
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

 

 

Thesis for the Degree of Master of Engineering 

Research on Quantum Computer 

Simulation Acceleration by using an 

Emerging Memory Technology 

 

by 

Sang Hyeon Lee 

Department of Artificial Intelligence 

The Graduate School 

Pukyong National University 

 

  February, 2024



 

 

Research on Quantum Computer 

Simulation Acceleration by using an 

Emerging Memory Technology 

(차세대 메모리 기술을 활용한 양자 컴퓨터 

시뮬레이션 가속화 구조에 대한 연구) 

Advisor: Prof. Young Sun Han 

by 

Sang Hyeon Lee 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

Master of Engineering 

 

in Department of Artificial Intelligence, The Graduate School, 

Pukyong National University 

 

February, 2024



Research on Quantum Computer Simulation Acceleration by using an

Emerging Memory Technology

A dissertation

by

Sang Hyeon Lee

Approved by:

───────────────
Professor. Yong-Tae Kim,

(Chairman)

─────────────── ───────────────
Professor. Seung-Ho Yoo Professor. Young-Sun Han

(Member) (Member)

February 16th, 2024



I 

 

Index 

 

Table Index .............................................................................................................................................. Ⅴ 

Figure Index ............................................................................................................................................ Ⅵ 

Abstract .................................................................................................................................................... Ⅶ 

I. Introduction ................................................................................................................................... 1 

II. Background .................................................................................................................................... 4 

i. ReRAM crossbar ................................................................................................................. 5 

ii. Quantum computer simulation ................................................................................... 7 

iii. Realized state quantum computer simulation ...................................................... 10 

III. Related works ............................................................................................................................... 11 

IV. ReQUSA: Proposed architecture ........................................................................................... 13 

i. Overall architecture ........................................................................................................... 13 

ii. Quantum processing unit .............................................................................................. 16 

iii. Our proposed acceleration methodology .............................................................. 20 

iv. Realization of quantum computer simulation in QPU ...................................... 23 

V. Hardware Implementation ...................................................................................................... 20 

i. ReRAM crossbar array ..................................................................................................... 26 

ii. Pulse width modulator .................................................................................................... 28 

iii. Analog to digital converter ........................................................................................... 29 

VI. Evaluation ....................................................................................................................................... 32 

i. Experimental setup ........................................................................................................... 32 

ii. Performance analysis ........................................................................................................ 36 



II 

 

A. Simulation time ......................................................................................................... 36 

B. Hardware resource ................................................................................................... 40 

C. Simulation accuracy ................................................................................................. 42 

VII. Conclusion ...................................................................................................................................... 46 

 

 

  



III 

 

 

 

 

 

Table Index 

 

Table 1. An example of 2 x 2 size quantum gates in the LUT ........................................ 18 

Table 2. Quantum circuits used as benchmarks in the evaluation ................................ 34 

Table 3. Parameters of the ReRAM simulation ....................................................................... 35 

Table 4. QPU hardware resource result when the crossbar size is doubled ............. 41 

Table 5. Simulation accuracies of different quantum circuits with different bit 

precisions on ReQUSA. The accuracy is defined as the value of the vector relative 

to the Qiskit simulation result vector. Accuracies above 0.9 are grayed out

.............................................................................................................................44 

 

 

 

 

 

 

 



IV 

 

 

 

 

Figure Index 

 

 

Figure 1. Basic structure of the ReRAM crossbar array ...................................................... 4 

Figure 2. Two different quantum computer simulation methods showing the structure and 

operation of a three-qubit system: (a) Full-state quantum computer simulation method (b) 

Realized-state quantum computer simulation method ...................................................... 9 

Figure 3. Overall architecture of ReQUSA, which consists of several states ............. 15 

Figure 4. Proposed quantum processing unit (QPU) architecture ................................. 19 

Figure 5. Example of a detailed process inside the QPU when each amplitude of RS uses 

eight-bit precision ................................................................................................................................ 25 

Figure 6. Eight-bit analog-to-digital converter circuit ......................................................... 31 

Figure 7. Comparison of simulation times of QuEST, QPlayer, Qiskit, and our proposed 

accelerator ReQUSA. The blue dashed line, Total(Tread), indicates the total time for the read 

operation in the quantum computer simulation ............................................................................ 39 

 



V 

 

Research on Quantum Computer Simulation Acceleration by using an Emerging 

Memory technology 

 

Sang-Hyeon Lee 

 

Department of Artificial Intelligence Convergence, The Graduate School, 

Pukyong National University 

 

Abstract 

Quantum computers are currently regarded as an emerging computing 

technology that can solve problems more quickly than classical computers. 

However, since constructing a general quantum computer is technically difficult, 

quantum computer simulation has been used instead of real quantum computers. 

Simulating quantum computers on classical computers is challenging because 

the time and resources required for the vector–matrix multiplication (VMM) 

increase exponentially with the number of qubits. This paper proposes a new 

accelerator architecture called ReQUSA that leverages resistive random access 

memory (ReRAM) to accelerate the quantum computer simulation. The ReQUSA 

employs a ReRAM crossbar array structure, which is specialized for 

implementing the VMM, and a realized state method for reduced VMM operation. 



VI 

 

To the best of our knowledge, ReRAM-based accelerators for quantum 

computer simulator has not been previously reported. Here we describe the 

hardware design of the architecture and compare the performances (hardware 

resource, simulation time, and accuracy) of our accelerator with those of current 

quantum computer simulators (QuEST, QPlayer, and Qiskit). On average, our 

proposed architecture reduced the simulation times by factors of × 104 and 

× 103(× 102) on average from those of QuEST and QPlayer (also Qiskit), 

respectively. In addition, our architecture achieved 99% accuracy in 16-bit 

fixed-point data representation. 
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1. Introduction 

 

Recently, quantum computing technology has rapidly evolved and has 

attracted much attention and investment from various fields. Quantum 

computing promises to solve problems that are too complex and time-

consuming on classical computers, such as quantum searching [10], 

quantum sorting [12], quantum oracle algorithms [2, 6, 8], and quantum 

machine learning [3, 26]. Quantum computation solves complex and 

massive operations quickly and efficiently using quantum mechanics. 

