generation memory device that stores data based on

the characteristics of electrical resistance, which depend on the history

of the previous current. Therefore, even when the power supply is

removed, the most recent data can be stored continuously, achieving

nonvolatile memory. When the resistance is high and the current flow is

rough, the logical value is 0 and the state is called a high resistance state.

Conversely, when the resistance is low and the current flows well, the

logical value is 1 and the state is called a low resistance state. To utilize

the characteristics of the ReRAM, a crossbar structure is generally

constructed. As shown in Figure 1, the ReRAM cells in a crossbar

structure are placed at each connection point of horizontal and vertical

steel wires. To execute the VMM operation in a single cycle on the

ReRAM crossbar, the analog conductance of the matrix coefficients are

stored in memristor cells and the vector values are the input voltages to

a word line. The multiplication result is then obtained as a current

through a bit line. The above process is formulated as follows:

𝐼𝑘 = ∑(𝐺𝑖𝑘 × 𝑉𝑖)

𝑚

𝑖=1

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑘 ≤ 𝑚 (1)

6

, where I is the current derived from the bit line, and G and V are the

conductance of the ReRAM cell and the input voltage, respectively.

ReRAM crossbar arrays offer several advantages over conventional

computing architectures for VMMs [9, 18]. First, ReRAM devices can be

programmed to directly perform multiply-and-accumulate operations in

memory, reducing the amount of data movement between the memory

and the processing elements. The lowered energy consumption and

latency associated with data movement allow faster and more energy-

efficient computations. Second, ReRAM crossbar arrays can perform

VMM operations in a massively parallel manner, enabling high

throughput and scalability. Third, ReRAM devices exhibit high device

density and low power consumption, so are suitable for implementation

in large-scale neuromorphic computing systems. Owing to these

advantages, the crossbar array architecture also accelerates deep

learning [13, 33, 20, 22].

7

2.2 Quantum computer simulation

Leveraging quantum phenomena such as superposition and entanglement,

quantum computers perform computations that are beyond the reach of

classical computers. However, as discussed above, building and

operating quantum computers is a challenging task, as quantum systems

are fragile and error prone. Instead, quantum computers are simulated

on classical computers, which are more reliable and accessible.

Quantum computer simulations represent quantum states and

operations as vectors and matrices which can then be manipulated

through classical algorithms. Such a simulation can reveal the behavior

of a quantum system, run quantum algorithms, and enable the design of

new quantum systems. The processes of two quantum computer

simulation methods are shown in Figure 2. In the full-state quantum

computer simulation method (Figure 2(a)) [32], a three-qubit system is

represented as a complex vector space |𝜓⟩. Each element of the vector

is a complex number represented as a 𝑎 + 𝑏𝑖. Following the quantum

circuit shown in Figure 2(a), the three-qubit system is simulated by

applying quantum gates. To this end, the tensor product of two Hadamard

(H) gates and an Identity (I) gate is calculated to yield a 23 × 23 matrix

of complex numbers. Then, we apply VMM to change the state of the

qubits, resulting in a new quantum state vector denoted as |𝜓̇⟩ .

Afterward, the quantum computer simulation is completed by performing

another VMM on a matrix representing the tensor product between a

Controlled-X (CNOT) gate and an I gate and the vector from the previous

8

calculation. This method simulates the state and behavior of a quantum

computer, but the state vector and quantum gate matrix are scaled by

factors of 2𝑛 and 2𝑛 × 2𝑛, respectively, where n denotes the number of

qubits. As the number of qubits increases, the number of operations on

the state vector and matrix becomes exceedingly large and the memory

demands increase accordingly. Although several attempts to minimize

the memory usage have been published [14, 37, 4, 16, 11, 24], an

effective solution remains elusive.

9

(a)

 (b)

Figure 2. Two different quantum computer simulation methods showing

the structure and operation of a three-qubit system: (a) Full-state

quantum computer simulation method [15] (b) Realized-state quantum

computer simulation method [14].

10

2.3 Realized state quantum computer simulation

To minimize the computational burden and reduce the memory

requirements of large state vectors and quantum gate matrices, Jin et al.

proposed a realized-state method that represents the qubit states [14].

RSs represent only those qubits with non-zero amplitudes. For example,

Figure 2(b) illustrates a three-qubit system with a quantum space of

eight states. Whereas a full-state quantum computer simulation must

represent each state with complex numbers, the RS simulation initializes

only the first state |000⟩ of the quantum system, which requires a single

complex number in memory. To perform the H-gate operation and state

change, multiplication is performed only on the realized pairs (|000⟩ and

|001⟩ in this case). This process is equivalent to applying the H gate to

the first qubit. The vector then contains two RSs for the simulation. The

vector size in this method is determined by the realized-state changes

in the quantum state obtained through operations, while the matrix size

remains constant at 22 × 22. In contrast, the full-state simulation scales

the matrix as 2𝑛 × 2𝑛.

11

3. Related works

Quantum computing is a rapidly evolving field that promises to expand

the limits of classical computers. However, fault tolerance and quantum

supremacy have not been attained in the current NISQ era. Quantum

supremacy defines the ability of a quantum computer to perform a task

that cannot be managed by a classical computer within a reasonable time.

In the NISQ era, quantum computers are sensitive to their environment

(noise) and prone to quantum decoherence, which occurs via interactions

between the qubits and the surroundings. Therefore, quantum computer

simulation methods are necessary tools for developing and testing

quantum algorithms within the limitations of quantum hardware.

However, simulating quantum computers is resource-intensive because

the size of the vector representing the quantum state scales

exponentially with the number of qubits. For example, a 50-qubit

quantum computer requires a 250 sized vector or approximately 1015

elements. Such a vector requires approximately 8 petabytes of RAM

storage. To alleviate the memory demands, recent studies have designed

resource-efficient quantum computer simulation methods such as

optimized single-node simulation frameworks [36, 14], simulators for

distributed systems [15], and simulators with data compression

techniques. Some of the existing frameworks run on a single classical

computer, providing quantum programming support for both quantum

computer simulations and real quantum computer executions. One such

12

framework is Qiskit [36], an open-source software development kit

compatible with IBM’s quantum computers and simulators. Qiskit allows

users to write quantum programs in Python and execute them on either

a local quantum computer simulator or a remote real quantum device.

However, Qiskit supports a maximum of only 30 qubits for simulation

on a local backend. Real quantum devices with higher qubit counts

remain inaccessible due to waiting time and cost for use. To simulate

more qubits on a single node, QPlayer [14] applies an optimized

simulation method based on the superposed qubit ratio (SQR) of the

quantum circuit, which defines the ratio of qubits in the superposition

state to the total number of qubits. The QPlayer can simulate 30, 40, 50,

and 60 qubits with SQRs of 100%, 80%, 60%, and 40%, respectively.

However, these methods are limited by the memory and processing

power of a single-node classical computer.

Distributed systems increase the qubit-count simulation capacity by

utilizing large resources across multiple nodes. One such distributed

system is QuEST [15], a hardware-agnostic simulator of universal

circuit-based quantum computers that can run on either CPUs or GPUs.

QuEST claims to simulate more than 50 qubits depending on the quantum

circuit and noise model. Another example is the full-state simulator with

data compression [37], which reduces the memory requirements of

stored quantum state vectors. The full-state simulator with data

compression claims to simulate up to 61 qubits on classical

supercomputers. Clearly, quantum computers beyond 61 qubits cannot

be simulated on classical supercomputers.

13

4. ReQUSA: Proposed architecture

In this section, we propose the methodology and ReQUSA’s hardware

architecture to accelerate the quantum computer simulation by using the

ReRAM crossbar.

4.1 Overall architecture

Figure 3 shows the overall architecture of the proposed accelerator and

the input/output (I/O) data flow of the quantum computer simulation. To

execute the quantum computer simulation, the provided quantum circuit

is first compiled as a quantum gate information table, the data format of

our architecture. Each quantum gate has a specific order, gate name, and

qubit index (control or target), which can be integrated into the table.

The order defines where the quantum gate is placed in the sequence of

quantum gates applied to the state vectors of the qubits. After the

compilation process, the gate information is assigned to our ReQUSA

accelerator.

