creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Thesis for the Degree of Master of Engineering

Research on Quantum Computer
Simulation Acceleration by using an

Emerging Memory Technology

by
Sang Hyeon Lee
Department of Artificial Intelligence
The Graduate School

Pukyong National University

February, 2024

Research on Quantum Computer
Simulation Acceleration by using an
Emerging Memory Technology

(A W2 e 7] &=S &89 AR AFH
AlgdelAd 7heek el tigh)

Advisor: Prof. Young Sun Han

by

Sang Hyeon Lee

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Engineering

in Department of Artificial Intelligence, The Graduate School,

Pukyong National University

February, 2024

Research on Quantum Computer Simulation Acceleration by using an

Emerging Memory Technology

A dissertation
by
Sang Hyeon Lee

Approved by:

Professor. Yong—Tae Kim,

(Chairman)
Professor. Seung-Ho Yoo Professor. Young—-Sun Han
(Member) (Member)

February 16th, 2024

Index

TADIE INAEX oottt Vv
FIGUIE TNA@X .ottt sttt VI
AADSTTACT .ottt VI
L INEFOAUCTION ettt 1
[, BACKGIOUNG ..ottt 4
i RERAM CrOSSDAN ...ttt 5
il. Quantum computer SIMUIATION ... 7
iii. Realized state quantum computer simulation..........ccceoerinnionninnrionninnnnns 10
. REIGEEA WOTKS oottt 11
IV. ReQUSA: Proposed arChit@CtUIE........coo.vvvrveereeerieein e sseeses 13
i. OVerall @rChiTECTUIE ...t 13
il. QUaNtUM ProCeSSING UNIt ...t ssse s s sssssssssssssssssessaes 16
iii. Our proposed acceleration methodologycinrinrinnrinnireeinniseeis 20
iv. Realization of quantum computer simulation in QPU......ccccomvvonricnnrrernnnenn. 23
V. Hardware Implementation ... ssssessse s ss s ssesssees 20
i RERAM CroSSDAr @rray ...ttt seees 26
il. Pulse Width MOAUIAtOr. ...t 28
iii. ANalog to digital CONVEITEN ...t eseesenns 29
VI EVAIUBTION oottt 32
i. EXPErMENTAl SELUD coovveeeeeie sttt seses 32

ii. PErfOrmManCe @NAlYSIS.......oreeereeeeeeiieeeeee ettt sssesssnssnas 36

A STMUIGTION TIMIE ettt e e eee e e eee e et sessessesesens e
B. HAIAWAIE FESOUICTE ...ttt ess s esesessasesssesasessess e
C. SIMUIGtION @CCUIACY ..t

VII. Conclusion

Table Index

Table 1. An example of 2 x 2 size quantum gates in the LUTcccoovcmmrnerirnrcerneneens 18
Table 2. Quantum circuits used as benchmarks in the evaluation.........ccccovnniuancee 34
Table 3. Parameters of the ReERAM SIMUIAtioNcooveerreeierienerierie s 35
Table 4. QPU hardware resource result when the crossbar size is doubled 41

Table 5. Simulation accuracies of different quantum circuits with different bit
precisions on ReQUSA. The accuracy is defined as the value of the vector relative

to the Qiskit simulation result vector. Accuracies above 0.9 are grayed out

Figure Index

Figure 1. Basic structure of the ReRAM crossbar arrayccveconerecnnreerneeeneseonnn. 4

Figure 2. Two different quantum computer simulation methods showing the structure and

operation of a three-qubit system: (a) Full-state quantum computer simulation method (b)

Realized-state quantum computer simulation method...........cccccooninnninnnecnnenen. 9
Figure 3. Overall architecture of ReQUSA, which consists of several states............ 15
Figure 4. Proposed quantum processing unit (QPU) architecture........ccooooveerneencee. 19

Figure 5. Example of a detailed process inside the QPU when each amplitude of RS uses

EIGNT-DIt PrECISION ...ttt sttt 25
Figure 6. Eight-bit analog-to-digital converter CirCUit. ... 31

Figure 7. Comparison of simulation times of QUEST, QPlayer, Qiskit, and our proposed
accelerator ReQUSA. The blue dashed line, Total(Tread), indicates the total time for the read

operation in the quantum computer SIMUIALIONcceveeeeeieieieceeeeee e 39

Research on Quantum Computer Simulation Acceleration by using an Emerging

Memory technology

Sang-Hyeon Lee

Department of Artificial Intelligence Convergence, The Graduate School,

Pukyong National University

Abstract

Quantum computers are currently regarded as an emerging computing
technology that can solve problems more quickly than classical computers.
However, since constructing a general quantum computer is technically difficult,
quantum computer simulation has been used instead of real quantum computers.
Simulating quantum computers on classical computers is challenging because
the time and resources required for the vector—matrix multiplication (VMM)
increase exponentially with the number of qubits. This paper proposes a new
accelerator architecture called ReQUSA that leverages resistive random access
memory (ReRAM) to accelerate the quantum computer simulation. The ReQUSA
employs a ReRAM crossbar array structure, which is specialized for

implementing the VMM, and a realized state method for reduced VMM operation.

To the best of our knowledge, ReRAM-based accelerators for quantum
computer simulator has not been previously reported. Here we describe the
hardware design of the architecture and compare the performances (hardware
resource, simulation time, and accuracy) of our accelerator with those of current
quantum computer simulators (QuEST, QPlayer, and Qiskit). On average, our
proposed architecture reduced the simulation times by factors of X 10*and
x 103(x 10%) on average from those of QuEST and QPlayer (also Qiskit),
respectively. In addition, our architecture achieved 99% accuracy in 16-bit

fixed-point data representation.

VI

1. Introduction

Recently, quantum computing technology has rapidly evolved and has
attracted much attention and investment from various fields. Quantum
computing promises to solve problems that are too complex and time-
consuming on classical computers, such as quantum searching [10],
quantum sorting [12], quantum oracle algorithms [2, 6, 8], and quantum
machine learning [3, 26]. Quantum computation solves complex and
massive operations quickly and efficiently using quantum mechanics.
Unlike classical computers that use bits (binary digits) to perform
operations, quantum computers use qubits (quantum bits) to perform
quantum operations. Exploiting the superposition phenomenon of
quantum mechanics, a qubit can simultaneously store |0) and |1) in a
quantum computer system. Therefore, a qubit can simultaneously exist
in both states until it is measured. When a qubit is measured, it collapses
into one of the basis states with a certain probability. The state of a qubit
can be represented by a one-dimensional column vector of unit norms
[a B], where a and B are complex numbers satisfying |a|? + |8]> = 1. A
qubit can be manipulated through quantum gates, unitary matrices that
transform the state vector of the qubit. For example, the Pauli- X (X)
gate flips the state of a qubit from |0) to |1) and vice versa. The
Hadamard gate places a qubit in an equal superposition state of |0) and
|1). The Pauli- Z (Z) gate changes the phase of the qubit by 7 radians.

Many other single—qubit and multi—qubit gates perform various quantum

operations. By utilizing quantum properties such as superposition and
entanglement, quantum computers perform certain types of calculations
that are intractable for classical computers. Moreover, algorithms
designed for quantum computers can potentially solve complex problems
much faster than classical computing methods. However, in today’s noise
intermediate-scale quantum (NISQ) era, the scalability, error correction
capability, coherence, and interoperability of quantum computing remain
problematic [27]. These problems are avoided by employing quantum
computer simulations rather than actual quantum computers.

A quantum computer simulation applies a quantum gate to a qubit
following the mathematical principles of quantum physics [16, 28]. The
qubit and quantum gate can be represented as a state vector and a
quantum gate matrix, respectively. Accordingly, a quantum computer
simulation repeatedly multiplies the matrix by the vector. To enable
vector-matrix multiplication (VMM), the quantum gate matrix should be
expanded to fit the dimension of the state vector, which increases with
the number of qubits. This process is widely accepted although it
dramatically slows the quantum computer simulation. Among the existing
quantum simulators are Qiskit, which can simulate up to 30 qubits and
run quantum programs on classical computers, and QUEST [15], which
performs the simulation by utilizing a multiprocessor. To accelerate
quantum computer simulations, researchers have investigated more
efficient computing methods such as general-purpose computing on
graphics processing units (GPGPU) or multi- processing [1, 7]. However,
these approaches are resource-intensive and provide no inherent

improvement other than the division of the repetitive VMM operations

into multiple processors. Here we propose a novel architecture of
ReQUSA based on a resistive random access memory (ReRAM) crossbar,
which accelerates the quantum computer simulation by leveraging the
characteristics of ReRAM. In particular, the ReRAM is specialized for
VMM operations in the analog domain. To avoid dimensional expansion
of the state vector and quantum gate, we adopt the reduced VMM
operation method based on the realized state (RS) described in [14]. The
simulation time of our proposed architecture is x 10* shorter than that
of QUEST, x 10%® and x 10% shorter than those of QPlayer and Qiskit,

respectively. The key contributions of our paper are summarized below:

* We propose a novel architecture that efficiently handles many qubits
in quantum computer simulations using the ReRAM crossbar structure.