Unlike classical computers that use bits (binary digits) to perform 

operations, quantum computers use qubits (quantum bits) to perform 

quantum operations. Exploiting the superposition phenomenon of 

quantum mechanics, a qubit can simultaneously store |0⟩ and |1⟩ in a 

quantum computer system. Therefore, a qubit can simultaneously exist 

in both states until it is measured. When a qubit is measured, it collapses 

into one of the basis states with a certain probability. The state of a qubit 

can be represented by a one-dimensional column vector of unit norms 

[𝛼  𝛽], where 𝛼 and 𝛽 are complex numbers satisfying |𝛼|2 + |𝛽|2 = 1. A 

qubit can be manipulated through quantum gates, unitary matrices that 

transform the state vector of the qubit. For example, the Pauli- X (X) 

gate flips the state of a qubit from |0⟩  to |1⟩  and vice versa. The 

Hadamard gate places a qubit in an equal superposition state of |0⟩ and 

|1⟩. The Pauli- Z (Z) gate changes the phase of the qubit by π radians. 

Many other single-qubit and multi-qubit gates perform various quantum 
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operations. By utilizing quantum properties such as superposition and 

entanglement, quantum computers perform certain types of calculations 

that are intractable for classical computers. Moreover, algorithms 

designed for quantum computers can potentially solve complex problems 

much faster than classical computing methods. However, in today’s noise 

intermediate-scale quantum (NISQ) era, the scalability, error correction 

capability, coherence, and interoperability of quantum computing remain 

problematic [27]. These problems are avoided by employing quantum 

computer simulations rather than actual quantum computers.  

A quantum computer simulation applies a quantum gate to a qubit 

following the mathematical principles of quantum physics [16, 28]. The 

qubit and quantum gate can be represented as a state vector and a 

quantum gate matrix, respectively. Accordingly, a quantum computer 

simulation repeatedly multiplies the matrix by the vector. To enable 

vector–matrix multiplication (VMM), the quantum gate matrix should be 

expanded to fit the dimension of the state vector, which increases with 

the number of qubits. This process is widely accepted although it 

dramatically slows the quantum computer simulation. Among the existing 

quantum simulators are Qiskit, which can simulate up to 30 qubits and 

run quantum programs on classical computers, and QuEST [15], which 

performs the simulation by utilizing a multiprocessor. To accelerate 

quantum computer simulations, researchers have investigated more 

efficient computing methods such as general-purpose computing on 

graphics processing units (GPGPU) or multi- processing [1, 7]. However, 

these approaches are resource-intensive and provide no inherent 

improvement other than the division of the repetitive VMM operations 
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into multiple processors. Here we propose a novel architecture of 

ReQUSA based on a resistive random access memory (ReRAM) crossbar, 

which accelerates the quantum computer simulation by leveraging the 

characteristics of ReRAM. In particular, the ReRAM is specialized for 

VMM operations in the analog domain. To avoid dimensional expansion 

of the state vector and quantum gate, we adopt the reduced VMM 

operation method based on the realized state (RS) described in [14]. The 

simulation time of our proposed architecture is × 104 shorter than that 

of QuEST, × 103 and × 102 shorter than those of QPlayer and Qiskit, 

respectively. The key contributions of our paper are summarized below: 

 

 We propose a novel architecture that efficiently handles many qubits 

in quantum computer simulations using the ReRAM crossbar structure. 

 We develop a detailed hardware structure at the circuit level for 

manipulating the reduced VMM operations. 

 We demonstrate the superior simulation time and feasible accuracy of 

the simulation results generated by our proposed architecture. 

 

The remainder of this paper is organized as follows. Section 2 describes 

the background of the ReRAM crossbar and quantum computer 

simulation. Related works are summarized in Section 3. Section 4 

discusses the architecture and behavior of the proposed accelerator and 

Section 5 describes the hardware implementation of the accelerator. In 

Section 6, we evaluate the performance of the architecture in terms of 

simulation time, hardware resources, and accuracy. The paper 

conclusion with Section 7. 
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2. Background 

 

This section provides the background of ReRAM, quantum computer 

simulations, and the RS method. 

 

 

 

Figure 1. Basic structure of the ReRAM crossbar array. An input 

voltage 𝑽𝒊 is applied equally to all bit lines along the word line. 

Subsequently, the read operations (red lines) are performed 

concurrently through the bit lines. 
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2.1 ReRAM crossbar 

 

ReRAM crossbar Conventional memories such as dynamic and static 

RAM rely on the storage of charge; therefore, they are volatile memories 

that lose their data when the power supply is turned off. In contrast, 

ReRAM is a next-generation memory device that stores data based on 

the characteristics of electrical resistance, which depend on the history 

of the previous current. Therefore, even when the power supply is 

removed, the most recent data can be stored continuously, achieving 

nonvolatile memory. When the resistance is high and the current flow is 

rough, the logical value is 0 and the state is called a high resistance state. 

Conversely, when the resistance is low and the current flows well, the 

logical value is 1 and the state is called a low resistance state. To utilize 

the characteristics of the ReRAM, a crossbar structure is generally 

constructed. As shown in Figure 1, the ReRAM cells in a crossbar 

structure are placed at each connection point of horizontal and vertical 

steel wires. To execute the VMM operation in a single cycle on the 

ReRAM crossbar, the analog conductance of the matrix coefficients are 

stored in memristor cells and the vector values are the input voltages to 

a word line. The multiplication result is then obtained as a current 

through a bit line. The above process is formulated as follows: 

 

𝐼𝑘 = ∑(𝐺𝑖𝑘 × 𝑉𝑖) 

𝑚

𝑖=1

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑘 ≤ 𝑚 (1) 
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, where I is the current derived from the bit line, and G and V are the 

conductance of the ReRAM cell and the input voltage, respectively. 

