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ABSTRACT 

The 6D pose estimation problem involves both object detection and the determination 

of their translations and rotations. In three-dimensional space, these properties each 

have three degrees of freedom, collectively referred to as the 6D pose. Specifically, the 

term encompasses the translational and rotational motions of a rigid body along the x, 

y, and z axes in a three-dimensional Cartesian coordinate system. The challenge in 

object pose estimation lies in determining the translation and rotation of an object. 

Translation refers to the displacement along the three orthogonal coordinate axes-x, y, 

and z. Rotation involves the angle of rotation around these three right-angle coordinate 

axes, encompassing pitch, yaw, and roll operations.  

Estimating the pose of objects is crucial for enabling machines to interact or manipulate 

them effectively. This capability finds applications in various domains, including 

augmented reality, virtual reality, autonomous driving, robotics, and more. However, 

addressing the associated challenges is non-trivial, involving issues such as cluttered 

backgrounds, occlusions, untextured objects, and scenarios where images are not 

readily available. In such cases, minor variations in rotation, translation, or scaling can 

pose challenges in accurate pose estimation. In industrial settings, robots leverage 6D 

pose technology to estimate and manipulate objects accurately. In augmented reality 

applications, 6D pose estimation plays a crucial role in measuring the poses of real-

world objects, enabling the seamless integration of virtual objects into the environment 

with correct spatial positioning. This capability enhances the overall functionality and 

immersive experience of augmented reality applications. 
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6D pose estimation involves leveraging discernible details from a reference 2D image 

to deduce the 3D rotation and 3D translation of an object in relation to the known shape 

of the camera. Typical cameras used for capturing scenes include RGB cameras and 

RGBD (color and depth) cameras. However, the use of depth cameras is not always 

feasible, especially outdoors where they can be prone to failure due to lighting 

conditions. Therefore, there is a preference to rely solely on color images for 6D pose 

estimation, even though this poses additional challenges. Despite the challenges, it is 

crucial to address occlusion—the partial visibility of the object due to obstructions-

which significantly impacts pose detection. Occlusion complicates the inference of an 

object's position as only a portion of the object is visible. As a result, estimating a 6D 

pose is not always straightforward, and overcoming occlusion remains an important 

consideration in the development of accurate pose estimation systems. 

This thesis introduces a methodology for estimating the 6D pose of an occluded object 

using only RGB images. The approach employs a neural network to identify keypoints 

by predicting vectors that point to these keypoints for each pixel in the RGB image. 

These vectors are generated through the prediction of pixels for semantic segmentation. 

The accuracy of localizing keypoints crucially depends on the results obtained for the 

target pixels. The neural network automatically adjusts the weights of the pixels based 

on its prediction results, enhancing the network's learning capability, especially in 

occluded regions. Consequently, our approach excels at extracting features from 

occluded regions, ensuring robust performance even in cases of object occlusion. 

Comparative analysis against existing approaches demonstrates that our method 

achieves higher accuracy in 6D pose estimation. 
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CHAPTER I 

INTRODUCTION 

 

The 6D pose of an object is characterized by its translation and rotation vectors. 

Specifically, an object's 6D pose is described by a 3D rotation matrix R belonging to 

the special orthogonal group SO (3) and a 3D translation vector T = [𝑡𝑥  , 𝑡𝑦 , 𝑡𝑧 ]𝑇. This 

translation vector represents the displacement between corresponding points 𝑋𝑜  = 

[𝑥𝑜, 𝑦𝑜, 𝑧𝑜]𝑇  of the object in its own coordinate system {O} and the camera's 

coordinate system {C} with corresponding points T = [𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧 ]𝑇 . The 6D pose 

captures both the rotational and translational aspects of the object's spatial orientation. 

All points in a rigid object have the same rotation and translation matrices, which we 

call transformation matrices. In general, the object pose in the camera is parameterized 

to other forms. For example, the rotation matrix is usually represented as a quaternion. 

As shown in Figure 1, 3D translation and rotation are expressed as T = [𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡]𝑇 

and R = 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑥(𝛾), respectively. The former is denoted by the origin of the 

object coordinate system within the camera coordinate system, while the latter 

represents the angles defining the orientation of the object coordinate system with 

respect to the camera coordinate system axes. The relationship between a point 𝑋𝑜 in 

the object coordinate system {O} and the corresponding point 𝑋𝑐  in the camera 

coordinate system {C} can be expressed as follows:  

𝑋𝑐 =  [𝑅 | 𝑇]𝑋𝑜 ,    (1-1) 
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𝑧𝑐 [
𝑢
𝑣
1

] = k [ 𝑅 𝑇 ] [

𝑥𝑜

𝑦𝑜
𝑧𝑜

1

] ,   (1-2) 

Where k is camera intrinsic and u, v, 𝑧𝑐 refer to object coordinates in camera system, 

𝑅 is: 

R = 𝑅𝑍(𝛼)𝑅𝑦(𝛽)𝑅𝑥(𝛾) ,   (1-3) 

= [
cos 𝛼 − sin 𝛼  0
sin 𝛼 cos 𝛼    0
0           0        0

] [
cos 𝛽 0 sin 𝛽 
0        1        0

−𝑠𝑖𝑛𝛽 0 cos 𝛽
] [

1        0          0
0 cos 𝛾 − sin 𝛾
0 sin 𝛾 cos 𝛾

] ,  (1-4) 

= 

[

csc 𝛼 cos 𝛽  cos 𝛼 sin 𝛽 sin 𝛾 − sin 𝛼 cos 𝛾 cos 𝛼 sin 𝛽 cos 𝛾 + sin 𝛼 sin 𝛾
csc 𝛼 cos 𝛽  cos 𝛼 sin 𝛽 sin 𝛾 + sin 𝛼 cos 𝛾 cos 𝛼 sin 𝛽 cos 𝛾 − sin 𝛼 sin 𝛾

− sin 𝛽                               cos 𝛽 sin 𝛾                          cos 𝛽 cos 𝛾
], (1-5) 

 

where α, β, γ are the angles between the axis of the object coordinate system and the 

axes of the corresponding camera coordinate system when the points of the object 

coordinate system are converted to the points of the camera coordinate system. 𝑅𝑍,

𝑅𝑦, 𝑅𝑥 refer to the correspondence rotation matrix. In recent years, there has been a 

growing use of pose estimation, particularly in applications like Augmented Reality 

(AR). The information provided, including the 6D pose and scale of objects, proves 

valuable for integrating objects into virtual environments. Additionally, pose estimation 

models play a crucial role in robot grasping, and prominent challenges like the Amazon 

Challenge [1] heavily rely on 6D pose estimation. Moreover, the precise pose 

estimation constraints imposed on the camera object have a profound impact on 

elevating the performance of object-oriented Simultaneous Localization and Mapping 

(SLAM). This is particularly significant as 3D detection plays a pivotal role in 

advancing the development of autonomous driving techniques for motor vehicles. The 

synergy between accurate pose estimation and SLAM contributes to a more robust unde 
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-rstanding of the environment, while advancements in 3D detection are instrumental in 

enhancing safety and efficiency in autonomous driving technologies. 

Although the research on 6D pose estimation techniques has made great progress in 

recent years, it is still very challenging when encountering problems such as 

background clutter, large changes in viewpoints and lighting, or small scene textures in 

real scenes. While robustness and performance need to be improved, the available 

solutions are also very limited. 

To enhance the performance of pose estimation, an increasing number of studies 

explore the utilization of texture information, geometric data, color information, and 

more to estimate 6D pose. For example, these studies often involve the indirect 

prediction of one or more intermediate representations from such information to 

estimate the pose, resulting in enhanced robustness. RGB-D cameras, while effective, 

pose challenges due to their difficulty and expense of use, intricate calibration processes, 

and the potential drawbacks of heavy and sensitivity to external factors like lighting 

 

Figure 1. Illustration of pose definition. {C} is camera frame, {O} is object frame, 

R is the rotation matrix, T is the translation. 
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conditions, making them prone to failure. As a result, a pose estimation method that 

relies solely on RGB images becomes a more practical and preferable choice. 

