

공 학 박 사 학 위 논 문

반응표면분석법을 이용한

무산소-호기-무산소-탈기공정의

매개변수 추정 및 반응조 부피 설계

부경대학교대학원

환경공학과

김 성 림

공학박사학위논문

반응표면분석법에 의한 무산소-호기-무산소-탈기공정의 매개변수 추정 및 반응조 부피 설계

지도교수 이 병 헌

이 논문을 공학박사 학위논문으로 제출함

2007년 2월

부경대학교대학원

환경공학과

김 성 림

김성림의 <u>공학박사</u> 학위논문을 인준함

2007년 2월 일

목 차 ···································
List of Tables
List of Figures
Abstract
1. 서론 ···································
2. 문헌연구
2.1 생물학적 영양소 제거
2.1.1 생물학적 질소 제거
2.1.2 생물학적 인 제거
2.1.3 생물학적 질소·인 제거
2.2 활성슬러지 모델
2.2.1 McKinney 모델11
2.2.2 ASM1 모델20
2.2.3 ASM2 모델26
2.2.4 ASM3 모델
2.3 활성슬러지 모델 매개변수 추정 및 시뮤레이터
2.3.1 매개변수 추정
2.3.2 AQUASIM 프로그램
2.4 실험계획법
2.4.1 반응표면분석법
2.4.2 혼합물분석법
3. 반응 표면 분석법을 이용한 ASM3 매개변수 추정44
3.1 개요
3.2 연구방법
3.3 결과 및 결과 분석

3.3.1 ASM3 모델 매개변수의 민감도 분석46
3.3.2 반응표면 분석법에 의한 ASM3 모델 매개변수의 변수 추정 4(
3.3.3 ASM3 모델 매개변수의 검증
3.4 결론
4. 혼합물 분석법에 의한 고도처리공정 생물반응조 부피의 최적화 55
4.1 개요
4.2 연구방법
4.3 결과 및 결과 분석
4.4 결론
5. 종합결론 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
참고문허 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
부록
A LH OL A

List of Tables

Table 2.1 Comparison of three typical modeling
Table 2.2 Peterson matrix of ASM1
Table 2.3 Process rate of ASM1
Table 2.4 Symbol & unit of ASM1 components
Table 2.5 Symbol & unit of activated sludge model parameters
Table 2.6 Hydrolysis process of ASM227
Table 2.7 Heterotrophic $organisms(X_{\rm H})$ of $ASM2$ 28
Table 2.8 Phosphorous accumulating $organisms(X_{PAO})$ of $ASM2$ $\cdots \cdots 30$
Table 2.9 Nitrifying organisms(autotrophic organisms, $X_{AUT})$ of $ASM2 \cdots 30$
Table 2.10 Simultaneous precipitation of phosphorus with ferric hydroxide $\mathrm{Fe}(\mathrm{OH})_3$
of ASM2
Table 2.11 Peterson matrix of ASM3
Table 2.12 Symbol & unit of ASM3
Table 3.1 Variation of default values of ASM3 parameters
Table 3.2 Sensitivity analysis result of parameters
Table 3.3 Values of parameters in response surface analysis
Table 3.4 Values of 7 parameters in 144 runs & WSSNE
Table 3.5 ANOVA table of 144 runs & WSSNE
Table 3.6 ANOVA of calculated effluent COD and measured effluent COD
for parameter estimation53
Table 3.7 ANOVA of calculated effluent TN and measured effluent TN $% \left({{{\rm{TN}}}} \right) = {{\rm{TN}}} \left({{{\rm{TN}}}} \right) = {{{\rm{TN}}}} \left({{{\rm{TN}}}} \right) = {{\rm{TN}}} \left({{{\rm{TN}}}} \right) = {{{$
for parameter estimation
Table 3.8 ANOVA of calculated effluent COD and measured effluent COD
for validation
Table 3.9 ANOVA of calculated effluent TN and measured effluent TN $% \left({{{\rm{TN}}}} \right) = {{\rm{TN}}} \left({{{\rm{TN}}}} \right) = {{{\rm{TN}}}} \left({{{\rm{TN}}}} \right) = {{\rm{TN}}} \left({{{\rm{TN}}}} \right) = {{{$
for validation
Table 4.1 Effluent characteristics of AOAS according to variation of
retention time in an oxic, oxic reactor at 7 $^{\rm o}{\rm C}$ 61
Table 4.2 Effluent characteristics of AOAS according to variation of

1	retention	time	in	anoxic,	oxic	reactor	at	13	°C	•••••	6	2
---	-----------	------	----	---------	------	---------	----	----	----	-------	---	---

- Table 4.6 Normalized value of effluent according to variation of retention time of anoxic-oxic reactor at 20 $^{\rm o}{\rm C}$ -------66

List of Figures

Fig.	2.1	Schematic diagram of AOAS11
Fig.	2.2	Comparison of 3 type modeling21
Fig.	2.3	Two dimension and three dimension simplex. $\cdots \cdots 43$
Fig.	3.1	Response surface design by Minitab49
Fig.	3.2	Procedure of response surface analysis by Minitab. $\cdots \cdots 52$
Fig.	3.3	Parameter estimation of response surface analysis by Minitab. $^{\rm \cdots}52$
Fig.	3.4	Measured and calculated effluent COD according to operating
		days for parameter estimation
Fig.	3.5	Measured and calculated effluent TN according to operating days
		for parameter estimation. 55
Fig.	3.6	Measured and calculated effluent COD according to operating
		days for validation
Fig.	3.7	Measured and calculated effluent TN according to operating days
		for validation
Fig.	4.1	Procedure of mixture design by minitab68
Fig.	4.2	Optimized retention time of each reactor according to the
		variation of temperature(°C)69
		ST IN SI

Parameter Estimation of Anoxic-Oxic-Anoxic-Stripper Process and Design of Reactor Volume using Response Surface Methodology

Seong Nim Kim

Department of Environmental Engineering, The Graduate School, Pukyoung National University

Abstract

Modelling of activated sludge processes has become a common part of the design and operation of wastewater treatment plants.

It is necessary to correct parameter values e.g. specific growth rate, half saturation constants etc of ASM1, ASM2, ASM3, presented by IWA Task Group to apply to the operation of domestic wastewater treatment plants.

Therefore, this thesis estimated adequate operating parameteric values of wastewater treatment plant in Busan by response surface analysis and optimized the retention time of each reactor of AOAS process to reduce pollution by mixture design.

Statistical programs used were Aqusim 2.1 & Minitab 14.

Results obtained were that estimated parametric values were $b_A 0.12/d$, $b_H 0.26/d$, $b_{PAO} 0.22/d$, $\mu_A 1.17/d$, $\mu_H 3.05/d$, $\mu_{PAO} 1.00/d$, $q_{PP} 1.19/d$, repectively and the optimized proportion ratio of each reactor volume could be designed through the optimized proportion ratio of retention time of each reactor.

The designed proportion ratio of each reactor volume was 1.95(Anoxic1) : 5.22(Oxic1) : 1.44(Anoxic2) : 1.39(Oxic2).

최근 하수처리장 모델로서 국제수질학회(IWA)에서 발표한 ASM1, ASM2 및 ASM3(Henze, 1995)의 국내 현장적용에서 유럽 하수에 적용하여 선정된 매개변수의 기본값을 국내 하수처리장의 시뮬레이션에 그대로 사용하는 경우 가 많다.

그러나 국내 하수특성과 환경조건은 유럽과 다르므로 활성 미생물의 종이 다를 수 있으며, 환경요인의 변화에 따라 비증식 계수, 반포화 계수 등 여러 매개변수를 정확한 공정모사를 위해 국내에 맞게 수정하여 적용할 필요가 있 다.(정형석 등, 2004), (강성욱 등, 2005)

활성슬러지 모델의 매개변수 추정에는 전문가의 경험에 의존한 시행오차법 이나 유전자 알고리즘(정형석, 2004; 김종락, 2003) 등이 사용되고 있으나 시 행오차법은 시간과 노력이 많이 소요되고 유전자 알고리즘은 매회 다른 매개 변수가 도출되어 최적화 값에 대한 확신이 결여되는 약점이 있다.

본 논문에서는 매개변수를 추정시 시간이 절약되고 한번 얻어진 최적화 매 개변수는 반복 추정하여도 동일 값이 얻어지는 반응표면분석법(Myers 2002)을 이용하여 ASM3 매개변수를 추정하고자 하였다.

생물학적 고도처리 공정의 설계시 반응조의 크기는 설계공식의 단회적 계산 에 의하여 Excel을 이용하여 선정하고 있다(부산광역시, 1999). 전체 부피를 고정시킨 상태에서 각 반응조의 크기를 조금씩 변화시켜 활성슬러지 모델을 시뮬레이션하면 유출수의 수질이 변하는 것을 알게 된다. 일부 전문가들은 여러 번의 적절한 가정을 통하여 최적화된 반응조의 크기를 구한다.

특히 하수처리장의 수질공정개선 공사의 경우 생물 반응조의 전체 크기를 변경하지 못하는 가운데 개선공정의 반응조의 부피를 최적화시키는 것은 수 질공학 기술자로서 필수적이나 현재는 적절한 선정 방법을 찾지 못하고 있 다.

총 주입 원료의 양이 정해진 상태에서 최적원료 구성비를 구하기 위한 방법 으로 많이 사용되고 있는 혼합물분석법(Cornell, 2002)은 전체 생물 반응조의 부피가 정해진 상황에서 생물학적 고도처리 공정의 혐기조, 무산소조 및 호 기조의 부피를 최적화하는데 이용할 수 있을 것으로 예상된다.

본 논문은 최근 영양소제거 공정 모델로 많이 이용되는 ASM3 매개변수의 최적화와 ASM3 모델을 이용하여 생물반응조의 부피를 최적화 시키기 위하 여 다음과 같은 연구를 수행하였다.

첫째, 국제수질학회에서 발표한 ASM3(Activated sludge Model, Gujer, et al., 1999)의 매개변수를 국내하수처리장 조건에 맞게 추정하기 위하여 반응 표면분석법(박성현, 2005)을 사용하여 매개변수를 최적화한다.

둘째, 생물학적 고도처리 공정의 설계에서 ASM3모델의 시물레이션 결과를 혼합물 분석법을 적용하여 생물반응조 부피를 최적화시키는 방안을 제시하였 다.

2. 문헌연구

2.1 생물학적 영양소 제거

2.1.1 생물학적 질소 제거

1) 질산화

$$NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O$$
 (2-1)

독립영양 질산화 반응에서 14g의 질소는 64g의 산소와 결합하여 NO₃-N을 형성하며 질소제거 당 산소소요량은 4.6gO₂/(gN 산화)이다.

이 과정에서 2H^{*}의 산이 형성되어 알카리도를 중화시키므로 알카리도 소요 량은100/14 = 7.1 g 알카리도/(gN 산화)로 계산된다.

Nitrosomonas와 Nitrobacter의 합성과정에서 약 0.1 g VSS/(g N 산화)가 생성되는 것으로 알려지고 있다.

$$\mu_n = \left(\frac{\mu_{nm}N}{K_n + N}\right) - k_{dn} \tag{2-2}$$

여기서, μ_n = 질산화 미생물 비성장율, g new cell/g cell · d μ_{nm} = 질산화 미생물 최대 비성장율, g new cell/g cell · d N = 암모니아성 질소농도, g/m³ K_n = 반포화상수, 즉 최대비성장율의 1/2에서 암모니아성 질소 농도, g/m³

 k_{dn} = 질산화 미생물의 내생 분해 계수, g VSS/g VSS·d

온도의 영향은 다음 식으로 설명된다.

생물학적 시스템에서 θ값은 1.02에서 1.25까지 변할 수 있다.

2) 탈질

탈질과정은 다음 식으로 설명된다.

$$NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

(2-4)

Food + microbes + $NO_3 \xrightarrow{\text{time}}$ more microbes + CO_2 + H_2S + N_2 + waste heat (2-5)

$$5 \text{ CH}_{3}\text{OH} + 6 \text{ NO}_{3}^{-} \rightarrow 3 \text{ N}_{2} + 5 \text{ CO}_{2} + 7 \text{ H}_{2}\text{O} + 6 \text{ OH}^{-}$$
 (2-6)

종속영양탈질반응식에서 1 당량의 NO3-N 환원과정에서 1 당량의 알칼리도 가 생성되는데, 이는 1g NO3-N 환원당 3.57g 알카리도(CaCO₃)가 생성되 는 것과 같다.

정상상태 탈질반응 COD 수지로부터 제거된 bsCOD(biodegradable soluble COD)는 세포성장이나 산화된 것이다.

세포합성에 대한 bsCODsyn는 순 미생물 생성률과 1.42g O₂/g VSS 비율 로부터 계산한다.

미생물의 산소등량은 미생물내 결합된 bsCOD와 같다.

bsCOD_{syn} = 1.42
$$Y_n$$
 bsCOD, (2-8)
여기서, $Y_n = 순 미생물 생성률, g VSS/g bsCODr $Y_n = \frac{P}{1 + (k_{dn})SRT}$
(2-9)
따라서, $bsCOD_r = bsCOD_0 + 1.42 Y_n bsCOD_r$ (2-10)
다시 정리하면$

$$bsCOD_0 = (1 - 1.42 \ Y_n) bsCOD_r \tag{2-11}$$

식 (2-11)에서, bsCODo는 산화된 COD이고, bsCOD 산화에 사용된 NO₃-N 의 산소당량과 같다. 그러므로,

bsCODo=
$$2.86$$
NOx (2-12)
여기서, $2.86 = O_2$ equivalent of NO₃-N (8 g O₂ / 2.8 g NO₃-N)
NOx = NO₃-N reduced, g/d

또한 8 g O₂는 산소가 전자수용체인 경우의 반쪽반응식에서 계산된 것이 며

$$1/4 O_2 + H^+ + e^- = 1/2 H_2O$$

2.8 g NO₃-N 는 질산성 질소가 전자수용체인 경우의 반쪽반응식에서 계산 된 것이다.