* We develop a detailed hardware structure at the circuit level for
manipulating the reduced VMM operations.

e We demonstrate the superior simulation time and feasible accuracy of

the simulation results generated by our proposed architecture.

The remainder of this paper is organized as follows. Section 2 describes
the background of the ReRAM crossbar and quantum computer
simulation. Related works are summarized in Section 3. Section 4
discusses the architecture and behavior of the proposed accelerator and
Section 5 describes the hardware implementation of the accelerator. In
Section 6, we evaluate the performance of the architecture in terms of
simulation time, hardware resources, and accuracy. The paper

conclusion with Section 7.

2. Background

This section provides the background of ReRAM, quantum computer

simulations, and the RS method.

Conductance
?
o NN Bitline

| Vi |I—> % \:F '

: : i %E Q\ Q oo Q ‘li

o Vo —> —t |

| Y2 | '
S NN W . g
Sl ol e
S [™ [) L] A]D.
ol o= | =
§_ | y : ° . . . :'g

-_ I n-1 1—4» !

I

] NV

1

| Vo I ’

Co NN e

v v v v
________________ S
{ |1 |2 |3 EEw |m Jl

Output current

Figure 1. Basic structure of the ReRAM crossbar array. An input
voltage V; is applied equally to all bit lines along the word line.
Subsequently, the read operations (red lines) are performed
concurrently through the bit lines.

4

2.1 ReRAM crossbar

ReRAM crossbar Conventional memories such as dynamic and static
RAM rely on the storage of charge; therefore, they are volatile memories
that lose their data when the power supply is turned off. In contrast,
ReRAM is a next—generation memory device that stores data based on
the characteristics of electrical resistance, which depend on the history
of the previous current. Therefore, even when the power supply is
removed, the most recent data can be stored continuously, achieving
nonvolatile memory. When the resistance is high and the current flow is
rough, the logical value is O and the state is called a high resistance state.
Conversely, when the resistance is low and the current flows well, the
logical value is 1 and the state is called a low resistance state. To utilize
the characteristics of the ReRAM, a crossbar structure is generally
constructed. As shown in Figure 1, the ReRAM cells in a crossbar
structure are placed at each connection point of horizontal and vertical
steel wires. To execute the VMM operation in a single cycle on the
ReRAM crossbar, the analog conductance of the matrix coefficients are
stored in memristor cells and the vector values are the input voltages to
a word line. The multiplication result is then obtained as a current

through a bit line. The above process is formulated as follows:

m
I = z(Gik x V) forall k,wherel<k<m (1D
i=1

, Where I is the current derived from the bit line, and G and V are the
conductance of the ReRAM cell and the input voltage, respectively.
ReRAM crossbar arrays offer several advantages over conventional
computing architectures for VMMs [9, 18]. First, ReRAM devices can be
programmed to directly perform multiply—and—-accumulate operations in
memory, reducing the amount of data movement between the memory
and the processing elements. The lowered energy consumption and
latency associated with data movement allow faster and more energy-—
efficient computations. Second, ReRAM crossbar arrays can perform
VMM operations in a massively parallel manner, enabling high
throughput and scalability. Third, ReRAM devices exhibit high device
density and low power consumption, so are suitable for implementation
in large-scale neuromorphic computing systems. Owing to these
advantages, the crossbar array architecture also accelerates deep

learning [13, 33, 20, 22].

2.2 Quantum computer simulation

Leveraging quantum phenomena such as superposition and entanglement,
quantum computers perform computations that are beyond the reach of
classical computers. However, as discussed above, building and
operating quantum computers is a challenging task, as quantum systems
are fragile and error prone. Instead, quantum computers are simulated
on classical computers, which are more reliable and accessible.
Quantum computer simulations represent quantum states and
operations as vectors and matrices which can then be manipulated
through classical algorithms. Such a simulation can reveal the behavior
of a quantum system, run quantum algorithms, and enable the design of
new quantum systems. The processes of two quantum computer
simulation methods are shown in Figure 2. In the full-state quantum
computer simulation method (Figure 2(a)) [32], a three—qubit system is
represented as a complex vector space |¢). Each element of the vector
1s a complex number represented as a a + bi. Following the quantum
circuit shown in Figure 2(a), the three—-qubit system is simulated by
applying quantum gates. To this end, the tensor product of two Hadamard
(H) gates and an Identity (I) gate is calculated to yield a 23 x 23 matrix
of complex numbers. Then, we apply VMM to change the state of the
qubits, resulting in a new quantum state vector denoted as [i).
Afterward, the quantum computer simulation is completed by performing
another VMM on a matrix representing the tensor product between a

Controlled-X (CNOT) gate and an I gate and the vector from the previous

calculation. This method simulates the state and behavior of a quantum
computer, but the state vector and quantum gate matrix are scaled by
factors of 2™ and 2™ x 2", respectively, where n denotes the number of
qubits. As the number of qubits increases, the number of operations on
the state vector and matrix becomes exceedingly large and the memory
demands increase accordingly. Although several attempts to minimize
the memory usage have been published [14, 37, 4, 16, 11, 24], an

effective solution remains elusive.

|000> o J 1400 Quantum circuit
CaA{Hb——
|001> o 0+0i -
C|2:| ; g:
|010> o 0+0i CE
[011> o 040
| 100> o J 0+0i Apply Hadamard Gates
) [W)=HQHQN® [y)
|101> e o 0+O0i
|110> J 0+0i Apply CNOT Gate
Y= ® CNOT !
PETN Tovo W) = U ® CNOT) ® [')
Quantum space of Initialized amplitude
3 qubits W’)
(a)
|oo0> |- N 1400 - N 1/¥2 +0i
|o01> |- M 0+0i f-------—-mmmmm - W 1/32 + 0i
[010> |- o 0+ 0j Amplitude array for
only realized-states
|011> » 0+0i W))
| 100> » 0+0i
, I¢)=i 1+ 0i 1+0i][1+0i]
[101> |- 1 0+0i V2 l1+0i -1+0illo+o0i
|110> o 0+0i Hardamard gate equivalent
operation to the first qubit
|111> |-~ 4 0+0i
Quantum space of Typical amplitude array
3 qubits for state vector

(b)

Figure 2. Two different quantum computer simulation methods showing
the structure and operation of a three—qubit system: (a) Full-state
quantum computer simulation method [15] (b) Realized-state quantum
computer simulation method [14].

2.3 Realized state quantum computer simulation

To minimize the computational burden and reduce the memory
requirements of large state vectors and quantum gate matrices, Jin et al.
proposed a realized-state method that represents the qubit states [14].
RSs represent only those qubits with non-zero amplitudes. For example,
Figure 2(b) illustrates a three—qubit system with a quantum space of
eight states. Whereas a full-state quantum computer simulation must
represent each state with complex numbers, the RS simulation initializes
only the first state |000) of the quantum system, which requires a single
complex number in memory. To perform the H-gate operation and state
change, multiplication is performed only on the realized pairs (|000) and
|001) in this case). This process is equivalent to applying the H gate to
the first qubit. The vector then contains two RSs for the simulation. The
vector size in this method is determined by the realized—state changes
in the quantum state obtained through operations, while the matrix size
remains constant at 22 x 22, In contrast, the full-state simulation scales

the matrix as 2™ x 2™,

10

3. Related works

Quantum computing is a rapidly evolving field that promises to expand
the limits of classical computers. However, fault tolerance and quantum
supremacy have not been attained in the current NISQ era. Quantum
supremacy defines the ability of a quantum computer to perform a task
that cannot be managed by a classical computer within a reasonable time.
In the NISQ era, quantum computers are sensitive to their environment
(noise) and prone to quantum decoherence, which occurs via interactions
between the qubits and the surroundings. Therefore, quantum computer
simulation methods are necessary tools for developing and testing
quantum algorithms within the limitations of quantum hardware.

However, simulating quantum computers is resource-intensive because
the size of the vector representing the quantum state scales
exponentially with the number of qubits. For example, a 50-qubit
quantum computer requires a 250 sized vector or approximately 1015
elements. Such a vector requires approximately 8 petabytes of RAM
storage. To alleviate the memory demands, recent studies have designed
resource—efficient quantum computer simulation methods such as
optimized single-node simulation frameworks [36, 141, simulators for
distributed systems [15], and simulators with data compression
techniques. Some of the existing frameworks run on a single classical
computer, providing quantum programming support for both quantum

computer simulations and real quantum computer executions. One such

11

framework is Qiskit [36], an open-source software development kit
compatible with IBM’s quantum computers and simulators. Qiskit allows
users to write quantum programs in Python and execute them on either

a local quantum computer simulator or a remote real quantum device.

However, Qiskit supports a maximum of only 30 qubits for simulation
on a local backend. Real quantum devices with higher qubit counts
remain inaccessible due to waiting time and cost for use. To simulate
more qubits on a single node, QPlayer [14] applies an optimized
simulation method based on the superposed qubit ratio (SQR) of the
quantum circuit, which defines the ratio of qubits in the superposition
state to the total number of qubits. The QPlayer can simulate 30, 40, 50,
and 60 qubits with SQRs of 100%, 80%, 60%, and 40%, respectively.
However, these methods are limited by the memory and processing
power of a single-node classical computer.