In recent years, the widespread attention to 6D pose estimation algorithms based on 

deep learning can be attributed to the rapid advancements in deep learning and neural 

network technology. Certain methods in this domain establish 2D-3D correspondence 

keys between images by generating keypoints for localization on the object's surface. 

Subsequently, these correspondences are utilized to compute the 6D pose [2, 3]. Usually, 

these methods follow two main steps: 1. Estimating the 2D keypoint coordinates in the 

input image; and 2. Utilizing the PnP algorithm (Perspective-n-Points) to calculate the 

final 6D pose results. 

In this thesis, we introduce a novel method for estimating the 6D pose of occluded 

objects. Notably, our approach involves dynamically adjusting the weights within the 

neural network, compelling it to learn additional features of the target. This innovative 

technique enables the inference of prediction the object's pose even when it is heavily 

occluded, relying on information from the visible portions. 
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CHAPTER II 

OVERVIEW OF ESTIMATING 6D POSE OF OCCLUDED 

OBJECTS USING KEYPOINT FROM RGB IMAGE 

 

II.1. Background 

Keypoints refer to points in an image that encapsulate what is considered interesting or 

salient in the visual content. They possess invariance to image rotation, contraction, 

translation, distortion, and other transformations. 6D pose estimation methods based on 

keypoints leverage local features extracted from all pixels within a specified region of 

interest or image. These features are compared to those on the 3D model, establishing 

a 2D-3D match. The overall process involves two key phases: in the first phase, local 

features are extracted and compared with the 3D keypoints; in the second phase, 2D- 

  

 
 

Figure 2. Schematic diagram of the keypoint-based pose estimation method. At first, 

extracting features from images is crucial, Features are compared with the 

annotated 3D model to find matches, and the PnP algorithm estimates the object's 

6D pose, enhancing robustness in handling images. 
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3D mapping is employed to solve the geometric problem, and the 6D pose is 

determined using the PnP algorithm. Figure 2 provides a schematic representation of 

this process. 

The methodology underlying keypoints-based 6D pose estimation involves predefining 

a set of keypoints on the object's surface, serving as specific positional indicators. The 

RGB image captures the authentic scene of the object through camera detection, with 

the neural network predicting the 2D keypoint positions in the RGB image. This 

prediction step is typically facilitated by the neural network. Finally, the 6D pose is 

computed using the Perspective-n-Points (PnP) algorithm, considering the 

correspondence between 2D-3D point pairs. This comprehensive approach enables 

accurate and robust pose estimation in various applications. 

 

II.2. Challenges of 6D pose estimation 

II.2.1. Texture-less objects 

Estimating the pose of texture-less objects presents a distinct challenge within the realm 

of pose estimation. Due to the absence of reliable texture information, conventional 

pose estimation methods reliant on surface feature extraction encounter difficulties in 

extracting meaningful information features. Given the prevalence of texture-less 

objects in real industrial scenes, enhancing the performance of pose estimation for such 

objects is imperative. 

The researchers introduced a novel 6D pose estimation framework called Pix2Pose [4]. 
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This framework utilized an untextured 3D model during training to robustly regress 

pixel-level 3D coordinates of the target from RGB images. The motivation behind this 

pose estimation method stems from the inherent difficulty in constructing 3D models 

with precise textures, particularly without expert knowledge or specialized scanning 

equipment in real-world scenarios. In the context of robot manipulation, capturing an 

unknown object demands a three-dimensional scene. Employing a convolutional neural 

network facilitates the identification of grasping points within depth images. Schaub et 

al. [5] expanded the initial algorithm through the integration of real and virtual 

viewpoints, projecting anticipated grasping quality information onto object surfaces. 

This innovative method merges semantic insights from human-labeled datasets with 

geometric object analysis, enhancing the capability to achieve dependable grasps for 

various unknown objects. 

 

 

 

 

 

 

 

 

 
 

Figure 3. Cases of inaccurate and failed detection due to occlusion and cluttered 

background. The green and blue bounding boxes represent the gound truth and the 

prediction results respectively. 
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II.2.2. Occluded objects 

In complex scenes, object occlusion occurs frequently. The extraction of target features 

is interfered because the target is occluded by other objects or self-objects. In addition, 

it is hardly to estimate the accurate pose result due to the missing information of some 

objects. 

Paul et al. [6] proposed an approach where the discriminative features of the object 

images associated with the corresponding 3D poses are first learnt and then pose 

estimation can be achieved by simply retrieving the similarity of the input images to 

the templates. Nevertheless, while effective for lightly occluded objects, this method is 

susceptible to detection failure in the case of heavy occlusion. Additionally, the 

template matching method proves sensitive to cluttered backgrounds. Recent research 

has showcased the dominance of using keypoints as intermediate representations for 

pose prediction. These keypoints encapsulate specific positional coordinates of the 

object, providing a more robust approach. The system in [7] proposes a process that 

includes object detection, keypoint localization, and pose refinement. Peng et al. [8] 

proposed Pixel-by-Pixel Voting Network (PVNet), a method to predict 2D-3D 

correspondence by generating vectors pointing to the key pixel by pixel. The generated 

keypoint hypotheses are filtered by the spatial probability distribution of the keypoints, 

a process they call voting, and then the estimated pose results are obtained using the 

PnP algorithm. The method of estimating keypoints by direction vectors is effective for 

pose estimation of most occluded objects. 
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II.2.3. Background clutter 

Indeed, background clutter poses a significant challenge in the context of 6D pose 

estimation. The presence of complex or distracting backgrounds can interfere with the 

accurate localization and identification of objects in an image, making it more difficult 

for the pose estimation algorithms to precisely determine the position and orientation 

of the objects in three-dimensional space. Strategies and algorithms need to be robust 

enough to handle various background scenarios and still provide reliable pose estimates. 

Directly estimating the 6D pose poses a challenge due to the abundance of irrelevant 

information surrounding the target. However, in real-world scenarios, there are frequent 

instances where it is imperative to measure the 6D pose of objects within cluttered 

environments. 

He et al. [9] proposed Mask R-CNN for accurate object detection. This method 

generates segmentation masks while detecting objects in the image, which is a very 

efficient method for object detection. In [27], They expanded upon the investigation of 

Mask R-CNN by incorporating an object mask prediction branch alongside the existing 

bounding box recognition branch. Some previous studies have proposed methods for 

estimating 6D pose using clutter, exploiting the relational nature of scene-level physical 

interactions to that well predict the accuracy of the pose. The similarity between the 

given depth and the predicted generated scene renderings is then used as a criterion to 

search through Monte Carlo Search (MCTS) for the best candidate pose combinations. 
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II.3. Algorithms for estimating 6D pose from RGB image 

II.3.1. Overview 

An RGB image, also known as a color image, is stored as an array of M  N  3 data, 

delineating the red, green, and blue components for each pixel. This color 

representation is fundamental in various applications, serving as the base color space 

for devices like cameras, monitors, and scanners. Its versatility enables seamless 

display without the necessity for conversion, making RGB images ubiquitous in 

modern technology. 

Estimating pose using only RGB images is one of the most challenging tasks in 6D 

pose estimation. The shape and geometry of the object are indispensable information 

for pose estimation, and the pose can be inferred from the shape of the object regardless 

of its appearance. Estimating the pose using only RGB images implies that all the 

information that can be captured comes from the RGB images, so a large number of 

RGB images for training is essential. Using an annotation approach to infer poses is 

robust but the annotation process is more time-consuming and costlier. For example, in 

the Pix3D dataset [10], keypoints must first be labelled between the collected 3D CAD 

models and the RGB images. The final 6D pose is obtained by utilizing the 2D-3D 

correspondence through the Efficient Perspective-n-Point (EPnP) algorithm [11]. This 

step is a common procedure in most keypoint-based two-stage 6D pose solving 

algorithms. 

Furthermore, the continuous exploration of this field is motivated by the widespread 

prevalence of RGB datasets, the straightforward accessibility of real-world RGB 
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images, and the ongoing efforts to overcome the associated challenges. 

