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Flow and heat transfer characteristics of the Master Joint in

a floor heating system
Tran Manh Vu

Department of Mechanical Engineering
The Graduate School

Pukyong National University

Abstract

A traditional Korean heating system in residentimmes is a floor
heating system, “ondol”. With the development o€isty, many kinds of
floor heating systems were investigated to incrdessg transfer to the floor.
In this study, a new floor heating system usingt Ipgaes or thermal siphons
is discussed. It consists of main pipes where hatemflows, heat pipes or
thermal siphons, and master joints where thermarggnof hot water is

transferred to the heat pipes-or thermal siphons.

In this new floor heating system, one of the mogtortant parts is the
master joint. Its shape plays an important rolaeat transfer of this system.
At first, numerical simulations were carried out gee the flow patterns,
temperature distributions of the conventional éxgstmaster joint. Then, a
new master joint which increases the performandeeaf transfer of the floor
heating system is proposed. To see the improveonfahe new master joint,
flow patterns, temperature distributions of two teasjoint models are
compared. Also, in this study, flow characteristie;d temperature
distributions for several main hot water pipe ditan® are shown and
discussed to see the effects of main pipe diamatethis floor heating

system.
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Chapter 1. Introduction

CHAPTER 1

INTRODUCTION

1.1 Background of study

Korea has four seasons and each season hastdistieatures related to
the climate. For the cool dry winter, the ondol tivep system has been
widely used as a residential heating system. Orglain excellent heating
system because it efficiently uses both the radiatind convective heat

transfer to achieve a high level of heating.

Nowadays, hot water radiant floor heating systdmse been used
instead of Korean traditional ondol systems to ionprthe thermal comfort,

convenient maintenance and energy efficiency.

A0 BV

Hﬁﬁu "/ J U

ter Input Hot Water Output
Fig. 1.1 Conventional floor heating system

Fig. 1.1 shows a conventional floor heating systesad in Korea. As
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shown in this figure, hot water flowing in the pgpenderneath is used to heat

the floors of living rooms, bed rooms, etc.

These days in Korea, a new heating system usiag gipes or thermal
siphons is widely used because of its heat tramsfeacity. As shown in Fig.
1.2, it consists of main pipes where hot water #pWweat pipes or thermal
siphons, and master joints where thermal enerdpobivater is transferred to

the heat pipes or thermal siphons.

Thermal Siphon

.

r g
| Hot weter input Hot Water [npUt]

Fig. 1.2 New floor heating system with thermal sip& or heat pipes

In the new floor heating system, the shape ofrtiaster joint plays an
important role in heat transfer of this systemislhecessary to improve the

shape of the master joint for increasing heat fearts the floor.

In this study, the present master joint is showd discussed to see the
restriction of heat transfer to the floor. Fig. &:/3d Fig. 1.4 show the present

master joint model used for the floor heating gyste
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Fig. 1.3 Present master joint model

Fig. 1.4 Central vertical section of the-presenst@iajoint model

To improve the heat transferred to the floor, av measter joint was
proposed to increase the performance of heat samdfthe floor heating
system. In this study, it will be compared with ghresent master joint using
the flow pattern, velocity, temperature characteriand heat transferred to

the floor. A proposed master joint was shown in Ei$ and Fig. 1.6.
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Fig. 1.5 New master joint model

Fig. 1.6 Central vertical section of the new magigit model

In order to increase the heat transferred to kber,fthe effects of the
main hot water pipe diameter will be determinedwicharacteristics and
temperature distributions for four types of the mhot water pipe diameter

are shown and discussed to see the effects of #ire pipe diameter on this
floor heating system.
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1.2 Objectives and outline of the study

The purpose of this study is to find a new magbart for the floor
heating system, to increase heat transfer to tia.fllf the master joint is
designed well, lots of heat will be transferredthe floor, so heat will be
conserved. People will feel more comfortable inteirseasons and save a

great deal of money for heating their rooms.

As mentioned above, a new master joint is propasethis study to
increase the heat transferred to the floor of edidl homes. This study

includes 5 chapters and the respective summanyeflyomentioned below.

- Chapter 1 shows the background of the floorihgasystem used in

Korea and the role of the master joint in transfgrheat to the floor.

- In chapter 2, flow patterns, velocity vectoresmperature distributions,
pressure distributions and heat transfer charatiesiof the present master

joint are presented and discussed.

- The effects of main hot water pipe diameterdiseussed in chapter 3.
The flow patterns, velocity vectors, temperaturestrdbutions and heat
transfer characteristics of the four sizes of the@mhot water pipe diameter

are determined.