ReRAM crossbar arrays offer several advantages over conventional 

computing architectures for VMMs [9, 18]. First, ReRAM devices can be 

programmed to directly perform multiply-and-accumulate operations in 

memory, reducing the amount of data movement between the memory 

and the processing elements. The lowered energy consumption and 

latency associated with data movement allow faster and more energy-

efficient computations. Second, ReRAM crossbar arrays can perform 

VMM operations in a massively parallel manner, enabling high 

throughput and scalability. Third, ReRAM devices exhibit high device 

density and low power consumption, so are suitable for implementation 

in large-scale neuromorphic computing systems. Owing to these 

advantages, the crossbar array architecture also accelerates deep 

learning [13, 33, 20, 22]. 
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2.2 Quantum computer simulation 

 

Leveraging quantum phenomena such as superposition and entanglement, 

quantum computers perform computations that are beyond the reach of 

classical computers. However, as discussed above, building and 

operating quantum computers is a challenging task, as quantum systems 

are fragile and error prone. Instead, quantum computers are simulated 

on classical computers, which are more reliable and accessible. 

Quantum computer simulations represent quantum states and 

operations as vectors and matrices which can then be manipulated 

through classical algorithms. Such a simulation can reveal the behavior 

of a quantum system, run quantum algorithms, and enable the design of 

new quantum systems. The processes of two quantum computer 

simulation methods are shown in Figure 2. In the full-state quantum 

computer simulation method (Figure 2(a)) [32], a three-qubit system is 

represented as a complex vector space |𝜓⟩. Each element of the vector 

is a complex number represented as a 𝑎 + 𝑏𝑖. Following the quantum 

circuit shown in Figure 2(a), the three-qubit system is simulated by 

applying quantum gates. To this end, the tensor product of two Hadamard 

(H) gates and an Identity (I) gate is calculated to yield a 23 × 23 matrix 

of complex numbers. Then, we apply VMM to change the state of the 

qubits, resulting in a new quantum state vector denoted as |𝜓̇⟩ . 

Afterward, the quantum computer simulation is completed by performing 

another VMM on a matrix representing the tensor product between a 

Controlled-X (CNOT) gate and an I gate and the vector from the previous 
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calculation. This method simulates the state and behavior of a quantum 

computer, but the state vector and quantum gate matrix are scaled by 

factors of 2𝑛 and 2𝑛 × 2𝑛, respectively, where n denotes the number of 

qubits. As the number of qubits increases, the number of operations on 

the state vector and matrix becomes exceedingly large and the memory 

demands increase accordingly. Although several attempts to minimize 

the memory usage have been published [14, 37, 4, 16, 11, 24], an 

effective solution remains elusive. 
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(a) 

 

 (b) 

Figure 2. Two different quantum computer simulation methods showing 

the structure and operation of a three-qubit system: (a) Full-state 

quantum computer simulation method [15] (b) Realized-state quantum 

computer simulation method [14]. 
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2.3 Realized state quantum computer simulation 

 

To minimize the computational burden and reduce the memory 

requirements of large state vectors and quantum gate matrices, Jin et al. 

proposed a realized-state method that represents the qubit states [14]. 

RSs represent only those qubits with non-zero amplitudes. For example, 

Figure 2(b) illustrates a three-qubit system with a quantum space of 

eight states. Whereas a full-state quantum computer simulation must 

represent each state with complex numbers, the RS simulation initializes 

only the first state |000⟩ of the quantum system, which requires a single 

complex number in memory. To perform the H-gate operation and state 

change, multiplication is performed only on the realized pairs (|000⟩ and 

|001⟩ in this case). This process is equivalent to applying the H gate to 

the first qubit. The vector then contains two RSs for the simulation. The 

vector size in this method is determined by the realized-state changes 

in the quantum state obtained through operations, while the matrix size 

remains constant at 22 × 22. In contrast, the full-state simulation scales 

the matrix as 2𝑛 × 2𝑛. 
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3. Related works 

 

Quantum computing is a rapidly evolving field that promises to expand 

the limits of classical computers. However, fault tolerance and quantum 

supremacy have not been attained in the current NISQ era. Quantum 

supremacy defines the ability of a quantum computer to perform a task 

that cannot be managed by a classical computer within a reasonable time. 

In the NISQ era, quantum computers are sensitive to their environment 

(noise) and prone to quantum decoherence, which occurs via interactions 

between the qubits and the surroundings. Therefore, quantum computer 

simulation methods are necessary tools for developing and testing 

quantum algorithms within the limitations of quantum hardware. 

However, simulating quantum computers is resource-intensive because 

the size of the vector representing the quantum state scales 

exponentially with the number of qubits. For example, a 50-qubit 

quantum computer requires a 250 sized vector or approximately 1015 

elements. Such a vector requires approximately 8 petabytes of RAM 

storage. To alleviate the memory demands, recent studies have designed 

resource-efficient quantum computer simulation methods such as 

optimized single-node simulation frameworks [36, 14], simulators for 

distributed systems [15], and simulators with data compression 

techniques. Some of the existing frameworks run on a single classical 

computer, providing quantum programming support for both quantum 

computer simulations and real quantum computer executions. One such 
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framework is Qiskit [36], an open-source software development kit 

compatible with IBM’s quantum computers and simulators. Qiskit allows 

users to write quantum programs in Python and execute them on either 

a local quantum computer simulator or a remote real quantum device.                      