The ReQUSA consists of a global controller, an I/O interface, multiple

quantum processing units (QPUs), and routers. Viewed from the top, the

routers are connected to each QPU, allowing easy transfer of the data

throughout the ReQUSA. A two-dimensional (2D) mesh Network-on-

Chip (NoC) structure improves the data transmission speed and latency

between the routers [5]. The 2D mesh network is a regular grid-like

14

structure that connects each node to its four neighboring nodes, forming

a 2D array. The data are transferred through the network bus by routing

packets, which take the shortest route from the source node to the

destination node. This arrangement reduces the latency and data

transfer time between each QPU.

The global controller manages all situations occurring in the proposed

architecture, such as the I/O data flow and the quantum computer

simulation. On the ReQUSA, a qubit passing through a quantum circuit

must sequentially pass through the quantum gates entangled in the circuit

in a predetermined order to obtain the correct simulation result. Hence,

the global controller sets the path of the routers and delivers an RS and

the quantum gate information to a QPU at a predetermined location. We

ensured that at this time, the quantum gates in adjacent QPUs are placed

in the order in which the gates are applied.

The router determines the data path along which the packet can

successfully reach the desired destination node. A router conventionally

has five I/O ports: four I/O ports in the 2D mesh network that connect

with other routers and one I/O port for the processing element (PE) [29],

which is the QPU in our architecture. We applied the router proposed in

[17] because it can be operated at the same clock frequency as other

peripheral circuits and can support high bandwidth and packet delivery

inside the network. The clock frequency will be further discussed in

subsection 6.2.1.

The I/O interface manages the input and output data flows of the

ReQUSA. In this case, the input denotes the quantum gate information,

and the output is a result of the quantum computer simulation.

15

F
ig

u
re

 3
. O

v
e
ra

ll a
rc

h
ite

c
tu

re
 o

f R
e
Q

U
S
A

, w
h
ic

h
 c

o
n
s
is

ts
 o

f s
e
v
e
ra

l s
ta

te
s
. T

h
e
 in

p
u
t is

 re
c
e
iv

e
d
 a

s
 a

q
u
a
n
tu

m
 c

irc
u
it in

 Q
A

S
M

 fo
rm

a
t. S

u
b
s
e
q
u
e
n
tly

, th
e
 Q

A
S
M

 is
 c

o
m

p
ile

d
 to

 e
x
tra

c
t re

le
v
a
n
t in

fo
rm

a
tio

n
 s

u
c
h

a
s
 th

e
 o

p
e
ra

tio
n
 d

e
ta

ils
 a

n
d
 q

u
b
it c

o
u
n
t. T

h
is

 in
fo

rm
a
tio

n
 is

 fe
d
 to

 R
e
Q

U
S
A

, in
 w

h
ic

h
 m

u
ltip

le
 Q

P
U

s
 a

re

c
o
n
n
e
c
te

d
 th

ro
u
g
h
 ro

u
te

rs
 to

 fa
c
ilita

te
 th

e
ir d

a
ta

 tra
n
s
fe

r. F
in

a
lly

, th
e
 R

e
Q

U
S
A

 o
u
tp

u
ts

 a
 v

e
c
to

r

re
p
re

s
e
n
tin

g
 th

e
 q

u
a
n
tu

m
 s

ta
te

 a
n
d
 its

 a
m

p
litu

d
e
s
.

16

4.2 Quantum processing unit

A QPU performs the VMM operation using a quantum gate matrix and

the realized state vector (RSV). The details of the QPU structure are

shown in Figure 4. All operations are managed by the QPU controller,

and the data flow occurred inside the QPU. Depending on the operation

type, the controller activates different units such as the gate decoder,

reordering unit, and VMM unit.

The gate decoder then decodes the quantum gate information to obtain

the configuration of the quantum gate (gate ID, control index, and target

index). We can determine the gate type and the qubit to which the gate

is applied based on the presence or absence of the control and target

qubit indices. For example, CNOT(0,1) is classified as a control gate

because its index is 0, indicating a control qubit. H(0) is a single gate

because it has no value for the control qubit index. Then, the gate

decoder generates the quantum gate matrix data according to the gate

ID. For this purpose, the gate ID and matrix data of each gate are stored

in a look-up table (LUT).

Table 1 shows how the gates are stored in the LUT. Currently, the

proposed architecture supports 12 types of gates, including the most

basic single gates I, H, and X, and control gates such as CNOT and CZ.

The number of gates may seem insufficient, but in a quantum computer,

we can construct a universal quantum computer with a set of universal

quantum gates, including CNOT and H gates. Note that since all matrices

with 2 × 2 elements in the lower right corner of itself can be employed

17

for the proposed architecture, they can be added to the LUT.

The reordering unit (ROU) executes the reordering algorithm. The ROU

receives the RS from the RSV buffer and generates a pair of RSs to be

transferred into the reordered RSV buffer. To realize the reordering

algorithm, the RSV buffer provides two memory structures: Index

Addressable Memory (IAM) and Content Addressable Memory (CAM),

similar to previous work [25, 31]. Therefore, the ROU can access the

RSV buffer with the RS address and the value of the RS state.

The VMM unit is the main QPU unit for the VMM operation. It consists

of a row buffer, the reordered RS buffer, the ReRAM crossbar array, and

peripheral circuits such as a pulse width modulator (PWM) array and

analog-to-digital converter (ADC) array. The row buffer receives the

quantum gate matrix data and the reordered RSV buffer temporarily

stores the RSV generated by the ROU. This process improves the

efficiency of multiplication by storing all RSVs according to the

characteristics of the ReRAM crossbar array. The VMM operation is then

completed in one cycle rather than by multiplying with the RSV

generated at each time.

18

Table 1. An example of 2 x 2 size quantum gates in the LUT

Gate Definition Matrix

I Identity gate

H Hadamard gate

X Pauli X gate

CNOT Controlled X gate

19

F
ig

u
re

 4
. P

ro
p
o
s
e
d
 q

u
a
n
tu

m
 p

ro
c
e
s
s
in

g
 u

n
it (Q

P
U

) a
rc

h
ite

c
tu

re
 c

o
n
s
is

tin
g
 o

f a
 re

a
liz

e
d
 s

ta
te

 v
e
c
to

r b
u
ffe

r (R
S
V

B
u
ffe

r), re
o
rd

e
rin

g
 u

n
it, g

a
te

 d
e
c
o
d
e
r, a

n
d
 v

e
c
to

r–
m

a
trix

 m
u
ltip

lic
a
tio

n
 (V

M
M

) u
n
its

.

It e

x
e
c
u
te

s
 a

 re
d
u
c
e
d
 V

M
M

o
p
e
ra

tio
n
 a

fte
r re

c
e
iv

in
g
 R

S
V

 a
n
d
 g

a
te

 in
fo

rm
a
tio

n
.

20

4.3 Our proposed acceleration methodology

As explained in subsection 2.2, the VMM operation is the main part of

the quantum computer simulation, and the 2 × 2 size quantum gate

matrix largely reduces the memory consumption. However, this method

does not significantly reduce the simulation time because all qubit state

vectors must be repeatedly multiplied by the 2 × 2 matrix. We thus

adopt a more efficient simulation technique combined with the RS

developed in [14]. By applying quantum gates only to the RSs of qubits,

our algorithm drastically reduces the number of VMM operations from

that of the previous simulation technique. Algorithm 1 describes the

process that lowers the number of VMM operations. The algorithm starts

to find a pair of RSs based on the qubit state index and the target qubit

index. For example, an X(1) gate is applied only to the qubit index 1, the

target qubit of this gate. To create a pair of RSs, the algorithm first

selects one index from the quantum register which manages the qubit

index, amplitudes, and left-shifts the selected index as much as the

target qubit, until it reaches the target index to generate the other index

of the pair. After finding the RS pairs, the algorithm reads the amplitude

of each pair. If the index does not exist in the quantum register, the

amplitude is set to zero. Consequently, the amplitude of each RS is

multiplied by the matrix to obtain a new amplitude. The control gate is

handled by the same process as the single qubit with one difference:

determining whether the control index of the qubit is indicated by the

control qubit index of the gate. This algorithm is slightly modified to suit

21

the hardware structure for handling in the accelerator. Lines 9 and 22 of

Algorithm 1 are modified from the original algorithm [14] by flipping the

bit of the qubit pointed to by the index rather than by left-shifting the

selected index. This change is possible because the qubit state is stored

in binary format.