- In chapter 4, a new model of the master joirghewn. It is compared
with the present master joint model using the flpatterns, velocities,

temperature characteristics and heat transferrdaetéioor.

- Chapter 5 summarizes the previous chapters &ogvss the final

conclusion.
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CHAPTER 2

REVIEW OF THE MASTER JOINT IN
THE FLOOR HEATING SYSTEM

2.1 Introduction to the present master joint model

As mentioned. in the previous chapter, a floor ingasystem consists of
main pipes where hot water flows, heat pipes omtlésiphons, and master
joints where thermal energy of hot water is tramsfd to the heat pipes or
thermal siphons. In the present master joint moéi¢his study, the diameter
of the main hot water pipe is 17.5mm, the diametethe heat pipe or
thermal siphon is 16mm, and other geometry dimerssare shown in Fig.
2.1.

6.9

R
20 |

17.8 |13.8

542

26.7
44 3

Fig. 2.1 Geometry dimensions of the present masitermodel
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GAMBIT was used for creating and meshing this nadel FLUENT
was used for solving the computations and distimiguthe results. Numerical
simulations were carried out to see the flow pa#iertemperature

distributions and pressure distributions of thisedo

In this study, a finite volume method was usedtfa discretization of
the continuity equation, the momentum equationsd, the energy equation.
Hybrid scheme was used for the convection-diffusemms and standardek-
model was used as a turbulent model. Tetrahedtaime meshing scheme
was used for meshing this model. The grids for phesent master joint

model used in the numerical simulations are showfig. 2.2.

Fig. 2.2 Grids for numerical analysis of the preseaster joint model

For pressure boundary conditions, total gage pressf 8000 Pa was
given at the inlet of the main pipe and static apieric pressure was given
at the outlet of the main pipe of the heating systd-or temperature
boundary conditions, 8C for hot water was used at the inlet of the main
pipe, adiabatic conditions were used at walls o thaster joint and
isothermal conditions of € for the heat pipe or thermal siphon walls, were

used in the numerical simulations.
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2.2 Flow patterns and velocity vectors distributions

In order to see the flow patterns and velocityteexdistributions of the
flow passing through the master joint, sectionthif model were made. Fig.
2.3 shows velocity vectors at the central vertasdtion £ = 0) and Fig. 2.4
shows velocity vectors at the central horizontatise (y = 0) of the present
master joint model. As clearly shown in these fegvelocities at upper and
lower parts of the master joint are very small, lesivelocities at the center
part of the master joint are relatively large. ®iere, hot water could not

contact the entire surfaces of the heat pipe anthksiphon.

3.008400
' 2.88a+00
| 2762400
2.55+00

I 253400
2.41a400
2208400
2178400
2.068+00
1.04s400
1.828400
1708400
1568400
| 1a7se00
1.35-400
1.238400
1.118400
9.0ds-01

76601
758601
& 408-01
R
404801 v
2 8Ee-01
1.688-01

5.008-02

Welocity Vectors Colored By Velocity Magnitude (mfs)

Fig. 2.3 Velocity vectors distribution at the cemtvertical sectionz= 0)
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4.20a+00
4.12a+00
3.95a+00
3.78a+00
3.E1a+00
3.43a+00
326400
3.09a+00
2.92a+00
2.75a+00
2.53a+00
2.41a+00
2.24a+00
2.06a+00
1.8a+00
1.72a+00
1.55e+00
1.38a+00
1.21a+00
1.04a+00
& .Bfa-01

£.95-01
5.2da-011
3.52-01
1.81a-01

1.008-02

Welocity Vectors Colored By Velocity Magnitude (més)

Fig. 2.4 Velocity vectors distribution at the cetnorizontal sectiony(= 0)

To see in more detail the velocities of the floasging through the
master joint, velocity vectors distributions at epmand lower parts were
shown in larger scale in Fig. 2.5a and Fig. 2.6&14. 2.5b, velocity vectors
at upper parts of the present model are shown nmesloorizontal sections,
with y = 25mm, 20mm, 15mm, 10mm, 5mm, respectively. Sirty] Fig.
2.6b shows velocity vectors at lower parts of thespnt model in some
horizontal sections, witty. = =5mm, —10mm, —-15mm, —20mm, —-25mm,

respectively.