 $1/5 \text{ NO}_3^- + 6/5 \text{ H}^+ + e^- = 1/10 \text{ N}_2 + 3/5 \text{ H}_2$

식 (2-12)를 식 (2-11)에 대입하여 풀면

$$2.86 \text{ NOx} = (1 - 1.42 \ Y_n) \text{ bsCODr}$$
 (2-13)

또는

$$\frac{\text{bsCOD}}{\text{NO}_3 - \text{N}} = \frac{2.86}{1 - 1.42 \, Y_n} \tag{2-14}$$

탈질 기질 이용율 r_{su} 식(2-15)은 다음과 같이 무산소 영역에서 낮은 기질 이용률을 나타내는 항으로 수정된다.

$$r_{su} = -\frac{kXS1}{K_s + S} \tag{2-15}$$

여기서, n = biomass중 탈질미생물의 분율, g VSS/g VSS ∦ = 최대비기질 소비율 X = 미생물농도 S = 기질농도

용존산소와 기질(NO3-N)의 영향을 고려하면

$$r_{su} = -\left(\frac{kXS}{K_s + S}\right)\left(\frac{NO_3}{K_{s, NO_3} + NO_3}\right)\left(\frac{K_0'}{K_0' + DO}\right)(n) \quad (2-16)$$

여기서, K_0' = Nitrate 환원시 DO에 의한 저해계수, mg/L

*K*_{s,NO3} = Nitrate 제한조건의 반응에서 반포화 상수, mg/L 기타항목은 이미 설명되었다.

Ekama와 Marais(1984) 비 탈질율은 다음과 같다.

$$R_{DN(1)} = 0.72 \,\,\Theta_1^{\,(T-20)} \,\, X_a^{\,(VFA가 \, \pm \, \oplus \, \Pi)} \tag{2-17}$$

$$R_{DN(2)} = 0.101 \ \Theta_2^{(T-20)} \ X_a^{(++)} \ (++)^{-1} \ \Theta_2^{(T-20)} \ (2-18)$$

$$R_{DN(3)} = 0.072 \ \Theta_3^{(T-20)} X_a$$
 (내호흡시)
 (2-19)

 $(\Theta_1 = 1.20, \ \Theta_2 = 1.03, \ \Theta_3 = 1.03 \ X_a = 활성미생물)$

유럽 하수처리장을 중심으로 한 탈질률을 조사한 자료(Naidoo, V. 1998)에 서

VFA가 높은 경우에는 3~7.3 mg N /g Mv·hr이며, 부유상태의 COD의 경우에는 2~3 mg N /g Mv·hr이고, 내호흡의 경우에는 1~2 mg N /g Mv·hr, Issac와 Henze(1995)는 내호흡률을 0.6~0.7 mg N /g Mv·hr로 제 시하고 있다.

2.1.2 생물학적 인 제거

하수처리 공정에서 생물학적 인 제거는 혐기 조건에서 인을 세포 밖으로 방

출한 후 호기조건에서 방출한 인을 다시 과잉 섭취하는 PAOs(Phosphorous Accumulating Organisms) 미생물에 의해서 이루어진다. PAOs 는 혐기 조건 에서 VFA(volatile fatty acids) 또는 아세테이트 등과 같은 유기물질을 polymer 형태의 중간 생성물인 PHB(poly- hydroxy-butyrate) 형태로 세포 내에 축적하게 된다.

이때 필요한 에너지는 세포 내 poly-phosphate 의 분해과정에서 (ATP, adeno-sine triphosphate → ADP : adenosine diphosphate) 얻으며 이 경과 로 H₂PO₄⁻ 형태의 인을 세포 밖으로 방출하게 된다. 호기 조건이나 무산소 조건에서는 혐기 조건의 반대 현상이 일어나 PHB 형태로 저장된 탄소원은 02 나 N03-N 에 의해서 산화된다.

이때 발생되는 에너지는 PAOs 미생물이 세포 밖의 ortho-phosphate 를 세포내 poly-phosphate 형태로 전환시키는 미생물 대사과정을 한다. 그러므 로 하수에 포함된 인은 순수 PAOs 의 성장을 통해서 제거된다.

현재까지 알려진 바로는 phosphate bacteria 는 다음과 같이 두 가지 종류 로 구분되고 있다. 첫째는 Poly-P organisms: maintenance 를 목적으로 poly-P 형태로 축적하는 미생물로서 *Acinetobacter, Microthrix parvicella* 등이 있다. 둘째는 Phosphate accumulating organisms(PAOs)로서 혐기 조 건에서 기질을 저장하고, 호기 또는 무산소 조건에서 poly-phosphate 를 저 장하는 미생물이다.

위 두 종류의 미생물들은 모두 혐기 조건에서 에너지를 얻기 위해 poly-phos-

phate 를 이용할 수 있지만 PAOs 미생물은 poly-phosphate 로부터 에너지 를 이용하여 VFA를 취할 수 있다.

아세테이트와 같은 세포 외부 유기물이 미생물 세포 내부에서 acetyl-CoA 로 전환되며, 이에 필요한 에너지는 ATP 가 ADP 로 전환으로부터 얻으며 이때 인 용출 현상이 일어나 게 된다.

혐기 조건에서 최대 인 방출 농도는 아세테이트와 같은 유기물 및 PAOs 세포내에 glycogen과 poly-phosphate 양에 의해서 제한된다. 그러나 혐기 조

건에서 인 방출에 glycogen 이 제한요소로 작용하는 경우는 과량의 아세테이 트를 주입하여 회분식 실험을 하는 경우를 제외하고는 자주 없다. 또한 높은 pH를 제외하고서는 poly-phosphate 가 제한요소로 작용하는 경우도 아주 드 물다.

호기 조건이나 무산소 조건에서 PHB 는 CO₂ 로 산화되며 NADH2 가 생성 된다. NADH2 는 ATP로 전환되어 PAOs 미생물의 성장, 세포내 ortho-phosphate를 생성/ 저장 및 glycogen 형성에 필요한 에너지로 사용된 다.

호기 조건이나 무산소 조건에서 인 섭취의 차이점은 ATP 형성에 있어서 호기조건에서는 산소가 사용되고 무산소 조건에서는 질산염이 사용되는 차이 점이다. 무산소 조건에서는 NADH2 당 ATP 를 생성하는 양(ATP/ NADH2) 이 호기 조건보다 40%가 적다. 낮은 (ATP/ NADH2)비는 무산소 조건에서 낮은 미생물 생성을 의미한다.

호기 조건에서의 과도한 포기와 부하가 낮은 운전기간에 PAOs 미생물은 PHB 을 빠르게 산화시킨 후 glycogen 의 산화가 일어날 수 있다. 그렇게 되 면 혐기 조건에서 기질 섭취 능력이 감소하여 결국 호기 조건에서의 인 섭취 에 부정적인 영향을 줄 수 있다.

21 11

2.1.3 생물학적 질소 · 인 제거

하수의 생물학적 영양염류 제거공정(Biological nutrient removal, BNR)은 활성슬러지 공정을 변형하여 무산소 또는 혐기과정을 거침으로서 질소와 인 을 제거하는 공정인데, 대표적으로 MLE(modified Ludzack Ettinger), 4-stage Bardenpho, AO(Anaerobic-oxic), VIP(Virginia Initiative plant), AOAS(Anoxic-Oxic-Anoxic-Stripping) 등의 공법이 있다.

국내하수의 경우 탈질을 위한 분해 가능한 유기물이 부족하여 생물학적 질 소·인 제거(BNR)공정의 효율이 감소되어 이에 대한 대응이 필요하다. 생물학적 질소·인 제거공정중의 하나인 AOAS(Anoxic-Oxic-Anoxic -Stripping) 공정은 전무산소조와 후무산소조를 두어 질소의 제거효율을 높이기 위해 외부 탄소원을 주입하는 공정이다.

본 공정은 Fig. 2.1과 같이 무산소반응조, 호기반응조, 무산소반응조, 탈기조 로 배열되어 있으며, 유입수 및 반송슬러지를 무산소반응조에 유입시키고 연 속되는 호기반응조의 질산화 혼합액의 일부를 무산소반응조에 순환시켜 처리 하는 방식이다.

호기반응조에서는 유입되는 암모니아성 질소가 아질산성 질소로, 다시 질산 성질소로 산화되며, 무산소반응조에서는 질산성질소가 유입수중의 유기물의 산화반응에 의하여 질소 가스로 환원된다.

본 공법은 하수중의 유기물의 일부가 탈질반응시 수소공여체로 이용되며, 부족한 수소공여체는 외부에서 주입하여 탈질효율을 향상시킨다.

외부탄소원으로서 가장 많이 사용되는 것은 메타놀과 아세테이트이나, 높은 비용으로 음식물산발효 상징액, 1차슬러지, 주정폐수, 분뇨 등을 사용하는 것 이 연구되고 있다.

음식물산발효 상징액을 외부탄소원으로 사용하고 수리학적 체류시간 8.5 시간, 반응조의 MLSS 농도 3500~4,500 mg/l 의 운전에 의하여 유입 총질소 농도 58mg/l, 유출 총질소농도 12 mg/l 로 총질소 제거율 80%, 유입 총인농 도 평균 5 mg/l, 유출 총인농도 1~2 mg/l로 총인 제거율 57%을 보인 결과 도 있다.(이병헌 등, 2000)

Fig. 2.1 Schematic diagram of AOAS.

- 2.2 활성슬러지 모델
- 2.2.1 McKinney 모델

활성슬러지공법에 널리 쓰이고 있는 McKinney공식(최의소, 2003)은 다음과 같다.

1) 유기물질

유기물질의 물질수지식은 식 (2-20)과 같이 나타낼 수 있다. .

$$V\frac{dF}{dt} = QF_i - QF - KmFV \tag{2-20}$$

정상상태($\frac{dF}{dt} = 0$)에서 F에 대해서 다시 정리하면, 식 (2-21)와 같이 나타낼 수 있다.

$$F = \frac{F_i}{1 + Kmt} \tag{2-21}$$

여기서, V : 시스템 부피, L

Q : 유량, L/d

Fi : 유입수의 총 BOD, mg/L

F: 유출수의 용존성 BOD, mg/L

Km : 박테리아에 의한 유기물분해속도, day-1

t : 수리학적 체류시간(HRT=V/Q), d

박테리아의 성장률은 식 (2-22)와 같은 미분방정식으로 나타낼 수 있다.

$$\frac{dM_B}{dt} = Y \frac{dF}{dt}$$
(2-22)
여기서, $\frac{dM_B}{dt}$: 단위부피당 박테리아 성장률,
 $\frac{dF}{dt}$: 단위부피당 기질 이용률
Y: 성장계수

박테리아는 호흡에 의해 분해도 한다. 박테리아의 내생호흡은 살아있는 박 테리아와 호기성 대사시간의 직접적인 함수로 나타낼 수 있다.

$$\left(\frac{dMa_B}{dt}\right)_e = Ke_B Ma_B t_a \tag{2-23}$$

여기서, Ke_B : 내생호흡율, (산화된 분해가능한 박테리아 량 (mg/L)/남아있 는 분해 가능한 박테리아 량(mg/L)/day)

Ma_B: 활성 박테리아 량, mgVSS/L

ta : 수리학적 체류시간 중 호기성 대사시간의 분율

시스템내에서 박테리아의 물질수지식은 식 (2-24)로 나타날 수 있다.

$$V\frac{dMa_B}{dt} = YKm FV - Q_w Ma_B - (Q - Q_w) Ma_{Beff} - Ke_B Ma_B Vt_a \quad (2-24)$$
여기서, Qw : 슬러지 폐기량, L/d

MaBeff : 유출수로 손실된 활성 박테리아 량, mgVSS/L

평형상태에서, 고형물질 체류시간은 다음과 같이 정의된다.

$$t_s = rac{Ma_B V}{Q_w Ma_B + (Q - Q_w) Ma_{Beff}}$$
 (2-25)
따라서, 식 (2-24)은 식 (2-26)으로 다시 나타낼 수 있다.
 $Ma_B = rac{YKm FVt_s}{V + Ke_B t_s V t_a}$ (2-26)

식 (2-26)은 식 (2-20)에 대입하여 식 (2-27)로 정리할 수 있다.

$$Ma_{B} = \frac{Y(F_{i} - F)(t_{s}/t)}{1 + Ke_{B}t_{s}t_{a}}$$
(2-27)

활성슬러지 시스템과 유사하게, 생물분해 불가능한 박테리아의 찌거기는 내 생호흡율과 같은 속도로 축적된다. 따라서, 불활성 내생호흡 박테리아에 대한 물질수지는 식 (2-28)과 같이 쓸 수 있다.

$$V\frac{dMe_B}{dt} = (1 - f_{dB})Ke_BMe_BVt_a - Q_wMe_B - (Q - Q_w)Me_{Beff}$$
(2-28)

- 13 -

여기서, MeB : 분해불가능한 박테리아의 농도, mgVSS/L

fdB: 박테리아양 중 생물분해가능한 부분의 분율, mg

평형상태에서, MeB에 대해 다시 쓰면 식 (2-29)과 같이 정리된다.

$$Me_B = (1 - f_{dB}) Ke_B Ma_B t_s t_a \tag{2-29}$$

MLSS는 휘발성 고형물과 비휘발성 고형물로 구성된다. 지금까지는 단지 휘발성 부분에 대해서만 모델링 되어왔다. 비휘발성 고형물 또는 불활성 무 기성 고형물(Mii)는 유입, 미생물 성장 그리고 플럭 속으로 무기염의 침전에 의해 시스템내에 축적된다.

비휘발성 고형물은 유출과 슬러지 폐기로 제거된다. 따라서, 비휘발성 고형 물의 물질수지는 식 (2-30)와 같다.