However, Qiskit supports a maximum of only 30 qubits for simulation 

on a local backend. Real quantum devices with higher qubit counts 

remain inaccessible due to waiting time and cost for use. To simulate 

more qubits on a single node, QPlayer [14] applies an optimized 

simulation method based on the superposed qubit ratio (SQR) of the 

quantum circuit, which defines the ratio of qubits in the superposition 

state to the total number of qubits. The QPlayer can simulate 30, 40, 50, 

and 60 qubits with SQRs of 100%, 80%, 60%, and 40%, respectively. 

However, these methods are limited by the memory and processing 

power of a single-node classical computer. 

Distributed systems increase the qubit-count simulation capacity by 

utilizing large resources across multiple nodes. One such distributed 

system is QuEST [15], a hardware-agnostic simulator of universal 

circuit-based quantum computers that can run on either CPUs or GPUs. 

QuEST claims to simulate more than 50 qubits depending on the quantum 

circuit and noise model. Another example is the full-state simulator with 

data compression [37], which reduces the memory requirements of 

stored quantum state vectors. The full-state simulator with data 

compression claims to simulate up to 61 qubits on classical 

supercomputers. Clearly, quantum computers beyond 61 qubits cannot 

be simulated on classical supercomputers. 
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4. ReQUSA: Proposed architecture 

 

In this section, we propose the methodology and ReQUSA’s hardware 

architecture to accelerate the quantum computer simulation by using the 

ReRAM crossbar. 

 

4.1 Overall architecture 

 

Figure 3 shows the overall architecture of the proposed accelerator and 

the input/output (I/O) data flow of the quantum computer simulation. To 

execute the quantum computer simulation, the provided quantum circuit 

is first compiled as a quantum gate information table, the data format of 

our architecture. Each quantum gate has a specific order, gate name, and 

qubit index (control or target), which can be integrated into the table. 

The order defines where the quantum gate is placed in the sequence of 

quantum gates applied to the state vectors of the qubits. After the 

compilation process, the gate information is assigned to our ReQUSA 

accelerator. 

The ReQUSA consists of a global controller, an I/O interface, multiple 

quantum processing units (QPUs), and routers. Viewed from the top, the 

routers are connected to each QPU, allowing easy transfer of the data 

throughout the ReQUSA. A two-dimensional (2D) mesh Network-on-

Chip (NoC) structure improves the data transmission speed and latency 

between the routers [5]. The 2D mesh network is a regular grid-like 
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structure that connects each node to its four neighboring nodes, forming 

a 2D array. The data are transferred through the network bus by routing 

packets, which take the shortest route from the source node to the 

destination node. This arrangement reduces the latency and data 

transfer time between each QPU. 

The global controller manages all situations occurring in the proposed 

architecture, such as the I/O data flow and the quantum computer 

simulation. On the ReQUSA, a qubit passing through a quantum circuit 

must sequentially pass through the quantum gates entangled in the circuit 

in a predetermined order to obtain the correct simulation result. Hence, 

the global controller sets the path of the routers and delivers an RS and 

the quantum gate information to a QPU at a predetermined location. We 

ensured that at this time, the quantum gates in adjacent QPUs are placed 

in the order in which the gates are applied. 

The router determines the data path along which the packet can 

successfully reach the desired destination node. A router conventionally 

has five I/O ports: four I/O ports in the 2D mesh network that connect 

with other routers and one I/O port for the processing element (PE) [29], 

which is the QPU in our architecture. We applied the router proposed in 

[17] because it can be operated at the same clock frequency as other 

peripheral circuits and can support high bandwidth and packet delivery 

inside the network. The clock frequency will be further discussed in 

subsection 6.2.1. 

The I/O interface manages the input and output data flows of the 

ReQUSA. In this case, the input denotes the quantum gate information, 

and the output is a result of the quantum computer simulation. 
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4.2 Quantum processing unit 

 

A QPU performs the VMM operation using a quantum gate matrix and 

the realized state vector (RSV). The details of the QPU structure are 

shown in Figure 4. All operations are managed by the QPU controller, 

and the data flow occurred inside the QPU. Depending on the operation 

type, the controller activates different units such as the gate decoder, 

reordering unit, and VMM unit. 

The gate decoder then decodes the quantum gate information to obtain 

the configuration of the quantum gate (gate ID, control index, and target 

index). We can determine the gate type and the qubit to which the gate 

is applied based on the presence or absence of the control and target 

qubit indices. For example, CNOT(0,1) is classified as a control gate 

because its index is 0, indicating a control qubit. H(0) is a single gate 

because it has no value for the control qubit index. Then, the gate 

decoder generates the quantum gate matrix data according to the gate 

ID. For this purpose, the gate ID and matrix data of each gate are stored 

in a look-up table (LUT).  

Table 1 shows how the gates are stored in the LUT. Currently, the 

proposed architecture supports 12 types of gates, including the most 

basic single gates I, H, and X, and control gates such as CNOT and CZ. 

The number of gates may seem insufficient, but in a quantum computer, 

we can construct a universal quantum computer with a set of universal 

quantum gates, including CNOT and H gates. Note that since all matrices 

with 2 × 2 elements in the lower right corner of itself can be employed 
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for the proposed architecture, they can be added to the LUT. 

The reordering unit (ROU) executes the reordering algorithm. The ROU 

receives the RS from the RSV buffer and generates a pair of RSs to be 

transferred into the reordered RSV buffer. To realize the reordering 

algorithm, the RSV buffer provides two memory structures: Index 

Addressable Memory (IAM) and Content Addressable Memory (CAM), 

similar to previous work [25, 31]. Therefore, the ROU can access the 

RSV buffer with the RS address and the value of the RS state. 