In this present master joint model, separateddloacurred near the heat
pipe or thermal siphon. These separated flows ptedethe hot water
passing through the master joint so the velocityhefflow was reduced. In
order to a obtain higher velocity of the flow pagsthrough the master joint,
it is necessary to investigate other master joiatlas which can lower this

disadvantage. This problem will be discussed ihifuthapter 4.
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Fig. 2.5a Velocity vectors distribution at uppertpe the master joint model
Fig. 2.5b Velocity vectors distributions at someibontal sections

(y = 25mm;20mm, 15mm, 10mm, 5mm)
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Fig. 2.6a Velocity vectors distribution at lowerpaf the master joint model
Fig. 2.6b Velocity vectors distributions at someibantal sections
(y =-5mm, —=10mm, —15mm, —20mm, —25mm)
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2.3 Temperature distributions

Temperature distribution is shown in Fig. 2.7atle central vertical
section £ = 0). In Fig. 2.7b, temperature distributions ah®wn in some
horizontal sections with 5mm intervals on the ysaaf the present master
joint model, when total gage pressure of 8000 Pagirzen at the inlet of the

main pipe of the floor heating system.

| 232
o 1
L v L 23002y
o 3280402
21 3.088402
oo 357802

Contoursof Satic Temperature (k)

Contours of Static Temperature (k) ‘

(a) (b)

Fig. 2.7a Temperature distribution at the centeatival sectionZ = 0)
Fig. 2.7b Temperature distributions at some hotalosectionsy = 25mm,
20mm, 15mm, 10mm, 5mm, 0, =5mm, —10mm, —15mm, —20A/2%mm)

With temperature boundary conditions of@Cfor the hot water used at
the inlet of the main pipe, adiabatic conditiongdisn the walls of master
joint and isothermal conditions of %2 used in the walls of heat pipe or
thermal siphon, corresponding to the color sc&mperature fields at upper
and lower parts of the master joint are relativahall, as shown in the above

figures.

In this present model, the high temperature floaassed through the

-11 -
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master joint and supplied thermal energy to thd pgse or thermal siphon.
Temperature of the flow going out the master joaward the outlet reduced
remarkably because hot water did not flow wellnéd Brea, as shown in Fig.
2.3 above. With this restriction, the heat pipéh@rmal siphon in this model
can not contract high temperatures, therefore theuat of heat transferred

from hot water to the heat pipe or thermal siptsorather small.

From Fig. 2.8 to Fig. 2.18, temperature fields@me horizontal sections
with 5mm intervals on theg axis are shown. The left side figures show
temperature distributions while the right side fieggi show the locations of
these sections.
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Fig. 2.8 Temperature distribution at sectjon 25mm
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Fig. 2.9 Temperature distribution at sectjon 20mm
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Fig. 2.10 Temperature distribution at sectyon 15mm
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Fig. 2.11 Temperature distribution at-sectyon 10mm

35802 350802

2308402 230002y
320802 320802
328808 3285402 J—x
3076402 3076402

Contours of Static Temperature (ki ‘ Contours of Static Temperature (ki ‘

Fig. 2.12 Temperature distribution at sectyon 5mm
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Fig. 2.13 Temperature distribution at sectyon 0
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Fig. 2.14 Temperature distribution at-sectyon—5mm
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Fig. 2.15 Temperature distribution at sectyon—10mm
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Fig. 2.16 Temperature distribution at sectyon—15mm
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Fig. 2.18 Temperature distribution at sectyon—25mm
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Chapter 2. Review of the master joint in the floor heating system

2.4 Pressure distributions

Fig. 2.19 shows the static pressure distributiod Big. 2.20 shows the
total pressure distribution at the central verteadtion £ = 0) of the present
master joint model. As shown in these figures, fhiessure difference
between the inlet and the outlet of the presentengasint is relatively large,
so this model requires high pressure for hot widsvs through the master
joint. It means a pump with a higher capacity mustused to transport the
flow through the present masterjoint.

T Tde+03
' T.2%-02
E TEa+03

§.278+03
5.77e+03
f 5880403
4.700403
4.308+03
3.8 1e+03
3 30e403

2 336403

2348403
| 13%a03

1356403
& 8 638402
LB

272402
-1.19a402
-B.11a4+02
B 1.10e+03

-1, 50803

| -208as03
-8,578403
3078403y
-3 a3
40503 z]—x

-4.5da4+02

Contours of Static Pressure (pascal)

Fig. 2.19 Static pressure distribution at the cdntertical sectionz= 0)
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Fig. 2.20 Total pressure distribution at the cdnteatical sectionZ = 0)
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Chapter 3. Evaluation of the effects of the main pipe diameter

CHAPTER 3

EVALUATION OF THE EFFECTS OF
THE MAIN PIPE DIAMETER

3.1 Introduction to the four types of the main pipe

diameter

Besides the master joint, another part also ptagim important role and
affecting the efficiency of the floor heating systés the main hot water pipe.
The diameter of the main pipe has many influenceshe heat transfer
possibility of this system. Four types called typetype B, type C and type
D, which are corresponding to 13.5mm, 15.5mm, 1/m%md 19.5mm of the
main pipe diameter respectively, are discusseeeotise effects of the main
pipe diameter on this floor heating system. Thenggoy dimensions of the

four types of the main pipe diameter are shownign §.1.
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Fig. 3.1 Geometry dimensions of the type A, B, Gnbdels
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Chapter 3. Evaluation of the effects of the main pipe diameter