 

II.3.2. Template-based methods 

Template matching involves generating a template dataset by rendering a 3D CAD 

model and then comparing original images with these templates to identify the most 

similar one. The pose of the most similar template is then utilized as the final result, 

typically determined by a pixel-by-pixel comparison between the original image and 

the template. Fundamentally, in the 6D pose estimation method using template 

matching, the goal is not to directly calculate the pose but rather to search for the 

template with the highest similarity to the original image. The pose associated with this 

most similar template is then returned as the final estimation result. 

It is hardly possible to process 3D data directly because it is too large and 

computationally expensive. Therefore, some researches aiming at reducing the 

complexity of such tasks have emerged. Nguyen et al. [12] present GigaPose, utilizing 

discriminative templates for out-of-plane rotation recovery and patch correspondences 

for the remaining parameters. Unlike conventional methods, GigaPose samples 

templates in a two-degree-of-freedom space, achieving a 38x speedup with fast nearest 

neighbor search in feature space. Additionally, GigaPose exhibits increased robustness 

to segmentation errors. Since YOLO [13] is time consuming, a 2D bounding box is 

used to segment the field point cloud. Furthermore, a proposed method involves 

extracting keypoints from the template point cloud by retaining points with more 

informative features, such as edges, while eliminating other surface points to compress 
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the overall point cloud. In [14], researchers enhance LINEMOD's template-based 

detection and pose estimation for texture-less objects to improve robustness in the 

presence of partial foreground occlusions. They divide the template into four parts, 

independently matching each. Using an image pyramid searching method accelerates 

template matching, boosting the accuracy of fine pose estimation. Experimental results 

demonstrate increased robustness, particularly in scenarios with partial foreground 

occlusions. 

Due to these limitations mentioned above, the latest template matching based pose 

estimation methods are dedicated to address the effects of factors such as occlusion. 

Yann et al. [15] introduce MegaPose, a method for estimating the 6D pose of novel 

objects unseen during training. At inference, it requires only a region of interest and a 

estimation methods are dedicated to address the effects of factors such as occlusion. 

Yann et al. [15] introduce MegaPose, a method for estimating the 6D pose of novel  

 

 

 

 

 

 

 

 
 

Figure 4. Flowchart of template-based method for 6D pose estimation. The final 

result is obtained by returning the pose of the most similar template. 
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objects unseen during training. At inference, it requires only a region of interest and a 

CAD model of the observed object. They present a 6D pose refiner using a render-and-

compare strategy, taking inputs of the novel object's shape and coordinate system 

through synthetic views of its CAD model. 

Disadvantages: 

▪ Such methods are very sensitive to changes in external light and occlusion or self-

occlusion between objects. Therefore, when these noises are present in the objects, 

the calculated similarity is affected and it is difficult to get accurate comparison 

results. 

▪ The speed of the run is influenced by the number of templates; a higher number 

improves pose accuracy but slows down the process. A rich template database is 

crucial to enhance the probability of finding the correct pose. 

 

II.3.3. Regression-based methods 

These methods regress the 6D pose parameters directly from the input image, and an 

object detector is usually used to obtain a preliminary object position prior to pose 

regression. This class of methods is categorized as single-stage methods, where the 

pose problem is solved by designing a neural network to receive the input images for 

training, and then learning the 3D translations and 3D rotations of the represented 

objects. 

PoseCNN [9] is a notable approach for pose estimation in RGB images, utilizing a 
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comprehensive Convolutional Neural Network (CNN) with two stages. This CNN 

performs object segmentation, estimates rotation of multimedia tools, and determines 

distance from the camera. The network extracts and integrates feature maps from input 

images, providing outputs of semantic labels, 3D translations, and 3D rotations. Despite 

its effectiveness, PoseCNN faces challenges with input images containing multiple 

instances of the same object and may require refinement for improved accuracy. 

Another approach [18] extends previous work on semantically segmenting cluttered 

bin-picking scenes to isolate individual objects. An additional network, trained on 

synthetic scenes, estimates object poses from a cropped, object-centered encoding 

based on segmentation results. The proposed method is evaluated on synthetic 

validation data and real-world cluttered scenes. 

Some recent work has used set prediction to improve the speed of multi-object

 pose estimation, which is basically based on Transformer unfolding. Some stu

dies [16, 17] have obtained impressive results thanks to the fact that the transf 

 

 

 

 

 

 

 
 

Figure 5. Illustration of 6D pose estimation through regression. 
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-ormer synchronizes the features and captures feature dependencies better. 

Disadvantages: 

▪ This method is not accurate for the detection of occluded objects because 

not all of the target is visible in a given image, so it is difficult to extrac

t useful feature information when the occlusion area is too large. 

 

II.3.4. Classification-based methods 

This approach aims to solve the 6D pose of an object as a single-shot classification 

problem. They use CNNs to obtain the probability distribution of the 3D CAD model 

in the pose space to infer 3D translations and 3D rotations.  

Tekin et al. [39] introduce a novel single-shot approach designed to simultaneously 

detect objects in RGB images and predict their 6D pose, streamlining the process by 

eliminating the need for multiple stages or examining multiple hypotheses. Central to 

their method is a new CNN architecture, drawing inspiration from the YOLO [13] 

network design, which directly forecasts the 2D image locations of the projected 

vertices belonging to the object's 3D bounding box. The 6D pose of the object is 

subsequently estimated through a PnP algorithm. Notably, when applied to single-

object and multiple-object pose estimation tasks on datasets such as LINEMOD and 

LINEMOD-Occlusion, their approach consistently outperforms other recent CNN-

based methods, even in scenarios without post-processing. Moreover, they suggest that 

incorporating a pose refinement step during post-processing can further elevate the 
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overall accuracy of the system. The authors introduce VI-Net [19], a novel rotation 

estimation network that simplifies the task by decomposing rotations into point-of-view 

and in-plane rotations. VI-Net, based on the sphere, estimates these rotations through 

separate V and I branch. The V-branch learns point-of-view rotation through binary 

classification of the spherical signal, while the I-branch estimates in-plane rotation by 

converting the signal to be viewed from the zenith direction. They address spherical 

signals using a spherical feature pyramid network with SPAtial Spherical Convolution 

(SPA-SConv) to handle boundary issues and achieve variable feature extraction. VI-

Net is applied to category-level 6D object pose estimation for predicting the pose of an 

unknown object without an available CAD model. In the study [20], several prior works 

are referenced to enhance the algorithm's efficiency for complex scenarios. They adopt 

a two-stage pipeline for obtaining high-precision poses for multiple objects, with the 

first stage focusing on key point detection and the second stage employing PnP to 

determine the 6D pose. Introducing a simpler and more efficient classification-based 

key point detection algorithm for object surface key points is their proposed solution to 

address these challenges. Addressing the issue of substantial annotation requirements 

in existing category-level 6D pose estimation methods, Wanli et al. [21] proposes a 

self-supervised framework. Leveraging Deep SDF as the 3D object representation, 

novel loss functions are designed to enable the model to predict unseen object poses in 

real-world scenarios without the need for explicit labels or 3D models. 

Disadvantages: 

▪ Rotation and translation exhibit significantly different properties and are 

influenced by distinct factors. For instance, the size and position of an object in an 
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image have a minor impact on rotation but a substantial effect on translation. 

Conversely, the appearance of an object in an image strongly affects rotation and 

minimally affects translation. Therefore, attempting to predict the overall pose 

with a uniform binary classification approach would result in reduced accuracy in 

the predicted pose. 

 

II.3.5. Keypoint-based methods 

Keypoints, also referred to as points of interest, are specific points identified within 

textures. These points are typically characterized by abrupt changes in the direction of 

an object boundary or by being intersections between multiple edge segments. 

Keypoints have a well-defined and well-localized location within the image space. 

Importantly, even in the presence of local or global perturbations such as variations in 

illumination and brightness, keypoints remain stable. This stability allows keypoints to 

be computed repeatedly and reliably, making them valuable in various computer vision 

applications. 