22

23

4.4 Realization of quantum computer simulation in QPU

To realize the proposed acceleration method inside the QPU, we divide

the simulation process into two subprocess: write and read.

The write operation is the process of writing a quantum gate matrix to

a ReRAM crossbar array in the VMM unit. When the QPU receives the

write operation signal from the QPU controller, the gate decoder is first

activated. The gate decoder decodes the quantum gate information to

obtain the gate configuration (qubit indexes and gate ID), which is

transmitted to the ROU. The gate decoder interprets the gate ID and

produces the corresponding quantum gate matrix. The quantum gate

matrix is passed to the PWM array inside the VMM unit. The matrix

elements are stored as conductance in the cells of the ReRAM crossbar.

Owing to the characteristics of the ReRAM crossbar array, the

multiplication results are summed and printed out along one column. To

prohibit interruption of the VMM result by other multiplication results,

the same matrix elements are diagonally placed on the ReRAM crossbar

array.

The read operation performs the VMM operation by transferring the

RSV to the ReRAM crossbar array. As shown in Figure 4, the RS from

the RSV buffer is passed into the ROU, which executes the reordering

algorithm based on the control and target index as explained in

subsection 4.3. The reordering process iterates until pairs are found for

all RSVs stored in the RSV buffer. Once the reordering is completed, the

ROU sends the reordered RSV to the reordered RS buffer. Figure 5

24

shows the example of a detailed process inside the QPU after the

reordering process when each RS has eight-bit precision. The original

eight-bit VMM operation becomes complicated because the 16-bit result

cannot be handled by the eight-bit ADC. To solve this problem, we split

the eight-bit into upper and lower four-bit components [29]. The upper

four-bit contain the four highest digits, including the most significant bit

(MSB). Therefore, the elements of one quantum gate matrix are placed

in two rows and eight columns across two ReRAM crossbar arrays (e.g.

𝛾1𝐻 and 𝛾1𝐿 in the blue dashed box of Figure 5). In this situation, two

reordered RSs must be picked and multiplied by the quantum gate matrix.

In Figure 5, the real parts of RSs, i.e., 𝛼1 and 𝛼2, are chosen and stored

in the reordered RS buffer. The 𝛼1 and 𝛼2 are then divided into upper

and lower parts 𝛼1𝐻 , 𝛼1𝐿 and 𝛼2𝐻 , 𝛼2𝐿 , respectively. These data are

modulated by the PWM, which converted them to pulse-width

equivalents, and assigned the converted pulse to the word line. The

applied pulse changes the state of the cell passing through the ReRAM

cell of the crossbar storing the data of the element in the quantum gate

matrix. By reading the current through the columns, we can derive the

sum of current which is the same as a partial product of the VMM result,

such as 𝛼1𝐿𝛾1𝐻 + 𝛼2𝐿𝛾2𝐻. The currents are converted into an eight-bit

digital representation through the eight-bit ADC and it takes a shift

operation suitable for each bit order. For example, 𝛼1𝐻𝛾1𝐻 + 𝛼2𝐻𝛾2𝐻 is

preceded by an eight-bit shift operation. Finally, the 16-bit Adder sums

the shifted data to obtain one element of the VMM matrix, namely, 𝛼1𝛾1 +

𝛼2𝛾2 . The other RSs are processed similarly to obtain the remaining

matrix elements.

25

Figure 5. Example of a detailed process inside the QPU when each

amplitude of RS uses eight-bit precision. The reordered RS is

separated by four-bit and injected into the pulse width modulator

(PWM), where it is multiplied by the matrix coefficient stored as a

period of amplitude in the cell. After passing the analog-to-digital

(ADC) and Adder arrays, the multiplication result (a current) is

converted into digital form.

26

5. Hardware implementation

This section describes the circuit-level implementation of the ReRAM

crossbar array and the peripheral circuit.

5.1 ReRAM crossbar array

To implement a memristor crossbar, we require ReRAM technology

utilizing HfO2-based one-transistor one-resistor (1T1R) cells. The top

and bottom electrodes of the ReRAM cell are connected to the bit line

and transistor drain, respectively, and the source line is attached to the

transistor source. A prior study [30] reported a ReRAM test chip with a

1T1R crossbar array of area less than 12𝐹2(F is the lithography feature

size) fabricated via an 18-nm CMOS process. This chip allows the

construction of small cell arrays and efficient architectural designs. The

precision of the ReRAM cell is a critical factor in the memristor crossbar

structure, as it influences the accuracy of the VMM outcome and

determines cell conductance. Here we adopt the analog ReRAM

technique, which can store multiple bits, rather than digital ReRAM which

requires a large number of qubits. Although the analog ReRAM can store

n-bit weights in one ReRAM cell, it is usually vulnerable to noise which

lowers its accuracy. However, the authors of [21] demonstrated reliable

inference accuracy on the Modified National Institute of Standards and

Technology database (MNIST) by using two-, four-, and eight-bit

27

weighted analog ReRAM with eight-bit precision. We similarly evaluated

the accuracy of our simulation results by adjusting the precision of the

weights (see subsection 6.2.3). To handle negatively valued data, we

also adopted the crossbar structure proposed in [34].

28

5.2 Pulse width modulator

A pulse width modulator (PWM) conveys information by periodically

varying the width of the pulse signal. To this end, it varies the duty cycle

of the signal, defined as the ratio of the pulse width to the period of the

signal. The PWM array is an electronic circuit that generates a sequence

of pulse signals with varying duty cycles. The modulated signal retains

the frequency and amplitude of the original signal but has a varying duty

cycle. The average amplitude of the modulated signal is proportional to

the duty cycle, denoting that a higher duty cycle corresponds to a higher

amplitude. The conductance of the ReRAM cell can be set according to

the pulse width of the modulated input voltage. Moreover, as the write

and read operations of the ReRAM cell can be distinguished by pulse

amplitude, the PWM arrangement can be shared among the load and

calculation operations. When compared with pulse amplitude modulation

(PAM), PWM is more suited for applications where precise control of

power is required, while PAM is more suited for applications where

accurate transmission of analog information is required.

29

5.3 Analog to digital converter

The ReRAM crossbar array outputs a current value through each of its

columns. The currents must be converted to digital format through an

ADC. The ADC array is a collection of cooperating ADC circuits that

simultaneously convert multiple analog signals to digital signals. The

ADC array can thereby process large amounts of analog data quickly and

efficiently. The ADC array samples the analog signals at a specific rate

and converts each sample to a digital value representing the amplitude

of the analog signal at the time of sampling. An ADC array is

characterized by the resolution, speed, and accuracy of each ADC circuit

in the array. The resolution of an ADC circuit refers to the number of

bits representing the digital value of each sample. In a high-resolution

circuit, the digital value can represent a larger range of analog

amplitudes than in low-resolution circuits, allowing a more accurate

conversion of the analog signal into a digital signal.

The resolution similarly affects the accuracy of the VMM operation

performed by the ReRAM crossbar array. Therefore, we here set the

ADC resolution to eight-bit (see Figure 6). As the amplitude of a qubit

ranges from -1 to 1, at least one bit must be assigned to the sign of the

amplitude. Referring to the paper [35] and considering that the area and

power requirements of the ADC placement consume a large portion of

the overall circuit, we applied an eight-bit Flash ADC rather than a

successive approximation register (SAR) ADC. The Flash ADC also

provides reliable accuracy and optimal hardware, which are more

30

important than resolution in our present study.

The Flash ADC is sometimes called the parallel ADC because it

compares the input signal to a set of reference voltages using a parallel

comparison technique. According to [35], the SAR is slightly better than

the Flash at resolutions below five-bit. Above five-bit, the Flash covers

a larger area and demands more power than the SAR but is more suitable

for our architecture because its high-speed sampling rates can

accelerate the simulation.