Distributed systems increase the qubit—count simulation capacity by
utilizing large resources across multiple nodes. One such distributed
system is QuUEST [15], a hardware—agnostic simulator of universal
circuit—-based quantum computers that can run on either CPUs or GPUs.
QuEST claims to simulate more than 50 qubits depending on the quantum
circuit and noise model. Another example is the full-state simulator with
data compression [37], which reduces the memory requirements of
stored quantum state vectors. The full-state simulator with data
compression claims to simulate up to 61 qubits on classical
supercomputers. Clearly, quantum computers beyond 61 qubits cannot

be simulated on classical supercomputers.

12

4. ReQUSA: Proposed architecture

In this section, we propose the methodology and ReQUSA’s hardware
architecture to accelerate the quantum computer simulation by using the

ReRAM crossbar.

4.1 Overall architecture

Figure 3 shows the overall architecture of the proposed accelerator and
the input/output (I/0) data flow of the quantum computer simulation. To
execute the quantum computer simulation, the provided quantum circuit
is first compiled as a quantum gate information table, the data format of
our architecture. Each quantum gate has a specific order, gate name, and
qubit index (control or target), which can be integrated into the table.
The order defines where the quantum gate is placed in the sequence of
quantum gates applied to the state vectors of the qubits. After the
compilation process, the gate information is assigned to our ReQUSA
accelerator.

The ReQUSA consists of a global controller, an I/O interface, multiple
quantum processing units (QPUs), and routers. Viewed from the top, the
routers are connected to each QPU, allowing easy transfer of the data
throughout the ReQUSA. A two-dimensional (2D) mesh Network-on-
Chip (NoC) structure improves the data transmission speed and latency

between the routers [5]. The 2D mesh network is a regular grid-like

13

structure that connects each node to its four neighboring nodes, forming
a 2D array. The data are transferred through the network bus by routing
packets, which take the shortest route from the source node to the
destination node. This arrangement reduces the latency and data
transfer time between each QPU.

The global controller manages all situations occurring in the proposed
architecture, such as the I/O data flow and the quantum computer
simulation. On the ReQUSA, a qubit passing through a quantum circuit
must sequentially pass through the quantum gates entangled in the circuit
in a predetermined order to obtain the correct simulation result. Hence,
the global controller sets the path of the routers and delivers an RS and
the quantum gate information to a QPU at a predetermined location. We
ensured that at this time, the quantum gates in adjacent QPUs are placed
in the order in which the gates are applied.

The router determines the data path along which the packet can
successfully reach the desired destination node. A router conventionally
has five I/O ports: four I/O ports in the 2D mesh network that connect
with other routers and one I/O port for the processing element (PE) [29],
which is the QPU in our architecture. We applied the router proposed in
[17] because it can be operated at the same clock frequency as other
peripheral circuits and can support high bandwidth and packet delivery
inside the network. The clock frequency will be further discussed in
subsection 6.2.1.

The I/O interface manages the input and output data flows of the
ReQUSA. In this case, the input denotes the quantum gate information,

and the output 1s a result of the quantum computer simulation.

14

Figure 3. Overall architecture of ReQUSA, which consists of several states. The input is received as a
quantum circuit in QASM format. Subsequently, the QASM is compiled to extract relevant information such
as the operation details and qubit count. This information is fed to ReQUSA, in which multiple QPUs are
connected through routers to facilitate their data transfer. Finally, the ReQUSA outputs a vector
representing the quantum state and its amplitudes.

Quantum Circuit
[mEmEEEEEE s e |
m i |
| 41 X m
! HEE
D A
W o W

Compile

Quantum Gate Information

Indexes

Order | Gate Name

Control | Target
1 H (Hadamard) 0

2 |CK(Controlled X)) O 1

1| X (Pl 1
k |CX (Controlled X)| n-1 n-2

I

I/0 Interface

Global Controller

S
&

—
=

P o
==y

P o
==y

/ ﬂ QPU Controller _

RSV VMM Unit

Buffer

Reorder ReRAM

eordering
Unit Crossbar Array __=m
Gate

Decoder Peripheral Circuit

QPU-Quantum Processing Unit

¢ R-Router

RSV Buffer - Reordered State Vector Buffer

& VMM Unit - Vector-Matrix-Multiplication Unit

Quantum Computer
Simulation Result

1 SRR ———
O.@ ..
| S 7
0.4
02
o.ﬂ m (113 @

§F & § ¥
O._. e O.‘_ b J._.)\.‘,
F&& I

15

4.2 Quantum processing unit

A QPU performs the VMM operation using a quantum gate matrix and
the realized state vector (RSV). The details of the QPU structure are
shown in Figure 4. All operations are managed by the QPU controller,
and the data flow occurred inside the QPU. Depending on the operation
type, the controller activates different units such as the gate decoder,
reordering unit, and VMM unit.

The gate decoder then decodes the quantum gate information to obtain
the configuration of the quantum gate (gate ID, control index, and target
index). We can determine the gate type and the qubit to which the gate
i1s applied based on the presence or absence of the control and target
qubit indices. For example, CNOT(0,1) is classified as a control gate
because its index is 0, indicating a control qubit. H(O) is a single gate
because it has no value for the control qubit index. Then, the gate
decoder generates the quantum gate matrix data according to the gate
ID. For this purpose, the gate ID and matrix data of each gate are stored
in a look—up table (LUT).

Table 1 shows how the gates are stored in the LUT. Currently, the
proposed architecture supports 12 types of gates, including the most
basic single gates I, H, and X, and control gates such as CNOT and CZ.
The number of gates may seem insufficient, but in a quantum computer,
we can construct a universal quantum computer with a set of universal
quantum gates, including CNOT and H gates. Note that since all matrices

with 2 X 2 elements in the lower right corner of itself can be employed

16

for the proposed architecture, they can be added to the LUT.

The reordering unit (ROU) executes the reordering algorithm. The ROU
receives the RS from the RSV buffer and generates a pair of RSs to be
transferred into the reordered RSV buffer. To realize the reordering
algorithm, the RSV buffer provides two memory structures: Index
Addressable Memory (IAM) and Content Addressable Memory (CAM),
similar to previous work [25, 31]. Therefore, the ROU can access the
RSV buffer with the RS address and the value of the RS state.

The VMM unit is the main QPU unit for the VMM operation. It consists
of a row buffer, the reordered RS buffer, the ReRAM crossbar array, and
peripheral circuits such as a pulse width modulator (PWM) array and
analog-to-digital converter (ADC) array. The row buffer receives the
quantum gate matrix data and the reordered RSV buffer temporarily
stores the RSV generated by the ROU. This process improves the
efficiency of multiplication by storing all RSVs according to the
characteristics of the ReRAM crossbar array. The VMM operation is then
completed in one cycle rather than by multiplying with the RSV

generated at each time.

17

Table 1. An example of 2 x 2 size quantum gates in the LUT

Gate Definition Matrix
1 0‘)
I Identity gate (
I.U]'.l
1 (11"
H Hadamard gate —
v' ; .L]. -]._,
X Pauli X gate (U 1)
._]- O.l
U 1\
CNOT Controlled X gate 10

18

Figure 4. Proposed quantum processing unit (QPU) architecture consisting of a realized state vector buffer (RSV
Buffer), reordering unit, gate decoder, and vector— matrix multiplication (VMM) units.
operation after receiving RSV and gate information.

It executes a reduced VMM

QPU Controller

Non-reordered
realized states

Control
signals @
mﬁx,wm_/m\wmﬁ” [, VMM Unit
ate Vector RSV Buffer e
! [Imaginary part |
- Real part
u
Realized < W W _ W _ W
Addresses States nw 3 w 1 T H
o 1| T ream T
T mW _ | Crossbar Array |
> Reordering Unit ST T
"o} L
Reordered m
realized states u ADC Al
Qubit o _H i
indexes Adders
Quantum =
inf mmﬁmﬁ. | gate matrix
nformation Gate Decoder pewmmmmms s Row Buffer
-

VMM output

19

4.3 Our proposed acceleration methodology

As explained in subsection 2.2, the VMM operation is the main part of
the quantum computer simulation, and the 2 X 2 size quantum gate
matrix largely reduces the memory consumption. However, this method
does not significantly reduce the simulation time because all qubit state
vectors must be repeatedly multiplied by the 2 x 2 matrix. We thus
adopt a more efficient simulation technique combined with the RS
developed in [14]. By applying quantum gates only to the RSs of qubits,
our algorithm drastically reduces the number of VMM operations from
that of the previous simulation technique. Algorithm 1 describes the
process that lowers the number of VMM operations. The algorithm starts
to find a pair of RSs based on the qubit state index and the target qubit
index. For example, an X(1) gate is applied only to the qubit index 1, the
target qubit of this gate. To create a pair of RSs, the algorithm first
selects one index from the quantum register which manages the qubit
index, amplitudes, and left—shifts the selected index as much as the
target qubit, until it reaches the target index to generate the other index
of the pair. After finding the RS pairs, the algorithm reads the amplitude
of each pair. If the index does not exist in the quantum register, the
amplitude is set to zero. Consequently, the amplitude of each RS is
multiplied by the matrix to obtain a new amplitude. The control gate is
handled by the same process as the single qubit with one difference:
determining whether the control index of the qubit is indicated by the

control qubit index of the gate. This algorithm is slightly modified to suit

20

the hardware structure for handling in the accelerator. Lines 9 and 22 of
Algorithm 1 are modified from the original algorithm [14] by flipping the
bit of the qubit pointed to by the index rather than by left-shifting the
selected index. This change is possible because the qubit state is stored

in binary format.