총 MLSS 농도는 살아있는 것, 내생호흡 그리고 주어진 슬러지 일령에서 축적된 분해 불가능한 부분을 모두 합하여 계산된다.

$$M_T = Ma_B + Me_B + Ma_A + Me_A + M_{Ti}$$
(2-31)

$$M_{Ti} = Mi + Mii \tag{2-32}$$

$$M_{h} = Inf M_{h} \left(t_{s}/t \right) \tag{2-33}$$

 $Mii = Inf Mii (t_s/t) + f_{ii} (Ma_B + Me_B + Ma_A + Me_A) + Mii_{cp}$

여기서, M_{Ti} : 총 불활성 량, mgNVSS/L

Mi : MLSS에서 유기성 불활성 량, mgVSS/L Inf Mi (fi): 유기성 불활성의 유입량, mgVSS/L Mii : MLSS에서 무기성 불활성 량, mgNVSS/L Inf Mii : 무기성 불활성 유입량, mgNVSS/L

- fi: 유입 VSS 중 분해불가능한 부분, mg 유입 불활성 VSS/mg 유

 입 VSS
- f_{ii} : 미생물 중 무기성 불활성 부분, mg 미생물중 무기성분/ mg 미 생물량

Miicp : 무기성 염의 침전에 의한 불활성, mgNVSS/L

2) 암모니아성 질소의 물질수지

페수내에 존재하는 질소는 유기성 질소와 암모니아성 질소가 대부분이다. 암모니아성 질소는 박테리아에 의해 질소원으로 직접 이용될 수 있다. 암모 니아성 질소는 새로운 세포 합성에 일부 이용되고 조건이 맞으면 질산성 질 소로 일부 전환된다.

또한 암모니아성 질소는 반응조에서 pH와 수온, 암모니아성 질소의 농도 그리고 혼합조건에 따라 휘발에 의해 제거될 수 있다. 따라서 암모니아성 질 소의 물질수지식은 식 (2.35)과 같이 나타낼 수 있다.

 $V(\frac{dNH_{3}}{dt}) = QNH_{4\infty}^{+} - QNH_{4eff}^{+} - r_{1_{am}}V - r_{2_{am}}V - r_{3_{am}}V \quad (2-35)$

여기서, NH4 inf : 유입 암모니아성 질소농도, mg/L

NH4⁺_{eff} : 유출 암모니아성 질소농도, mg/L r_{1am} : 박테리아의 섭취율, mg/L/d r_{2am} : 질산화율, mg/L/d r_{3am}: 암모니아성 질소의 휘발율, mg/L/d

3) 질산성 질소의 물질수지

질산성 질소는 유입과 질산화에 의해 축적되고 탈질과 유출에 의해 제거된 다. 따라서, 질산성 질소의 물질수지식은 식 (2-36)과 같다.

$$V(\frac{dNO_{3}^{-}}{dt}) = QNO_{3\infty}^{-} - QNO_{3eff}^{-} + r_{1_{na}}V - r_{2_{na}}V$$
(2-36)

여기서, NO_{3 inf} : 유입 질산성 질소농도, mg/L NO_{3 eff} : 유출 질산성 질소농도, mg/L r_{1na} : 질산화에 의한 생성율, mg/L/d r_{2na} : 탈질에 의한 제거율, mg/L/d

4) 인의 물질수지

인은 박테리아의 성장을 위한 필수 영양원소 중 하나이다. 박테리아가 취하는 중요한 인의 형태는 PO4³⁻, HPO4²⁻, H₂PO4⁻이다. 활성슬러지 시스템에서 인의 제거는 일반적으로 박테리아의 섭취이다. 따라서, 무기성 인의 물질수지 식은 식 (2-37)와 같다.

$$V(\frac{dP}{dt}) = QP_{\infty} - QP_{eff} - r_{1_{P}}V - r_{2_{P}}V$$
(2-37)

여기서, Pinf : 무기성 인의 유입농도, mg/L

P_{eff} : 무기성 인의 유출농도, mg/L

r_{1P} : 동화에 의한 무기성 인의 제거율, mg/L/d

r_{2P} : 침전에 의한 무기성 인의 제거율, mg/L/d

5) 산소의 물질수지

활성슬러지 공법에서 총산소요구량은 폐수로부터 유입되는 유기물의 생물학 적 산화와 생물량의 내생호흡에 의한 소모량과 관계있다. 활성슬러지 공법에 서 산소요구량은 식 (2-38)으로 계산된다.

$$V(\frac{dO_2}{dt})_{demand} = a Q(F_i - F) + b_B f_{dB} K e_B M a_B V \qquad (2-38)$$

- 여기서, $(rac{dO_2}{dt})_{demand}$: 산소요구량, mgO₂/L/d
 - a : 기질의 산화를 위해 필요한 산소량, mgO₂/mg Substrate removed
 - b_B : 박테리아의 내생호흡에 필요한 산소량, mgO₂/mg bacteria oxidized

질산화 박테리아의 성장과 암모니아성 질소의 아질산성 질소와 질산성 질소 로의 산화를 위한 조건이 존재할 때, 폐수의 총산소요구량 중 다량의 산소량 이 이용될 것이다. 질산화를 위한 산소량은 화학양론식에 의해 구할 수 있다.

$$NH_4^+ + \frac{3}{2}O_2 \xrightarrow{Nitrosomonas} NO_2^- + 2H^+ + energy$$
 (2-39)

$$NO_2^- + \frac{1}{2}O_2 \xrightarrow{\text{Nitrobacter}} NO_3^- + energy$$
 (2-40)

질산화 박테리아에 의해 변형된 질소의 95%는 에너지로 이용되고 나머지 5%정도만 세포의 질소원으로 동화된다. 4.35g의 산소는 암모니아를 질산성 질소로 산화하는데 쓰이고 3.23g의 산소는 암모니아성질소를 아질산성 질소 로 산화시키는데 쓰인다. 이 값으로부터 질산화 박테리아에 의해 암모니아성 질소를 산화시키는데 소모되는 산소량을 계산할 수 있다.

$$V(\frac{dO_2}{dt})_{nitrification} = 4.35 Q(NO_{3eff}^- - NO_{3inf}^-) + 3.23 Q(NO_{2eff}^- - NO_{2inf}^-)$$
(2-41)

따라서, 총 산소요구량은 유기물의 산화, 미생물의 내생호흡, 암모니아성 질 소의 질산화에 필요한 산소량의 합이다.

폭기는 다량의 산소를 공급할 수 있으며 이는 수중의 산소량에 달려있다.

$$V(\frac{dO_2}{dt})_{surface} = K_L a \left(C_S - C\right) V \tag{2-42}$$

여기서,

6) 이산화탄소의 물질수지

이산화탄소는 유입수의 탄산알칼리도, 유기물의 산화, 그리고 미생물의 내생 호흡에 의해 제공된다. 따라서, 물질수지식은 식 (2-43)와 같다.

$$V(\frac{dCO_2}{dt}) = QCO_{2inf} - QCO_{2eff} + r_{1CO_2}V + r_{2CO_2}V + r_{3CO_2}V$$
(2-43)

여기서, CO_{2inf} : 유입수의 free CO₂ 농도, mg/L

CO_{2eff} : 유출수의 CO₂ 농도, mg/L r_{1CO2} : 알칼리도로부터 생성되는 CO₂의 생성률, mg/L/d r_{2CO2} : 유기물의 산화에 의해 생성되는 CO₂의 생성률, mg/L/d r3CO2 : 박테리아의 내생호흡에 의해 생성된 CO2의 생성률, mg/L/d

Free CO₂의 양은 식 (2-44)에 의해 계산되어질 수 있다.

$$Free CO_2 = \frac{Alk \times H^2}{k_1 \left(H + 2k_2\right)} \tag{2-44}$$

여기서, Alk : 알칼리도, mg/L, H : 수소이온의 활성, 10^{-pH}

 k_1 : 탄산의 첫번째 해리상수 k_2 : 탄산의 두번째 해리상수

일반적인 하수의 유기물의 대사작용은 87%의 탄소산화, 13%의 수소산화로 나타난다.

7) 알칼리도의 물질수지 알칼리도의 물질수지는 식 (2-45)과 같이 나타낼 수 있다.

$$V(\frac{dAlk}{dt}) = QAlk_{\infty} - QAlk_{eff} - r_{1Alk} V - r_{2Alk} V - r_{3Alk} V - r_{4Alk} V \quad (2-45)$$

여기서, Alk_{inf} : 유입수의 알카리도, mg/L

Alk_{eff} : 유출수의 알칼리도, mg/L r_{1Alk} : 질소대사로 인해 변하는 알칼리도의 반응률, mg/L/d r_{2Alk} : 질산화로 인해 변하는 알칼리도의 반응률, mg/L/d r_{3Alk} : 인제거로 인해 변하는 알칼리도의 반응률, mg/L/d r_{4Alk} : 질소의 탈기로 인해 변하는 알칼리도의 반응률, mg/L/d 1987년 1차 처리된 하수에 대한 유기물의 제거, 질산화와 탈질에 관한 공 정의 거동예측이 가능한 활성슬러지 공정 모델 ASM(Activated Sludge Model) No.1 이 발표되었다.

1995년에 발표된 ASM No.2(Mogens Henze et. al., 1999)에서는 기존의 ASM No.1에 생물학적 인제거와 화학적 침전의 영향을 고려한 내용까지 발 표되었다.

1999년에 발표된 ASM No.3에서는 유기물질의 세포내의 저장을 통한 2단계 성장모델과 내생호흡으로 소멸되는 모델로 발표되었다.

활성슬러지 모델에서 미생물 성장을 표현하는 대표적인 세 가지 접근법은 다음과 같다.

1) 내생 사멸 모델 (Endogenous respiration model)

2) 사멸 재생산 모델 (Death regeneration model, ASM1, ASM2)

3) 2 단계 성장 모델(Two step growth model, ASM3)

내생 사멸 모델에서는 빠르게 분해되는 기질 (Ss, Readily Biodegradable Material) 의 분해에 의한 미생물의 성장은 물론 사멸 공정에도 산소가 소비 되는 것으로 간주되고, 측정되는 내생호흡율은 미생물 의 사멸을 통해 소비 되는 산소의 양으로 해석된다.

사멸 재생산 모델(ASM1, ASM2)에 따르면 사멸된 미생물은 가수분해를 거 쳐 다시 미생물의 성장에 재사용된다. 따라서 미생물 사멸에 의한 산소 소비 는 표현되지 않으며, Xs 가 가수분해된 Ss의 이용시 산소소비량으로 산소소 비량 표현이 가능하다.

ASM3 에서는 기질이 바로 미생물의 성장에 이용되는 것이 아니라 기질이 미생물 내에 저장된 후 성장에 이용되며, 저장과 성장 모두에서 산소가 소비 되는 것으로 보았다.

이들 세 가지 접근법은 근본적으로 다음 세 가지 면에서 차이가 있다.

1) 사멸한 미생물이 다시 가수분해를 거쳐 다시 기질로 사용되는가?

2) 사멸 공정에서 산소가 소비되는가?

3) 기질에 미생물 성장에 바로 사용되는가 또는 일단 미생물 세포 내에 축 적된 다음에 사용되느냐 ?

세 가지 모델링 접근법의 차이가 다음 그림과 표에 정리되어 있다.

Fig. 2.2 Comparison of three type modeling.

	Endogenous	Death-regeneration	2 step growth	
	respiration model	model	model	
Death-regeneration	×	О	×	
O ₂ consumption in	0	×	0	
death process	0	^	0	
Growth step	1 step	1 step	2 step	

Table 2.1 Comparison of three typical modeling

IWA 활성슬러지 모델 No.1 은 종속영양균 및 독립영양균의 성장과 사멸및 가수분해 등 8 개의 공정과 4 종류의 탄소성 물질 및 질소성 물질 등 13개의 성분을 포함하며, 알아보기 쉽도록 Matrix 형태로 표현되었다.

IWA 활성슬러지 모델 No.1 에서 유기물질 제거의 동력학식은 성장제한 기질에 대한 Monod 식 형태로 나타내었다.

ASM1의 Peterson matrix는 Table 2.2 와 Table 2.3과 같다.