GAMBIT was also used for creating and meshingdHesir models and
FLUENT was used for solving the computations argdritiuting the results.
Numerical simulations were carried out to see tloav fcharacteristics,
temperature distributions of the four models. Theppse of this chapter is to
compare velocity, temperature and heat transfaheffour models in the
same conditions to see the effects of the main gigmeter on this heating

system.

For these four models in this chapter, a finitturee method was used
for the discretization of the continuity equatidhge momentum equations,
and the energy equation. Hybrid scheme was usedthi®rconvection-
diffusion terms and standard ekimodel was used as a turbulent model.
Tetrahedral volume meshing scheme was used foringeiese four models.
The grids for the four types of the main pipe ditanenodels used in the

numerical simulations are shown in Fig. 3.2.
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Chapter 3. Evaluation of the effects of the main pipe diameter

Fig. 3.2 Grids for numerical analysis of the typeBA C, D models

In order to compare four types of the main pipantkter, the same
boundary conditions were applied to these four rsd&or pressure
boundary conditions, pressure differences betwhenrtlets and the outlets
are about 5250 Pa. Total pressures were giveredhkets of the main pipes
and static atmospheric pressures were given atbutlets of the main pipes.
For temperature boundary conditions,’@Cfor hot water was used at the
inlets of the main pipes, adiabatic conditions wesed at walls of the master
joints and isothermal conditions of %4for the heat pipe or thermal siphon

walls, were used in the numerical simulations.
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Chapter 3. Evaluation of the effects of the main pipe diameter

3.2 Comparisons of the velocity vectors distributions

for the four types of the main pipe diameter

To compare the effects of the main pipe diametethes heating system,
the velocity vectors distributions of the flows #ite central horizontal
sections ¥ = 0) of the four models are presented in Fig. A88shown in this
figure, the velocity of the flow is directly progamal to the diameter of the
main pipe. It means that the velocity increasesniathe diameter of the main

pipe increases, for the same pressure and tempetaiundary conditions.
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Fig. 3.4 shows in more detail velocity vectorsus the heat pipe or
thermal siphon at the central horizontal sectigrns Q) of these four models.
As shown in Fig. 3.4, the velocities around thethppe or thermal siphon
are very large due to the small passing area. Seguharflows are also
observed in all four models, but the velocity opayD is larger than the
velocities of other types. It means that the fl@aterof type D is largest, so
the heat transfer can be enhanced to the heabpipbermal siphon.
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Fig. 3.4 Velocity vectors distributions around thermal siphons at the

central horizontal sections for the four typeshaf imain pipe diametey € 0)
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Fig. 3.5 shows the velocity vectors distributicatsthe central vertical
sections £ = 0) of the four models, for the same boundaryddwmns. As also
shown in this figure, separated flows happenedlartyiat the upstream and
downstream main pipes in all four models, but tledoeities of the four
models are not the same. The velocity of type Rgest among these four
models. Therefore the heat transferred to the ipat or thermal siphon of

type D is more than the heat transferred to otyyee4.
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The comparisons of velocities around the heat piermal siphon are
shown in more detail at the central vertical sei@ = 0) of the four models
in Fig. 3.6. As shown in this figure, the velocity the big main pipe
diameter is larger than the velocity of the smadlimpipe diameter. Hence
the heat transferred to the heat pipe or thernpddosi of the big main pipe
diameter model is more than the heat transferrethéosmall main pipe

diameter model.
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Fig. 3.6 Velocity vectors distributions around thermal siphons at the

central vertical sections for the four types of tha@n pipe diametezE 0)
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3.3 Comparisons of the temperature fields for the four

types of the main pipe diameter

Fig. 3.7 shows the temperature distributions &t tkentral horizontal
sections ¥y = 0) of the four models, for the same boundaryddmns. As
shown in this figure, the temperature drop aftex Heat pipe or thermal
siphon is relatively large for type A and relativaimall for type D. For type