The VMM unit is the main QPU unit for the VMM operation. It consists 

of a row buffer, the reordered RS buffer, the ReRAM crossbar array, and 

peripheral circuits such as a pulse width modulator (PWM) array and 

analog-to-digital converter (ADC) array. The row buffer receives the 

quantum gate matrix data and the reordered RSV buffer temporarily 

stores the RSV generated by the ROU. This process improves the 

efficiency of multiplication by storing all RSVs according to the 

characteristics of the ReRAM crossbar array. The VMM operation is then 

completed in one cycle rather than by multiplying with the RSV 

generated at each time. 

 

 

 

 

 

 

 

 



18 

 

 

 

 

 

 

Table 1. An example of 2 x 2 size quantum gates in the LUT 

Gate Definition Matrix 

I Identity gate 

 

H Hadamard gate 

 

X Pauli X gate 

 

CNOT Controlled X gate 
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4.3 Our proposed acceleration methodology 

 

As explained in subsection 2.2, the VMM operation is the main part of 

the quantum computer simulation, and the 2 × 2  size quantum gate 

matrix largely reduces the memory consumption. However, this method 

does not significantly reduce the simulation time because all qubit state 

vectors must be repeatedly multiplied by the 2 × 2 matrix. We thus 

adopt a more efficient simulation technique combined with the RS 

developed in [14]. By applying quantum gates only to the RSs of qubits, 

our algorithm drastically reduces the number of VMM operations from 

that of the previous simulation technique. Algorithm 1 describes the 

process that lowers the number of VMM operations. The algorithm starts 

to find a pair of RSs based on the qubit state index and the target qubit 

index. For example, an X(1) gate is applied only to the qubit index 1, the 

target qubit of this gate. To create a pair of RSs, the algorithm first 

selects one index from the quantum register which manages the qubit 

index, amplitudes, and left-shifts the selected index as much as the 

target qubit, until it reaches the target index to generate the other index 

of the pair. After finding the RS pairs, the algorithm reads the amplitude 

of each pair. If the index does not exist in the quantum register, the 

amplitude is set to zero. Consequently, the amplitude of each RS is 

multiplied by the matrix to obtain a new amplitude. The control gate is 

handled by the same process as the single qubit with one difference: 

determining whether the control index of the qubit is indicated by the 

control qubit index of the gate. This algorithm is slightly modified to suit 
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the hardware structure for handling in the accelerator. Lines 9 and 22 of 

Algorithm 1 are modified from the original algorithm [14] by flipping the 

bit of the qubit pointed to by the index rather than by left-shifting the 

selected index. This change is possible because the qubit state is stored 

in binary format. 
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4.4 Realization of quantum computer simulation in QPU 

 

To realize the proposed acceleration method inside the QPU, we divide 

the simulation process into two subprocess: write and read. 

The write operation is the process of writing a quantum gate matrix to 

a ReRAM crossbar array in the VMM unit. When the QPU receives the 

write operation signal from the QPU controller, the gate decoder is first 

activated. The gate decoder decodes the quantum gate information to 

obtain the gate configuration (qubit indexes and gate ID), which is 

transmitted to the ROU. The gate decoder interprets the gate ID and 

produces the corresponding quantum gate matrix. The quantum gate 

matrix is passed to the PWM array inside the VMM unit. The matrix 

elements are stored as conductance in the cells of the ReRAM crossbar. 

Owing to the characteristics of the ReRAM crossbar array, the 

multiplication results are summed and printed out along one column. To 

prohibit interruption of the VMM result by other multiplication results, 

the same matrix elements are diagonally placed on the ReRAM crossbar 

array. 

The read operation performs the VMM operation by transferring the 

RSV to the ReRAM crossbar array. As shown in Figure 4, the RS from 

the RSV buffer is passed into the ROU, which executes the reordering 

algorithm based on the control and target index as explained in 

subsection 4.3. The reordering process iterates until pairs are found for 

all RSVs stored in the RSV buffer. Once the reordering is completed, the 

ROU sends the reordered RSV to the reordered RS buffer. Figure 5 
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shows the example of a detailed process inside the QPU after the 

reordering process when each RS has eight-bit precision. The original 

eight-bit VMM operation becomes complicated because the 16-bit result 

cannot be handled by the eight-bit ADC. To solve this problem, we split 

the eight-bit into upper and lower four-bit components [29]. The upper 

four-bit contain the four highest digits, including the most significant bit 

(MSB). Therefore, the elements of one quantum gate matrix are placed 

in two rows and eight columns across two ReRAM crossbar arrays (e.g. 

𝛾1𝐻 and 𝛾1𝐿 in the blue dashed box of Figure 5). In this situation, two 

reordered RSs must be picked and multiplied by the quantum gate matrix. 

In Figure 5, the real parts of RSs, i.e., 𝛼1 and 𝛼2, are chosen and stored 

in the reordered RS buffer. The 𝛼1 and 𝛼2 are then divided into upper 

and lower parts 𝛼1𝐻 , 𝛼1𝐿  and 𝛼2𝐻 , 𝛼2𝐿 , respectively. These data are 

modulated by the PWM, which converted them to pulse-width 

equivalents, and assigned the converted pulse to the word line. The 

applied pulse changes the state of the cell passing through the ReRAM 

cell of the crossbar storing the data of the element in the quantum gate 

matrix. By reading the current through the columns, we can derive the 

sum of current which is the same as a partial product of the VMM result, 

such as 𝛼1𝐿𝛾1𝐻 + 𝛼2𝐿𝛾2𝐻. The currents are converted into an eight-bit 

digital representation through the eight-bit ADC and it takes a shift 

operation suitable for each bit order. For example, 𝛼1𝐻𝛾1𝐻 + 𝛼2𝐻𝛾2𝐻 is 

preceded by an eight-bit shift operation. Finally, the 16-bit Adder sums 

the shifted data to obtain one element of the VMM matrix, namely, 𝛼1𝛾1 +

𝛼2𝛾2 . The other RSs are processed similarly to obtain the remaining 

matrix elements. 
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Figure 5. Example of a detailed process inside the QPU when each 

amplitude of RS uses eight-bit precision. The reordered RS is 

separated by four-bit and injected into the pulse width modulator 

(PWM), where it is multiplied by the matrix coefficient stored as a 

period of amplitude in the cell. After passing the analog-to-digital 

(ADC) and Adder arrays, the multiplication result (a current) is 

converted into digital form. 
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5. Hardware implementation 

 

This section describes the circuit-level implementation of the ReRAM 

crossbar array and the peripheral circuit. 