Methods in this category often follow a two-stage pipeline: first predicting the 2D 

keypoints of an object and then computing its pose. The authors [22] propose a Deep 

Fusion Transformer (DFTr) block for enhanced pose estimation by aggregating cross-

modality features. DFTr leverages semantic similarity to model cross-modality 

correlation, enabling better integration of globally enhanced features. They introduce a 

weighted vector-wise voting algorithm with a non-iterative global optimization strategy 

for precise 3D keypoint localization, achieving near real-time inference with improved 
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robustness and efficiency. 

In [23], REDE is proposed as an end-to-end object pose estimator using RGB-D data. 

It employs a network for keypoint regression and a differentiable geometric pose 

estimator for error back-propagation. To address outlier keypoint predictions, a 

differentiable outliers elimination method is introduced, simultaneously regressing 

candidate results and confidence. Confidence-weighted aggregation of multiple 

candidates reduces the impact of outliers in the final estimation. Finally, a learnable 

refinement process is applied for further improvement. Heng et al. [24] introduce 

conformal keypoint detection and geometric uncertainty propagation to the two-stage 

paradigm, creating the first pose estimator with provable and computable worst-case 

error bounds. Conformal keypoint detection converts heuristic keypoints into circular 

or elliptical prediction sets, covering ground truth keypoints with a user-specified 

probability. Geometric uncertainty propagation extends geometric constraints on 

keypoints to the 6D object pose, forming a Pose Uncertainty Set (PURSE) that 

guarantees coverage of the ground truth pose with the same probability. Hu [25] points 

out drawbacks in this approach, emphasizing its absence of an end-to-end system and 

the insufficiency of the neural network's loss function in accurately representing 6D 

position estimation, the authors propose a single-stage approach. This method directly 

regresses the 6D pose using the collection of 3D-to-2D correspondences associated 

with individual 3D object keypoints. 

The keypoint-based pose estimation method is the most popular method today. Some 

recent studies [28,8] have predicted keypoints by means of indirect prediction 

representations, resulting in an impressive improvement in the model's prediction 
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performance for occluded objects. CDPN [29] analyses the different properties of 

translation and rotation and combines direct and indirect methods to estimate 

translation and rotation, respectively. GDRNet [30] and DPOD [31] extend the research 

of CDPN, and the performance of pose estimation is further improved. An experiment 

[32] showed that since the PnP algorithm is an offline algorithm and does not participate 

in the learning of the model, this is detrimental to the prediction of the model. Therefore, 

they proposed EPro-PnP algorithm for end- to-end training to learn 6D pose.  

Disadvantages:  

▪ The keypoint alone is the sparse representation of object pose, whose potential to 

improve estimation accuracy is limited.  

▪ Keypoints need to be pre-labelled and most keypoint-based methods are two-stage 

pose estimation methods. Therefore, the process from processing the data to 

computing the final pose is more time consuming. 

 

 

 

 

 

 

 
 

Figure 6. Schematic of keypoint-based 6D pose estimation. 
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II.4. PVNet 6D pose estimation approach 

II.4.1. Overview 

Addressing the challenge posed by objects in environments with substantial noise and 

potential occlusion causing unpredictable poses, Peng et al. [8] introduced a method 

grounded in keypoints. This approach, named PVNet, robustly calculates 2D keypoints 

through a pixel-wise voting mechanism. Rather than directly regressing 2D projections 

of 3D keypoints, they trained the network to regress direction vectors for each pixel 

pointing to the keypoints. Consequently, even when occluded, invisible keypoints could 

be accurately located by utilizing direction vectors derived from visible pixels of the 

obstructed object. In their strategy, the network was also trained to predict a semantic 

segmentation map to identify pixels belonging to the target object. Consequently, the 

success of the voting-based keypoint localization relies heavily on the precision of 

segmentation. However, challenges arise, especially in cases of extensive occlusion, 

where inaccurate segmentation can lead to failures. If pixels corresponding to the object 

are erroneously segmented, the associated direction vectors are compromised, resulting 

in the inaccuracy or unavailability of the voting-based keypoint localization. This issue 

becomes more pronounced in scenarios of severe occlusion where the count of visible 

object pixels is minimal. 

In a more detailed breakdown, PVNet undertakes two distinct tasks: semantic 

segmentation and vector-field prediction. For each pixel, denoted as p, PVNet generates 

two outputs. First, it provides the semantic label that categorizes the pixel, associating 

it with a particular object. Additionally, it produces a unit vector, denoted as 𝑣𝑘(𝑝), 
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which signifies the direction from the pixel p to a 2D keypoint 𝑥𝑘 of the object. This 

vector, 𝑣𝑘(𝑝), is precisely defined as 

𝑉𝑘(p) = 
𝑋𝑘−𝑃

||𝑋𝑘−𝑃||2
 ,   (2-1) 

 

After PVNet predicts the predicted semantic labels and direction vectors, keypoints are 

generated by voting. Specifically, the semantic labels are first used to find the target 

pixel, and then the intersection of the predicted direction vectors from two random 

pixels of the target is used to locate the keypoint. Then from the generated keypoints 

the group with the highest accuracy is selected as the final prediction using a RANSAC-

based [26] filtering method, and they refer to this process of filtering keypoints as 

voting. 

The utilization of RANSAC-based voting [30] effectively deals with the discrete 

prediction of points by establishing a spatial probability distribution for key points. This 

voting methodology introduces a degree of uncertainty in the generation of key points, 

contributing to an enhanced capability of the PnP algorithm to accurately predict the 

final pose. By incorporating this approach, the system gains resilience in handling 

uncertainties and variations in key point predictions, ultimately refining the accuracy 

of the pose estimation process. 
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II.4.2. Weakness 

In Figure 7, PVNet employs a method where it estimates the direction vectors for each 

pixel, indicating the direction toward the keypoints, instead of directly estimating 2D 

projections of 3D keypoints. This approach enables the identification of invisible 

keypoints by utilizing the direction vectors derived from visible pixels of occluded 

objects. The network is trained to predict a semantic segmentation map to identify pixel 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. PVNet pose estimation schematic. 

 

 

 

 

 

 
Figure 8. Pose estimation results of PVNet: (a) slight occlusion, (b) moderate 

occlusion, and (c) severe occlusion. The green bounding boxes indicate the ground- 

truth poses, and the blue ones indicate the estimated poses. The two-colored boxes 

overlap in most cases, showing that the accuracy. 
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-s belonging to the target object. Consequently, the accuracy of segmentation 

significantly influences the effectiveness of the voting-based keypoint localization. 

This method tends to fail when dealing with large occluded areas, particularly when 

incorrectly segmented pixels result in the loss of direction vectors, leading to inaccurate 

or unavailable voting-based keypoint localization. The challenge intensifies in cases of 

severe occlusion, where the number of visible object pixels is limited. Figure 8 

illustrates the outcomes of our experiments with PVNet. It is evident that the detection 

performance of PVNet remains consistent under conditions of light occlusion; however, 

its efficacy diminishes as the level of occlusion deepens, eventually resulting in failure 

under severe occlusion. Moreover, PVNet is susceptible to misdirection by objects 

sharing similar colors or shapes, resulting in detection failures, as exemplified in Figure 

9. Our experimental findings indicate that this susceptibility is attributed to the visual 

components being excessively small. 

 

  

 
 

Figure 9. Failure cases1. The network is easily misled by other objects with similar 

shapes or colors, leading to detection failures. 
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II.5. Perspective-n-point (PnP) algorithm 

The PnP algorithm serves as a solution for determining the camera position based on 

the coordinates of a 3D point, the corresponding 2D point coordinates, and the internal 

reference matrix. Widely applied in Computer Vision, Robotics, and Augmented 

Reality, it has garnered significant interest in both the Photogrammetry and Computer 

Vision communities. Notably, it finds practical use in applications like feature point-

based camera tracking, where real-time processing involves handling numerous noisy 

feature points. Consequently, there is a need for computationally efficient methods to 

address the challenges posed by these applications. 