31

Figure 6. Eight-bit analog-to-digital converter circuit. It consists

of 256 resistors and comparators and one priority encoder.

32

6. Evaluation

This section describes the experimental environment in which we

compared the performance (simulation time, hardware resources, and

accuracy) of our simulator with those of the Qiskit [36], QuEST [15],

and QPlayer [14] simulators.

6.1 Experimental setup

To evaluate the hardware performance, we first constructed an

accelerator with 12 QPUs having eight banks of a ReRAM crossbar array

to manipulate complex numbers and improve the accuracy of the

simulation result. The number of QPUs equals the number of built-in

gate types in the LUT because each QPU serves only one type of gate

during processing. The size of the ReRAM crossbar array depends on

the number of deployed quantum gates. Each ReRAM cell stores eight-

bit to satisfy the precision requirements as explained in subsection 5.3.

The ReRAM crossbar array was accessed through the Destiny V2 tool

[23] based on NVSim, a device and circuit simulator designed for

modeling emerging non-volatile memory (NVM) technologies. The

ReRAM was configured to simulate the multi-level cell (MLC) configured

in [30] (see Table 2). The MLC ReRAM has a 1T1R structure and is

manufactured using CMOS technology. One transistor and one ReRAM

cell are used for cell selection and data storage, respectively. Also, we

refer to the paper [39, 38, 29] for researching the configuration of the

33

high-precision ReRAM cell. Furthermore, our gate decoder and ROU

were designed using Verilog Hardware Description Language (HDL) and

synthesized using the 40-nm technology node in the Synopsys design

compiler. To verify both the runtime and accuracy of simulations in our

proposed architecture, we selected a quantum assembly language

(QASM) as the benchmark [19] and exploited the CrossSim simulator, a

crossbar simulator that mimics resistive memory in neuromorphic

computing. Table 3 summarizes the benchmark quantum circuits used in

this experiment. Depending on their number of qubits, the quantum

circuits can be separated into three scales (small, medium, and large).

Small-, medium-, and large-scale quantum circuits are composed of 2–

5 qubits, 6–15 qubits, and 15 or more qubits, respectively. Table 3

presents the properties and numbers of qubits, quantum gates, and

CNOT gates in each quantum circuit. Finally, the RSV column denotes

the maximum length of the RSV derived from each benchmark, which is

crucial for the reordering process in our simulator. All benchmarks were

evaluated in a server with Dual Intel Xeon(R) Silver 4214R

processor@2.40 GHz (24 cores, 48 threads) and 256 GB of DDR4 main

memory.

34

L
a
rg

e

M
e
d
iu

m

S
m

a
ll

S
c
a
le

T
a
b
le

 2
. Q

u
a
n
tu

m
 c

irc
u
its

 u
s
e
d
 a

s
 b

e
n
c
h
m

a
rk

s
 in

 th
e
 e

v
a
lu

a
tio

n

m
u
ltip

lie
r_

n
2
5

g
h
z
_
s
ta

te
_
n
2
3

c
a
t_

s
ta

te
_
n
2
2

b
v
_
n
1
4

is
in

g
_
n
1
0

s
im

o
n
_
n
6

s
e
c
a
_
n
1
1

b
b
8
4
_
n
8

to
ffo

li_
n
3

te
le

p
o
rta

tio
n
_

n
3

q
e
c
_
e
n
_
n
5

d
e
u
ts

c
h
_
n
2

lp
n
_
n
5

Q
A

S
M

Q
u
a
n
tu

m
 m

u
ltip

lie
r

G
H

Z
 s

ta
te

 p
re

p
a
ra

tio
n
 a

n
d
 a

s
s
e
s
s
m

e
n
t

C
a
t s

ta
te

B
e
rn

s
te

in
 V

a
z
ira

n
i A

lg
o
rith

m

Is
in

g
 m

o
d
e
l s

im
u
la

tio
n
 v

ia
 Q

C

S
im

o
n
,s

 a
lg

o
rith

m

S
h
o
r,s

 e
rro

r c
o
rre

c
tio

n
 a

lg
o
rith

m
 fo

r te
le

p
o
rta

tio
n

A
 q

u
a
n
tu

m
 k

e
y
 d

is
trib

u
tio

n
 c

irc
u
it

T
o
ffo

li g
a
te

Q
u
a
n
tu

m
 te

le
p
o
rta

tio
n

Q
u
a
n
tu

m
 re

p
e
titio

n
 o

n
 c

o
d
e
 e

n
c
o
d
e
r

D
e
u
ts

c
h
 a

lg
o
rith

m
 w

ith
 2

 q
u
b
its

 fo
r f(x

)=
x

L
e
a
rn

in
g
 p

a
rity

 w
ith

 n
o
is

e

D
e
s
c
rip

tio
n

2
5

2
3

2
2

1
4

1
0

6

1
1

8

3

3

5

2

5

Q
u
b

its

3
7
2

3

2
3

1
0

4
1

4
8
0

4
4

2
1
6

2
7

1
8

8

2
5

5

1
1

G
a
t

e
s

7
5
0

2
2

9
9

1
3

9
0

1
4

8
4

0

6

2

1
0

1

2

C
N

O
T

4

2

2

1
6
,3

8

4

1
,0

2
4

1
6

1
6

3
2

2

8

8

4

2

R
S
V

35

Table 3. Parameters of the ReRAM simulation

Appearance MLC ReRAM

Cell Structure 1T1R (HfO2)

Cell Area 20

Bit per Cell 4

Num of Banks 8

Sensing Scheme PSRC Current

Optimization Target Write Latency

36

6.2 Performance analysis

6.2.1 Simulation time

To evaluate the VMM operation time of the proposed accelerator, we

define the equation for read operation based on the clock frequency for

one QPU as follows:

𝑇𝑙𝑜𝑎𝑑 is the time of loading the RSV from the RSV buffer into the

reordered RS buffer in preparation for the VMM operation. Since the

reordering time of one RS is the period of one cycle, 𝑇𝑙𝑜𝑎𝑑 consumes 2N

cycles, where N is the number of RSs. The time 𝑇𝑣𝑚𝑚 of one VMM is 1

because multiplication consumes only one cycle owing to the structure

of the crossbar. The number of output operations is the number of

inputted RSs and the time 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 of generating the output is the time of

2N cycles. Therefore, the total simulation time 𝑇𝑠𝑖𝑚 is then given as:

𝑇𝑠𝑖𝑚 = 𝑇𝑤𝑟𝑖𝑡𝑒 + ∑(𝑇𝑟𝑒𝑎𝑑 + 𝑇𝑟𝑜𝑢𝑡𝑖𝑛𝑔)

𝑘

𝑖=1

 (3)

In Equation 3, 𝑇𝑠𝑖𝑚 is the sum of 𝑇𝑤𝑟𝑖𝑡𝑒, the time of writing the quantum

gate matrix into the QPUs, and the sums of 𝑇𝑟𝑒𝑎𝑑 and 𝑇𝑟𝑜𝑢𝑡𝑖𝑛𝑔, the times

of reading and transferring the result from the 𝑖𝑡ℎ-QPU to the (𝑖 + 1)𝑡ℎ-

𝑇𝑟𝑒𝑎𝑑 = 𝑇𝑙𝑜𝑎𝑑 + 𝑇𝑣𝑚𝑚 + 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 (2)

37

QPU, respectively, where k denotes the number of quantum gates. To

estimate 𝑇𝑟𝑜𝑢𝑡𝑖𝑖𝑛𝑔, we must first examine the flit size and packet length

of the router. A packet defines a complete unit of data delivered through

the network, whereas a flit is the smallest unit of transmissible data,

which (as a piece of the packet) can be transmitted more efficiently

across the network than a packet. The router in our architecture

produces a flit size of 64-bit and a packet length of 16- flit [17].