					-									
		1	2	3	4	5	6	7	8	9	10	11	12	13
j	Process ↓	S_{I}	Ss	XI	Xs	$\mathbf{X}_{\mathrm{B,H}}$	$\mathbf{X}_{\mathrm{B,A}}$	$\mathbf{X}_{\mathbf{P}}$	So	S _{NO}	S _{NH}	S _{ND}	\mathbf{X}_{ND}	S _{ALK}
1	Aerobic growth heterotrophs		$-\frac{1}{Y_{H}}$	1		1			$-\frac{1-Y_{H}}{Y_{H}}$		$-i_{XB}$			$-\frac{\mathbf{i}_{XB}}{14}$
2	Anoxic growth heterotrophs		$-\frac{1}{Y_{H}}$			1				$-rac{1-{ m Y}_{ m H}}{2.86{ m Y}_{ m H}}$	$-i_{XB}$			$\frac{1 - Y_{H}}{14 \times 2.86 Y_{H}} - \frac{i_{XB}}{14}$
3	Aerobic growth autotrophs		2				1		$-\frac{4.57-\mathrm{Y}_{A}}{\mathrm{Y}_{A}}$	$\frac{1}{Y_A}$	$-i_{XB}-\frac{1}{Y_A}$			$-\frac{\mathrm{i}_{\mathrm{XB}}}{14}-\frac{1}{7\mathrm{Y}_{\mathrm{A}}}$
4	Decay of heterotrophs		1		1-f _p	-1		f_p		1	7		i_{XB} - $f_P i_{XP}$	
5	Decay of autotrophs			1	1-f _p	AL.	-1	f_p	HO	The second			i_{XB} - $f_P i_{XP}$	
6	Ammonification soluble organic nitrogen										1	-1		$\frac{1}{14}$
7	Hydrolysis of entrapped organics		1		-1									
8	Hydrolysis of entrapped organic nitorgen											1	-1	
O co ra []	Dbserved conversion rate $[ML^{-3}T^{-1}]$ $r_i = \sum_j v_{ij} \rho_j$													

Table 2.2 Peterson matrix of ASM1(Henze et al., 1987)

Table 2.3 Process rate of ASM1

	Process Rate, $\rho_{j}[ML^{-3}T^{-1}]$					
1	Aerobic growth of heterotrophs	$\widehat{\mu_{H}}\left(\frac{S_{S}}{K_{S}+S_{S}}\right)\left(\frac{S_{O}}{K_{O,H}+S_{O}}\right)X_{B,H}$				
2	Anoxic growth of heterotrophs	$\widehat{\mu_{H}} \left(\frac{S_{S}}{K_{S} + S_{S}} \right) \left(\frac{K_{O,H}}{K_{O,H} + S_{O}} \right) \left(\frac{S_{NO}}{K_{NO} + S_{NO}} \right) n_{g} X_{B,H}$				
3	Aerobic growth of autotrophs	$\widehat{\mu_{A}}\left(\frac{S_{\rm NH}}{K_{\rm NH}+S_{\rm NH}}\right)\left(\frac{S_{\rm O}}{K_{\rm O,A}+S_{\rm O}}\right)X_{\rm B,A}$				
4	Decay of heterotrophs	ecay of b _H X _{B,H}				
5	Decay of autotrophs	$b_A X_{B,A}$				
6	Ammonification of soluble organic nitrogen	k _a S _{ND} X _{B,H}				
7	Hydrolysis of entrapped organics	$k_{h} \frac{X_{S}/X_{B,H}}{K_{X} + (X_{S}/X_{B,H})} \left[\left(\frac{S_{O}}{K_{O,H} + S_{O}} \right) + n_{h} \left(\frac{K_{O,H}}{K_{O,H} + S_{O}} \right) \left(\frac{S_{NO}}{K_{NO} + S_{NO}} \right) \right] X_{B,H}$				
8	Hydrolysis of entrapped organic nitorgen	$P_7(X_{ND}/X_S)$				

DI III 또한 각 성분의 의미는 Table 2.4와 같다.

41

Symbol	Name	Unit
SI	Soluble inert COD concentration	$gCOD/m^3$
Ss	Readily bio-degradable COD concentration	$gCOD/m^3$
XI	Inert suspended organic matter concentration	$gCOD/m^3$
X_S	Slowly bio degradable organic matter	$gCOD/m^3$
$X_{\mathrm{B,H}}$	Heterotrophs(Org material remover, Denitrifier)	$gCOD/m^3$
$X_{B,A}$	Autotroph(Nitrifier)	$gCOD/m^3$
X _P	Microorganism death rate(Endogenous, Particulate)	gCOD/m ³
So	Dissolved oxygen	gCOD/m ³
S _{NO}	sol NO ₃ -N + NO ₂ -N concentration	gN/m^3
$S_{\rm NH}$	sol NH ₄ ⁺ -N concentration	$\mathrm{gN/m^3}$
S _{ND}	Soluble biodegradable organic nitrogen	gN/m^3
X _{ND}	Particulate organic nitrogen	gN/m^3
S _{ALK}	Alkalinity	mol/L

Table 2.4 Symbol & unit of ASM1 components

위 표에서 대문자 S는 용존상을, X는 입자상을 의미한다.

Table 2.5는 ASM1의 매개변수에 대한 설명과 단위이다.

	Symbol	Name	Unit			
	$\mu_{max,H}$	Max. specific growth rate for heterotrophs	g cell growth / g cell-day			
	Ks	Half sat. coefficient for bio degradable substrate	gCOD/m ³			
	K _{O,H}	O_2 half sat. coefficient forf heterotrophs	${ m gO}_2/{ m m}^3$			
	K _{NO}	Nitrate half sat. coefficient for denitrifying heterotophic biomass	gNO ₃ ⁻ -N/m ³			
Kinetic	b _H	Decay coefficient for heterotrophic biomass	g cell endogenous rate / g cell-day			
para-	$\mu_{max,A}$	Max. specific growth rate for autotrophs	g cell growth/ g cell-day			
meters	K_{NH}	Ammonia half sat. const. nitrifying process	gNH_3^N/m^3			
	K _{O,A}	Oxygen half sat. coefficient for autotrophs	gO_2/m^3			
	bA	Decay coefficient for autotrophic biomass	g cell endogenous rate/ g cell-day			
	ka	Ammonification rate	m ³ / g COD-day			
	k _h	Maximum specific hydrolysis rate	g sbCOD/ g cell COD-day			
	K _X	Half saturation coefficient for heterotophic biomass	g_sbCOD/ g_cell_COD			
	η_{g}	Correction factor for an oxic growth of $\mu_{\rm H}$	-			
	$\eta_{\rm h}$	Correction factor for anoxic hydrolysis	-			
	Y_{H}	Yied for heterotophic biomass	gCOD cell /g COD			
Stoich iometric para-	Y_A	Yied for autotrophic biomass	gCOD cell /g N			
	$f_{\rm P}$	Fraction of biomass leading to particulate products	-			
meters	$i_{\rm XB}$	Mass of nitrogen/mass of COD in biomass	gN/gCOD active cell			
	i _{XP}	Mass of nitrogen/mass of COD in products from biomass	gN/gCOD endogenuous cell			

Table 2.5 Symbol & unit of activated sludge model parameters

1995년에 발표된 ASM No.2(Mogens Henze et. al., 1999)에서는 기존의 ASM No.1에 생물학적 인제거와 화학적 침전의 영향을 고려한 내용까지 발 표되었다.

ASM2는 세포구분을 각각의 세포에 대해 구분하지 않고 미생물량의 평균에 대해 고려하였다. ASM 1에서는 COD와 전자수용체, 질소에 대한 세 가지를 기본으로 이루어졌지만 ASM2는 인을 추가하였다. ASM2에서는 발효에 관 한 항목을 추가하였다. 호기 조건에서의 PAOs와 TSS(total suspended solids)를 포함하였다.

ASM2d의 차이점은 ASM2에서 PAOs에 관해서만 호기조건에서만 언급했으 나, ASM2d는 무산소 구간에서 탈질에 관련된 PAOs를 포함하였다.

ASM2의 인 제거 기작은 인 축적 미생물 XPAO에 의하여 혐기 상태에서 S_A를 섭취하여 XPAO형태로 저장을 하고 Xpp를 용해성분 PO4로 방출하고, 호기 상태가 되면 XPAO를 이용하여 반응조 내에 있는 용해성 PO4를 섭취 하여 PAO안의 Xpp 형태로 저장한후 호기조에서 슬러지를 폐기시켜 폐수 내 의 인을 제거시킨다.

하수처리 공정에서 생물학적 인 제거는 혐기 조건에서 인을 세포 밖으로 방 출한 후 호기조건에서 방출한 인을 다시 과잉 섭취(일반 미생물의 인 함량보 다 크다)하는 PAOs 미생물에 의해서 이루어진다. 호기조에서 용해성 PO4를 PAO안의 Xpp 형태로 저장한 후 호기조에서 슬러지를 폐기시켜 폐수 내의 인을 제거시킨다.

ASM2 공정개요는 다음과 같다.

(공정 1~3): 가수분해

입자성 물질인 Xs가 발효되어 빨리 생분해되는 유기물질인 SF로 가수분해 되는 속도는 사용 가능한 전자수용체에 달려 있다. ASM No.2에서는 호기성
(S₀₂ > 0), 무산소(S₀₂ =0, S_{N03} > 0) 조건과 혐기성(S₀₂ =0, S_{N03} =0) 조 건으로 구분하고 있다.

ASM No.1의 가수분해공정과는 달리 Table 2.6 에서와 같이 ASM No.2에 서는 혐기성조건이 생물학적 인 제거 시스템의 필수적인 부분이기 때문에 혐 기성 가수분해가 도입되고 있다.

Table 2.6 Hydrolysis process of ASM2

1. Aerobic Hydrolysis	$\mathbf{K}_{\mathrm{h}} \cdot \frac{S_{O2}}{K_{O2} + S_{O2}} \cdot \frac{X_s / X_H}{K_X + X_s / X_H} \cdot \mathbf{X}_{\mathrm{H}}$
2. Anoxic Hydrolysis	$K_{h} \cdot \eta_{NO3} \cdot \frac{K_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_{NO3}}{K_{NO3} + S_{NO3}} \cdot \frac{X_{s} / X_{H}}{K_{X} + X_{s} / X_{H}} \cdot X_{H}$
3.Anaerobioc Hydrolysis	$\mathrm{K_{h}} \cdot \mathrm{n_{fe}} \cdot \frac{K_{O2}}{K_{O2} + S_{O2}} \cdot \frac{K_{NO3}}{K_{NO3} + S_{NO3}} \cdot \frac{X_s / X_H}{K_X + X_s / X_H} \cdot \mathrm{X_{H}}$

(공정 4~9) : 종속영양미생물군(X_H)

종속영양미생물군은 호기성 및 무산소(탈질) 조건에서 성장한다고 가정한다. 이들을 S_F나 S_A를 전자공여체로서 사용한다. Table 2.7의 공정 4~7까지의 성장속도식은 ASM No.1에서의 빨리 생분해되는 유기물질 S_S가 S_S = S_F+ S_A로 대체됨을 알 수 있게 해준다. S_F와 S_A의 생분해 속도식의 합은 ASM No.1에서의 S_S의 생분해속도식과 매우 비슷하다.

혐기성조건하에서 종속영양미생물군은 S_F를 S_A로 발효시킬 수 있다. 양론계 수를 단순화시키기 위해서 발효는 단순한 전환이고, 성장과정은 아니라고 설 명된다.

분해(Iysis)는 종속영양미생물군의 생체량이 감소되는 모든 공정 즉, 포식 (predation), 존속(maintenance), 내생호흡(endogenous respiration), 세포분해 (cell lysis) 등을 의미한다.

4.	Growth on S_F	$ \begin{array}{c} \mu_{\mathrm{H}} \cdot \frac{S_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_F}{K_F + S_F} \cdot \frac{S_F}{S_F + S_A} \cdot \frac{S_{NH4}}{K_{NH4} + S_{NH4}} \cdot \frac{S_{PO4}}{K_P + S_{PO4}} \cdot \\ \\ \frac{S_{alk}}{K_{alk} + S_{alk}} \cdot \mathbf{X}_{\mathrm{H}} \end{array} $
5.	Growth on $S_{\rm A}$	$\mu_{\rm H} \cdot \frac{S_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_A}{K_A + S_A} \cdot \frac{S_A}{S_F + S_A} \cdot \frac{S_{NH4}}{K_{NH4} + S_{NH4}} \cdot \frac{S_{PO4}}{K_P + S_{PO4}} \cdot X_{\rm H}$
6.	Denitrification	$\mu_{\rm H} \cdot \eta_{\rm NO3} \cdot \frac{K_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_F}{K_F + S_F} \cdot \frac{S_F}{S_F + S_A} \cdot \frac{S_{NH4}}{K_{NH4} + S_{NH4}} \cdot \frac{S_{NO3}}{K_{NO3} + S_{NO3}}$
	on $S_{\rm F}$	$\cdot \frac{S_{PO4}}{K_P + S_{PO4}} \cdot X_{\mathrm{H}}$
7.	Denitrification	$\mu_{\mathrm{H}} \cdot \eta_{\mathrm{NO3}} \cdot \frac{K_{02}}{K_{02} + S_{02}} \cdot \frac{S_A}{K_A + S_A} \cdot \frac{S_F}{S_F + S_A} \cdot \frac{S_A}{S_F + S_A} \cdot \frac{S_{NH4}}{K_{NH4} + S_{NH4}} \cdot \frac{S_{NH4}}{$
	OII SA	$\frac{S_{NCB}}{K_{NC3}+S_{NC3}}\cdot\frac{S_{PC4}}{K_P+S_{PC4}}\cdot X_{\rm H}$
8.	Fermentation	$q_{fe} \cdot \frac{K_{O2}}{K_{O2} + S_{O2}} \cdot \frac{K_{NO3}}{K_{NO3} + S_{NO3}} \cdot \frac{S_F}{K_{fe} + S_F} \cdot \frac{S_{alk}}{K_{alk} + S_{alk}} \cdot X_{H}$
9.	Lysis	$b_{\rm H} \cdot X_{\rm H}$

Table 2.7 Heterotrophic $\operatorname{organisms}(X_H)$ of ASM2

(공정 10~15 : 인축적미생물군(X_{PAOs}))

Table 2.8은 인축적미생물에 관한 것이다. 인축적 미생물군(X_{PAOs})은 호기성 조건에서 용해성 인(S_{PO4})을 세포내의 poly-phosphate(Xpp)의 형태로 저장한 다고 가정한다. 이 공정에 필요한 에너지는 세포내 유기저장물질(X_{PHA}, 공정 11)로부터 공급받는다. 만일 발효산물 S_A가 존재하면 X_{PAOs}는 모든 환경조건 에서 이러한 유기물질을 polyhydroxyalkanoate X_{PHA}의 형태로 저장할 수 있 다고 가정한다.

이 공정 10에 필요한 에너지는 polyphosphate Xpp의 가수분해와 이에 따르 는 용해성인의 방출로부터 유도된다. X_{PAOs}의 호기성 성장을 위한 유일한 우 기물질은 저장된 polyhydroxyalkanoate X_{PHA}(공정 12)이다. X_{PAOs}는 세포내 저장물질인 X_{PP}와 X_{PHA}를 가지고 있기 때문에 이러한 미생물군의 분해공정 에는 이 저장물질들(공정 13~15)이 포함되어야 한다. 공정 10~12까지이 속도식은 XPAO 생체량 XPAO당 저장물질인 XPP와 XPHA의 평균적인 비율에 따라 크게 좌우된다. 비록 이러한 식들이 가수분해공정 (X_s/X_H)에 대한 속도식과 유사하기는 하지만 질적으로 다른 현상을 설명한 것이다. 가수분해는 세포외적 공정이며, 저장은 세포내적 현상이다.