D, the temperature is nearly uniform around thed pgee or thermal siphon.
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Fig. 3.7 Temperature distributions at the centaalZzontal sections for the

four types of the main pipe diametgr< 0)
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Fig. 3.8 shows the temperature distributions @& fibur models at the
central vertical sectionz € 0), for the same boundary conditions. For type A
the temperature difference of before and afterniaster joint is relatively
large. The heat transfer mostly happens at thd Sile of the heat pipe or
thermal siphon. Conversely, the temperatures bedmd after the master
joint of type D are nearly equal so the heat transfn be enhanced to the

heat pipe or thermal siphon.
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Fig. 3.8 Temperature distributions at the centeatival sections for the four

types of the main pipe diameter< 0)

-27 -



Chapter 3. Evaluation of the effects of the main pipe diameter

Fig. 3.9 shows in more detail the temperatureritigions around the
heat pipe or thermal siphon at the central vergeations £ = 0) of the four
models. As shown in this figure, the heat pipeh@rmal siphon of the big
main pipe diameter model can contract a greatepaemure than the heat
pipe or thermal siphon can of the small main pi@engter model. Therefore
the amount of heat transferred from the hot waidghe¢ heat pipe or thermal
siphon of the big main pipe diameter model, iséargpan in the small main

pipe diameter model.
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Fig. 3.9 Temperature distributions around the tlasiphons at the central

vertical sections for the four types of the maipepdiameter = 0)

-28-



Chapter 3. Evaluation of the effects of the main pipe diameter

3.4 Comparisons of heat transfer for the four types of

the main pipe diameter

From Table 3.1 to Table 3.4 below, the resultscudated in the
simulations for four types of the main pipe diametee summarized. In these
four tables, the pressure differendgs(Pa) between the inlets and the outlets,
the mass flow ratem (kg/s), the flow rate€) (m*s) and the heat transfer
ratesQ (J/s) of the flows passing through four model® presented. As
clearly shown in these tables, the big main pipgmditer model is more
effective than the small main pipe diameter modeldases with the same

pressure differencap.

Table 3.1 Results of the type A £ 13.5mm)

TypeA (d =13.5mm)

Ap Mass flow ratern | Flow rateQ |Heat transfer rat€| ApxQ
(Pa) (kg/s) (m°/s) (J/s) (W)
1349.854 0.16122 0.0001615 323.24835 0.21802
2684.832 0.22930 0.0002297 433.08352 0.61674
4015.715 0.28165 0.0002822 517.80740 1.13308
5344.146 0.32585 0.0003264 588.94622 1.74453
6670.854 0.36482 0.0003655 651.37664 2.43806
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Table 3.2 Results of the type 8% 15.5mm)

TypeB (d = 15.5mm)

Ap Mass flow ratern | Flow rateQ [Heat transfer rat€) ApxQ
(Pa) (kg/s) (m°s) (J/s) (W)
1330.017 0.21618 0.0002166 378.32141 0.28805
2645.829 0.30734 0.0003079 512.97492 0.81464
3957.717 0.37743 0.0003781 616.40033 1.49645
5267.261 0:43659 0.0004374 703.55993 2.30378
6575.180 0.48875 0.0004896 780.22334 3.21944
Table 3.3 Results of the type €% 17.5mm)
TypeC (d = 17.5mm)

Ap Mass flow ratern | Flow rateQ [Heat transfer rat€| ApxQ
(Pa) (kg/s) (m’s) (J/s) (W)
1318.991 0.27829 0.0002788 421.01118 0.36773
2625.128 0.39543 0.0003961 575.07485 1.03993
3927.741 0.48548 0.0004864 693.54669 1.91029
5228.263 0.56148 0.0005625 792.93295 2.94086
6527.336 0.62848 0.0006296 879.88293 4.10972
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Table 3.4 Results of the type B£ 19.5mm)

TypeD (d = 19.5mm)

Ap Mass flow ratern | Flow rateQ [Heat transfer rat€) ApxQ
(Pa) (kg/s) (m°/s) (J/s) (W)
1307.749 0.37616 0.0003768 482.59059 0.49280
2602.907 0.53916 0.0005401 664.36380 1.40591
3894.638 0.65812 0.0006593 795.59857 2.56777
5184.348 0.75000 0.0007514 895.78672 3.89528
6472.623 0.81803 0.0008195 968.44684 5.30432

The simulation data above is used to plot graphsdmparing the flow
rate Q (m°/s), the heat transfer rat@ (J/s) and the pump capacities needed

for the four models. With these graphs, it is gaslknow the effects of the
main pipe diameter on the heating system.