Therefore, one packet can transfer 1,024-bit of data (16 − flits × 64 −

bit). The proposed router can also be operated at a clock frequency of

500 MHz in the NoC structure, meaning that all circuits inside the QPU

and ReQUSA can be synchronized with a clock cycle time of 2.0ns, i.e.,

𝑇𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒. Therefore, 𝑇𝑟𝑜𝑢𝑡𝑖𝑛𝑔 is calculated as follows:

𝑇𝑟𝑜𝑢𝑡𝑖𝑛𝑔 = ⌈𝐿𝑟𝑠/(𝑆𝑝𝑎𝑐𝑘𝑒𝑡/𝑆𝑟𝑠)⌉ × 𝑇𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒 (4)

where 𝑆𝑝𝑎𝑐𝑘𝑒𝑡 and 𝑆𝑟𝑠 denote the data size of one packet and one RS,

respectively. 𝑇𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒 is the clock cycle time, and 𝐿𝑟𝑠 is the length of

the output data of the current QPU. One RS contains 32-bit of data, 16-

bit each for the real and imaginary parts of the complex number. The

division of 𝑆𝑝𝑎𝑐𝑘𝑒𝑡 by 𝑆𝑟𝑠 gives the maximum number of RSs that can be

contained in one packet. Moreover, after dividing 𝐿𝑟𝑠 by the obtained

maximum number, we can determine the number of packets to be

transmitted. Finally, multiplying this result by 𝑇𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒 gives the time

required for routing. Figure 7 compares the quantum computer

simulation time of ReQUSA based on Equation 3 with the simulation times

of other simulation tools (QuEST, QPlayer, and Qiskit) using the

38

benchmark circuits listed in Table 2. The times are presented on the

log10 scale. At this time, in order to unify the environment of all

simulators, we only applied OpenMP to QuEST without GPU acceleration

(GPGPU) technology. On all benchmarks, the simulation time of ReQUSA

far exceeded those of the other simulators. On average, the runtime of

ReQUSA was × 104 faster than that of QuEST, which exhibited the

longest simulation time on all benchmarks, and × 103 and × 102 faster

than those of QPlayer and Qiskit, respectively. The simulation times of

QPlayer and ReQUSA, which use RS techniques, do not gradually

increase with an increasing number of qubits because a quantum circuit

with a large number of qubits cannot assure a large number of

entanglements as same as the RS, the main factor of the VMM operation.

Thus, ‘cat_state_n22’ with more qubits but less entanglement runs faster

than the ‘ising_n10’ circuit, which consists of only 10 qubits but has many

entanglements. More precisely, when analyzing the 𝑇𝑠𝑖𝑚 of ReQUSA, we

found that even if the variability of 𝑇𝑠𝑖𝑚 is small in overall time across

all benchmarks, there is significant variability in 𝑇𝑟𝑒𝑎𝑑 depending on the

number of RSs like in the case of ‘ising_n10’. This phenomenon may

seem like the RS method does not affirm accelerating simulation in a

large-scale quantum system, however, it is clear that the ReQUSA shows

much better performance than other simulators.

39

F
ig

u
re

 7
. C

o
m

p
a
ris

o
n
 o

f s
im

u
la

tio
n
 tim

e
s
 o

f Q
u
E
S
T

, Q
P
la

y
e
r, Q

is
k
it, a

n
d
 o

u
r p

ro
p
o
s
e
d
 a

c
c
e
le

ra
to

r R
e
Q

U
S
A

.

T
h
e
 b

lu
e
 d

a
s
h
e
d
 lin

e
, T

o
ta

l (𝑻
𝒓

𝒆
𝒂

𝒅
), in

d
ic

a
te

s
 th

e
 to

ta
l tim

e
 fo

r th
e
 re

a
d
 o

p
e
ra

tio
n
 in

 th
e
 q

u
a
n
tu

m
 c

o
m

p
u
te

r

s
im

u
la

tio
n
.

40

6.2.2 Hardware resource

As all QPUs have the same circuit configuration, measuring a single QPU

is sufficient for checking the hardware resources. The peripheral circuit

includes all components of the QPU except the ReRAM crossbar array

(ADC and PWM arrays). Table 4 shows the hardware resources (area,

energy, and leakage power) of the QPUs. The performance was

evaluated at 16-bit fixed precision while the crossbar array size was

increased from 4 × 32 to 128 × 1024. Doubling the size of the crossbar

increased the total area at the same rate. More specifically, doubling the

crossbar- array size increased the area of the peripheral circuit. It also

increased the area of the crossbar arrangement, but the increase was

less than 1% of the total area under each condition. Meanwhile, the

energy was at least doubled with increasing crossbar-array size and

later increased by approximately fourfold. The crossbar arrangement

consumed more than 90% of the total energy. The leakage power

behaved similarly to the energy consumption. The most important point

is that at any array size, the clock cycle time could be 2.0ns. Thus,

regardless of the area of the peripheral circuit and crossbar, the

hardware can operate at the same clock frequency. Expanding the circuit

size did not affect the performance of the accelerator.

41

1
2
8
x
1
0
2
4

6
4
x
5
1
2

3
2
x
2
5
6

1
6
x
1
2
8

8
x
6
4

4
x
3
2

C
ro

s
s
b
a
r

 s
ize

T
a
b
le

 4
. Q

P
U

 h
a
rd

w
a
re

 re
s
o
u
rc

e
 re

s
u
lt w

h
e
n
 th

e
 c

ro
s
s
b
a
r s

ize
 is

 d
o
u
b
le

d

0
.7

1
9

0
.4

6
2

0
.1

0
2

0
.0

2
9

0
.0

1
8

0
.0

0
4

A
rra

y

A
re

a
 (𝒎

𝒎
𝟐)

5
.5

6
E

+
0
2

2
.7

8
E

+
0
2

1
.3

9
E

+
0
2

6
.9

5
E

+
0
1

3
.4

8
E

+
0
1

1
.7

4
E

+
0
1

P
e
ri

5
5
7
.0

0
0

2
7
9
.0

0
0

1
3
9
.0

0
0

6
9
.6

0
0

3
4
.8

0
0

1
7
.4

0
0

T
o
ta

l

1
.7

8
9

4
.7

7
1

0
.2

9
0

0
.0

7
8

0
.0

5
8

0
.0

3
1

A
rra

y

E
n
e
rg

y
 (𝒏

𝑱)

8
.4

4
E

+
0
2

4
.2

2
E

+
0
2

2
.1

1
E

+
0
2

1
.0

6
E

+
0
2

5
.2

8
E

+
0
1

2
.6

4
E

+
0
1

P
e
ri

8
4
6
.0

0
0

4
2
7
.0

0
0

2
1
1
.0

0
0

1
0
6
.0

0
0

5
2
.8

0
0

2
6
.4

0
0

T
o
ta

l

8
8
.0

0
0

1
8
.6

1
0

7
.6

9
5

4
.1

3
4

0
.9

3
6

1
.2

0
0

A
rra

y

L
e
a
k
a
g
e
 p

o
w

e
r (𝒎

𝑾
)

1
.9

1
E

-
0
2

8
.9

6
E

-
0
3

4
.2

1
E

-
0
3

1
.8

9
E

-
0
3

8
.9

9
E

-
0
4

4
.7

3
E

-
0
4

P
e
ri

8
7
.9

0
0

1
8
.6

0
0

7
.7

0
0

4
.1

4
0

0
.9

3
7

1
.2

0
0

T
o
ta

l

42

6.2.3 Simulation accuracy

To evaluate the accuracy of our proposed method, we utilized the VMM

method presented in Figure 5. The bit accuracy ranged from four- to

16-bit, reserving one bit for the sign of the quantum state and the

remaining bits for its fractional part. As the quantum state values ranged

from 1 to -1, we opted to disregard the integer part of the state. The

quantum state value was directly converted from 1.0 to 0.999..., thereby

sacrificing one bit of accuracy to include an additional fraction bit. Table

5 shows the accuracies of the ReQUSA simulations on various quantum

circuits ranging from small to large scales. Since the accuracy of the

simulation result is over 90% to be considered a reliable value, we

marked the corresponding values in grayscale as shown in Table 5. In

the table, the simulation accuracy results above 90% are highlighted in

blue. The accuracy was calculated by comparing the RS value to the

Qiskit value. Simulations using four- to eight-bit typically obtained a low

accuracy owing to the low bit precision and consequent inaccurate

floating-point representation during VMM operations. The accuracy of

ReQUSA is primarily determined by the circuit’s gate, with the number

of qubits playing a secondary role. For instance, despite having only

three qubits, the circuit ’toffoli_n3’ shows a lower accuracy than the

‘multiplier_n25’ circuit. Because the ’toffoli_n3’ contains multiple

Hadamard gates and the ‘multiplier_n25’ does not. This demonstrates

that ReQUSA’s accuracy is compromised when multiplication involves

numerous floating-point numbers. Another example is the fully-

43

superposed circuit ‘bv_n14’, in which an H gate is applied to each qubit.