21

Algorithm 1: Reordering Algorithm

1

2

3

w

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Input:

RS: realized state,

T _Index: target qubit index of gate,
C'"_Index: control qubit index of gate,
address: address to access RSV Buffer,
Output:

R_RS: reordered realized states,

N_RS: non-reordered realized states,
procedure ROUCRS, T_Index, C_Index)
j=0,k=0// index for ReorderedRSV
if C_Index is not exist then

for address + 0 to RS.length do

// Extract the RS by address
RS = RSV/[address|

// qubit state in |g,...q1q0)
pairState = (RS.state) A (1 < T Index)
// Find the pair RS

pair RS = RSV get(pairState)

R RS[j++] =RS
R_RS|j++| = pairRS
end for
return R_RS
else

for address + 0 to RSV .length do

RS = RSV[address|

isControlled = (RS.state) & (1 <« C Index)

if isControlled then
pairState = (RS.state) A (1 < T_Index)
pair RS = RSV .get(pairState)
R_RS[j++| = RS

R_RS[j++| = pair_RS
else
| N_RS[k++) = RS
end for

return R_RS, N_RS

28 end procedure

22

4.4 Realization of quantum computer simulation in QPU

To realize the proposed acceleration method inside the QPU, we divide
the simulation process into two subprocess: write and read.

The write operation is the process of writing a quantum gate matrix to
a ReRAM crossbar array in the VMM unit. When the QPU receives the
write operation signal from the QPU controller, the gate decoder is first
activated. The gate decoder decodes the quantum gate information to
obtain the gate configuration (qubit indexes and gate ID), which is
transmitted to the ROU. The gate decoder interprets the gate ID and
produces the corresponding quantum gate matrix. The quantum gate
matrix is passed to the PWM array inside the VMM unit. The matrix
elements are stored as conductance in the cells of the ReRAM crossbar.
Owing to the characteristics of the ReRAM crossbar array, the
multiplication results are summed and printed out along one column. To
prohibit interruption of the VMM result by other multiplication results,
the same matrix elements are diagonally placed on the ReRAM crossbar
array.

The read operation performs the VMM operation by transferring the
RSV to the ReRAM crossbar array. As shown in Figure 4, the RS from
the RSV buffer is passed into the ROU, which executes the reordering
algorithm based on the control and target index as explained in
subsection 4.3. The reordering process iterates until pairs are found for
all RSVs stored in the RSV buffer. Once the reordering is completed, the

ROU sends the reordered RSV to the reordered RS buffer. Figure 5

23

shows the example of a detailed process inside the QPU after the
reordering process when each RS has eight—bit precision. The original
eight—bit VMM operation becomes complicated because the 16-bit result
cannot be handled by the eight—bit ADC. To solve this problem, we split
the eight-bit into upper and lower four—bit components [29]. The upper
four—bit contain the four highest digits, including the most significant bit
(MSB). Therefore, the elements of one quantum gate matrix are placed
in two rows and eight columns across two ReRAM crossbar arrays (e.g.
Y1y and y;, in the blue dashed box of Figure 5). In this situation, two
reordered RSs must be picked and multiplied by the quantum gate matrix.
In Figure 5, the real parts of RSs, i.e., @; and a,, are chosen and stored
in the reordered RS buffer. The a; and a, are then divided into upper
and lower parts a,y,a@;;, and a,y,a,;, respectively. These data are
modulated by the PWM, which converted them to pulse-width
equivalents, and assigned the converted pulse to the word line. The
applied pulse changes the state of the cell passing through the ReRAM
cell of the crossbar storing the data of the element in the quantum gate
matrix. By reading the current through the columns, we can derive the
sum of current which is the same as a partial product of the VMM result,
such as aq;y1y + a2.¥25. The currents are converted into an eight—bit
digital representation through the eight-bit ADC and it takes a shift
operation suitable for each bit order. For example, aigyiy + dayYay 1S
preceded by an eight—bit shift operation. Finally, the 16-bit Adder sums
the shifted data to obtain one element of the VMM matrix, namely, a;y; +
a,Y, . The other RSs are processed similarly to obtain the remaining

matrix elements.

24

| Imaginary Part
’ -
: Real Part }
PHM Amay : Crossbar for upper 4bits :
a4l *
4,‘ PWM, | Z Crossbar for lower 4bits | |
I i T e e 1
Reordered Reordered 16-bit 4, — [I e 811{ 81]_ 1
realized states ~ RSBuffer Amplitude T PIWM, s ¢ :
- - ey 1 Uyl PO
R = e L oH) |
| il == r I Ya Y OEH OEL |
it ﬁ*! o) == e f PWM, == ¢ ¢ 1
| TP I ’ 4 0)] kB ———
iu‘ ﬁ,l‘ B: (uui--» i P, : '\ i Quantum gate matrix ; :
G R ! Nl o
State I | ! |
I B Pl
I | | I
I | | 1
L i % |: : L i i |
! | | 1
mat Real = | | : |
Part PWMN 1 \) \
I
| |
I 1
I 1
I 1
I 1
I 1
(. 1
I 1
! I
I 1
' il |] I
Quantum state Quantum gate marix : 80 :
I || and|8-bit| | 8-bit] | 8-bit | |8-bit ADC | |
o +pi Y00 v, H0d ! ADC; | |ADC, | [ADE, | [ADC, Ay | !
I i 1
. 187 8 I |
0,4+ fid IR I
= e <8 3 4 1
| |
I 1
T I I
! (o 83 5408 3 !
! (UIY]+U'ZY3-(B161 szz))+ ([I‘Oﬁr(l:bﬁ Bﬁﬁﬁﬂ’z)l | I 16-bit 16-bit Adder :
= | i I \
i I Adder, Adder, Array r.-
\‘ L — |

ﬁl,}{] + ZY."* B‘ﬁ‘ u ﬂZBS

U"‘f] + a:’l}"l a161 + 0'35

3

Y
I
1
1
1
I
1
|
1
I
1
1
1
]

Figure 5. Example of a detailed process inside the QPU when each

amplitude of RS uses eight—bit precision. The reordered RS is

separated by four—bit and injected into the pulse width modulator
(PWM), where it is multiplied by the matrix coefficient stored as a
period of amplitude in the cell. After passing the analog—-to—digital

(ADC) and Adder arrays, the multiplication result (a current) is

converted into digital form.

25

5. Hardware implementation

This section describes the circuit—level implementation of the ReRAM

crossbar array and the peripheral circuit.

5.1 ReRAM crossbar array

To implement a memristor crossbar, we require ReRAM technology
utilizing HfO2-based one-transistor one-resistor (1T1R) cells. The top
and bottom electrodes of the ReRAM cell are connected to the bit line
and transistor drain, respectively, and the source line is attached to the
transistor source. A prior study [30] reported a ReRAM test chip with a
1T1R crossbar array of area less than 12F?(F is the lithography feature
size) fabricated via an 18-nm CMOS process. This chip allows the
construction of small cell arrays and efficient architectural designs. The
precision of the ReRAM cell is a critical factor in the memristor crossbar
structure, as it influences the accuracy of the VMM outcome and
determines cell conductance. Here we adopt the analog ReRAM
technique, which can store multiple bits, rather than digital ReRAM which
requires a large number of qubits. Although the analog ReRAM can store
n—-bit weights in one ReRAM cell, it is usually vulnerable to noise which
lowers its accuracy. However, the authors of [21] demonstrated reliable
inference accuracy on the Modified National Institute of Standards and

Technology database (MNIST) by using two-, four—, and eight-bit

26

weighted analog ReRAM with eight-bit precision. We similarly evaluated
the accuracy of our simulation results by adjusting the precision of the
weights (see subsection 6.2.3). To handle negatively valued data, we

also adopted the crossbar structure proposed in [34].