 

5.1 ReRAM crossbar array 

 

To implement a memristor crossbar, we require ReRAM technology 

utilizing HfO2-based one-transistor one-resistor (1T1R) cells. The top 

and bottom electrodes of the ReRAM cell are connected to the bit line 

and transistor drain, respectively, and the source line is attached to the 

transistor source. A prior study [30] reported a ReRAM test chip with a 

1T1R crossbar array of area less than 12𝐹2(F is the lithography feature 

size) fabricated via an 18-nm CMOS process. This chip allows the 

construction of small cell arrays and efficient architectural designs. The 

precision of the ReRAM cell is a critical factor in the memristor crossbar 

structure, as it influences the accuracy of the VMM outcome and 

determines cell conductance. Here we adopt the analog ReRAM 

technique, which can store multiple bits, rather than digital ReRAM which 

requires a large number of qubits. Although the analog ReRAM can store 

n-bit weights in one ReRAM cell, it is usually vulnerable to noise which 

lowers its accuracy. However, the authors of [21] demonstrated reliable 

inference accuracy on the Modified National Institute of Standards and 

Technology database (MNIST) by using two-, four-, and eight-bit 
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weighted analog ReRAM with eight-bit precision. We similarly evaluated 

the accuracy of our simulation results by adjusting the precision of the 

weights (see subsection 6.2.3). To handle negatively valued data, we 

also adopted the crossbar structure proposed in [34]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

 

5.2 Pulse width modulator 

 

A pulse width modulator (PWM) conveys information by periodically 

varying the width of the pulse signal. To this end, it varies the duty cycle 

of the signal, defined as the ratio of the pulse width to the period of the 

signal. The PWM array is an electronic circuit that generates a sequence 

of pulse signals with varying duty cycles. The modulated signal retains 

the frequency and amplitude of the original signal but has a varying duty 

cycle. The average amplitude of the modulated signal is proportional to 

the duty cycle, denoting that a higher duty cycle corresponds to a higher 

amplitude. The conductance of the ReRAM cell can be set according to 

the pulse width of the modulated input voltage. Moreover, as the write 

and read operations of the ReRAM cell can be distinguished by pulse 

amplitude, the PWM arrangement can be shared among the load and 

calculation operations. When compared with pulse amplitude modulation 

(PAM), PWM is more suited for applications where precise control of 

power is required, while PAM is more suited for applications where 

accurate transmission of analog information is required. 
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5.3 Analog to digital converter 

 

The ReRAM crossbar array outputs a current value through each of its 

columns. The currents must be converted to digital format through an 

ADC. The ADC array is a collection of cooperating ADC circuits that 

simultaneously convert multiple analog signals to digital signals. The 

ADC array can thereby process large amounts of analog data quickly and 

efficiently. The ADC array samples the analog signals at a specific rate 

and converts each sample to a digital value representing the amplitude 

of the analog signal at the time of sampling. An ADC array is 

characterized by the resolution, speed, and accuracy of each ADC circuit 

in the array. The resolution of an ADC circuit refers to the number of 

bits representing the digital value of each sample. In a high-resolution 

circuit, the digital value can represent a larger range of analog 

amplitudes than in low-resolution circuits, allowing a more accurate 

conversion of the analog signal into a digital signal. 

The resolution similarly affects the accuracy of the VMM operation 

performed by the ReRAM crossbar array. Therefore, we here set the 

ADC resolution to eight-bit (see Figure 6). As the amplitude of a qubit 

ranges from -1 to 1, at least one bit must be assigned to the sign of the 

amplitude. Referring to the paper [35] and considering that the area and 

power requirements of the ADC placement consume a large portion of 

the overall circuit, we applied an eight-bit Flash ADC rather than a 

successive approximation register (SAR) ADC. The Flash ADC also 

provides reliable accuracy and optimal hardware, which are more 
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important than resolution in our present study.  

The Flash ADC is sometimes called the parallel ADC because it 

compares the input signal to a set of reference voltages using a parallel 

comparison technique. According to [35], the SAR is slightly better than 

the Flash at resolutions below five-bit. Above five-bit, the Flash covers 

a larger area and demands more power than the SAR but is more suitable 

for our architecture because its high-speed sampling rates can 

accelerate the simulation. 
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Figure 6. Eight-bit analog-to-digital converter circuit. It consists 

of 256 resistors and comparators and one priority encoder. 
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6. Evaluation 

This section describes the experimental environment in which we 

compared the performance (simulation time, hardware resources, and 

accuracy) of our simulator with those of the Qiskit [36], QuEST [15], 

and QPlayer [14] simulators. 

 

6.1 Experimental setup 

 

To evaluate the hardware performance, we first constructed an 

accelerator with 12 QPUs having eight banks of a ReRAM crossbar array 

to manipulate complex numbers and improve the accuracy of the 

simulation result. The number of QPUs equals the number of built-in 

gate types in the LUT because each QPU serves only one type of gate 

during processing. The size of the ReRAM crossbar array depends on 

the number of deployed quantum gates. Each ReRAM cell stores eight-

bit to satisfy the precision requirements as explained in subsection 5.3. 