Simulations of this circuit, which has 214 RSs, yielded no results at a bit

precision lower than 10 because the result approached 0 during VMM

operations at very low bit precisions. On this circuit, the outcome is much

more dependable at precisions of 14-bit and higher.

44

m
u
ltip

lie
r_

n
2
5

g
h
z
_
s
ta

te
_
n
2
3

c
a
t_

s
ta

te
_
n
2
2

b
v
_
n
1
4

s
e
c
a
_
n
1
1

b
b
8
4
_
n
8

s
im

o
n
_
n
6

lp
n
_
n
5

te
le

p
o
rta

tio
n
_
n
3

to
ffo

li_
n
3

d
e
u
s
tc

h
_
n
2

Q
u
a
n
tu

m
 c

irc
u
it

T
a
b
le

 5
. S

im
u
la

tio
n
 a

c
c
u
ra

c
ie

s
 o

f d
iffe

re
n
t q

u
a
n
tu

m
 c

irc
u
its

 w
ith

 d
iffe

re
n
t b

it p
re

c
is

io
n
s
 o

n

R
e
Q

U
S
A

. T
h
e
 a

c
c
u
ra

c
y
 is

 d
e
fin

e
d
 a

s
 th

e
 v

a
lu

e
 o

f th
e
 v

e
c
to

r re
la

tiv
e
 to

 th
e
 Q

is
k
it s

im
u
la

tio
n
 re

s
u
lt

v
e
c
to

r. A
c
c
u
ra

c
ie

s
 a

b
o
v
e
 0

.9
 a

re
 g

ra
y
e
d
 o

u
t.

0

0
.2

7
3

0
.2

7
3

0

0

0

0

0
.6

9
1

0
.0

4
7

0

0
.0

7
8

4

B
it p

re
c
is

io
n
 a

n
d
 A

c
c
u
ra

c
y

0
.1

7
5

0
.3

2
2

0
.3

2
2

0

0

0

0

0
.8

6
9

0
.4

4
1

0

0
.6

6
5

5

0
.5

7
5

0
.3

3
3

0
.3

6
3

0

0

0

0
.0

1
5

0
.9

2

0
.6

4
9

0
.1

6
6

0
.7

5
8

6

0
.7

8
4

0
.7

0
3

0
.7

1
7

0

0

0
.3

5
1

0
.5

0
5

0
.9

6
7

0
.8

5
8

0
.5

9
2

0
.9

1
6

7

0
.8

9
1

0
.8

5
7

0
.8

6
3

0

0
.2

3
9

0
.6

1
5

0
.7

4
3

0
.9

8
1

0
.9

1
2

0
.7

9

0
.9

3
9

8

0
.9

4
5

0
.9

3
3

0
.9

3
6

0

0
.6

5
7

0
.8

3
9

0
.8

7
9

0
.9

9
3

0
.9

7

0
.9

0
5

0
.9

8

9

0
.9

7
2

0
.9

6
7

0
.9

6
8

0
.0

0
2

0
.8

2
5

0
.9

1
6

0
.9

4
3

0
.9

9
6

0
.9

8
4

0
.9

5
2

0
.9

9

1
0

0
.9

8
6

0
.9

8
3

0
.9

8
4

0
.2

7
9

0
.9

1

0
.9

6
1

0
.9

7

0
.9

9
8

0
.9

9
2

0
.9

7
5

0
.9

9
5

1
1

0
.9

9
3

0
.9

9
1

0
.9

9
2

0
.7

2
9

0
.9

5
4

0
.9

7
7

0
.9

8
5

0
.9

9
9

0
.9

9
5

0
.9

8
7

0
.9

9
7

1
2

0
.9

9
6

0
.9

9
5

0
.9

9
7

0
.8

2
1

0
.9

7
6

0
.9

8
8

0
.9

9
1

0
.9

9
9

0
.9

9
7

0
.9

9
3

0
.9

9
8

1
3

45

0
.9

9
8

0
.9

9
7

0
.9

9
7

0
.9

1

0
.9

8
6

0
.9

9
2

0
.9

9
5

0
.9

9
9

0
.9

9
8

0
.9

9
6

0
.9

9
9

1
4

0
.9

9
9

0
.9

9
8

0
.9

9
9

0
.9

5
8

0
.9

9
4

0
.9

9
7

0
.9

9
8

0
.9

9
9

0
.9

9
9

0
.9

9
8

0
.9

9
9

1
5

0
.9

9
9

0
.9

9
9

0
.9

9
9

0
.9

7
8

0
.9

9
6

0
.9

9
8

0
.9

9
8

0
.9

9
9

0
.9

9
9

0
.9

9
9

0
.9

9
9

1
6

46

7. Conclusion

This paper proposed our quantum computer simulation accelerator

ReQUSA based on ReRAM for high-speed VMM operations. The

proposed architecture reduces the simulation time by applying the RS

method to reduced VMMs, thereby leveraging the advantages of the

ReRAM crossbar array. Our designed architecture includes multiple

QPUs consisting of the ReRAM crossbar array, a reordering unit for the

RS method, and peripheral circuits such as the PWM, ADC, and Adder

array. We further confirmed that our architecture outperforms the

existing simulators. Specifically, it decreases the simulation time on

average by × 104 from that of QuEST, and by a least × 102 and × 103

from those of Qiskit and QPlayer, respectively. A reasonably correct

result was obtained at eight-bit precision in a non-fully superposed

quantum circuit and the accuracy was improved by extending the bit

precision to 16-bit. Consequently, the ReRAM-based accelerator

ReQUSA promises to significantly reduce the simulation time while

providing a minimized hardware resource and accurate results in

quantum computer simulations.

47

References

[1] S.-S. Sheu et al., ‘A 4Mb embedded SLC resistive-RAM macro with 7.2ns

read-write random-access time and 160ns MLC-access capability’, in 2011

IEEE International Solid-State Circuits Conference, 2011, pp. 200–202.

[2] S. Mittal, ‘A Survey of ReRAM-Based Architectures for Processing-In-

Memory and Neural Networks’, Machine Learning and Knowledge

Extraction, vol. 1, no. 1, pp. 75–114, 2019.

[3] M. J. Marinella et al., ‘Multiscale Co-Design Analysis of Energy, Latency,

Area, and Accuracy of a ReRAM Analog Neural Training Accelerator’,

IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

vol. 8, no. 1, pp. 86–101, 2018.

[4] M. Hu et al., ‘Dot-Product Engine for Neuromorphic Computing:

Programming 1T1M Crossbar to Accelerate Matrix-Vector Multiplication’,

Austin, Texas, 2016.

[5] S. A. Ghasemi, B. Jahannia, and H. Farbeh, ‘GraphA: An efficient ReRAM-

based architecture to accelerate large scale graph processing’, Journal of

Systems Architecture, vol. 133, p. 102755, 2022.

[6] D. Lelmini and H.-S. P. Wong, ‘In-memory computing with resistive

switching devices’, Nat Electron 1, 2019.

[7] Y. Li, X. Chen, X. Zhao, Y. Yang, and H. Liu, ‘Round-trip latency

prediction for memory access fairness in mesh-based many-core

architectures’, IEICE Electronics Express, vol. 11, no. 24, pp. 20141027–

20141027, 2014.

[8] X.-C. Wu et al., ‘Full-State Quantum Circuit Simulation by Using Data

Compression’, in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, Denver,

Colorado, 2019.