Fig. 3.10 plots the pressure differentps(Pa) between the inlets and the
outlets versus the flow rat&€3 (m°/s) of the flows passing through the four
models. This figure obviously shows the comparigbthe flow rates among
the four types of the main pipe diameter. The fiate passed through the
big main pipe diameter model is much more thanugincthe smaller one, for

the same given pressure differedqe
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Fig. 3.10 Pressure differena (Pa) vs. flow rat® (m%s)

The comparison of the heat transfer rates amoaddur types of the
main pipe diameter are plotted in Fig. 3.11. Thgsife shows the graph of
the pressure differencég (Pa) between the inlets and the outlets versus the
heat transfer rate® (J/s) of-the four models. For the same given piress
differencelp, the heat transferred to the heat pipe or thesipdion of the
big main pipe diameter madel, is much larger thenheat transferred to the

smaller model.

Fig. 3.12 shows the relationship between the poagacitiesApxQ (W)
and the heat transfer rat€s(J/s) of the four types of the main pipe diameter.

With the same heat transferred to the system, tfpemiain pipe diameter

model needs a smaller pump capacity than the snaalkl.
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Fig. 3.11 Pressure differenAp (Pa) vs. heat transfer rag (J/s)
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CHAPTER 4

NEW MODEL OF MASTER JOINT;

THE COMPARISONS BETWEEN

THE PRESENT MODEL AND THE
NEW MODEL

4.1 Introduction to the new master joint model

As already presented and discussed in chaptéeZresent master joint
has some weak points. For example, the velocity feovd rate of the flow
passing through the master joint are small, thererargy of hot water
transferred to heat pipe or thermal siphon_is snaald pressure difference
between the inlet and the outlet of the presenttengsint is large so the

present model needs a pump with high capacityrémsporting hot water.

A new master joint model is recommended to redbhese weak points
mentioned above. Another weak point also has tddmeased in the new
model as separated flows occurred near the heat gipthermal siphon.
Separated flow is a cause of reducing velocityhef flow so it reduces the
heat transferred to the floor. The purpose of thapter is to compare
velocity, temperature and heat transfer of the tmaster joint models in the

same conditions to see the improvements of themaster joint.
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Similar to calculating the present master jointdelp GAMBIT was used
for creating and meshing the new master joint madel FLUENT was used
for solving the computations and distributing thesults. Numerical
simulations were carried out to see the flow pa#iertemperature
distributions and pressure distributions of thisvnaodel. A finite volume
method was used for the discretization of the owitly equation, the
momentum equations, and the energy equation. Hgohéme was used for
the convection-diffusion terms and standard¢ kaodel was used as a
turbulent model. Tetrahedral volume meshing schem® used for meshing
this new model. The grids for the new master jomddel used in the

numerical simulations are shown in Fig. 4.1.

Fig. 4.1 Grids for numerical analysis of the newsteajoint model

For comparing two master joint models, the samentary conditions
were applied to the two models. Pressure differemegween the inlets and
the outlets of the two models are about 5230 Patdfaperature boundary
conditions, 86C for hot water was used at the inlets of the majes,
adiabatic conditions were used at walls of the ergstints and isothermal
conditions of 54C for the heat pipe or thermal siphon walls, wesediin the

numerical simulations.
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4.2 Comparisons of the velocities passing through the

master joint between the two models

Fig. 4.2 and Fig. 4.3 show velocity vectors atdbatral vertical sections
(z = 0) and at the central horizontal sections-(0), respectively of the two
master joint models. As shown in these figureseeisgly in Fig. 4.2, for the
present master joint model, velocities at the u@ret lower parts are very
small, while velocities only at the center part aglatively large. Also clearly
shown in these figures, velocities for the new nh@de generally larger than
those for the present model. Although separatedsflare also observed for
the new model, velocities are very large over aevacea of the new master
joint. It means that the flow rate of the new modejenerally larger than the
flow rate of the present model, so the heat transf@ be enhanced to the

heat pipe or thermal siphon.
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Fig. 4.2a Velocity vectors distribution at the gahvertical section of the
present master joint moded £ 0)
Fig. 4.2b Velocity vectors distribution at the aahwertical section of the

new master joint modeg & 0)
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From Fig. 4.4 to Fig. 4.14, velocity vectors inrs® horizontal sections
with 5mm intervals on thg axis are shown. The left side figures show
velocity vectors of the present model while thehtigide figures show the
velocity vectors of the new model at the same gastiCorresponding to the
color scale on the left side of these figures, citiles of the flow at all
sections of the new model are larger than velacitiethe flow of the present

model at the same locations.
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Fig. 4.4 Velocity vectors distributions at sectypn 25mm
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Fig. 4.12 Velocity vectors distributions at section —15mm
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Fig. 4.14 Velocity vectors distributions at section —25mm

-41 -



Chapter 4. New model of master joint;
the comparisons between the present model and the new model

4.3 Comparisons of the temperature fields between the

two models

Fig. 4.15 shows the temperature distributions het ¢tentral vertical
section ¢ = 0) of the present and the new master joint mo#ielshown in
this figure, the heat pipe or thermal siphon of tle&v model can contract a
greater temperature than the heat pipe or theriphbs can in the present
model. Hence the amount of heat transferred froenhibt water to the heat
pipe or thermal siphon for the new master joint plods increased

remarkably.