The ReRAM crossbar array was accessed through the Destiny V2 tool 

[23] based on NVSim, a device and circuit simulator designed for 

modeling emerging non-volatile memory (NVM) technologies. The 

ReRAM was configured to simulate the multi-level cell (MLC) configured 

in [30] (see Table 2). The MLC ReRAM has a 1T1R structure and is 

manufactured using CMOS technology. One transistor and one ReRAM 

cell are used for cell selection and data storage, respectively. Also, we 

refer to the paper [39, 38, 29] for researching the configuration of the 



33 

 

high-precision ReRAM cell. Furthermore, our gate decoder and ROU 

were designed using Verilog Hardware Description Language (HDL) and 

synthesized using the 40-nm technology node in the Synopsys design 

compiler. To verify both the runtime and accuracy of simulations in our 

proposed architecture, we selected a quantum assembly language 

(QASM) as the benchmark [19] and exploited the CrossSim simulator, a 

crossbar simulator that mimics resistive memory in neuromorphic 

computing. Table 3 summarizes the benchmark quantum circuits used in 

this experiment. Depending on their number of qubits, the quantum 

circuits can be separated into three scales (small, medium, and large). 

Small-, medium-, and large-scale quantum circuits are composed of 2–

5 qubits, 6–15 qubits, and 15 or more qubits, respectively. Table 3 

presents the properties and numbers of qubits, quantum gates, and 

CNOT gates in each quantum circuit. Finally, the RSV column denotes 

the maximum length of the RSV derived from each benchmark, which is 

crucial for the reordering process in our simulator. All benchmarks were 

evaluated in a server with Dual Intel Xeon(R) Silver 4214R 

processor@2.40 GHz (24 cores, 48 threads) and 256 GB of DDR4 main 

memory. 
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Table 3. Parameters of the ReRAM simulation 

Appearance MLC ReRAM 

Cell Structure 1T1R (HfO2) 

Cell Area 20 

Bit per Cell 4 

Num of Banks 8 

Sensing Scheme PSRC Current 

Optimization Target Write Latency 
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6.2 Performance analysis 

 

6.2.1 Simulation time 

To evaluate the VMM operation time of the proposed accelerator, we 

define the equation for read operation based on the clock frequency for 

one QPU as follows: 

 

 

𝑇𝑙𝑜𝑎𝑑  is the time of loading the RSV from the RSV buffer into the 

reordered RS buffer in preparation for the VMM operation. Since the 

reordering time of one RS is the period of one cycle, 𝑇𝑙𝑜𝑎𝑑 consumes 2N 

cycles, where N is the number of RSs. The time 𝑇𝑣𝑚𝑚 of one VMM is 1 

because multiplication consumes only one cycle owing to the structure 

of the crossbar. The number of output operations is the number of 

inputted RSs and the time 𝑇𝑜𝑢𝑡𝑝𝑢𝑡 of generating the output is the time of 

2N cycles. Therefore, the total simulation time 𝑇𝑠𝑖𝑚 is then given as: 

 

𝑇𝑠𝑖𝑚 = 𝑇𝑤𝑟𝑖𝑡𝑒 + ∑(𝑇𝑟𝑒𝑎𝑑 + 𝑇𝑟𝑜𝑢𝑡𝑖𝑛𝑔)

𝑘

𝑖=1

  (3) 

 

In Equation 3, 𝑇𝑠𝑖𝑚 is the sum of 𝑇𝑤𝑟𝑖𝑡𝑒, the time of writing the quantum 

gate matrix into the QPUs, and the sums of 𝑇𝑟𝑒𝑎𝑑 and 𝑇𝑟𝑜𝑢𝑡𝑖𝑛𝑔, the times 

of reading and transferring the result from the 𝑖𝑡ℎ-QPU to the (𝑖 + 1)𝑡ℎ-

𝑇𝑟𝑒𝑎𝑑 = 𝑇𝑙𝑜𝑎𝑑 + 𝑇𝑣𝑚𝑚 + 𝑇𝑜𝑢𝑡𝑝𝑢𝑡  (2) 
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QPU, respectively, where k denotes the number of quantum gates. To 

estimate 𝑇𝑟𝑜𝑢𝑡𝑖𝑖𝑛𝑔, we must first examine the flit size and packet length 

of the router. A packet defines a complete unit of data delivered through 

the network, whereas a flit is the smallest unit of transmissible data, 

which (as a piece of the packet) can be transmitted more efficiently 

across the network than a packet. The router in our architecture 

produces a flit size of 64-bit and a packet length of 16- flit [17]. 

Therefore, one packet can transfer 1,024-bit of data (16 − flits × 64 − 

bit). The proposed router can also be operated at a clock frequency of 

500 MHz in the NoC structure, meaning that all circuits inside the QPU 

and ReQUSA can be synchronized with a clock cycle time of 2.0ns, i.e., 

𝑇𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒. Therefore, 𝑇𝑟𝑜𝑢𝑡𝑖𝑛𝑔 is calculated as follows:  

 

𝑇𝑟𝑜𝑢𝑡𝑖𝑛𝑔 = ⌈𝐿𝑟𝑠/(𝑆𝑝𝑎𝑐𝑘𝑒𝑡/𝑆𝑟𝑠 )⌉ × 𝑇𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒  (4) 

 

where 𝑆𝑝𝑎𝑐𝑘𝑒𝑡 and 𝑆𝑟𝑠 denote the data size of one packet and one RS, 

respectively. 𝑇𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒 is the clock cycle time, and 𝐿𝑟𝑠 is the length of 

the output data of the current QPU. One RS contains 32-bit of data, 16-

bit each for the real and imaginary parts of the complex number. The 

division of 𝑆𝑝𝑎𝑐𝑘𝑒𝑡 by 𝑆𝑟𝑠 gives the maximum number of RSs that can be 

contained in one packet. Moreover, after dividing 𝐿𝑟𝑠 by the obtained 

maximum number, we can determine the number of packets to be 

transmitted. Finally, multiplying this result by 𝑇𝑐𝑙𝑜𝑐𝑘_𝑐𝑦𝑐𝑙𝑒 gives the time 

required for routing. Figure 7 compares the quantum computer 

simulation time of ReQUSA based on Equation 3 with the simulation times 

of other simulation tools (QuEST, QPlayer, and Qiskit) using the 
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benchmark circuits listed in Table 2. The times are presented on the 

log10 scale. At this time, in order to unify the environment of all 

simulators, we only applied OpenMP to QuEST without GPU acceleration 

(GPGPU) technology. On all benchmarks, the simulation time of ReQUSA 

far exceeded those of the other simulators. On average, the runtime of 

ReQUSA was × 104  faster than that of QuEST, which exhibited the 

longest simulation time on all benchmarks, and × 103 and × 102 faster 

than those of QPlayer and Qiskit, respectively. The simulation times of 

QPlayer and ReQUSA, which use RS techniques, do not gradually 

increase with an increasing number of qubits because a quantum circuit 

with a large number of qubits cannot assure a large number of 

entanglements as same as the RS, the main factor of the VMM operation. 

Thus, ‘cat_state_n22’ with more qubits but less entanglement runs faster 

than the ‘ising_n10’ circuit, which consists of only 10 qubits but has many 

entanglements. More precisely, when analyzing the 𝑇𝑠𝑖𝑚 of ReQUSA, we 

found that even if the variability of 𝑇𝑠𝑖𝑚 is small in overall time across 

all benchmarks, there is significant variability in 𝑇𝑟𝑒𝑎𝑑 depending on the 

number of RSs like in the case of ‘ising_n10’. This phenomenon may 

seem like the RS method does not affirm accelerating simulation in a 

large-scale quantum system, however, it is clear that the ReQUSA shows 

much better performance than other simulators. 
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6.2.2 Hardware resource 

 

As all QPUs have the same circuit configuration, measuring a single QPU 

is sufficient for checking the hardware resources. The peripheral circuit 

includes all components of the QPU except the ReRAM crossbar array 

(ADC and PWM arrays). Table 4 shows the hardware resources (area, 

energy, and leakage power) of the QPUs. The performance was 

evaluated at 16-bit fixed precision while the crossbar array size was 

increased from 4 × 32 to 128 × 1024. Doubling the size of the crossbar 

increased the total area at the same rate. More specifically, doubling the 

crossbar- array size increased the area of the peripheral circuit. It also 

increased the area of the crossbar arrangement, but the increase was 

less than 1% of the total area under each condition. Meanwhile, the 

energy was at least doubled with increasing crossbar-array size and 

later increased by approximately fourfold. The crossbar arrangement 

consumed more than 90% of the total energy. The leakage power 

behaved similarly to the energy consumption. The most important point 

is that at any array size, the clock cycle time could be 2.0ns. Thus, 

regardless of the area of the peripheral circuit and crossbar, the 

hardware can operate at the same clock frequency. Expanding the circuit 

size did not affect the performance of the accelerator. 
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6.2.3 Simulation accuracy 

 

To evaluate the accuracy of our proposed method, we utilized the VMM 

method presented in Figure 5. The bit accuracy ranged from four- to 

16-bit, reserving one bit for the sign of the quantum state and the 

remaining bits for its fractional part. As the quantum state values ranged 

from 1 to -1, we opted to disregard the integer part of the state. The 

quantum state value was directly converted from 1.0 to 0.999..., thereby 

sacrificing one bit of accuracy to include an additional fraction bit. Table 

5 shows the accuracies of the ReQUSA simulations on various quantum 

circuits ranging from small to large scales. Since the accuracy of the 

simulation result is over 90% to be considered a reliable value, we 

marked the corresponding values in grayscale as shown in Table 5. In 

the table, the simulation accuracy results above 90% are highlighted in 

blue. The accuracy was calculated by comparing the RS value to the 

Qiskit value. Simulations using four- to eight-bit typically obtained a low 

accuracy owing to the low bit precision and consequent inaccurate 

floating-point representation during VMM operations. The accuracy of 

ReQUSA is primarily determined by the circuit’s gate, with the number 

of qubits playing a secondary role. For instance, despite having only 

three qubits, the circuit ’toffoli_n3’ shows a lower accuracy than the 

‘multiplier_n25’ circuit. Because the ’toffoli_n3’ contains multiple 

Hadamard gates and the ‘multiplier_n25’ does not. This demonstrates 

that ReQUSA’s accuracy is compromised when multiplication involves 

numerous floating-point numbers. Another example is the fully-
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superposed circuit ‘bv_n14’, in which an H gate is applied to each qubit. 

Simulations of this circuit, which has 214 RSs, yielded no results at a bit 

precision lower than 10 because the result approached 0 during VMM 

operations at very low bit precisions. On this circuit, the outcome is much 

more dependable at precisions of 14-bit and higher. 
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7. Conclusion 

This paper proposed our quantum computer simulation accelerator 

ReQUSA based on ReRAM for high-speed VMM operations. The 

proposed architecture reduces the simulation time by applying the RS 

method to reduced VMMs, thereby leveraging the advantages of the 

ReRAM crossbar array. Our designed architecture includes multiple 

QPUs consisting of the ReRAM crossbar array, a reordering unit for the 

RS method, and peripheral circuits such as the PWM, ADC, and Adder 

array. We further confirmed that our architecture outperforms the 

existing simulators. Specifically, it decreases the simulation time on 

average by × 104 from that of QuEST, and by a least × 102 and × 103 

from those of Qiskit and QPlayer, respectively. A reasonably correct 

result was obtained at eight-bit precision in a non-fully superposed 

quantum circuit and the accuracy was improved by extending the bit 

precision to 16-bit. Consequently, the ReRAM-based accelerator 

ReQUSA promises to significantly reduce the simulation time while 

providing a minimized hardware resource and accurate results in 

quantum computer simulations. 
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