[9] K.-S. Jin and G.-I. Cha, ‘QPlayer: Lightweight, scalable, and fast quantum

simulator’, ETRI Journal, vol. n/a, no. n/a.

[10] J. M. Correll et al., ‘An 8-bit 20.7 TOPS/W Multi-Level Cell ReRAM-

based Compute Engine’, in 2022 IEEE Symposium on VLSI Technology and

Circuits (VLSI Technology and Circuits), 2022, pp. 264–265.

48

[11] P. Yao et al., ‘Face classification using electronic synapses’, Nature

communications, vol. 8, no. 1, p. 15199, 2017.

[12] J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A.

Raychowdhury, ‘29.1 a 40nm 64kb 56.67 tops/w read-disturb-tolerant

compute-in-memory/digital rram macro with active-feedback-based read

and in-situ write verification’, in 2021 IEEE International Solid-State

Circuits Conference (ISSCC), 2021, vol. 64, pp. 404–406.

[13] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, ‘QASMBench: A Low-

Level Quantum Benchmark Suite for NISQ Evaluation and Simulation’,

ACM Transactions on Quantum Computing, vol. 4, no. 2, pp. 1–26, 2023.

[14] A. W. Harrow, A. Hassidim, and S. Lloyd, ‘Quantum Algorithm for Linear

Systems of Equations’, Phys. Rev. Lett., vol. 103, p. 150502, Oct. 2009.

[15] P. W. Shor, ‘Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer’, SIAM Journal on

Computing, vol. 26, no. 5, pp. 1484–1509, 1997.

[16] L. K. Grover, ‘A Fast Quantum Mechanical Algorithm for Database

Search’, in Proceedings of the Twenty-Eighth Annual ACM Symposium on

Theory of Computing, Philadelphia, Pennsylvania, USA, 1996, pp. 212–

219.

[17] A. Shafiee et al., ‘ISAAC: A Convolutional Neural Network Accelerator

with in-Situ Analog Arithmetic in Crossbars’, SIGARCH Comput. Archit.

News, vol. 44, no. 3, pp. 14–26, Jun. 2016.

[18] A. Shafiee et al., ‘ISAAC: A Convolutional Neural Network Accelerator

with in-Situ Analog Arithmetic in Crossbars’, in Proceedings of the 43rd

International Symposium on Computer Architecture, 2016, pp. 14–26.

[19] M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston, ‘A Lightweight

Fault-Tolerant Mechanism for Network-on-Chip’, in Second ACM/IEEE

International Symposium on Networks-on-Chip (nocs 2008), 2008, pp. 13–

22.

[20] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection

Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

2004.

[21] B. Verbruggen, J. Craninckx, M. Kuijk, P. Wambacq, and G. Van der Plas,

‘A 2.2 mW 1.75 GS/s 5 Bit Folding Flash ADC in 90 nm Digital CMOS’,

49

IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 874–882, Mar.

2009.

[22] Q. Wang, Y. Kim, and P. Li, ‘Neuromorphic Processors with Memristive

Synapses: Synaptic Interface and Architectural Exploration’, ACM Journal

on Emerging Technologies in Computing Systems, vol. 12, no. 4, pp. 1–22,

Jul. 2016.

[23] I.-M. Yi, N. Miura, H. Fukuyama, and H. Nosaka, ‘A 15.1-mW 6-GS/s 6-

bit Single-Channel Flash ADC With Selectively Activated 8× Time-

Domain Latch Interpolation’, IEEE Journal of Solid-State Circuits, vol. 56,

no. 2, pp. 455–464, Feb. 2021.

[24] A. Ankit et al., ‘PUMA: A Programmable Ultra-efficient Memristor-based

Accelerator for Machine Learning Inference’, in Proceedings of the

Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, 2019, pp. 715–731.

[25] P. Chi et al., ‘PRIME: A Novel Processing-in-Memory Architecture for

Neural Network Computation in ReRAM-Based Main Memory’, in 2016

ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA), 2016, pp. 27–39.

[26] J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A.

Raychowdhury, ‘29.1 A 40nm 64Kb 56.67TOPS/W Read-Disturb-Tolerant

Compute-in-Memory/Digital RRAM Macro with Active-Feedback-Based

Read and In-Situ Write Verification’, in 2021 IEEE International Solid-

State Circuits Conference (ISSCC), 2021, pp. 404–406.

[27] T. Li, N. Jing, J. Jiang, Q. Wang, Z. Mao, and Y. Chen, ‘A Novel

Architecture Design for Output Significance Aligned Flow with Adaptive

Control in ReRAM-based Neural Network Accelerator’, ACM

Transactions on Design Automation of Electronic Systems, vol. 27, no. 6,

pp. 1–22, Nov. 2022.

[28] J. M. Correll et al., ‘An 8-bit 20.7 TOPS/W Multi-Level Cell ReRAM-

based Compute Engine’, in 2022 IEEE Symposium on VLSI Technology and

Circuits (VLSI Technology and Circuits), 2022, pp. 264–265.

[29] T. H. Johnson, S. R. Clark, and D. Jaksch, ‘What is a quantum simulator?’,

EPJ Quantum Technology, vol. 1, no. 1, p. 10, Dec. 2014.

[30] P. Yao et al., ‘Face classification using electronic synapses’, Nature

50

Communications, vol. 8, no. 1, p. 15199, May 2017.

[31] S. Mittal, R. Wang, and J. Vetter, ‘DESTINY: A Comprehensive Tool with

3D and Multi-Level Cell Memory Modeling Capability’, Journal of Low

Power Electronics and Applications, vol. 7, no. 3, p. 23, Sep. 2017.

[32] Y. Li et al., ‘A Survey of MRAM-Centric Computing: From Near Memory

to In Memory’, IEEE Transactions on Emerging Topics in Computing, pp.

1–12, 2022.

[33] W.-C. Chien et al., ‘Multi-level 40nm WOX resistive memory with

excellent reliability’, in 2011 International Electron Devices Meeting,

2011, p. 31.5.1-31.5.4.

[34] D. S. Steiger, T. Häner, and M. Troyer, ‘ProjectQ: An Open Source

Software Framework for Quantum Computing’, Quantum, vol. 2, p. 49,

Jan. 2018.

[35] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, ‘QASMBench: A Low-level

QASM Benchmark Suite for NISQ Evaluation and Simulation’. arXiv,

May-2022.

[36] C. Huang et al., ‘Rescuing ReRAM-based Neural Computing Systems

from Device Variation’, ACM Transactions on Design Automation of

Electronic Systems, vol. 28, no. 1, pp. 1–17, Jan. 2023.

[37] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, ‘QuEST and High

Performance Simulation of Quantum Computers’, Scientific Reports, vol.

9, no. 1, p. 10736, Jul. 2019.

[38] H. De Raedt et al., ‘Massively parallel quantum computer simulator, eleven

years later’, Computer Physics Communications, vol. 237, pp. 47–61, Apr.

2019.

[39] K. D. Raedt et al., ‘Massive Parallel Quantum Computer Simulator’.

[40] R. LaRose, ‘Distributed Memory Techniques for Classical Simulation of

Quantum Circuits’.

[41] S.-S. Sheu et al., ‘A 4Mb embedded SLC resistive-RAM macro with 7.2ns

read-write random-access time and 160ns MLC-access capability’, in 2011

IEEE International Solid-State Circuits Conference, 2011, pp. 200–202.

[42] M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston, ‘A Lightweight

Fault-Tolerant Mechanism for Network-on-Chip’, in Second ACM/IEEE

51

International Symposium on Networks-on-Chip (nocs 2008), 2008, pp. 13–

22.

[43] J. Jose, B. Nayak, K. Kumar, and M. Mutyam, ‘DeBAR: Deflection Based

Adaptive Router with Minimal Buffering’, in Design, Automation & Test

in Europe Conference & Exhibition (DATE), 2013, 2013, pp. 1583–1588.

[44] M. A. Khan and A. Q. Ansari, ‘Design of 8-Bit Programmable Crossbar

Switch for Network-on-Chip Router’, in Trends in Network and

Communications, vol. 197, D. C. Wyld, M. Wozniak, N. Chaki, N.