가수분해에 대한 속도론적 포화상수 K_X가 종속영양미생물군의 표면을 덮는 데 필요한 X_s의 양에 대한 일차적인 근사값으로 해석되는데 비해, 포화상수 X_{PHA}와 X_{PP}는 X_{PAOs}의 세포내 특성을 나타내며, X_{MAX}는 X_{PAOs}의 최대가능 polyphosphate 함량을 나타낸다.

ASM No. 2d 는 X_{PAOs}가 무산소조건에서 polyphosphate를 저장하고 성장할 수 있다는 가능성을 포함하고 있다. X_{PAOs}에 의한 탈질능력은 많은 실규모처 리장에서 관측되었고 AMS No. 2 에서도 공정 11(X_{PP}에 저장)과 공정 12(X_{PAOs}의 호기성 성장)를 다시 적용하면 이러한 상황이 쉽게 도입될 수 있 다.

So₂에 대한 양론계수는 S_{NO3}(v_{NO3} = v_{O2} /2.86)와 S_{N2}(v_{N2} = -v_{NO3})로 전환이 가능하다. 이러한 공정들의 속도는 더 느려질 수도 있으며, S_{O2}에 의해 저해 되거나 S_{NO3}에 의해 촉진될 수 있다. 그러나 ASM No. 2에는 아직까지 자세 한 특성이 밝혀지지 않았기 때문에 이러한 두 공정을 포함하지 않고 있다.

A LH OL M

10. Storage of X_{PHA} $q_{PHA} \cdot \frac{S_A}{K_A + S_A} \cdot \frac{X_{PP}/X_{PAO}}{K_{PP} + X_{PP}/X_{PAO}} \cdot X_{PAO}$ 11. Storage of X_{PP} $q_{PP} \cdot \frac{S_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_{PO4}}{K_P + S_{PO4}} \cdot \frac{X_{PHA}/X_{PAO}}{K_{PHA} + X_{PHA}/X_{PAO}} \cdot X_{PAO}$ 12. Aerobic growth on X_{PHA} $\mu_{PA} \circ \frac{S_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_{NHA}}{K_{NH4} + S_{NH4}} \cdot \frac{S_{alk}}{K_{alk} + S_{alk}} \cdot \frac{S_{PO4}}{K_P + S_{PO4}} \cdot X_{PAO}$ 13. Lysis of X_{PP} $b_{PA} \circ X_{PAO} \cdot S_{ALK}/(K_{ALK} + S_{ALK})$ 14. Lysis of X_{PP} $b_{PA} \circ X_{PAO} \cdot S_{ALK}/(K_{ALK} + S_{ALK})$ 15. Lysis of X_{PHA} $b_{PHA} \cdot X_{PHA} \cdot S_{ALK}/(K_{ALK} + S_{ALK})$		
$\begin{array}{c} 11. \text{ Storage of } X_{PP} & \begin{array}{c} S_{O2} \\ R_{O2} + S_{O2} \end{array} \cdot \frac{S_{PO4}}{K_P + S_{PO4}} \cdot \frac{X_{PHA}/X_{PAO}}{K_{PHA} + X_{PHA}/X_{PAO}} \cdot \\ \\ \frac{K_{MAX} - X_{PP}/X_{PAO}}{K_{IPP} + K_{MAX} - X_{PP}/X_{PAO}} \cdot X_{PAO} \\ \end{array} \\ \hline 12. \text{ Aerobic growth} & \begin{array}{c} \mu_{PA} \circ \cdot \frac{S_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_{NH4}}{K_{NH4} + S_{NH4}} \cdot \frac{S_{alk}}{K_{alk} + S_{alk}} \cdot \frac{S_{PO4}}{K_P + S_{PO4}} \cdot \\ \\ \sigman X_{PHA} & \begin{array}{c} \frac{X_{PHA}/X_{PAO}}{K_{PHA} + X_{PHA}/X_{PAO}} \cdot X_{PAO} \\ \end{array} \\ \hline 13. \text{ Lysis of } X_{PAO} & \begin{array}{c} b_{PAO} \cdot X_{PAO} \cdot S_{ALK}/(K_{ALK} + S_{ALK}) \\ \\ 14. \text{ Lysis of } X_{PHA} & \begin{array}{c} b_{PP} \cdot X_{PP} \cdot S_{ALK}/(K_{ALK} + S_{ALK}) \\ \end{array} \\ \hline 15. \text{ Lysis of } X_{PHA} & \begin{array}{c} b_{PHA} \cdot X_{PHA} \cdot S_{ALK}/(K_{ALK} + S_{ALK}) \\ \end{array} \end{array} \\ \hline \end{array}$	10. Storage of X_{PHA}	$q_{PHA} \cdot \frac{S_A}{K_A + S_A} \cdot \frac{X_{PP}/X_{PAO}}{K_{PP} + X_{PP}/X_{PAO}} \cdot X_{PAO}$
11. Storage of XPP $K_{MAX} - X_{PP}/X_{PAO}$ $K_{IPP} + K_{MAX} - X_{PP}/X_{PAO}$ X_{PAO} 12. Aerobic growth on XPHA $\mu_{PAO} \cdot \frac{S_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_{NH4}}{K_{NH4} + S_{NH4}} \cdot \frac{S_{alk}}{K_{alk} + S_{alk}} \cdot \frac{S_{PO4}}{K_P + S_{PO4}} \cdot$ 13. Lysis of XPAO 14. Lysis of XPP $b_{PAO} \cdot X_{PAO} \cdot S_{ALK}/(K_{ALK} + S_{ALK})$ 15. Lysis of XPHA $b_{PHA} \cdot X_{PHA} \cdot S_{ALK}/(K_{ALK} + S_{ALK})$	11 Store of V	$q_{PP} \cdot \frac{S_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_{PO4}}{K_P + S_{PO4}} \cdot \frac{X_{PHA}/X_{PAO}}{K_{PHA} + X_{PHA}/X_{PAO}} \cdot$
12. Aerobic growth on X _{PHA} $ \begin{array}{c} \mu_{PA,O} \cdot \frac{S_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_{NH4}}{K_{NH4} + S_{NH4}} \cdot \frac{S_{alk}}{K_{alk} + S_{alk}} \cdot \frac{S_{PO4}}{K_{P} + S_{PO4}} \cdot \frac{X_{PHA}/X_{PAO}}{K_{PHA} + X_{PHA}/X_{PAO}} \cdot X_{PAO} \\ \end{array} $ 13. Lysis of X _{PAO} $\begin{array}{c} b_{PAO} \cdot X_{PAO} \cdot S_{ALK}/(K_{ALK} + S_{ALK}) \\ 14. Lysis of X_{PP} & b_{PP} \cdot X_{PP} \cdot S_{ALK}/(K_{ALK} + S_{ALK}) \\ 15. Lysis of X_{PHA} & b_{PHA} \cdot X_{PHA} \cdot S_{ALK}/(K_{ALK} + S_{ALK}) \\ \end{array} $	11. Storage of App	$\frac{K_{MAX} - X_{PP}/X_{PAO}}{K_{IPP} + K_{MAX} - X_{PP}/X_{PAO}} \cdot X_{PAO}$
on X _{PHA} $\frac{X_{PHA}/X_{PAO}}{K_{PHA} + X_{PHA}/X_{PAO}} \cdot X_{PAO}$ 13. Lysis of X _{PAO} b _{PAO} · X _{PAO} · S _{ALK} /(K _{ALK} +S _{ALK}) 14. Lysis of X _{PP} b _{PP} · X _{PP} · S _{ALK} /(K _{ALK} +S _{ALK}) 15. Lysis of X _{PHA} b _{PHA} · X _{PHA} · S _{ALK} /(K _{ALK} +S _{ALK})	12. Aerobic growth	$\mu_{PAO} \cdot \frac{S_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_{NH4}}{K_{NH4} + S_{NH4}} \cdot \frac{S_{alk}}{K_{alk} + S_{alk}} \cdot \frac{S_{PO4}}{K_P + S_{PO4}} \cdot$
13. Lysis of XPAO $b_{PAO} \cdot X_{PAO} \cdot S_{ALK}/(K_{ALK}+S_{ALK})$ 14. Lysis of XPP $b_{PP} \cdot X_{PP} \cdot S_{ALK}/(K_{ALK}+S_{ALK})$ 15. Lysis of XPHA $b_{PHA} \cdot X_{PHA} \cdot S_{ALK}/(K_{ALK}+S_{ALK})$	on X _{PHA}	$\frac{X_{PHA}/X_{PAO}}{K_{PHA} + X_{PHA}/X_{PAO}} \cdot X_{PAO}$
14. Lysis of X_{PP} $b_{PP} \cdot X_{PP} \cdot S_{ALK}/(K_{ALK}+S_{ALK})$ 15. Lysis of X_{PHA} $b_{PHA} \cdot X_{PHA} \cdot S_{ALK}/(K_{ALK}+S_{ALK})$	13. Lysis of X _{PAO}	$b_{PAO} \cdot X_{PAO} \cdot S_{ALK} / (K_{ALK} + S_{ALK})$
15. Lysis of X_{PHA} $b_{PHA} \cdot X_{PHA} \cdot S_{ALK}/(K_{ALK}+S_{ALK})$	14. Lysis of X_{PP}	$\mathrm{b_{PP}} \cdot \mathrm{X_{PP}} \cdot \mathrm{S_{ALK}/(K_{ALK}+S_{ALK})}$
	15. Lysis of X _{PHA}	$b_{PHA} \cdot X_{PHA} \cdot S_{ALK} / (K_{ALK} + S_{ALK})$

Table 2.8 Phosphorous accumulating organisms(XPAO) of ASM2

(공정 16~17 : 질산화)

질산화에 대한 모델은 독립영양미생물군의 성장에 필요한 인 소요량에 대한 고려만을 제외하고는 ASM No. 1에서의 규정과 같다. ASM No. 2에는 개별 적인 미생물군으로서 Nitrosomonas와 Nitrobacter 종이 도입된 질산화의 관 점에서 아질산의 형성을 포함할 수 있다.

탈질과 생물학적 인 제거공정의 관점에서 아질산의 생성, 소비와 이의 효과 에 관해서는 많이 알려져 있지 않기 때문에 Table 2.9 와 같이 ASM No. 2 에서는 이러한 가능성은 포함시키지 않았다.

Table 2.9 Nitrifying organisms(autotrophic organisms, X_{AUT}) of ASM2

16. Growth	$\mu_{\text{AUT}} \cdot \frac{S_{O2}}{K_{O2} + S_{O2}} \cdot \frac{S_{NH4}}{K_{NH4} + S_{NH4}} \cdot \frac{S_{PO4}}{K_P + S_{PO4}} \cdot \frac{S_{alk}}{K_{alk} + S_{alk}} \cdot X_{\text{AUT}}$
17. Lysis	$b_{AUT} \cdot X_{AUT}$

(공정 18~19 : 화학적 처리)

Table 2.10 Simultaneous precipitation of phosphorus with ferric hydroxide $Fe(OH)_3$ of ASM2

18.	precipitation	$k_{PRE} \cdot S_{PO4} \cdot X_{MEOH}$
19.	Redissolution	$k_{RED} \cdot X_{MEP} \cdot S_{ALK}/(K_{ALK} + S_{ALK})$

2.2.4 ASM3 모델

1999년에 발표된 ASM No.3에서는 유기물질의 세포내의 저장을 통한 2단계 성장모델과 내생호흡으로 소멸되는 모델로 발표되었다.

ASM3의 Peterson Matrix는 Table 2.11과 같으며 ASM3의 매개변수의 의 미는 Table 2.12 과 같다.

		1	2	3	4	5	6	7	8	9
j	Process ↓	So	SI	Ss	$S_{\rm NH}$	S _{NO}	S_{NN}	S_{ALK}	X_{I}	\mathbf{X}_{S}
	Heterotrophic org	anisms,								
	X_H	,								
1	Hydrolysis		\mathbf{f}_{SI}	1-f _{SI}	$\begin{split} &i_{\rm N,XS} - i_{\rm N,SS}.(1 \\ &-f_{\rm SI}) - i_{\rm N,SI} \cdot f_{\rm SI} \end{split}$			v[i,7]		-1
2	$\begin{array}{c} Aerobic \ stgorage \\ of \ X_{STO} \end{array}$	-(1-Y _{STO})		-1	i _{N,SS}			v[i,7]		
3	Anoxic stgorage of X _{STO}			-1	i _{N,SS}	$-\frac{1-\mathrm{Y}_{\mathrm{STO,NO}}}{2.86}$	$\frac{1-\mathrm{Y}_{\mathrm{STO.NO}}}{2.86}$	v[i,7]		
4	Aerobic growth	$1 - \frac{1}{Y_{H,O_2}}$			$-i_{\rm N,BM}$			v[i,7]		
5	Anoxic growth			T	$-i_{ m N,BM}$	$\frac{1-\frac{1}{\mathbf{Y}_{\mathrm{H,NO}}}}{2.86}$	$-\frac{1-\frac{1}{Y_{\rm H, NO}}}{2.86}$	V[i,7]		
6	Aerobic endogenous respiration	-(1-f _{XI})	~		i _{N,BM} −f _{XI} •i _{N,XI}		2	V[i,7]	$f_{\rm XI}$	
7	Anoxic endogenous respiration	5			i _{N,BM} -f _{XI} ·i _{N,XI}	$-\frac{1-f_{XL}}{2.86}$	$\frac{1-f_{XL}}{2.86}$	v[i,7]	\mathbf{f}_{XI}	
8	Aerobic respiration of	-1					S	v[i,7]		
9	Anoxic respiration of X _{STO}	2				$-\frac{1}{2.86}$	$\frac{1}{2.86}$	v[i,7]		
	Autotrophic organisms, X						/			
10	Growth	$1 - \frac{4.57}{Y_A}$		N	$-\frac{1}{Y_A}-i_{N,BN}$	$\frac{1}{Y_A}$		v[i,7]		
11	Aerobic endogenous respiration	-(1-f _{XI})			$i_{N,BM} - f_{XI} \cdot i_{N,XI}$			V[i,7]	\mathbf{f}_{XI}	
12	Anoxic endogenous respiration <i>Composite</i>				i _{N,BM} -f _{XI} ·i _{N,XI}	$-\frac{1-f_{XL}}{2.86}$	$\frac{1-f_{XL}}{2.86}$	v[i,7]	\mathbf{f}_{XI}	
	matrix									
	Conservatives									
1	ThOD	-1	1	1		-64/14	-24/14		1	1
$\frac{1}{2}$	Nitrogen	1	inc	inco	1	1	1		inv	inve
-2	Ionic charge		μN,SI	-1N,55	1/1/1	-1/1/	Ŧ	-1	-1N,X1	IN,XS
	Obcarnablas		-		1/17	1/ 17		T		
	cc								;	i
4	00								TSS,XI	ITSS,XS