The camera pose involves 6 degrees of freedom, encompassing 3D rotation (roll, pitch, 

and yaw) and 3D translation relative to the world. As a result, obtaining information 

from at least three pairs of corresponding points becomes essential to solve a PnP 

problem. While many existing solutions are designed for the general case where the 

number of points (𝑛) is greater than 3, there are also solutions specifically tailored for 

scenarios when 𝑛 equals 3. This versatility allows for the effective application of PnP 

algorithms across a range of cases, accommodating both common and specific 

situations.  

In most solutions, a prevalent assumption is that the camera is pre-calibrated, with 

intrinsic properties such as focal length, principal image point, skew parameter, and 

other relevant parameters already known. The PnP problem can yield multiple solutions, 

and selecting a specific solution from the set often involves post-processing. To 

mitigate the impact of noisy data, employing a greater number of point correspondences 
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in solving PnP is recommended. Commonly, Random Sample Consensus (RANSAC) 

is used for selecting point correspondences to enhance the robustness of the solution by 

effectively dealing with outliers [26]. Two widely used methods for solving the PnP 

problem are P3P and EPNP, with Figure 10 providing a schematic representation of 

P3P. P3P employs the geometric relationship of similar triangles and the cosine theorem 

to determine the camera pose. The input data for P3P consists of three pairs of matching 

3D-2D points.  

In the context of P3P, let's denote the 3D points as A, B, and C, and the corresponding 

2D points as a, b, and c. Here, the lowercase letters represent the projections of the 

corresponding uppercase letters on the camera imaging plane. Additionally, P3P 

necessitates the inclusion of a pair of validation points to discern the correct solution 

from the potential set of solutions. The optical center of the camera is denoted as O in 

this process. 

 

 

 

 

 

 

 

 
Figure 10. Schematic diagram of the P3P problem. 
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II.6. Focal loss 

In object detection, detectors are commonly classified into two categories: two-stage 

detectors and one-stage detectors. The former includes detection algorithms such as 

Faster R-CNN [27], which involve region proposal and can achieve high accuracy but 

at a slower speed. While speed can be improved by reducing the number of proposals 

or decreasing the resolution of the input image, there is no significant qualitative 

enhancement in speed.  On the other hand, the latter category comprises detection 

algorithms like YOLO [13], which do not require region proposals and instead regress 

directly. These methods are faster but generally exhibit lower accuracy compared to 

two-stage detectors. 

Lin et al. [33] propose that the challenge in object detection is attributed to the category 

imbalance within the samples. In many cases, an image may generate thousands of 

candidate locations, but only a small percentage of them actually contain objects, 

leading to a significant category imbalance. This imbalance hinders efficient training, 

as a substantial portion of locations are easy negatives that contribute minimal useful 

learning signals.  

To address the issue of category imbalance, the authors introduce focal loss, a modified 

version of the standard cross-entropy loss. Focal loss aims to make the model focus 

more on challenging-to-categorize samples during training by reducing the weight 

assigned to easy-to-categorize samples. The formula for focal loss is expressed as 

follows: 

Focal loss =  −𝑎𝑡(1 − 𝑝𝑡)𝑦log (𝑝𝑡) ,   (2-2) 
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In the given formula, y represents the focusing parameter, and its role is to reduce the 

weight assigned to easy-to-categorize samples. This adjustment aims to make the model 

more focused on hard-to-categorize samples during the training process. Additionally, 

a serve as a hyperparameter that allows for the control of the shared weight of positive 

and negative samples in the total loss. The value of a determines the balance between 

the contributions of positive and negative samples to the overall loss. Meanwhile, 𝑝𝑡 

denotes the probability of the current category. 
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CHAPTER III 

THE PROPOSED 6D POSE ESTIMATION APPROACH OF 

OCCLUDED OBJECTS USING KEYPOINT FROM RGB 

IMAGE 

 

III.1. Introduction 

As mentioned before, pose estimation can easily be affected by occlusion leading to 

inaccuracy or even failure. Given the swift advancements in deep learning neural 

network research, the research on 6D pose estimation based on deep learning has also 

been very much advanced, but its performance for complex detection scenarios still 

needs to be improved. To achieve robust pose estimation, depth information has been 

utilized in many researches. However, depth cameras are very sensitive to noise such 

as light in the field, and the problem of high-power consumption is difficult to solve if 

used as sensing on mobile devices. Therefore, most of the researches have started to 

move towards estimating 6D pose directly from RGB images only. Keypoint detection 

as a popular method for estimating pose using RGB images only has two general steps. 

(1) predict the keypoints of the surface from the RGB image; (2) compute the 6D pose 

using the perspective-n-point (PnP) algorithm by exploiting the correspondence of 2D-

3D point pairs. These methods have good performance for objects without any 

occlusion, but the performance for objects with occlusion leaves much to be desired, 

especially when the occlusion is severe. 
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To address the challenge of detecting occluded objects, Peng et al. [8] do not use the 

method of neural network to predict keypoints directly, but generate keypoints by an 

intermediate representation for voting. Briefly, they created a neural network structure 

called PVNet to predict the direction vectors from each pixel to the keypoints, and then 

used the direction vectors generated from these visible pixels to locate the invisible 

keypoints. So, they first had to obtain the target pixels needed to generate the direction 

vectors through semantic segmentation, and the localization of the keypoints depended 

heavily on the segmented target pixels. For slightly occluded objects PVNet can 

estimate the 6D pose well, when the object is in severe occlusion the performance of 

this method still needs to be improved. If the pixels of an object are incorrectly 

segmented or the segmented pixels are too small, the direction vectors will be lost and 

the keypoint localization will become inaccurate or impossible. 

 

III.2. Overview of proposed approach 

Our goal is to improve the performance of PVNet [8] for detecting the pose of depth-

obscured objects. Having analyzed the pose estimation process of PVNet, we find that 

the performance of pose estimation depends largely on the performance of semantic 

segmentation, since the direction vectors used to locate the keypoints are generated 

from the target pixels of semantic segmentation. 

In the field of object detection, Lin et al. proposed focus loss [33] to address the 

imbalance in the proportion of positive and negative samples by reducing the weight of 
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negative samples in training. Similarly, in semantic segmentation we consider the 

image as a sample space, while the target pixels are positive samples and the rest of the 

pixels are negative samples. In case of masking, the pixels of positive samples are 

obviously much smaller than negative samples and this problem of imbalance of 

samples causes the network to have difficulty in extracting the target pixels. To solve 

this problem, we introduce focus loss into PVNet to equip the network with an 

attentional mechanism to extract as many useful targets features as possible, even in 

the case of severe occlusion. 

In our experiments, we kept the original network of PVNet and only modified the loss 

function. The process of pose estimation is shown in Figure 11. To estimate the 6D pose 

of the target object P = [R, t] (where R is the rotation matrix and t is the translation 

vector) from the input RGB image, our network maintains the same pipeline as PVNet 

and outputs the segmentation map and pixel direction vector. But our segmentation map 

is a more accurate obtained through the attention mechanism, which we call focus 

segmentation map. Then keypoints are generated from the predicted pixel and direction 

vectors and finally the PnP [20] algorithm is used to compute the 6D pose. 

 

 

 

 

 
 

Figure 11. Process of our method. 
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III.3. Approach 

In PVNet [8], the loss function consists of a pixel-wise direction vector loss and a 

segmentation loss as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑣𝑒𝑐 + 𝑘𝐿𝑠𝑒𝑔 ,   (3-1) 

where κ represents a segmentation loss weight and is set to 1. The segmentation loss is 

computed by the cross-entropy function and the direction vector loss is computed as 

follows:  

𝐿𝑣𝑒𝑐 =  ∑  ∑ 𝑙1(△ 𝑣𝑘(𝑝)|𝑥) + 𝑙1(△ 𝑣𝑘(𝑝)|𝑦)𝑝∈𝑜
𝐾
𝑘=1  ,  (3-2) 

where K is the number of keypoints and 𝑙1 represents the smooth L1 loss [34]. ∆𝑣𝑘(p) 

is the direction error in pixel p and defined as follows: 

△ 𝑣𝑘(𝑃) =  𝑣̃ 𝑘(𝑝) −  
𝑋𝑘−𝑃

||𝑋𝑘−𝑃||2
 ,   (3-3) 

Where the 𝑣̃ 𝑘 is the predicted unit vector and 𝑥𝑘is the ground-truth coordinates of 

the 𝑘-th keypoint. 