Meghanathan, and D. Nagamalai, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 526–535.

[45] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-S. Seo, U. Y. Ogras, and Y.

Cao, ‘Impact of On-chip Interconnect on In-memory Acceleration of Deep

Neural Networks’, ACM Journal on Emerging Technologies in Computing

Systems, vol. 18, no. 2, pp. 1–22, Apr. 2022.

[46] X. Zhou, P. Hao, and D. Liu, ‘PCCNoC: Packet Connected Circuit as

Network on Chip for High Throughput and Low Latency SoCs’,

Micromachines, vol. 14, no. 3, p. 501, Feb. 2023.

[47] ‘MoDe-X: Microarchitecture of a Layout-Aware Modular Decoupled

Crossbar for On-Chip Interconnects’, IEEE Transactions on Computers,

vol. 63, no. 3, pp. 622–636, Mar. 2014.

[48] W.-C. Tsai, Y.-C. Lan, Y.-H. Hu, and S.-J. Chen, ‘Networks on Chips:

Structure and Design Methodologies’, Journal of Electrical and Computer

Engineering, vol. 2012, pp. 1–15, 2012.

[49] S. Onsori and F. Safaei, ‘Performance Enhancement of Routers in

Networks-on-Chip Using Dynamic Virtual Channels Allocation’, 2014.

[50] A. M. R, A. N. Subrahmanya, and A. D’Souza, ‘Performance Analysis of

Mesh-based NoC’s on Routing Algorithms’, International Journal of

Electrical and Computer Engineering (IJECE), vol. 8, no. 5, p. 3368, Oct.

2018.

[51] R. James, J. Jose, and J. K. Antony, ‘Smart Port Allocation for Adaptive

NoC Routers’, in 2015 28th International Conference on VLSI Design,

2015, pp. 475–480.

[52] R. Wille, R. Van Meter, and Y. Naveh, ‘IBM’s Qiskit Tool Chain: Working

with and Developing for Real Quantum Computers’, in 2019 Design,

52

Automation & Test in Europe Conference & Exhibition (DATE), 2019, pp.

1234–1240.

[53] M. Courbariaux, Y. Bengio, and J.-P. David, ‘Training deep neural networks

with low precision multiplications’, arXiv: Learning, 2014.

[54] N. Khammassi, I. Ashraf, X. Fu, C. G. Almudever, and K. Bertels, ‘QX: A

high-performance quantum computer simulation platform’, in Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2017,

2017, pp. 464–469.

[55] J. Preskill, ‘Quantum Computing in the NISQ era and beyond’, Quantum,

vol. 2, p. 79, Aug. 2018.

[56] National Academies of Sciences Engineering, Medicine, and Others,

‘Quantum computing: progress and prospects’, 2019.

[57] A. Avila, A. Maron, R. Reiser, M. Pilla, and A. Yamin, ‘GPU-Aware

Distributed Quantum Simulation’, in Proceedings of the 29th Annual ACM

Symposium on Applied Computing, Gyeongju, Republic of Korea, 2014,

pp. 860–865.

[58] J. Doi, H. Takahashi, R. Raymond, T. Imamichi, and H. Horii, ‘Quantum

Computing Simulator on a Heterogenous HPC System’, in Proceedings of

the 16th ACM International Conference on Computing Frontiers, Alghero,

Italy, 2019, pp. 85–93.

[59] S. Agarwal et al., ‘Resistive memory device requirements for a neural

algorithm accelerator’, in 2016 International Joint Conference on Neural

Networks (IJCNN), 2016, pp. 929–938.

[60] H. Ji, L. Song, L. Jiang, H. Li, and Y. Chen, ‘ReCom: An efficient resistive

accelerator for compressed deep neural networks’, in 2018 Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2018, pp.

237–240.

[61] K. Pagiamtzis and A. Sheikholeslami, ‘Content-addressable memory

(CAM) circuits and architectures: a tutorial and survey’, IEEE Journal of

Solid-State Circuits, vol. 41, no. 3, pp. 712–727, 2006.

[62] Y. C. Shin, R. Sridhar, V. Demjanenko, P. W. Palumbo, and S. N. Srihari,

‘A special-purpose content addressable memory chip for real-time image

processing’, IEEE Journal of Solid-State Circuits, vol. 27, no. 5, pp. 737–

744, 1992.

53

[63] P. W. Shor, ‘Algorithms for quantum computation: discrete logarithms and

factoring’, in Proceedings 35th Annual Symposium on Foundations of

Computer Science, 1994, pp. 124–134.

[64] S. Bravyi and D. Gosset, ‘Improved Classical Simulation of Quantum

Circuits Dominated by Clifford Gates’, Phys. Rev. Lett., vol. 116, p.

250501, Jun. 2016.

[65] J. Niwa, K. Matsumoto, and H. Imai, ‘General-purpose parallel simulator

for quantum computing’, Phys. Rev. A, vol. 66, p. 062317, Dec. 2002.

[66] T. Häner and D. S. Steiger, ‘0.5 Petabyte Simulation of a 45-Qubit Quantum

Circuit’, in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, Denver,

Colorado, 2017.

[67] Hoyer, Neerbek, and Shi, ‘Quantum Complexities of Ordered Searching,

Sorting, and Element Distinctness’, Algorithmica, vol. 34, no. 4, pp. 429–

448, Nov. 2002.

[68] L. K. Grover, ‘Quantum Mechanics Helps in Searching for a Needle in a

Haystack’, Phys. Rev. Lett., vol. 79, pp. 325–328, Jul. 1997.

[69] E. Bernstein and U. Vazirani, ‘Quantum Complexity Theory’, SIAM

Journal on Computing, vol. 26, no. 5, pp. 1411–1473, 1997.

[70] D. Deutsch and R. Penrose, ‘Quantum theory, the Church–Turing principle

and the universal quantum computer’, Proceedings of the Royal Society of

London. A. Mathematical and Physical Sciences, vol. 400, no. 1818, pp.

97–117, 1985.

[71] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,

‘Quantum machine learning’, Nature, vol. 549, no. 7671, pp. 195–202, Sep.

2017.

[72] D. Peral García, J. Cruz-Benito, and F. José García-Peñalvo, ‘Systematic

Literature Review: Quantum Machine Learning and its applications’, arXiv

e-prints, p. arXiv:2201.04093, Jan. 2022.

[73] L. Song, X. Qian, H. Li, and Y. Chen, ‘PipeLayer: A Pipelined ReRAM-

Based Accelerator for Deep Learning’, in 2017 IEEE International

Symposium on High Performance Computer Architecture (HPCA), 2017,

pp. 541–552.

54

[74] Y. Long, X. She, and S. Mukhopadhyay, ‘Design of Reliable DNN

Accelerator with Un-reliable ReRAM’, in 2019 Design, Automation & Test

in Europe Conference & Exhibition (DATE), 2019, pp. 1769–1774.

[75] E. Farhi, J. Goldstone, and S. Gutmann, ‘A Quantum Algorithm for the

Hamiltonian NAND Tree’, arXiv [quant-ph]. 2007.

[76] S. N. Truong and 민경식, ‘New Memristor-Based Crossbar Array

Architecture with 50-% Area Reduction and 48-% Power Saving for

Matrix-Vector Multiplication of Analog Neuromorphic Computing’,

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, vol.

14, no. 3, pp. 356–363, 2014.

	목차
	I. Introduction 1
	II. Background 4
	i. ReRAM crossbar 5
	ii. Quantum computer simulation 7
	iii. Realized state quantum computer simulation 10
	III. Related works . 11
	IV. ReQUSA: Proposed architecture . 13
	i. Overall architecture 13
	ii. Quantum processing unit . 16
	iii. Our proposed acceleration methodology 20
	iv. Realization of quantum computer simulation in QPU 23
	V. Hardware Implementation 20
	i. ReRAM crossbar array 26
	ii. Pulse width modulator . 28
	iii. Analog to digital converter . 29
	VI. Evaluation 32
	i. Experimental setup 32
	ii. Performance analysis 36
	A. Simulation time 36
	B. Hardware resource 40
	C. Simulation accuracy . 42
	VII. Conclusion 46