Contours of Static Temperature (k) ‘

Contours of Static Temperature (k)

(@) (b)

Fig. 4.15a Temperature distribution at the centeatical section of the
present master joint moded £ 0)
Fig. 4.15b Temperature distribution at the centeatical section of the new

master joint modelz(= 0)
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From Fig. 4.16 to Fig. 4.26, temperature distiitmg in some horizontal
sections with 5mm intervals on tlyeaxis are shown. The left side figures
show temperature distributions of the present modale the right side
figures show the temperature distributions of tlesvrmodel at the same
sections. Corresponding to the color scale on effteside of these figures,
temperature distributions at all sections of thev meodel are larger than

temperature distributions of the present modédhiatsame locations.
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Fig. 4.16 Temperature distributions at secyign25mm

350802 350802
3406402 Bz 4002
38802 38802
3476402 3476402
28802 28802

3 448402 3 448402
343802 343802
3 428402 3 428402

L disae L disae
340802 340802
328802 328802
3378402 3.37e402
336802 336802
335402 335402
234402 234402
3.33ea02 3.33ea02

| 3.328402 | 3.328402
3.3Hea02 3.3Hea02
3308402 3308402
329802 329802
32802 S 32802 T
3078402 3078402

7 7

Contours of Static Temperature (ki ‘ Contours of Static Temperature (ki

Fig. 4.17 Temperature distributions at seciicn20mm

-43-



Chapter 4. New model of master joint;
the comparisons between the present model and the new model

3508402 3508402
3 Sa402 3 Sa402
3515402 3515402

Y 2i0e.02 Y 2i0e.02
3 498402 3 498402
3488402 3488402
3 d7a402 3 d7a402
3468402 3468402
Fdsea02 Fdsea02
3 dda+02 3 dda+02
33ea02 3d3ea02
3 428402 3 428402
Zdlsa2 Zdlsa2

F 34002 F 34002
¥39ea02 ¥39ea02
3.37e402 3.37e402
3368402 336ea02
335402 335402
3345402 3345402
332ea02 332ea02
3.32a402 3.32a402
331sa02 331sa02
3308402 3308402
3298002 3298002
Daz i
3.07a402 3.07a402

b b

Contours of Static Temperature (ki

Contours of Static Temperature (ki ‘

Fig. 4.18 Temperature distributions at secyiGn15mm
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Fig. 4.19 Temperature distributions at secticn10mm
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Fig. 4.22 Temperature distributions at secticn-5mm
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Fig. 4.23 Temperature distributions at secyign—-10mm
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Fig. 4.24 Temperature distributions at secyiGgn—-15mm
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Fig. 4.25 Temperature distributions at secyen—-20mm
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4.4 Comparisons of heat transfer between the two

models

Table 4.1 and Table 4.2 below summarize the residiculated in the
simulations of the two master joint models. In théso tables, the pressure
differencesAp (Pa) between the inlets and the outlets of two etydhe
mass flow ratesn (kg/s), the flow rate€ (m*/s) and the heat transfer rates
Q (J/s) of the flows passing through two modelspesented. As obviously
shown in these tables, the new master joint is reffiective than the present

one for cases with the sampeessure differencap.

The capacity of the pump used to supply hot wiatéhe heating system
isP=pxgxH xQ, wherep x g x H is the pressure difference of before
and behind of the pump. The thermal energy of thtewater transferred to

the heat pipe or thermal siphon can be determiroed:f
Q=mxC, x AT

where ©m is the mass flow rate (kg/s).

oGy is the constant pressure specific heat (BkdC, = 4182 J/kK
for water.

oAT is the temperature difference between the inldttae outlet of
the master joint model (K).

npis the density of water (kgfh p = 998.2 kg/m.

ng is the gravitational acceleration (f)/gy = 9.81 m/&.

o H is the actual head rise (m), gained by fluid flogvithrough a

pump.
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Table 4.1 Results of the present master joint model

Present master joint model

Ap Mass flow ratern | Flow rateQ [Heat transfer rat€) ApxQ
(Pa) (kg/s) (m°/s) (J/s) (W)
1318.991 0.27829 0.0002788 421.011 0.36773
2625.128 0.39543 0.0003961 575.075 1.03993
3927.741 0.48548 0.0004864 693.547 1.91029
5228.263 0.56148 0.0005625 792.933 2.94086
6527.336 0.62848 0.0006296 879.883 4.10972