In our method, we modify the cross-entropy loss for semantic segmentation based on 

an attention mechanism as follows: 

𝐿𝑠𝑒𝑔 =  ∑ ℎ ∗ 𝑓𝑖𝑖∈𝑀  ,   (3-4) 
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where · represents the inner product, ℎ is the one-hot encoded ground-truth, and 𝑓𝑖 is 

defined as 

𝑓𝑖 =  −𝑎𝑊𝑖 ∗ 𝑙𝑜𝑔(𝑆𝑖) ,    (3-5) 

where α is a hyperparameter and set to 0.25 in our experiments, and 𝑆𝑖 is the soft-max 

probability of pixel i. 𝑊𝑖 is a dynamic weight and computed as 

𝑊𝑖 = (1 − 𝑆𝑖)𝛽,    (3-6) 

where β is a hyperparameter and set between 1.5 and 2 in our experiments. 

In the training stage, employment of 𝑊𝑖 causes the network to add more weight to the 

segmentation error of the target object pixels that fall within the segmentation mask M, 

that is, the image regions that truly belong to the target objects, thereby alleviating the 

imbalance between the number of target pixels and the number of the others. 

The attention mechanism illustrated in Eq. 3-5 enables the network to concentrate more 

on segmenting the target pixels than the other pixels. This mechanism is inspired by 

focal loss and improves semantic segmentation; thus, it is named focal segmentation. 

Specifically, the focal segmentation mechanism enables the target object pixels to be 

fully and more accurately segmented. Even for severely occluded objects, sufficient 

number of target object pixels can be obtained, resulting in successful keypoint 

localization. 
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III.4. Result and discussion 

III.4.1. Setup 

For a fair comparison of experiments and results, we used the source code of PVNet [8] 

and the experimental setup was kept the same as PVNet. Unfortunately, due to the 

limitations of the experimental equipment, we were only able to reduce the mini-

batches size to 6, which resulted in a slight decrease in accuracy for both PVNet and 

our method. 

 

III.4.2. Datasets 

The LINEMOD dataset, which is the standard dataset used for evaluating 6D pose 

estimation (Figure 12), contains a total of 18,273 RGB-D images of 15 cluttered and 

slightly masked home objects. Given the bounding box, rotation and translation 

matrices the target object is located at the center of the image, and the provided masks 

represent the effective region of the target pixels. Additionally, the given 3D CAD 

model can be used to generate a composite image. 

LINEMOD-Occlusion [36] consists of RGB-D images of 20 home objects, real poses, 

masks and 3D CAD models. This dataset is an extended version of the LINEMOD 

dataset, and most of the objects in the dataset are in the occlusion state, so detecting the 

poses of these objects can be more challenging. Additional bounding boxes and poses 

are included for all seven other objects that appear in the Benchvise sequence. 

For our experiments, we used the “ape”, “can”, “cat”, “duck”, “driller”, “eggbox”,  
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“glue,” and “holepunches” models commonly included in both datasets. 

 

III.4.3. Evaluation metrics 

For evaluation, we measure the percentage of images where the object pose was 

estimated correctly. The pose correctness was determined using the following two 

different metrics. 

2D reprojection error [37] is the mean distance between the 2D projection of the 

object’s 3D mesh vertices obtained by applying the predicted and the ground-truth pose, 

and the predicted pose is correct if the error is less than 5 pixels. 

Average distance (ADD) metric [38] is the mean 3D distance between model vertices 

transformed by the ground-truth pose and the predicted pose. The estimated pose is 

correct when the distance is less than 10% of the model’s diameter. 

 

 

 

 
 

Figure 12. Part of images from the LINEMOD dataset used in our experiments. 
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III.4.4. Results and discussion 

Results of the pose estimation experiments on the LINEMOD dataset are shown in 

Tables 1 and 2. For each object, the number of images used in the evaluation was 

different, ranging from 1,002 to 1,050, and the metric results were averaged. The 

comparison with other state-of-the-art pose estimation methods is provided as well. The 

best results are marked in bold. Although a slight difference between both evaluation 

metrics was noted, our method outperformed the others, except the RGB-D-based 

method. Without depth information, our method showed similar performance to the 

RGB-D-based methods.  

In the occlusion-free cases, although the performance difference was not significant, 

our method exhibited better performance than PVNet (consistently better in terms of 

the 2D projection error), indicating that it is crucial to fully segment object pixels 

regardless of the existence of occlusion for accurate pose estimation. In other words, 

PVNet fails to segment certain object pixels (even if the whole object is visible), and 

the pose accuracy is lower than our method due to the difficulty of obtaining accurate 

direction vectors from the missing object pixels. 

Results of the pose estimation experiments on the LINEMOD-Occlusion dataset are 

shown in Tables 3 and 4, where 1,170 - 1,214 images have been used for each object. 

Since PoseCNN proposed by Xiang et al. [43] is a direct method and extremely 

sensitive to occlusion, its accuracy is low. YOLO6D proposed by Tekin et al. [39] is an 

accuracy is low in the presence of occlusion. GDRNet is a direct method proposed by 

Wang et al. [44], nonetheless, it extracts intermediate representations, including 2D-3D 
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 Table 1. ADD metric of different pose estimation methods on the LINEMOD dataset. 

 

 Table 2. 2D reprojection error of different pose estimation methods on the LINEMOD 

dataset. 

 

dense correspondences, which render it robust to occlusion. PVNet exhibits suitable 

performance in the presence of occlusion owing to the voting-based keypoint 

localization scheme. However, our method outperformed PVNet an d the others. In 

terms of ADD metric, only GDR-Net was comparable to ours. The difference between 

PVNet and our method shows that improvement in the segmentation process has a 

positive effect on pose estimation, particularly in the presence of occlusion. From the 

results of 2D reprojection error evaluation, it is clear that our method has improved the 

performance of pose estimation for models such as Ape, Duck, and Glue. The average 

Method Image Ape Can Cat Driller Duck Eggbox Glue Puncher Avg 

[10] RGB 27.9 48.1 45.2 58.6 32.8 40 27 42.40 40.29 

[31] RGB 53.28 94.1 60.38 97.72 66 99.72 93.83 65.83 78.86 

 [39] RGB 21.62 68.8 41.82 63.51 27.23 69.58 80.02 42.63 49.38 

[40] RGB 0.00 1.35 0.51 2.58 0 8.9 0 0.3 0.68 

 [8] RGB 62.28 97.53 77.45 95.04 57.93 99.81 77.89 85.06 81.62 

Ours RGB 46.95 97.93 82.44 95.34 48.23 100 90.44 83.06 80.42 

[41] RGBD 80.00 87 89 78 76 100 99 79 86 

[42] RGBD 58.10 84.4 65 76.3 43.8 96.8 79.4 74.8 72.33 

Method Image Ape Can Cat Driller Duck Eggbox Glue Puncher Avg 

[10] RGB 95.3 84.1 97.0 74.1 81.2 87.9 89 90.5 87.31 

[39] RGB 92.1 97.44 97.41 79.41 94.65 90.33 96.53 92.86 92.91 

[8] RGB 98.95 99.7 99.89 96.44 98.77 99.24 97 99.9 98.74 

Ours RGB 99.05 99.8 99.91 97.02 98.96 99.43 98.74 100 99.11 
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Table 3. 2D reprojection error of different pose estimation methods on the LINEMOD-

Occlusion dataset 

 

Table 4. ADD metric of different pose estimation methods on the LINEMOD-Occlusion 

dataset 

 

accuracy improvement for all models is about 2%. Actually, there are not many images 

in the datasets that contain severe occlusion on which our method has worked correctly 

but PVNet has not. This may be the reason why the evaluation metrics of our method 

are not significantly higher than those of PVNet in Tables 1, 2, 3, and 4. Therefore, we 

will visually show the accuracy of the pose estimated from images with different 

degrees of occlusion later. Before that, to show the performance difference between 