Table 2.11 Peterson matrix of ASM3

(continued)

	10	11	12	13	Process Rate, $\rho_{j}[ML^{-3}T^{-1}]$
j	X _H	X _{STO}	XA	X _{TSS}	
	Hetero	otrophic or	rganisn	ns, X_H	
1				V1,TSS	$k_{\rm H} \left(\frac{X_{\rm S}/X_{\rm H}}{K_{\rm X} + (X_{\rm S}/X_{\rm H})} \right) X_{\rm H}$
2		$Y_{\rm STO,O2}$		V _{2,TSS}	$k_{STO} \left(\frac{S_0}{K_{0,H} + S_0} \right) \left(\frac{S_S}{K_S + S_S} \right) X_H$
3		$Y_{\mathrm{STO,NO}}$		V _{3,TSS}	$k_{STO} \; n_{NO} \left(\frac{K_{O,H}}{K_{O,H} + S_O} \right) \left(\frac{S_S}{K_S + S_S} \right) \left(\frac{S_{NO}}{K_{NO} + S_{NO}} \right) \; X_H$
4	1	$-\frac{1}{Y_{H,O_2}}$		V _{4,TSS}	$\widehat{\mu_{H}}\left(\frac{S_{O}}{K_{O,H}+S_{O}}\right)\left(\frac{S_{NH}}{K_{NH}+S_{NH}}\right)\left(\frac{S_{ALK}}{K_{ALK}+S_{ALK}}\right)\left(\frac{X_{STO}/X_{H}}{K_{STO}+(X_{STO}/X_{H})}\right) X_{H}$
5	1	$-\frac{1}{Y_{H,NO}}$	6	V _{5,TSS}	$\begin{split} \widehat{\boldsymbol{\mu}_{H}} & \boldsymbol{\eta}_{NO} \left(\frac{\boldsymbol{K}_{O,H}}{\boldsymbol{K}_{O,H} + \boldsymbol{S}_{O}} \right) \left(\frac{\boldsymbol{S}_{NO}}{\boldsymbol{K}_{NO} + \boldsymbol{S}_{NO}} \right) \left(\frac{\boldsymbol{S}_{NH}}{\boldsymbol{K}_{NH} + \boldsymbol{S}_{NH}} \right) \left(\frac{\boldsymbol{S}_{ALK}}{\boldsymbol{K}_{ALK} + \boldsymbol{S}_{ALK}} \right) \\ & \left(\frac{\boldsymbol{X}_{STO} / \boldsymbol{X}_{H}}{\boldsymbol{K}_{STO} + (\boldsymbol{X}_{STO} / \boldsymbol{X}_{H})} \right) \boldsymbol{X}_{H} \end{split}$
6	-1	1	×/	V _{6,TSS}	$b_{\rm H} \left(\frac{S_{\rm O}}{K_{\rm O,H} + S_{\rm O}} \right) X_{\rm H}$
7	-1	15	2/	V7,TSS	$b_{\rm H} n_{\rm NO, end} \left(\frac{K_{\rm O, H}}{K_{\rm O, H} + S_{\rm O}} \right) \left(\frac{S_{\rm NO}}{K_{\rm NO} + S_{\rm NO}} \right) X_{\rm H}$
8		-1		V _{8,TSS}	$b_{STO} \left(\frac{S_0}{K_{0,H} + S_0} \right) X_{STO}$
9		-1	2	V _{9,TSS}	$b_{\text{STO}} n_{\text{NO, end}} \left(\frac{K_{\text{O, H}}}{K_{\text{O, H}} + S_{\text{O}}} \right) \left(\frac{S_{\text{NO}}}{K_{\text{NO}} + S_{\text{NO}}} \right) X_{\text{STO}}$
	Autoti	rophic org	anisms	, X _A	
10			1	V _{10,TSS}	$\widehat{\mu_{A}}\left(\frac{S_{O}}{K_{O,A}+S_{O}}\right)\left(\frac{S_{NH}}{K_{NH,A}+S_{NH}}\right)\left(\frac{S_{ALK}}{K_{ALK,A}+S_{ALK}}\right)X_{A}$
11			-1	V _{11,TSS}	$b_A \left(\frac{S_0}{K_{0,A} + S_0} \right) X_A$
12			-1	V _{12,TSS}	$b_{A} \ n_{NO, \text{ end}, A} \left(\frac{K_{O, A}}{K_{O, A} + S_{O}} \right) \left(\frac{S_{NO}}{K_{NO, A} + S_{NO}} \right) \ X_{A}$
	Com	posite mai	trix		
	Cons	ervatives			
1	1	1	1		
2	$i_{\rm N,BM}$		i _{N,BM}		
3					
	Obse	rvables			
4	i _{TSS,BM}	i _{TSS,STO}	i _{TSS,BM}	-1	

Table 2.12 Symbol & unit of ASM3

Symbol	Name	Comparison with ASM1	Unit
So	Dissolved oxygen	Same as ASM1	gCOD/m ³
SI	Soluble inert organics	Same as biochemically Partially form from hydrolysis of X _S	gCOD/m ³
Ss	Readily bio-degradable substrate	Not used for microbial growth, stored as X_{STO}	gCOD/m ³
S _{NH}	sol NH4 ⁺ -N	Same as ASM1	gN/m ³
S_{N2}	Dinitrogen, released by denitrification	Newly introduced	gN/m ³
S_{NO}	sol NO ₃ -N + NO ₂ -N	Same as ASM1	gN/m^3
S _{ALK}	Alkalinity	Same as ASM1	mol/L
X_{I}	Inert particulate organics	Same as biochemically Including X _P of ASM1	gCOD/m ³
Xs	Slowly bio degradable substrate	Same as biochemically Partially converted to S _I from hydrolysis	gCOD/m ³
X _H	Heterotrophic biomass	Same as biochemically S_S stored as X_{STO} , growth on X_{STO}	gCOD/m ³
X _{STO} *	Organics stored by heterotrophs	Newly introduced	gCOD/m ³
X _A	Autotroph, nitrifying biomass	Same as ASM1	gCOD/m ³
X _{TS}	Total suspended solids	Newly introduced	gCOD/m ³

* X_{STO} : PHAs, glycogen 등을 포함한다. X_H 에 관련해서만 생성되며, X_H 의

질량에는 포함되지 않는다. X_{STO}는 PHA나 glycogen 농도를 직접 측정한 것과 비교될 수는 없다. 단지 모델링을 위한 기능적인 성분 (functional component)이며 화학적으로 직접 규명할 수는 없다. COD 보존을 만족해 야 하므로 COD 분석을 통해 발견될 수 있다. 양론적인 고려에서 X_{STO}는 PHB (poly-hydroxy-butyrate, (C₄H₆O₂)n)으로 가정된다.

2.3 활성슬러지 모델 매개변수 추정 및 시뮤레이터

2.3.1 매개변수 추정

활성슬러지모델의 보정 작업은 실제 하수처리공정의 거동을 적절히 모사하 기 위해 필수적으로 수행하여야 하며, 일반적으로 관심있는 대상 공정 및 수 질오염성분 설정, 민감도 분석, 매개변수 추정, 모델 검증의 과정으로 수행된 다(Sin *et al.*, 2005).

모델의 예측성능을 향상시키고, 신뢰성 있는 결과를 얻기 위하여, 모델의 매 개변수를 추정하여야 한다. 그러나 모든 매개변수를 추정하는 것은 불가능하 므로, 매개변수 일부를 선택하여 그 값을 추정하여야 한다. 추정할 매개변수 일부를 선택하는 과정이 민감도 분석(Sensitivity Analysis)이며, 모델에 입력 되는 매개변수를 변화시켜 유출수에 미치는 영향을 정량적 혹은 정성적으로 평가하는 방법이다(Saltelli *et al.*, 2000).

민감도 분석을 통해 얻어진 ASM3의 주요 매개변수를 추정하는 방법은 대 상 시스템으로부터 측정된 자료와 시뮬레이션을 통해 얻은 자료를 일치시키 는 매개변수 값을 선정하므로서 얻어진다.

수학적 기법을 이용한 매개변수 추정방법은 목적함수를 기반으로 알고리즘 이 수행되므로, 목적함수의 형태가 매개변수 추정결과에 영향을 미치는 주요 인자이다. 많은 연구자들이 목적함수로 유출수질(EQ)지수를 사용하였으나 이 는 본래 제어기의 성능평가를 정량화하기 위해 제안된 것이다(Copp *et al*, 2002).

공정을 장기간 운전할 경우, 유입성상과 주위 환경의 변화로 인해 미생물 특성은 변화한다. 즉 모델 내 매개변수는 정적 변수가 아닌 동적변수이다. 따 라서 수학적 모델을 이용하여 실제 공정의 거동을 보다 정확히 예측하기 위 해서는 동적 매개변수를 사용하여야 한다. 하지만 동적 매개변수를 사용하기 위해서는 일정한 시간간격으로 매개변수를 다시 추정해야 하기 때문에, 대부 분의 연구자들은 실제 공정에 적용이 용이한 정적 매개변수를 사용하여 공정 거동을 예측한다(Lee et al., 2006b).

모델들의 매개변수를 추정하는 기법으로는 시행오차법과 유전자알고리즘이 사용되고 있다.

유전자 알고리즘은 무작위 선택 과정을 사용한 확률적인 방법과 개체간의 체계적인 정보 교환을 통하여 공간내에서 가장 적절한 해를 얻고자 하는 최 적화 알고리즘이다.

유전자알고리즘은 다음의 세 가지 유전 연산자를 사용하여 최적해를 찾는 다. 첫째는 환경에 잘 적응한 해들은 살아남고, 잘 적응하지 못한 해들은 도 태되도록 유도하는 조작법인 복제(Reproduction)와 둘째는 두 부모해의 유전 정보를 임의의 위치에서 부분적으로 교환함으로써 새로운 자손 해를 생성하 는 교배(Crossover), 그리고 셋째는 부모해로부터 자손해로 전달되는 특정한 유전정보에 대하여 무작위적인 변형을 시도함으로써 전체 해 집단에서 배제 된 새로운 개체를 발생시키거나 진화 과정에서 상실한 특정 유전정보의 재현 을 시도하는 조작방법인 돌연변이(Mutation)가 있다.

2.3.2 AQUASIM 프로그램

현재 하·폐수 처리장을 예측하기 위해 시판되고 있는 상용 공정예측프로그 램에는 여러 가지가 있으나, 본 연구에서는 AQUASIM(Reichert, 1994)을 사 용하였다.

AQUASIM 모델은 필요한 반응조의 연속적 연결을 단순히 연결(link)만 시

킴으로서 시스템 전체에 대한 물질수지식이 자동으로 계산되어지므로 이용하 기가 편리하다.

생물반응속도식은 사용자가 임의로 입력(Input)이 가능하여 필요한 부분에 따라서 사용자의 의도에 따라 변경이 가능하도록 구성되어있다. 특히, 본 연 구에 사용된 프로그램은 정적인 모사(steady state simulation)뿐만 아니라 동적모사(dynamic state simulation)기능까지 갖추고 있어 실제 폐수처리 운 전시 일어날 수 있는 조건변화에 대해 공정의 운전특성 변화를 미리 추정해 볼 수 있는 장점이 있다.

각종 단위공정을 설명할 수 있는 모델 중 가장 중요하며, 광범위한 것은 용 존 유기물에 대한 처리효율을 좌우하는 생물학적 모델이라고 할 수 있는데 현재까지 연구발표 된 생물학적 반응모델은 Peterson matrix 라고 하는 표준 매트릭스 형태로 정리되어 편리하게 이용할 수 있다.

GPS-X, Bio-Win등의 프로그램은 대표적인 생물학적 반응모델들을 제시 하고 사용자의 필요에 따라 적절한 모델을 선정하도록 하여 사용자는 편리하 지만 추가적 혹은 새로운 생물속도 반응식을 사용할 수 없다는 단점이 있다. 반면에 Aquasim 시뮬레이터는 사용자에 의해 생물반응식을 임의로 변경이 가능하므로 모델을 개발하는 연구자에게 적합하다.

\$ 3

CH 24 M

2.4 실험계획법

2.4.1 반응표면분석법

반응표면분석(response surface analysis)은 Box와 그의 동료들이 영국 왕립 화학회사에서 일하는 동안 화학적 공정과 이에 관련된 변수들 간의 관계를 조사하는 과정에서 시작되었다. 반응표면분석에서는 반응표면상의 극대점 또 는 극소점을 주는 처리조합을 구하는 것이 주목적이다.

1) 기본적인 개념

어떤 반응치 n가 k개의 양적 변수 $x_1, x_2, ..., x_k$ 의 미지의 함수 $n = f(x_1, x_2, ..., x_k)$ 로 나타날 때 x_i 들의 값이 변함에 따라 n의 값이 갖 는 k차원 곡면을 반응표면이라고 한다. 이러한 반응표면을 추론하는 분석을 반응표면분석이라 한다.