27

5.2 Pulse width modulator

A pulse width modulator (PWM) conveys information by periodically
varying the width of the pulse signal. To this end, it varies the duty cycle
of the signal, defined as the ratio of the pulse width to the period of the
signal. The PWM array is an electronic circuit that generates a sequence
of pulse signals with varying duty cycles. The modulated signal retains
the frequency and amplitude of the original signal but has a varying duty
cycle. The average amplitude of the modulated signal is proportional to
the duty cycle, denoting that a higher duty cycle corresponds to a higher
amplitude. The conductance of the ReRAM cell can be set according to
the pulse width of the modulated input voltage. Moreover, as the write
and read operations of the ReRAM cell can be distinguished by pulse
amplitude, the PWM arrangement can be shared among the load and
calculation operations. When compared with pulse amplitude modulation
(PAM), PWM is more suited for applications where precise control of
power is required, while PAM is more suited for applications where

accurate transmission of analog information is required.

28

5.3 Analog to digital converter

The ReRAM crossbar array outputs a current value through each of its
columns. The currents must be converted to digital format through an
ADC. The ADC array is a collection of cooperating ADC circuits that
simultaneously convert multiple analog signals to digital signals. The
ADC array can thereby process large amounts of analog data quickly and
efficiently. The ADC array samples the analog signals at a specific rate
and converts each sample to a digital value representing the amplitude
of the analog signal at the time of sampling. An ADC array is
characterized by the resolution, speed, and accuracy of each ADC circuit
in the array. The resolution of an ADC circuit refers to the number of
bits representing the digital value of each sample. In a high-resolution
circuit, the digital value can represent a larger range of analog
amplitudes than in low-resolution circuits, allowing a more accurate
conversion of the analog signal into a digital signal.

The resolution similarly affects the accuracy of the VMM operation
performed by the ReRAM crossbar array. Therefore, we here set the
ADC resolution to eight-bit (see Figure 6). As the amplitude of a qubit
ranges from -1 to 1, at least one bit must be assigned to the sign of the
amplitude. Referring to the paper [35] and considering that the area and
power requirements of the ADC placement consume a large portion of
the overall circuit, we applied an eight—-bit Flash ADC rather than a
successive approximation register (SAR) ADC. The Flash ADC also

provides reliable accuracy and optimal hardware, which are more

29

important than resolution in our present study.

The Flash ADC i1s sometimes called the parallel ADC because it
compares the input signal to a set of reference voltages using a parallel
comparison technique. According to [35], the SAR is slightly better than
the Flash at resolutions below five—bit. Above five—bit, the Flash covers
a larger area and demands more power than the SAR but is more suitable
for our architecture because its high-speed sampling rates can

accelerate the simulation.

30

Vref _: l’ti
R1§ ‘ Compl
:_ Comp2
N

/Comp3
. Priority
0 encoder

ADC
output

Comp255

7
r

R255

Comp256 —
R256

Figure 6. Eight—bit analog—to—digital converter circuit. It consists

of 256 resistors and comparators and one priority encoder.

31

6. Evaluation

This section describes the experimental environment in which we
compared the performance (simulation time, hardware resources, and
accuracy) of our simulator with those of the Qiskit [36], QuEST [15],

and QPlayer [14] simulators.

6.1 Experimental setup

To evaluate the hardware performance, we first constructed an
accelerator with 12 QPUs having eight banks of a ReRAM crossbar array
to manipulate complex numbers and improve the accuracy of the
simulation result. The number of QPUs equals the number of built-in
gate types in the LUT because each QPU serves only one type of gate
during processing. The size of the ReRAM crossbar array depends on
the number of deployed quantum gates. Each ReRAM cell stores eight—
bit to satisfy the precision requirements as explained in subsection 5.3.
The ReRAM crossbar array was accessed through the Destiny V2 tool
[23] based on NVSim, a device and circuit simulator designed for
modeling emerging non-volatile memory (NVM) technologies. The
ReRAM was configured to simulate the multi-level cell (MLC) configured
n [30] (see Table 2). The MLC ReRAM has a 1T1R structure and is
manufactured using CMOS technology. One transistor and one ReRAM
cell are used for cell selection and data storage, respectively. Also, we

refer to the paper [39, 38, 29] for researching the configuration of the

32

high-precision ReRAM cell. Furthermore, our gate decoder and ROU
were designed using Verilog Hardware Description Language (HDL) and
synthesized using the 40-nm technology node in the Synopsys design
compiler. To verify both the runtime and accuracy of simulations in our
proposed architecture, we selected a quantum assembly language
(QASM) as the benchmark [19] and exploited the CrossSim simulator, a
crossbar simulator that mimics resistive memory in neuromorphic
computing. Table 3 summarizes the benchmark quantum circuits used in
this experiment. Depending on their number of qubits, the quantum
circuits can be separated into three scales (small, medium, and large).
Small-, medium—, and large-scale quantum circuits are composed of 2—
5 qubits, 6-15 qubits, and 15 or more qubits, respectively. Table 3
presents the properties and numbers of qubits, quantum gates, and
CNOT gates in each quantum circuit. Finally, the RSV column denotes
the maximum length of the RSV derived from each benchmark, which is
crucial for the reordering process in our simulator. All benchmarks were
evaluated in a server with Dual Intel Xeon(R) Silver 4214R
processor@2.40 GHz (24 cores, 48 threads) and 256 GB of DDR4 main

memory.

33

Table 2. Quantum circuits used as benchmarks in the evaluation

Scale QASM Description Qub | Gat CN RSV
Ipn_n5 Learning parity with noise 5 11 2 2
deutsch_n2 Deutsch algorithm with 2 qubits for f(x)=x 2 5 1 4
Small gec_en_nb Quantum repetition on code encoder 5 25 10 8
teleportation_ Quantum teleportation 3 8 2 8
toffoli_n3 Toffoli gate 3 18 6 2
bb84_n8 A quantum key distribution circuit 8 27 0 32
seca_nll Shor,s error correction algorithm for teleportation 11 216 84 16
Medium simon_n6 Simon,s algorithm 6 44 14 16
ising_n10 Ising model simulation via QC 10 480 90 1,024
bv_nl4 Bernstein Vazirani Algorithm 14 41 13 16,38
cat_state_n22 Cat state 22 10 99 2
Large ghz_state_n23 GHZ state preparation and assessment 23 23 22 2
multiplier_n25 Quantum multiplier 25 372 750 4

34

Table 3. Parameters of the ReRAM simulation

Appearance

MLC ReRAM

Cell Structure

1T1R (HfO2)

Cell Area 20
Bit per Cell 4
Num of Banks 8

Sensing Scheme

PSRC Current

Optimization Target

Write Latency

35

6.2 Performance analysis

6.2.1 Simulation time
To evaluate the VMM operation time of the proposed accelerator, we
define the equation for read operation based on the clock frequency for

one QPU as follows:

Tread = Tioaa + Tvmm + Toutput 2

Tioaa 1 the time of loading the RSV from the RSV buffer into the
reordered RS buffer in preparation for the VMM operation. Since the
reordering time of one RS is the period of one cycle, Tjyqq consumes 2N
cycles, where N is the number of RSs. The time Ty, of one VMM is 1
because multiplication consumes only one cycle owing to the structure
of the crossbar. The number of output operations is the number of
inputted RSs and the time Tyyspye Of generating the output is the time of

2N cycles. Therefore, the total simulation time Ty, is then given as:

k
Tsim = Twrite + Z(Tread + Trouting) (3)

=1

In Equation 3, Ty 1s the sum of Typite, the time of writing the quantum
gate matrix into the QPUs, and the sums of Treqq and Troyting, the times

of reading and transferring the result from the i"~QPU to the (i + 1)t~

36

QPU, respectively, where k denotes the number of quantum gates. To
estimate Troyutiing, We must first examine the flit size and packet length
of the router. A packet defines a complete unit of data delivered through
the network, whereas a flit is the smallest unit of transmissible data,
which (as a piece of the packet) can be transmitted more efficiently
across the network than a packet. The router in our architecture
produces a flit size of 64-bit and a packet length of 16- flit [17].
Therefore, one packet can transfer 1,024-bit of data (16 — flits x 64 —
bit). The proposed router can also be operated at a clock frequency of
500 MHz in the NoC structure, meaning that all circuits inside the QPU
and ReQUSA can be synchronized with a clock cycle time of 2.0ns, i.e.,

Teiock cycle- Therefore, Tyoyping 1S calculated as follows:

Trouting = [Lrs/(spacket/srs)] X Tclock_cycle (4)

where Spgeker and S, denote the data size of one packet and one RS,
respectively. Teock cycle 18 the clock cycle time, and L, 1s the length of
the output data of the current QPU. One RS contains 32-bit of data, 16—
bit each for the real and imaginary parts of the complex number. The
division of Spyqcker DY Srs gives the maximum number of RSs that can be
contained in one packet. Moreover, after dividing L,; by the obtained
maximum number, we can determine the number of packets to be
transmitted. Finally, multiplying this result by Teiock cycre gives the time
required for routing. Figure 7 compares the quantum computer
simulation time of ReQUSA based on Equation 3 with the simulation times
of other simulation tools (QuEST, QPlayer, and Qiskit) using the

37

benchmark circuits listed in Table 2. The times are presented on the
loglO scale. At this time, in order to unify the environment of all
simulators, we only applied OpenMP to QuEST without GPU acceleration
(GPGPU) technology. On all benchmarks, the simulation time of ReQUSA
far exceeded those of the other simulators. On average, the runtime of
ReQUSA was x 10* faster than that of QuEST, which exhibited the
longest simulation time on all benchmarks, and x 103 and X 102 faster
than those of QPlayer and Qiskit, respectively. The simulation times of
QPlayer and ReQUSA, which use RS techniques, do not gradually
increase with an increasing number of qubits because a quantum circuit
with a large number of qubits cannot assure a large number of
entanglements as same as the RS, the main factor of the VMM operation.
Thus, ‘cat_state_n22" with more qubits but less entanglement runs faster
than the ‘ising_n10’ circuit, which consists of only 10 qubits but has many
entanglements. More precisely, when analyzing the Tg;,, of ReQUSA, we
found that even if the variability of Ty, is small in overall time across
all benchmarks, there is significant variability in Ty.qq depending on the
number of RSs like in the case of ‘ising_nl0’. This phenomenon may
seem like the RS method does not affirm accelerating simulation in a
large—scale quantum system, however, it is clear that the ReQUSA shows

much better performance than other simulators.