PVNet and our method more clearly, the mean of 2D reprojection pixel errors was 

Method Image Ape Can Cat Driller Duck Eggbox Glue Puncher Avg 

[10] RGB 34.6 15.1 10.4 31.8 7.4 1.9 13.8 23.1 17.26 

[39] RGB 7.01 11.2 3.62 5.07 1.4 - 4.7 8.26 5.89 

[8] RGB 55.21 83.51 59.39 64.51 41.8 1.36 51.27 60.92 52.25 

Ours RGB 59.4 85.83 58.21 68.12 46.88 2.13 54.7 57.07 54.04 

Method Image Ape Can Cat Driller Duck Eggbox Glue Puncher Avg 

[43] RGB 9.6 45.2 0.93 19.6 41.4 22 38.5 22.1 25.33 

[39] RGB 2.48 17.48 0.67 1.14 7.66 - 10.08 5.45 6.42 

[44] RGB 41.3 71.1 18.2 54.6 41.7 40.2 59.5 52.6 48.43 

[8] RGB 18.29 63.21 17.44 60.37 11.74 26.8 36.76 36.15 33.85 

Ours RGB 77.78 69.34 20.31 66.06 26.3 51.09 51.09 45.31 49.08 
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compared on three objects, as shown in Table 5. Here, since an error value greater than 

5 implies pose estimation failure, the error values greater than 5 were adjusted to 5. Our 

method has 0.052 and 0.125 lower pixel errors than PVNet in the LINEMOD and 

LINEMOD-Occlusion datasets, respectively. Furthermore, our method has lower 

standard deviations of pixel errors, indicating that our method is more stable. 

Table 5. ADD metric of different pose estimation methods on the LINEMOD-Occlusion 

dataset. 

 

III.4.5. Comparison of segmentation performance with PVNet 

We believe that our method can acquire keypoints more accurately by improving the 

semantic segmentation process of PVNet [8]. To ensure that our method actually 

produces improved segmentation results, we compared semantic segmentation results 

of our method and PVNet on five objects. The accuracy of segmentation results was 

measured by two metrics: mean intersection of union (mIOU) and pixel accuracy (PA), 

as shown in Tables 6 and 7. 

Contrary to our expectation, PVNet's segmentation results are slightly more accurate 

than our method. This is because PVNet emphasizes more on the accuracy of 

segmentation so some object pixels are lost, whereas our method is more likely to over- 

Method 

LINEMOD LINEMOD-Occlusion 

Ape Cat Driller Ape Cat Driller 

[8] 1.31±0.33 1.33±0.37 2.07±0.5 3.88±1.15 3.63±1.14 3.6±1.14 

Ours 1.23±0.31 1.32±0.34 2.02±0.48 3.75±1.15 3.64±1.14 3.34±1.11 
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Table 6. Accuracy comparison of semantic segmentation results of our method and 

PVNet on the LINEMOD dataset. 

Method 

mIOU PA 

Ape Cat Driller Eggbox Puncher Ape Cat Driller Eggbox Puncher 

[8] 96.4 99.89 96.9 97.53 97.21 99.95 99.91 99.82 99.91 99.9 

Ours 95.46 99.9 96.5 96.79 99.88 99.94 99.91 99.76 99.88 96.46 

 

extract object pixels and the over-extracted pixels are larger than the lost pixels. 

Therefore, focal segmentation may not result in segmentation maps that are more 

similar to the ground truth. However, by over-extracting with focus segmentation, the 

object pixels can be completely segmented out and enough object pixels can be 

obtained to robustly localize the keypoints. It simply means that focal segmentation 

acquires more pixels while maintaining a certain level of accuracy. This is crucial for 

the localization of occluded objects, especially for objects where only a small portion 

is visible. 

 

Table 7. Accuracy comparison of semantic segmentation results of our method and 

PVNet on the LINEMOD-Occlusion dataset. 

 

 

Method 

mIOU PA 

Ape Cat Driller Eggbox Puncher Ape Cat Driller Eggbox Puncher 

[8] 84.81 64.43 91.91 73.37 85.16 99.81 99.86 99.68 99.49 99.46 

Ours 83.48 62.13 91.52 71.84 83.27 99.98 99.85 99.66 99.46 96.39 
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In the presence of occlusion, we need to analyze the segmentation process of both 

methods in more detail. In Figure 13 that shows semantic segmentation results for 

occluded objects, we observe that PVNet provides rather accurate segmentation results 

(close to the ground-truth). Nonetheless, as marked by the red circle, certain useful 

target pixels were lost, causing sufficient number of keypoints not to be correctly 

obtained, and the resulting pose was less accurate. On the contrary, our method shows 

the obtained segmentation results that have most target pixels but contain incorrect 

peripheral pixels. How- ever, the incorrect pixels can be excluded at the vector voting 

stage; this does not affect the pose estimation. This strategy is more effective for 

severely occluded objects with only few target pixels. As shown in the below images 

of Figure 13, under severe occlusion, PVNet does not find any target pixels and fails to 

generate keypoints, whereas our method can find a part of relevant pixels, enabling the 

generation of keypoints. This explains why our method had slightly lower segmentation 

accuracy than PVNet in Tables 6 and 7. However, pose estimation results shown in 

 
Figure 13. Semantic segmentation results for the same target object with different 

methods ((a) ground-truth, (b) PVNet, (c) our method) in the LINEMOD-Occlusion 

dataset. PVNet lost certain parts of the target object. Under severe occlusion (the 

images below), PVNet could not find any target pixels. 
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Tables 1, 2, 3, and 4 are more accurate. 

 

III.4.6. Visual comparison of pose estimation accuracy with PVNet 

We first compared our findings with the PVNet pose results on the LINEMOD dataset 

as shown in Figure 14. Our pose results are more accurate, as per observation of the 

overlap between the predicted bounding box and the ground-truth. 

Subsequently, we compared our results with the pose results of PVNet on the 

LINEMOD-Occlusion dataset, as shown in Figure 15. Although the targets in the 

images are occluded to different degrees, our method can estimate accurate poses with 

a 2D projection error below 5 pixels even under severe occlusion. However, as the 

occluded area increases, PVNet can detect and locate objects less accurately. When 

only a tiny area of objects is visible, PVNet fails to detect and locate the target object 

because it cannot segment any target pixel. Therefore, it cannot generate direction 

vectors for localization. On the contrary, under these challenging conditions, our 

method was able to locate objects robustly by successfully segmenting tiny target 

objects, although the estimated pose was not accurate owing to the limited number of 

segmented pixels. In Tables 1, 2, 3, and 4, the pose estimation accuracies are slightly 

different, depending on the target object. “Ape” was more challenging; thus, the pose 

estimation results were less accurate, as shown in Figure 15. However, our method is 

still more accurate than PVNet. 

To clearly demonstrate the effectiveness of our method under severe occlusion, the diffe 
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Figure 14. Visualization of the pose estimation results on the LINEMOD dataset. 

Top: PVNet results and bottom: our results. The images were cropped and enlarged 

to improve visibility. The green and blue rendered bounding boxes denote the 

ground-truth and predicted pose, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15. Visualization of the pose estimation results on the LINEMOD-Occlusion 

dataset. First and third rows: PVNet results, second and fourth rows: The images 

were cropped and enlarged to improve visibility. The green and blue rendered 

bounding boxes denote the ground-truth and predicted pose, respectively. 
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-rence in segmentation results and pose estimation results between our method and 

PVNet was further analyzed in Figure 16. Under severe occlusion, PVNet often 

segmented no or few object pixels. thus, its pose results were not accurate. Even when 

a few object pixels were successfully segmented (third and fourth rows in Figure 17), 

keypoint localization using the direction vector of the segmented object pixels did not 

yield satisfactory pose results. Even with voting-based keypoint localization, more 

object pixels need to be segmented to produce accurate pose results. This indicates a 

close dependence between the segmentation results and the pose estimation results. 

In the LINEMOD-Occlusion dataset, truncated objects are also present (an example is 

shown in the first row of Figure 16). To further evaluate our method on truncated 

objects, pose estimation results were visualized in Figure 16 and compared with those 

of PVNet. PVNet failed pose estimation under severe truncation, and its pose results 

were consistently less accurate than our method, indicating that our method has higher 

robustness to truncation than PVNet as well. 