일반적으로 반응표면분석을 통하여 얻고자 하는 것은 다음과 같은 것들이 다.

(가) 독립변수들 (ξ₁, ξ₂,..., ξ₄)과 종속변수 (n)간의 함수관계를 데이터로 부터 추정하여 독립변수들의 값이 변화에 따라서 종속변수의 값이 어떻게 달 라지는가를 예측한다.

(나) 독립변수들의 어떠한 값에서 반응 량이 최적화(optimize)될 것인가를 찾아낸다.

(다) 가장 적은 수의 실험으로 가장 좋은 정도를 주는 실험계획법이 무엇인
 가를 고찰하고, 데이터 분석을 통하여 추정되는 적합된 반응표면(fitted response surface)의 통계적인 성질을 규명한다.

위의 3가지 내용은 반응표면분석연구를 통하여 달성할 수 있으며, 이는 통

계학의 응용범위를 확장시키는데 큰 기여를 하였다. 특히 공업 제품의 생산 과정에서 인자들의 최적공정조건(optimum operating condition)을 찾는데 효 과적으로 사용됨으로써 품질관리(quality control)에 유용하게 응용되고 있다. 반응표면을 분석하는데 중요한 과제는 추정된 정상점을 발견하는 것이다. 실험자가 어떤 흥미영역 R에서 2차 회귀모형이 적절할 것이라고 생각하여 n 의 측정치를 y로 놓으면, 그 모형은

$$y = \beta_{0} + \sum_{i=1}^{k} \beta_{i} x_{i} + \sum_{i \leq j}^{k} \beta_{ij} x_{i} x_{j} + \varepsilon , \quad \varepsilon \sim \mathcal{M}(0, \sigma^{2})$$

이고 서로 독립으로 가정되며, 최소제곱법에 의하여 적합된 반응표면(fitted response surface)은

$$\hat{y} = \hat{\beta}_0 + \sum_{i=1}^k \hat{\beta}_i x_i + \sum_{i \leq 0}^k \hat{\beta}_{ij} x_i x_j$$

로 표현된다. 2차 반응표면 회귀모형을 벡터와 행렬을 이용하여 간략히 바꾸 어 쓰면

$$\hat{y} = \hat{\beta}_0 + x'b + x'Bx$$

으로 표현된다. ŷ를 최대 또는 최소화시키는 x의 값을 구하기 위하여 ŷ를 x에 대하여 편미분하면

$$\frac{\partial \hat{y}}{\partial x} = \frac{\partial}{\partial x} (\beta_0 + x'b + x'Bx)$$
$$= b + 2Bx$$

가 된다. 만약 어떤 점 x_0 를 위 식 x에 대입시켜서 $b+2Bx_0=0$ 을 만족 시킨다면, 이 점 X_0 를 정상점(stationary point)이라고 부르며,

$$x_0 = -B^{-1}b/2$$

의 공식에 의하여 구해진다. 이 정상점이 최대점, 최소점, 또는 안장점이 되 는데 이는 이차항의 계수 행렬 B의 고유값(eigen values)으로 판정하며, 이 고유값을 보고 반응표면이 어떤 능선형인지도 판별한다.

그러나 적합된 반응 모형을 그대로 해석하기는 쉬운 일이 아니다. 왜냐하면, 반응 모형에는 일차항뿐 아니라 이차항도 포함되어 있어, 선형 회귀 모형처 럼 추정되는 계수의 의미를 간단히 해석할 수도 없거니와, $x_i x_j$ 형식의 교차곱에 대한 계수의 의미는 더욱 해석이 어렵다.

이런 이차 반응 모형은 한 좌표 변환을 통하여, 언제나 다음과 같은 정준형 식(canonical form)은

$$\hat{y} = \hat{y}_0 + \sum_{i=1}^{k} \lambda_i w_i^2$$

으로 표현할 수 있고 이런 형식을 통하여 반응표면 체계를 분석하는 통계기 법을 통틀어 정준 분석(Canonical Analysis)이라 한다.

여기서, \hat{y}_0 는 정상점 x_0 에서 추정된 반응값이고, λ_i 는 요인변수 x_i 에 대

한 고유값이다. 즉, 원래의 좌표체계 (*Y*, *X*₁, *X*₂…, *X*_k)를 새로운 좌표체 계 (*Y*, *W*₁, *W*₂,…, *W*_k)로 변환한 것이다. 이때, 새로운 좌표체계의 원점은 앞에서 구한 정삼점이 되며, 반응표면이 형성하는 등고선 체계의 주축 (principal axis)들을 새로운 좌표축으로 삼은 것이다.

2.5.2 혼합물분석법

대부분의 실험계획은 하나 또는 두 개 이상의 인자 (x₁, x₂,..., x_k)가 어떤 관 심있는 반응량 _V에 유의한 영향을 미치는가를 발견하거나, 더 나아가서 _V 를 최대 또는 최소화시키는 _{xi} 들의 최적조건을 찾는 데 그 목적이 있다. 일 원배치법, 이원배치법, 분할법, 요인배치법, 반응표면 실험계획법 등이 여기에 속하며 이러한 실험계획법들은 인자들이 취할 수 있는 상호간의 비율이나 그

합 $\sum_{i=1}^{k} x_i$ 에는 제약조건이 붙지 않는다.

그러나 잉크, 타이어, 페인트 등과 같은 제품이 여러 개 (귀라 하자)의 성 분(components)의 혼합으로 이루어져 있고 각 성분의 혼합량이 문제가 아니 라 각 성분의 혼합비율(mixing proportion)만이 문제가 되는 경우가 있다. 이 처럼 몇 개 성분의 혼합물(mixture)에 관한 실험에서 어떠한 성분이 관심이 있는 반응량에 유의한 영향을 미치며 반응을 최대 또는 최소로 만드는 최적 혼합비율을 찾고자 하는 실험계획을 혼합물의 혼합비율에 관한 실험계획이라 고 부른다.

ℓ개의 성분의 혼합에 있어서 x_i를 ,번째 성분의 혼합비율이라고 하면 다음 과 같은 관계식을 만족시켜야 한다.

$$x_1 + x_2 + \dots = 1, \ x_i \ge 0, \ i = 1, 2, \dots, k$$
 (2-46)

예를 들어서 타이어의 원료를 배합할 때에 들어가는 성분으로 생고무(_{丸)},

합성고무(_{*x*₂}), 카본블랙(_{*x*₃}), 약품 A(_{*x*₄}), 약품 B(_{*x*₅})가 있고 이들을 어떤 비 율로 배합하는 것이 가장 좋은가를 찾는 실험은 위의 조건

 $x_1 + x_2 + x_3 + x_4 + x_5 = 1, x_i \ge 0, i = 1, 2, \dots, 5$

을 만족시키는 혼합물의 혼합비율에 관한 실험이 되는 것이다.

수학자들은 위의 식 2-46 와 같은 관계식을 만족시키는 점 (*x*₁, *x*₂,..., *x*_d)의 집합을 (*k*-1)차원 심플레스(simplex)라고 부른다. *k*=3인 경우는 Fig. 2-2 에서 보는 바와 같이 삼각형이 되고, *k*=4인 경우는 사면체가 된다. 그러므 로 혼합비율에 관한 실험계획은 결국 심플렉스상의 어떤 점을 실험의 처리조 합으로 선택하여 실험을 하느냐에 달려 있는 것이다.

2차원 심플렉스는 삼각좌표를 형성하며 Fig. 2.3에서 보는 바와 같이 임의 의 좌표 (x_1, x_2, x_3) 는 항상 $x_1 + x_2 + x_3 = 1$ 을 만들며 $x_1 = 1$ 이 되는 꼭지점의 좌표는 (1,0,0)이고, 꼭지점 $x_2 = 1$ 과 $x_3 = 1$ 을 연결하는 직선상에서는 x_1 의 값 은 이이다. $x_1 = 1$ 에서 밑변으로 그어진 직선이 x_2 와 x_3 의 꼭지점을 연결하는 직선과 만나는 점의 좌표는 $(0, \frac{1}{2}, \frac{1}{2})$ 이 되고, 이 점에서 x_1 의 꼭지점으로 이 동함에 따라서 x_1 의 값은 0에서 1로 변하고 x_2 와 x_3 의 값은

$$x_2 = x_3 = \frac{1}{2}(1 - x_1)$$

을 취하게 된다. 삼각형의 중심점의 좌표는 $\begin{pmatrix} 1 & 1 & 1 \\ 3, 3, 3 \end{pmatrix}$ 이 된다. 이와 같은 요 령으로 이 삼각좌표를 읽으면 될 것이다.

Fig. 2.3 Two dimension and three dimension simplex.

3. 반응 표면 분석법을 이용한 ASM3 매개변수 추정

3.1 개요

최근 하수처리장 모델로서 국제수질학회(IWA)에서 발표한 ASM1, ASM2 및 ASM3(Henze, 1995)의 국내 현장적용에서 유럽 하수에 적용하여 선정된 매개변수의 기본값을 국내 하수처리장의 시뮬레이션에 그대로 사용하는 경우 가 많다.

그러나 국내 하수특성과 환경조건은 유럽과 다르므로 활성 미생물의 종이 다를 수 있으며, 환경요인의 변화에 따라 비증식 계수, 반포화 계수 등 여러 매개변수가 국내에 맞게 수정하여 적용할 필요가 있다.

활성슬러지 모델의 매개변수 추정에는 전문가의 경험에 의존한 시행오차법 이나 유전자 알고리즘(정형석, 2004 ; 김종락, 2003) 등이 사용되고 있으나 시 행오차법은 시간과 노력이 많이 소요되고 유전자 알고리즘은 매회 다른 매개 변수가 도출되어 최적화 값에 대한 확신이 결여되는 약점이 있다.

본 논문에서는 매개변수를 추정시 시간이 절약되고 한번 얻어진 최적화 매 개변수는 반복 추정하여도 동일 값이 얻어지는 반응표면분석법(Myers, 2002)을 이용하여 ASM3 모델 매개변수를 추정하고자 하였다. 3.2 연구방법

본 연구에서는 국내에서 운전되고 있는 무산소-호기-무산소-탈기공정 (Anoxic-Oxic-Anoxic-Oxic : 이하 AOAS) 하수처리장의 2005년도 365 일의 운전 자료 중 후반기 180일 자료를 이용하였다. Aquasim 2.1 프로그램의 민 감도 분석 프로그램을 이용하여 민감한 매개변수 중 세포전환계수 Y를 제외 한 7 개를 선택하여 반응표면분석법에 의하여 추정하였다. ASM3 모델의 시 뮬레이터는 Aquasim 2.1을 사용하였으며, 반응표면분석법은 통계 프로그램 Minitab14 를 사용하였다.

ASM3 모델 매개변수의 검증은 하수처리장 pilot plant 자료를 이용하여 계산값과 측정값과의 비교를 통해 시행하였다.

3.3 결과 및 결과 분석

3.3.1 ASM3 모델 매개변수의 민감도 분석(Sensitivity analysis)

ASM3 모델에서 제시한 매개 변수를 모델에서 제시된 값을 100 %로 할 때 16 %, 50 %, 100 %, 150 %, 184 %의 값을 구하면 Table 3.1과 같다. Table 3.1에서 민감도를 분석하는 매개변수를 제외한 다른 매개변수는 모델에서 제 시된 값을 적용하고 민감도를 분석하는 매개변수만 16 %, 50 %, 100 %, 150 %, 184 %로 변화시켜 ASM3 모델을 Aquasim 프로그램으로 시뮬레이션하였 다. 각매개변수의 변화에 대하여 식(3-1)을 이용하여 각 매개변수의 민감도 를 분석하고, 민감도가 큰 순서대로 나열하면 Table 3.2와 같다. 민감도가 큰 매개변수 중에서 유기물 및 영양소 제거미생물의 성장 및 내호흡에 관련 된 ba, bh, bpao, µa, µh, µpao 및 qpp 7개의 중요한 매개변수를 추정하고자 하였다.

식(3-1)은 매개변수의 민감도의 변화 특성을 나타내기 위한 식이다. 질소와 인에 대해서는 가중치가 적용되었고, 유출수에 대해서도 별도의 가중치가 부가되었다.