38

Figure 7. Comparison of simulation times of QuUEST, QPlayer, Qiskit, and our proposed accelerator ReQUSA.

The blue dashed line, Total (T,.qq), indicates the total time for the read operation in the quantum computer

simulation.

Simulation time (Millisecond - logscale)

. I
— . 1
8 FAY [
[)
\ /
7 noo\ AR
v \ P
— 1 / \ /
6 _ — s.. \ \ \
— N .o / /
[/
5 17 ! — | \
_ — _ h) \ ¥} — \
— [l | . I] M Mu\
h —
4 s__ -
L e e L'
3 p 4
)%
5 \x\-__ = e o o \
. /
1 AP
0
R & N % we ywoo S & N
’ V4 s /
f&% ﬁfO/ _000 /00 @O AOOO éoo) Ooe\ @’ ,Oa /
SN & ¢ & ¢ &8
¥) &
Q &
/@O 9

CIQUEST [CJQPlayer [IQiskit EEReQUSA =-e-Total(T_READ)

-

100,000

10,000

1,000

100

10

(@)e2s30] - puodasoueN) 2wl peaJ [ejol

39

6.2.2 Hardware resource

As all QPUs have the same circuit configuration, measuring a single QPU
1s sufficient for checking the hardware resources. The peripheral circuit
includes all components of the QPU except the ReRAM crossbar array
(ADC and PWM arrays). Table 4 shows the hardware resources (area,
energy, and leakage power) of the QPUs. The performance was
evaluated at 16-bit fixed precision while the crossbar array size was
increased from 4 x 32 to 128 x 1024. Doubling the size of the crossbar
increased the total area at the same rate. More specifically, doubling the
crossbhar— array size increased the area of the peripheral circuit. It also
increased the area of the crossbar arrangement, but the increase was
less than 1% of the total area under each condition. Meanwhile, the
energy was at least doubled with increasing crossbar-array size and
later increased by approximately fourfold. The crossbar arrangement
consumed more than 90% of the total energy. The leakage power
behaved similarly to the energy consumption. The most important point
is that at any array size, the clock cycle time could be 2.0ns. Thus,
regardless of the area of the peripheral circuit and crossbar, the
hardware can operate at the same clock frequency. Expanding the circuit

size did not affect the performance of the accelerator.

40

Table 4. QPU hardware resource result when the crossbar size is doubled

Area (mm?)

Energy (n])

Leakage power (mW)

Crossbar
size Array Peri Total Array Peri Total Array Peri Total
4x32 0.004 1.74E+01 17.400 0.031 2.64E+01 26.400 1.200 4.73E-04 1.200
8x64 0.018 3.48E+ 01 34.800 0.058 5.28E+ 01 52.800 0.936 8.99E-04 0.937
16x128 0.029 6.95E+ 01 69.600 0.078 1.06E+02 106.000 4.134 1.89E-03 4.140
32x256 0.102 1.39E+02 | 139.000 0.290 2.11E+ 02 211.000 7.695 4.21E-03 7.700
64x512 0.462 2.78E+02 | 279.000 4.771 4.22E+02 427.000 18.610 8.96E-03 18.600
128x1024 0.719 5.56E+02 | 557.000 1.789 8.44E+ 02 846.000 88.000 1.91E-02 87.900

41

6.2.3 Simulation accuracy

To evaluate the accuracy of our proposed method, we utilized the VMM
method presented in Figure 5. The bit accuracy ranged from four— to
16-bit, reserving one bit for the sign of the quantum state and the
remaining bits for its fractional part. As the quantum state values ranged
from 1 to -1, we opted to disregard the integer part of the state. The
quantum state value was directly converted from 1.0 to 0.999..., thereby
sacrificing one bit of accuracy to include an additional fraction bit. Table
5 shows the accuracies of the ReQUSA simulations on various quantum
circuits ranging from small to large scales. Since the accuracy of the
simulation result is over 90% to be considered a reliable value, we
marked the corresponding values in grayscale as shown in Table 5. In
the table, the simulation accuracy results above 90% are highlighted in
blue. The accuracy was calculated by comparing the RS value to the
Qiskit value. Simulations using four— to eight-bit typically obtained a low
accuracy owing to the low bit precision and consequent inaccurate
floating—point representation during VMM operations. The accuracy of
ReQUSA is primarily determined by the circuit’s gate, with the number
of qubits playing a secondary role. For instance, despite having only
three qubits, the circuit toffoli_n3" shows a lower accuracy than the
‘multiplier_n25" circuit. Because the ’toffoli_n3’ contains multiple
Hadamard gates and the ‘multiplier_n25" does not. This demonstrates
that ReQUSA’s accuracy is compromised when multiplication involves

numerous floating—-point numbers. Another example is the fully-

42

superposed circuit ‘bv_nl4’, in which an H gate is applied to each qubit.
Simulations of this circuit, which has 214 RSs, yielded no results at a bit
precision lower than 10 because the result approached O during VMM
operations at very low bit precisions. On this circuit, the outcome 1s much

more dependable at precisions of 14-bit and higher.

43

Table 5. Simulation accuracies of different quantum circuits with different bit precisions on

ReQUSA. The accuracy is defined as the value of the vector relative to the Qiskit simulation result

vector. Accuracies above 0.9 are grayed out.

Quantum circuit

Bit precision and Accuracy

4 5) 6 7 8 9 10 11 12 13
deustch_n2 0.078 | 0.665 | 0.758 | 0.916 0.939 0.98 0.99 0.995 | 0.997 0.998
toffoli_n3 0 0 0.166 | 0.592 0.79 0.905 | 0.952 | 0.975 | 0.987 0.993
teleportation_n3 0.047 | 0.441 | 0.649 | 0.858 0.912 0.97 | 0.984 | 0.992 | 0.995 0.997
Ipn_n5 0.691 | 0.869 0.92 0.967 0.981 0.993 | 0.996 | 0.998 | 0.999 0.999
simon_n6 0 0 0.015 | 0.505 0.743 0.879 | 0.943 0.97 0.985 0.991
bb84_n8 0 0 0 0.351 0.615 0.839 | 0.916 | 0.961 | 0.977 0.988
seca_nll 0 0 0 0 0.239 0.657 | 0.825 0.91 0.954 0.976
bv_nl4 0 0 0 0 0 0 0.002 | 0.279 | 0.729 0.821
cat_state_n22 0.273 | 0.322 | 0.363 | 0.717 0.863 0.936 | 0.968 | 0.984 | 0.992 0.997
ghz_state_n23 0.273 | 0.322 | 0.333 | 0.703 0.857 0.933 | 0.967 | 0.983 | 0.991 0.995
multiplier_n25 0 0.175 | 0.575 | 0.784 0.891 0.945 | 0.972 | 0.986 | 0.993 0.996

44

14 15 16
0.999 | 0.999 | 0.999
0.996 | 0.998 | 0.999
0.998 | 0.999 | 0.999
0.999 | 0.999 | 0.999
0.995 | 0.998 | 0.998
0.992 | 0.997 | 0.998
0.986 | 0.994 | 0.996
0.91 0.958 | 0.978
0.997 | 0.999 | 0.999
0.997 | 0.998 | 0.999
0.998 | 0.999 | 0.999

45

7. Conclusion

This paper proposed our quantum computer simulation accelerator
ReQUSA based on ReRAM for high-speed VMM operations. The
proposed architecture reduces the simulation time by applying the RS
method to reduced VMMs, thereby leveraging the advantages of the
ReRAM crossbar array. Our designed architecture includes multiple
QPUs consisting of the ReRAM crossbar array, a reordering unit for the
RS method, and peripheral circuits such as the PWM, ADC, and Adder
array. We further confirmed that our architecture outperforms the
existing simulators. Specifically, it decreases the simulation time on
average by x 10* from that of QUEST, and by a least x 10% and x 103
from those of Qiskit and QPlayer, respectively. A reasonably correct
result was obtained at eight—bit precision in a non—fully superposed
quantum circuit and the accuracy was improved by extending the bit
precision to 16-bit. Consequently, the ReRAM-based accelerator
ReQUSA promises to significantly reduce the simulation time while
providing a minimized hardware resource and accurate results in

quantum computer simulations.