Finally, as shown in Table 8, our method took 34.2 ms to complete a pose estimation 

from an image of size 480 × 640 pixels on a desktop with an Intel i7-11700 2.5GHz 

CPU and a Nvidia RTX 2060 GPU. The computation time is not different from that 

Table 8. Computation time (ms) of our method and PVNet for 480 × 640 input images. 

Method 

LINEMOD LINEMOD-Occlusion 

Average 

Ape Cat Driller Ape Cat Driller 

PVNet 34.0 33.9 34.1 34.0 33.9 34.3 34.0 

Ours 34.2 34.8 34.0 34.0 34.2 34.3 34.2 
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(34.0 ms) of PVNet and is sufficiently short, enabling real-time pose estimation. 

 

III.4.7. Limitations 

After analyzing our method from many aspects, we found certain failure cases, as 

shown in Figure 18. In the cases where the target object is barely visible, extracting 

sufficient pixels to generate keypoints is difficult; however, our network attempts to 

obtain the target pixels to the extent possible. To obtain more pixels, our network comes 

to regard other objects with similar colors or shapes as the target, resulting in the 

generation of wrong keypoints. However, in these cases, previous methods, including 

PVNet, have failed even to detect target objects. 

 

 

 

 

 

 

 

 

 

 
 

Figure 17. Robustness to truncation. First and third rows: PVNet results, second 

and fourth rows: our results. The images were cropped and enlarged to improve 

visibility. The green and blue rendered bounding boxes denote the ground-truth and 

predicted pose, respectively. 
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Figure 16. Close dependence of segmentation results and pose estimation results. 

(a) Input image and ground-truth mask image, (b) PVNet results, and (c) results 

obtained by applying our method. The more the object pixels are successfully 

segmented, the more accurate the pose can be estimated. The images were cropped 

and enlarged to improve visibility. The green and blue bounding boxes denote the 

ground-truth and predicted pose, respectively. 
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PVNet, have failed even to detect target objects. 

 

III.5. Summary 

In this study, we aim to develop a 6D object pose estimation method that is robust to 

occlusion and propose a novel method that is based on PVNet with improved semantic 

segmentation process using the strategy of focal loss. Our method did not produce a 

segmentation map more similar to the ground-truth but could fully segment object 

pixels, which enabled more accurate pose estimation than PVNet, both in occlusion-

free cases and in the presence of occlusion. In the experiments on LINEMOD and 

LINEMOD-Occlusion datasets, our method outperformed other 6D object pose 

estimation methods, including RGB-D-based methods. Under severe occlusion, 

wherein no other method can even detect a target object, our method is able to reliably 

detect the target object and estimate its pose. Furthermore, our method demonstrates 

enhanced performance in the presence of truncation. The computation time of our 

method is similar to that of PVNet, which is sufficiently short, allowing real-time pose 

estimation. However, as mentioned before, our method is still unable to completely 

segment object pixels under severe occlusion. To improve the capability of segmenting 

and detecting severely occluded objects, we are considering modifying or replace the 

 
 

Figure 18. Failure cases2. Under too severe occlusion, objects with very similar 

colors and shapes can mislead the box regression (left and middle images) and the 

box regression may fail (right image). 
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PVNet’s backbone network that is based on ResNet [45]. Unfavorably, the performance 

degraded when we replaced it with DetNet, a backbone network particularly designed 

for small object detection [46]. However, we will continue to seek and utilize alternate 

suitable candidates. In addition, the hyperparameters in Eqs. 3-5 and 3-6 were 

heuristically set in our experiments. Therefore, analyzing their influence on the 

accuracy of our method in detail is necessary, which remains to be explored in a future 

study. 
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CHAPTER IV 

CONCLUSION 

 

IV.1. Conclusion 

Predicting the 6D rotation and translation of a partially hidden object using only a single 

RGB image presents a significant challenge in computer vision, particularly with the 

proliferation of deep learning solutions leading to the development of novel 

applications. This thesis initially addresses the complexities associated with estimating 

the 6D pose of occluded objects, shedding light on the underlying reasons for these 

challenges. Subsequently, it introduces diverse estimation methods, delving into their 

limitations within the scope of pose estimation. 

Template-based methods, the initial approaches employed for pose estimation, exhibit 

sensitivity to occluding objects, and the template generation process is time-consuming. 

Regression or classification-based methods face challenges in accommodating the 

distinct properties of rotation and translation, leading to limited performance in 

occluded scenarios. In contrast, the keypoint-based approach proves more adept at 

handling pose estimation issues for occluded objects. Leveraging the intermediate 

representation of pose (e.g., symmetry and directionality of keypoints), this indirect 

pose estimation approach better utilizes information. In conclusion, we propose the 

focal segmentation method to enhance the stability of estimating the 6D pose for 

occluded objects. The suggested method outperforms PVNet in heavily occluded 

situations, providing a more reliable 6D pose estimation. 
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IV.2. Challenges and limitations 

Object estimation and the determination of their 6D poses play a crucial role in spatial 

3D perception, in various scenarios like semantic simultaneous localization and 

mapping, target-oriented navigation, autonomous driving, object manipulation, and 

augmented reality, recent advancements in deep learning techniques have shown 

notable progress in training models for estimating object poses. However, these models 

frequently face challenges in achieving effective generalization, especially when 

dealing with the same object instance in diverse environments, particularly in real-

world data settings. 

Estimating the 6D pose of objects in situations where they are partially obscured by 

occlusions presents a multifaceted challenge. One of the primary hurdles stems from 

the inherent incompleteness of object visibility due to obstructing elements, making it 

arduous for the model to encapsulate all the requisite visual cues essential for accurate 

pose estimation. This difficulty is exacerbated by the fact that occluded regions often 

result in a dearth of discriminative features, impeding the model's capacity to precisely 

ascertain the object's pose. Furthermore, the introduction of occlusion introduces an 

additional layer of complexity by instigating ambiguity. The presence of occlusions 

means that multiple plausible pose configurations can arise based on the observable 

parts of the object. This inherent ambiguity amplifies the intricacy of the prediction 

task, rendering it more challenging to discern the correct pose accurately. The 

variability in occlusion patterns across diverse scenes and environments further 

complicates matters, posing a significant hurdle to the generalization capabilities of 

pose estimation models. In real-world scenarios, the dynamics and unpredictability of 
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occlusions add yet another dimension of intricacy. The model must dynamically adapt 

to varying degrees and types of occlusions, necessitating a high degree of robustness 

and flexibility in its predictive capabilities. Summarily, the innate complexity of 

occlusion, encompassing factors such as incomplete information, ambiguity stemming 

from occluded regions, and dynamic variations in real-world settings, collectively 

contribute to the formidable challenge of achieving precise 6D pose prediction for 

partially obscured objects. 

In addition to occlusion impacting 6D pose detection, various factors contribute to the 

complexity of the task. Changes in illumination conditions, the presence of noise and 

distortion in images, the diverse shapes and textures of objects, accuracy of camera 

parameters, and the challenges posed by both rigid and non-rigid object motions all 

play significant roles. Furthermore, the reliability of data annotation adds another layer 

of influence, as inaccuracies in labeled training data can affect the model's learning 

patterns. Navigating these multifaceted factors is essential when developing pose 

estimation models, ensuring robust performance and effective generalization in real-

world scenarios. 

 

IV.3. Future works 

We provide a concise overview of methods for object pose estimation, categorized 

based on fundamental properties impacting performance and target objects. 

Nevertheless, these methods may encounter difficulties when faced with new objects 

or challenging scenarios. One approach is to develop models with a more profound 
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comprehension of object structure, while another option is to leverage intermediate 

representations of features. 

The proposed method in this paper aims to refine future work by identifying a technique 

that can effectively extract features from the target region without being unduly affected 

by the background, thereby minimizing false predictions. One potential avenue 

involves developing a mechanism capable of filtering out extraneous parts of the 

features while concentrating on the extraction of the desired target features. 
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