Table 4.2 Results of the new master joint model

New master joint model

Ap Mass flow ratern | Flow rateQ [Heat transfer rat€| ApxQ
(Pa) (kg/s) (m°/s) (J/s) (W)
1323.168 0.57783 0.0005789 569.13 0.76594
2628.83 0.82877 0.0008303 784.614 2.18262
3929.8 1.02277 0.0010246 948.392 4.02654
5233.723 1.1877 0.0011898 1087.023 6.22732
6536.218 1.33243 0.0013348 1208.449 8.72476
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The pressure differencép (Pa) between the inlets and the outlets versus
the flow ratesQ (m®/s) of the two master joints are plotted in Fi@74.This
figure clearly shows the comparison of flow ratesaeen the present and the
new master joint model. For the same given presdiffierenceAp, the flow
rate passed through the new model is much more ttirangh the present

one.
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Fig. 4.27 Pressure differena (Pa) vs. flow rat& (m%s)
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Fig. 4.28 plots the graph of the pressure diffeestp (Pa) between the
inlet and the outlet versus the heat transfer réxéd/s) of the two models.

This figure shows the comparison of heat transiges between the present
and the new master joint model. As shown in thgsirie, the heat transferred
to the heat pipe or thermal siphon of the new malehuch larger than the

heat transferred to the present model, for the sgien pressure difference

Ap.
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Fig. 4.28 Pressure differendp (Pa) vs. heat transfer ra@ (J/s)
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Fig. 4.29 shows the relationship between the dapscof the pump
ApxQ (W) and the heat transfer rat®s(J/s) of the two models. This figure

shows the comparison of the pump capacities betileerpresent and the
new master joint model and presents the efficiasfcthe new model beside
the present one. With the same pump power, the heating system will

receive much thermal energy than the present ligaystem. The pressure
difference between the inlet and the outlet of ghesent model is relatively
large, compared with the new model. It means tmapresent model requires
much higher pressure than the new model to gesdhee flow rate, so it is

difficult to obtain a high capacity of the pumptire present model.
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Fig. 4.29 Pump capacify (W) vs. heat transfer ra@ (J/s)
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CHAPTER 5

CONCLUSIONS

In order to increase the heat transferred to lit@,fa new master joint
model using heat pipe or thermal siphon was recamdiexd in this study.
This new master joint model was compared with tlesent one with regards
to the velocity, temperature and heat transfehénsame conditions to see the
improvements of the new master joint. Also in tkigdy, four types of the
main pipe diameter were presented and discussedddhe effects of the
main pipe diameter on this floor heating system.

The following conclusions were obtained from tesults of this study on
the velocity vectors distributions, temperaturddfse pressure characteristics
and heat transfer for the present master joint mdder types of the main

pipe diameter and the new master joint model.

« The velocity of the present master joint model asher small.
Separated flows occurred near the heat pipe omtlesiphon and
prevented the flow passing through the master jginthe velocity
of the flow was reduced. Temperature of the flowngoout the
master joint toward the outlet reduced remarkablyh® amount of
heat transferred from hot water to the heat pipthemal siphon is
small. The pressure difference between the inldttha outlet of the
present master joint is relatively large, so itdea high capacity

pump to transport the flow through the present ergetnt.
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For the same boundary conditions, the flow pattenelocity

vectors distributions, temperature fields and hwesaisfer for the four
types of the main pipe diameter were shown and eoeapto see the
effects of the main pipe diameter. Velocity of tih@w is directly

proportional to the diameter of the main pipe. #ams the velocity
of type D is larger than the velocities of othguay. For type D, the
temperature is nearly uniform around the heat pipgtermal siphon.
The heat pipe or thermal siphon of the big maireg@meter model
can contract a greater temperature than the heat @i thermal
siphon can of the small main pipe diameter modékeré&fore the
amount of heat transferred from the hot water ® liat pipe or
thermal siphon of the big main pipe diameter masléhrger than in
the small main pipe diameter model. So the big npgde diameter

maodel is more effective than the small main pip@rdter model.

The present master joint has some weak pointst Saecessary to
find a new master joint to reduce these weak poiAtthough

separated flows are also observed for the new medkicities are
very large over a wide area of the new master .jafielocities for

the new model are generally larger than thosehemtresent model.
It means that the flow rate of the new model isegally larger than
the flow rate of the present model. The heat pipthermal siphon
of the new model can contract a greater temperdhae the heat
pipe or thermal siphon can in the present modeth8deat transfer
can be enhanced to the heat pipe or thermal sipbtih these

advantages mentioned above, the new master jombrs effective

than the present one.
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