46

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

S.-S. Sheu et al., ‘A 4Mb embedded SLC resistive-RAM macro with 7.2ns
read-write random-access time and 160ns MLC-access capability’, in 2011/
IEEFE International Solid-State Circuits Conference, 2011, pp. 200-202.

S. Mittal, ‘A Survey of ReRAM-Based Architectures for Processing-In-
Memory and Neural Networks’, Machine Learning and Knowledge
Extraction, vol. 1, no. 1, pp. 75-114, 2019.

M. J. Marinella et al., ‘Multiscale Co-Design Analysis of Energy, Latency,
Area, and Accuracy of a ReRAM Analog Neural Training Accelerator’,
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 8, no. 1, pp. 86—101, 2018.

M. Hu et al., ‘Dot-Product Engine for Neuromorphic Computing:
Programming 1T1M Crossbar to Accelerate Matrix-Vector Multiplication’,
Austin, Texas, 2016.

S. A. Ghasemi, B. Jahannia, and H. Farbeh, ‘GraphA: An efficient ReRAM-
based architecture to accelerate large scale graph processing’, Journal of
Systems Architecture, vol. 133, p. 102755, 2022.

D. Lelmini and H.-S. P. Wong, ‘In-memory computing with resistive
switching devices’, Nat Electron 1, 2019.

Y. Li, X. Chen, X. Zhao, Y. Yang, and H. Liu, ‘Round-trip latency
prediction for memory access fairness in mesh-based many-core
architectures’, IEICE Electronics Express, vol. 11, no. 24, pp. 20141027
20141027, 2014.

X.-C. Wu et al., ‘Full-State Quantum Circuit Simulation by Using Data
Compression’, in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, Denver,
Colorado, 2019.

K.-S. Jin and G.-I. Cha, ‘QPlayer: Lightweight, scalable, and fast quantum
simulator’, ETRI Journal, vol. n/a, no. n/a.

[10]J. M. Correll et al., ‘An 8-bit 20.7 TOPS/W Multi-Level Cell ReRAM-

based Compute Engine’, in 2022 IEEE Symposium on VLSI Technology and
Circuits (VLSI Technology and Circuits), 2022, pp. 264-265.

47

[11]P. Yao et al, ‘Face classification using electronic synapses’, Nature
communications, vol. 8, no. 1, p. 15199, 2017.

[12]J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A.
Raychowdhury, ‘29.1 a 40nm 64kb 56.67 tops/w read-disturb-tolerant
compute-in-memory/digital rram macro with active-feedback-based read
and in-situ write verification’, in 2021 IEEE International Solid-State
Circuits Conference (ISSCC), 2021, vol. 64, pp. 404—406.

[13]A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, ‘QASMBench: A Low-
Level Quantum Benchmark Suite for NISQ Evaluation and Simulation’,
ACM Transactions on Quantum Computing, vol. 4, no. 2, pp. 1-26, 2023.

[14]A. W. Harrow, A. Hassidim, and S. Lloyd, ‘Quantum Algorithm for Linear
Systems of Equations’, Phys. Rev. Lett., vol. 103, p. 150502, Oct. 2009.

[15]P. W. Shor, ‘Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer’, SIAM Journal on
Computing, vol. 26, no. 5, pp. 1484-1509, 1997.

[16]L. K. Grover, ‘A Fast Quantum Mechanical Algorithm for Database
Search’, in Proceedings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing, Philadelphia, Pennsylvania, USA, 1996, pp. 212—
219.

[17]A. Shafiee et al., ‘ISAAC: A Convolutional Neural Network Accelerator
with in-Situ Analog Arithmetic in Crossbars’, SIGARCH Comput. Archit.
News, vol. 44, no. 3, pp. 14-26, Jun. 2016.

[18]A. Shafiee et al., ‘ISAAC: A Convolutional Neural Network Accelerator
with in-Situ Analog Arithmetic in Crossbars’, in Proceedings of the 43rd
International Symposium on Computer Architecture, 2016, pp. 14-26.

[19]M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston, ‘A Lightweight
Fault-Tolerant Mechanism for Network-on-Chip’, in Second ACM/IEEE
International Symposium on Networks-on-Chip (nocs 2008), 2008, pp. 13—
22.

[20]W. J. Dally and B. P. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2004.

[21]B. Verbruggen, J. Craninckx, M. Kuijk, P. Wambacq, and G. Van der Plas,
‘A 2.2 mW 1.75 GS/s 5 Bit Folding Flash ADC in 90 nm Digital CMOS’,

48

IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 874-882, Mar.
2009.

[22]1Q. Wang, Y. Kim, and P. Li, ‘Neuromorphic Processors with Memristive
Synapses: Synaptic Interface and Architectural Exploration’, ACM Journal
on Emerging Technologies in Computing Systems, vol. 12, no. 4, pp. 1-22,
Jul. 2016.

[23]L.-M. Yi, N. Miura, H. Fukuyama, and H. Nosaka, ‘A 15.1-mW 6-GS/s 6-
bit Single-Channel Flash ADC With Selectively Activated 8x Time-
Domain Latch Interpolation’, IEEE Journal of Solid-State Circuits, vol. 56,
no. 2, pp. 455-464, Feb. 2021.

[24]A. Ankit et al., ‘PUMA: A Programmable Ultra-efficient Memristor-based
Accelerator for Machine Learning Inference’, in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 715-731.

[25]P. Chi et al., ‘PRIME: A Novel Processing-in-Memory Architecture for
Neural Network Computation in ReRAM-Based Main Memory’, in 2016
ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 27-39.

[26]J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A.
Raychowdhury, 29.1 A 40nm 64Kb 56.67TOPS/W Read-Disturb-Tolerant
Compute-in-Memory/Digital RRAM Macro with Active-Feedback-Based
Read and In-Situ Write Verification’, in 2021 IEEE International Solid-
State Circuits Conference (ISSCC), 2021, pp. 404-406.

[27]T. Li, N. Jing, J. Jiang, Q. Wang, Z. Mao, and Y. Chen, ‘A Novel
Architecture Design for Output Significance Aligned Flow with Adaptive
Control in ReRAM-based Neural Network Accelerator’, ACM

Transactions on Design Automation of Electronic Systems, vol. 27, no. 6,
pp. 1-22, Nov. 2022.

[28]J. M. Correll et al., ‘An 8-bit 20.7 TOPS/W Multi-Level Cell ReRAM-
based Compute Engine’, in 2022 IEEE Symposium on VLSI Technology and
Circuits (VLSI Technology and Circuits), 2022, pp. 264-265.

[29]T. H. Johnson, S. R. Clark, and D. Jaksch, ‘What is a quantum simulator?’,
EPJ Quantum Technology, vol. 1, no. 1, p. 10, Dec. 2014.

[30]P. Yao et al., ‘Face classification using electronic synapses’, Nature

49

Communications, vol. 8, no. 1, p. 15199, May 2017.

[31]S. Mittal, R. Wang, and J. Vetter, ‘DESTINY: A Comprehensive Tool with
3D and Multi-Level Cell Memory Modeling Capability’, Journal of Low
Power Electronics and Applications, vol. 7, no. 3, p. 23, Sep. 2017.

[32]Y. Li et al., ‘A Survey of MRAM-Centric Computing: From Near Memory
to In Memory’, IEEE Transactions on Emerging Topics in Computing, pp.
1-12, 2022.

[33]W.-C. Chien et al., ‘Multi-level 40nm WOX resistive memory with
excellent reliability’, in 2011 International Electron Devices Meeting,
2011, p. 31.5.1-31.5.4.

[34]D. S. Steiger, T. Héner, and M. Troyer, ‘ProjectQ: An Open Source
Software Framework for Quantum Computing’, Quantum, vol. 2, p. 49,
Jan. 2018.

[35]A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, ‘QASMBench: A Low-level
QASM Benchmark Suite for NISQ Evaluation and Simulation’. arXiv,
May-2022.

[36]C. Huang et al., ‘Rescuing ReRAM-based Neural Computing Systems
from Device Variation’, ACM Transactions on Design Automation of
Electronic Systems, vol. 28, no. 1, pp. 1-17, Jan. 2023.

[37]T. Jones, A. Brown, 1. Bush, and S. C. Benjamin, ‘QuEST and High
Performance Simulation of Quantum Computers’, Scientific Reports, vol.
9,no. 1, p. 10736, Jul. 2019.

[38]H. De Raedt et al., ‘Massively parallel quantum computer simulator, eleven
years later’, Computer Physics Communications, vol. 237, pp. 47-61, Apr.
2019.

[39]K. D. Raedt et al., ‘Massive Parallel Quantum Computer Simulator’.

[40]R. LaRose, ‘Distributed Memory Techniques for Classical Simulation of
Quantum Circuits’.

[41]S.-S. Sheu et al., ‘A 4Mb embedded SLC resistive-RAM macro with 7.2ns
read-write random-access time and 160ns MLC-access capability’, in 201/
IEEFE International Solid-State Circuits Conference, 2011, pp. 200-202.

[42]M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston, ‘A Lightweight
Fault-Tolerant Mechanism for Network-on-Chip’, in Second ACM/IEEE

50

International Symposium on Networks-on-Chip (nocs 2008), 2008, pp. 13—
22.

[43]J. Jose, B. Nayak, K. Kumar, and M. Mutyam, ‘DeBAR: Deflection Based
Adaptive Router with Minimal Buffering’, in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2013, 2013, pp. 1583—1588.

[44]M. A. Khan and A. Q. Ansari, ‘Design of 8-Bit Programmable Crossbar
Switch for Network-on-Chip Router’, in Trends in Network and
Communications, vol. 197, D. C. Wyld, M. Wozniak, N. Chaki, N.
Meghanathan, and D. Nagamalai, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 526-535.

[45]G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-S. Seo, U. Y. Ogras, and Y.
Cao, ‘Impact of On-chip Interconnect on In-memory Acceleration of Deep

Neural Networks’, ACM Journal on Emerging Technologies in Computing
Systems, vol. 18, no. 2, pp. 1-22, Apr. 2022.

[46]X. Zhou, P. Hao, and D. Liu, ‘PCCNoC: Packet Connected Circuit as
Network on Chip for High Throughput and Low Latency SoCs’,
Micromachines, vol. 14, no. 3, p. 501, Feb. 2023.

[47]‘MoDe-X: Microarchitecture of a Layout-Aware Modular Decoupled
Crossbar for On-Chip Interconnects’, IEEE Transactions on Computers,
vol. 63, no. 3, pp. 622-636, Mar. 2014.

[48]W.-C. Tsai, Y.-C. Lan, Y.-H. Hu, and S.-J. Chen, ‘Networks on Chips:
Structure and Design Methodologies’, Journal of Electrical and Computer
Engineering, vol. 2012, pp. 1-15, 2012.

[49]S. Onsori and F. Safaei, ‘Performance Enhancement of Routers in
Networks-on-Chip Using Dynamic Virtual Channels Allocation’, 2014.

[SO]JA. M. R, A. N. Subrahmanya, and A. D’Souza, ‘Performance Analysis of
Mesh-based NoC’s on Routing Algorithms’, International Journal of
Electrical and Computer Engineering (IJECE), vol. 8, no. 5, p. 3368, Oct.
2018.

[ST]R. James, J. Jose, and J. K. Antony, ‘Smart Port Allocation for Adaptive
NoC Routers’, in 2015 28th International Conference on VLSI Design,
2015, pp. 475-480.

[52]R. Wille, R. Van Meter, and Y. Naveh, ‘IBM’s Qiskit Tool Chain: Working
with and Developing for Real Quantum Computers’, in 2019 Design,

51

Automation & Test in Europe Conference & Exhibition (DATE), 2019, pp.
1234-1240.

[53]M. Courbariaux, Y. Bengio, and J.-P. David, ‘Training deep neural networks
with low precision multiplications’, arXiv: Learning, 2014.

[54]N. Khammassi, I. Ashraf, X. Fu, C. G. Almudever, and K. Bertels, ‘QX: A
high-performance quantum computer simulation platform’, in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017,
2017, pp. 464—469.

[55]J. Preskill, ‘Quantum Computing in the NISQ era and beyond’, Quantum,
vol. 2, p. 79, Aug. 2018.

[56]National Academies of Sciences Engineering, Medicine, and Others,
‘Quantum computing: progress and prospects’, 2019.

[57]A. Avila, A. Maron, R. Reiser, M. Pilla, and A. Yamin, ‘GPU-Aware
Distributed Quantum Simulation’, in Proceedings of the 29th Annual ACM
Symposium on Applied Computing, Gyeongju, Republic of Korea, 2014,
pp. 860—865.

[58]J. Doi, H. Takahashi, R. Raymond, T. Imamichi, and H. Horii, ‘Quantum
Computing Simulator on a Heterogenous HPC System’, in Proceedings of
the 16th ACM International Conference on Computing Frontiers, Alghero,
Italy, 2019, pp. 85-93.

[59]S. Agarwal et al., ‘Resistive memory device requirements for a neural
algorithm accelerator’, in 2016 International Joint Conference on Neural
Networks (IJCNN), 2016, pp. 929-938.

[60]H. Ji, L. Song, L. Jiang, H. Li, and Y. Chen, ‘ReCom: An efficient resistive
accelerator for compressed deep neural networks’, in 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2018, pp.
237-240.

[61]K. Pagiamtzis and A. Sheikholeslami, ‘Content-addressable memory
(CAM) circuits and architectures: a tutorial and survey’, IEEE Journal of
Solid-State Circuits, vol. 41, no. 3, pp. 712-727, 2006.

[62]Y. C. Shin, R. Sridhar, V. Demjanenko, P. W. Palumbo, and S. N. Srihari,
‘A special-purpose content addressable memory chip for real-time image
processing’, IEEE Journal of Solid-State Circuits, vol. 27, no. 5, pp. 737—
744, 1992.

52

[63]P. W. Shor, ‘Algorithms for quantum computation: discrete logarithms and
factoring’, in Proceedings 35th Annual Symposium on Foundations of
Computer Science, 1994, pp. 124—134.

[64]S. Bravyi and D. Gosset, ‘Improved Classical Simulation of Quantum
Circuits Dominated by Clifford Gates’, Phys. Rev. Lett., vol. 116, p.
250501, Jun. 2016.

[65]). Niwa, K. Matsumoto, and H. Imai, ‘General-purpose parallel simulator
for quantum computing’, Phys. Rev. 4, vol. 66, p. 062317, Dec. 2002.

[66]T. Haner and D. S. Steiger, ‘0.5 Petabyte Simulation of a 45-Qubit Quantum
Circuit’, in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, Denver,
Colorado, 2017.

[67]Hoyer, Neerbek, and Shi, ‘Quantum Complexities of Ordered Searching,
Sorting, and Element Distinctness’, Algorithmica, vol. 34, no. 4, pp. 429—
448, Nov. 2002.

[68]L. K. Grover, ‘Quantum Mechanics Helps in Searching for a Needle in a
Haystack’, Phys. Rev. Lett., vol. 79, pp. 325-328, Jul. 1997.

[69]E. Bernstein and U. Vazirani, ‘Quantum Complexity Theory’, SIAM
Journal on Computing, vol. 26, no. 5, pp. 1411-1473, 1997.

[70]D. Deutsch and R. Penrose, ‘Quantum theory, the Church—Turing principle
and the universal quantum computer’, Proceedings of the Royal Society of
London. A. Mathematical and Physical Sciences, vol. 400, no. 1818, pp.
97-117, 1985.

[71]J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
‘Quantum machine learning’, Nature, vol. 549, no. 7671, pp. 195-202, Sep.
2017.

[72]D. Peral Garcia, J. Cruz-Benito, and F. José Garcia-Pefialvo, ‘Systematic
Literature Review: Quantum Machine Learning and its applications’, arXiv
e-prints, p. arXiv:2201.04093, Jan. 2022.

[73]L. Song, X. Qian, H. Li, and Y. Chen, ‘PipeLayer: A Pipelined ReRAM-
Based Accelerator for Deep Learning’, in 2017 IEEE International

Symposium on High Performance Computer Architecture (HPCA), 2017,
pp. 541-552.

53

[74]Y. Long, X. She, and S. Mukhopadhyay, ‘Design of Reliable DNN
Accelerator with Un-reliable ReRAM’, in 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2019, pp. 1769-1774.

[75]E. Farhi, J. Goldstone, and S. Gutmann, ‘A Quantum Algorithm for the
Hamiltonian NAND Tree’, arXiv [quant-ph]. 2007.

[76] O] 74 Al

S. N. Truong and T!8=, ‘New Memristor-Based Crossbar Array

Architecture with 50-% Area Reduction and 48-% Power Saving for
Matrix-Vector Multiplication of Analog Neuromorphic Computing’,
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, vol.
14, no. 3, pp. 356-363, 2014.

54

	목차
	I. Introduction 1
	II. Background 4
	i. ReRAM crossbar 5
	ii. Quantum computer simulation 7
	iii. Realized state quantum computer simulation 10
	III. Related works . 11
	IV. ReQUSA: Proposed architecture . 13
	i. Overall architecture 13
	ii. Quantum processing unit . 16
	iii. Our proposed acceleration methodology 20
	iv. Realization of quantum computer simulation in QPU 23
	V. Hardware Implementation 20
	i. ReRAM crossbar array 26
	ii. Pulse width modulator . 28
	iii. Analog to digital converter . 29
	VI. Evaluation 32
	i. Experimental setup 32
	ii. Performance analysis 36
	A. Simulation time 36
	B. Hardware resource 40
	C. Simulation accuracy . 42
	VII. Conclusion 46