WSSNE=
$$wf_1 \times wf_2 \times \sum_{t=0}^{f} \sum_{i=0}^{n} \left[\frac{C_{i, Default} - C_{i, Changed}}{C_{i, Default}} \right]^2$$
 (3-1)

여기서, C_{i,t} : 유출수와 각 반응조에서의 농도 i.

i : BOD, COD, SS, TN, TP

wf₁: 유출수에 대한 가중치 (유출수 5, 각반응조 1)

wf₂: 영양소에 대한 가중치 (TN 2 , TP 5)

Parameter	16%	50%	100%	150%	184%
Y _{STO-NO}	0.13	0.40	0.80	1.20	1.47
$b_{\rm H}$	0.03	0.10	0.20	0.30	0.37
$\mu_{ m H}$	0.32	1.00	2.00	3.00	3.68
b _{STO}	0.03	0.10	0.20	0.30	0.37
Кон	0.03	0.10	0.20	0.30	0.37
k _H	0.48	1.50	3.00	4.50	5.52
b _A	0.02	0.07	0.14	0.21	0.26
Koa	0.08	0.25	0.50	0.75	0.92
$\mu_{\rm A}$	0.16	0.50	1.00	1.50	1.84
Q PP	0.24	0.75	1.50	2.25	2.76
μрао	0.16	0.50	1.00	1.50	1.84
Y _{PAO-O2}	0.10	0.30	0.60	0.90	1.10
b _{PAO}	0.03	0.10	0.20	0.30	0.37
K _{NOH}	0.08	0.25	0.50	0.75	0.92
K _{NHA}	0.16	0.50	1.00	1.50	1.84
K _{maxPAO}	0.03	0.10	0.20	0.30	0.37
K _{NOA}	0.16	0.50	1.00	1.50	1.84
Q PHA	0.96	3.00	6.00	9.00	11.04
K _{O-PAO}	0.03	0.10	0.20	0.30	0.37
b _{PP}	0.03	0.10	0.20	0.30	0.37
K _{NH-H}	0.00	0.01	0.01	0.02	0.02
b _{PHA}	0.03	0.10	0.20	0.30	0.37

Table 3.1 Variation of default values of ASM3 parameters

Parameters	Sensitivity analysis result (WSSNE)	Sensitivity Priority	Estimation Paramenters
Y _{STO-NO}	15620.9	1	
b _H	6716.3	2	V
$\mu_{\rm H}$	4154.5	3	V
bsto	2032.7	4	
Кон	736.3	5	
k _H	689.9	6	
b _A	671.8	7	V
μΑ	663.4	8	v
Qpp	619.5	9	v
μрао	470.0	10	v
Y _{PAO-O2}	452.6	11	S
b _{PAO}	424.5	12	v
K _{NOH}	304.0	13	-
K _{NHA}	170.4	14	/
K _{maxPAO}	103.4	15	
K _{NOA}	78.9	16	
Qрна	57.1	17	
Ко-рао	17.1	18	
b _{PP}	13.7	19	
K _{NH-H}	13.3	20	
b _{PHA}	14.7	21	

Table 3.2 Sensitivity analysis result of parameters

3.3.2 반응표면 분석법에 의한 ASM3 모델 매개변수의 변수 추정

ASM3 모델에서 추정해야 하는 7 가지 매개변수를 대상으로 Fig. 3.1과 같 이 a 값이 3.364인 중심합성계획법을 설계하기 위하여 Minitab 프로그램을 이용하면 152개의 실행조건이 형성된다. -a, -1, 0, 1, a 의 수준에서 0 수준 을 매개변수의 100%의 값으로 하고 각 수준을 16 %, 75%, 100%, 125%, 184%로 변환한 각 매개변수의 값은 Table 3.3과 같다.

≫ MINITAB - 매개변수 7개.MPJ	
파일(E) 편집(E) 데이터(A) 계산(C) 통계학(S) 그래프((G) 편집기(D) 도구(I) 창(₩) 도움말(出)
] 😂 🔒 叠 从 🗈 館 😰 🗠 여 기초 통계학(B) 회귀(B) 분산 분석(A))
DOE(<u>0</u>) 관리도(<u>C</u>) 품질 도구(<u>0</u>) 신뢰성/생존 분 다변량 분석(<u>M</u>) 시계열 분석(<u>S</u>) 표(<u>T</u>) 비모수 통계학(<u>I</u>) 탐색적 데미터 북	A인 설계(F) 반응 표면 설계(A) # 반응 표면 설계 생성(C) 혼합물 설계(X) # 사용자 정의 반응 표면 설계 정의(D) 편 성(A) 전의 전력(S) 다. 설계 수정(M) 다. 설계 수정(M) 다. 설계 표시(D) (N) * 분석(E) *
검정력 및 표본	∃7(₽) •

Fig. 3.1 Response surface design by Minitab.

Table 3.3 Values of parameters in response surface analysis

	b _A	b _H	b _{PAO}	$\mu_{\rm A}$	$\mu_{\rm H}$	μ_{PAO}	\mathbf{q}_{PP}
16%	0.024	0.032	0.032	0.160	0.320	0.160	0.240
75%	0.113	0.150	0.150	0.750	1.500	0.750	1.125
100%	0.150	0.200	0.200	1.000	2.000	1.000	1.500
125%	0.188	0.250	0.250	1.250	2.500	1.250	1.875
184%	0.276	0.368	0.368	1.840	3.680	1.840	2.760

반응표면분석법에 의해 매개변수를 추정하기 위해 입력된 원점에서의 중복을 제외한 144개 실행조건에서의 각 매개변수의 값은 Table 3.4 와 같다.

Case	$b_{\rm A}$	b_{H}	b _{PAO}	μ _A	$\mu_{\rm H}$	μ _{PAO}	QPP	WSSNE
1	0.188	0.150	0.150	0.750	1.500	0.750	1.875	799.24
2	0.150	0.200	0.200	1.000	2.000	1.000	1.500	883.42
3	0.188	0.250	0.150	0.750	1.500	1.000	1.875	2711.01
4	0.024	0.250	0.150	0.750	1.500	0.750	1.125	3292.64
5	0.024	0.150	0.250	1.250	2.500	0.750	1.125	800.76
	191		6	2 2		F		
142	0.113	0.250	0.150	0.750	1.500	0.750	1.125	3360.62
143	0.113	0.150	0.150	1.000	2.000	1.250	1.125	805.78
144	0.188	0.250	0.150	0.750	1.500	0.750	1.875	711.20
Paramenter Estimated	0.119	0.263	0.221	1.168	3.049	1.006	1.190	23.8

Table 3.4 Values of 7 parameters in 144 runs & WSSNE

Table 3.4 와 같이 144개의 실행조건(부록 1 참조)의 매개변수를 변화시켜 가며 시물레이션하여 운전 경과일수 185 일부터 365 일까지 180일 간의 계산 자료와 하수처리장 현장자료를 식 3-2 와 같은 방법으로 WSSNE (Weighted Sum of Squared Normalized Error)를 계산하였다.

질소와 인에 대해서는 가중치가 적용되었고, 유출수에 대해서도 별도의 가중치가 부가되었다. WSSNE= $wf_1 \times wf_2 \times \sum_{t=0}^{f} \sum_{i=0}^{n} \left[\frac{C_{i,t, Measured} - C_{i,t, Calculated}}{C_{i,t, Measured}} \right]^2$ (3-2)

여기서, C_{i,t} : 유출수와 각 반응조에서의 시간 t 에서의 농도 i.

i : BOD, COD, SS, TN, TP

wf1: 유출수에 대한 가중치 (유출수 5, 각반응조 1)

wf₂: 영양소에 대한 가중치 (TN 2, TP 5)

Table 3.4 에서의 144개의 실행조건의 매개변수와 오차의 합(WSSNE)를 Minitab 프로그램을 이용하여 분산분석을 한 결과 Table 3.5와 같이 P 값은 0.01이하이고 결정계수 R² 값은 0.776으로서, 반응표면분석법으로 WSSNE를 최소화 할 수 있는 것으로 나타났다.

source of variation	DF	SS	MS	F	Р
regression	35	119318240	3409093	8.52	< 0.01
linear	7	79127597	2777984	6.94	< 0.01
quadratic	7	6983317	997953	2.49	0.022
interaction	21	33207327	1581301	3.95	< 0.01
error	86	34414597	400170	~	
lack of fit	85	34414597	404878	*	*
pure error	1	0	0		

Table 3.5 ANOVA table of 144 runs & WSSNE

Table 3.3의 결과를 반응표면 분석법에 적용시켜 Minitab 프로그램을 Fig. 3.2와 같이 실행하면 Fig. 3.3와 같이 WSSNE를 최소화 할 수 있는 매개변수를 추정할 수 있다.

Fig. 3.2 Procedure of response surface analysis by Minitab.

Fig. 3.3 Parameter estimation of response surface analysis by Minitab.

추정한 매개변수 값은 Table 3.4의 마지막 줄에 기록되어 있다.

추정된 매개변수를 ASM3모델에 입력하여 시뮬레이션한 후 WSSNE를 구하면 23.8로 최소화 된 것을 알 수 있다.

Fig. 3.4는 추정된 최적 매개변수를 ASM3 모델에 입력하여 Aquasim으로 AOAS 공정으로 운전하는 하수처리장의 2005년 365일 자료를 시뮬레이션 한 것으로서 운전일수에 따른 방류수 COD의 측정값과 계산값을 비교한 것이며 Fig. 3.5는 방류수 TN의 측정값과 계산값을 비교한 그림이다.

2005년 AOAS공정으로 운전되고 있는 하수처리장 유출수의 COD의 측정값과 계산값들의 분산분석 결과 결정상수 R² 값은 0.263으로 적은 값이지만 분산분석의 결과 Table 3.6과 같이 P 값은 0.001 이하로서 유의하였다.

Table 3.6 ANOVA of calculated effluent COD and measured effluent COD for parameter estimation

source of variation	DF	SS	MS	F	Р
regression	1	1390.6	1390.6	128.64	< 0.001
error	361	3902.5	10.8	/	
total	362	5293.1			

2005년 유출수의 TN의 측정값과 계산값들의 분산분석 결과 결정상수 R² 값은 0.20이지만 Table 3.7과 같이 P 값은 0.001 이하로서 상관의 유의성을 찾을 수 있었다.

결정계수 R^2 값은 0.200 으로 적은 값이나, 분산분석의 결과 아래표와 같이 유 의하였다 (p < 0.001).

Table 3.7ANOVA of calculated effluent TN and measured effluent TNfor parametner estimation

source of variation	DF	SS	MS	F	Р
regression	1	3864	3864	86.62	< 0.001
error	347	15478.9	44.6		
total	348	19343			

Fig. 3.5 Measured and calculated effluent TN according to operating days for parameter estimation.

3.3.3 ASM3 모델 매개변수의 검증

매개변수의 검증은 AOAS공정으로 운전되었던 하수처리장의 Pilot plant의 운전일수에 따른 유출수의 COD와 TN의 측정값으로 검증하였다. 유출수의 COD 측정값과 계산값의 결과는 Fig. 3.6과 같다. Pilot plant의 운전일수에 따른 유출수의 측정값과 계산값의 분산분석 결과 결정계수 R²은 0.305로 나 타났으며, Table 3.8과 같이 P값은 0.001 이하로서 상관성이 있는 것으로 나 타났다.

Table 3.8 ANOVA of calculated effluent COD and measured effluent COD for validation

source of variation	DF	SS	MS	F	Р
regression	1	1033.8	1033.8	156.36	< 0.001
error	356	2353.8	6.6		
total	357	3387.6			

Fig. 3.6 Measured and calculated effluent COD according to operating days for validation.

유출수의 TN 측정값과 계산값의 결과는 Fig. 3.7과 같다. Pilot plant의 운 전일수에 따른 유출수의 측정값과 계산값의 분산분석 결과 결정계수 R²은 0.492로 나타났으며, Table 3.9와 같이 P값은 0.001 이하로서 유의하였다.

source of variation	DF	SS	MS	F	Р
regression	1	9165.6	9165.6	88.12	< 0.001
error	91	9465.6	104		
total	92	18631.2			

Table 3.9 ANOVA of calculated effluent TN and measured effluent TN for validation.

Fig. 3.7 Measured and calculated effluent TN according to operating days for validation.

3.4 결론

1) 표면반응분석법은 국내의 AOAS로 운전되는 하수처리장 1년 운영자료를 사용한 ASM3 매개변수 추정에 효과적이었다.

2) 추정된 매개변수의 값은 b_A는 0.12/d, b_H는 0.26/d, b_{PAO}는 0.22/d, μ_A는 1.17/d,

μ_H는 3.05/d, μ_{PAO}는 1.00/d 이며 q_{PP}는 1.19/d 이었다.

환합물 분석법에 의한 고도처리공정 생물반응조 부피의 최적화

4.1 개요

생물학적 고도처리 공정의 설계시 반응조의 크기는 설계공식의 단회적 계산 에 의하여 Excel을 이용하여 선정하고 있다(부산광역시, 1999). 전체부피를 고정시킨 상태에서 각 반응조의 크기를 조금씩 변화시켜 활성슬러지 모델을 시뮬레이션하면 유출수의 수질이 변하는 것을 알게 된다. 일부 전문가들은 여러 번의 적절한 가정을 통하여 최적화된 반응조의 크기를 구한다.

특히 하수처리장의 수질공정개선 공사의 경우 생물 반응조의 크기를 변경하 지 못하는 가운데 개선공정의 반응조의 부피를 최적화시키는 것은 수질공학 기술자로서 필수적이나 현재는 적절한 선정 방법 찾지 못하고 있다.

총 주입 원료의 양이 정해진 상태에서 최적원료 구성비를 구하기 위한 방법 으로 많이 사용되고 있는 혼합물분석법(Cornell, 2002)은 전체 생물 반응조의 부피가 정해진 상황에서 생물학적 고도처리 공정의 혐기조, 무산소조 및 호 기조의 부피를 최적화하는데 이용할 수 있을 것으로 예상된다.

본 논문은 생물학적 고도처리 공정의 설계에서 ASM3모델의 시물레이션 결 과를 혼합물 분석법을 적용하여 생물반응조 부피를 최적화시키는 방안을 제 시하였다. 4.2 연구방법

생물학적 고도처리 공정은 무산소-호기-무산소-탈기공정 (Anoxic-Oxic -Anoxic- Oxic : 이하 AOAS)이었으며, ASM3 모델의 매개변수는 국내 하 수처리장의 운전자료로 추정과 검증을 한 매개변수를 사용하였다.

ASM3 모델의 시뮬레이터는 Aquasim 2.1을 사용하였으며, 혼합물분석법은 통계 프로그램 Minitab14 를 사용하였다.

4.3 결과 및 결과 분석

AOAS공정의 반응조 온도를 7℃, 13℃, 20℃로, 전체 체류시간을 10시간으 로 하고 무산소조1, 호기조1, 무산소조2 및 호기조2 의 체류시간 네 가지 성 분을 대상으로 Minitab 프로그램에서 심플랙스 중심 배열법으로 실험계획을 세운 각 반응조의 체류시간과 각각의 체류시간 조건에서 MLSS를 3000 mg/L로 유지시키며 Aquasim 2.1로 시물레이션하여 계산한 AOAS 공정의 BOD를 비롯한 유출수의 수질특성은 Table 4.1~Table 4.3 와 같다.

Table 4.1~Table 4.3의 조건에 따른 AOAS공정의 유출수의 BOD, COD 및 TN 농도를 최소로 유지하는 무산소조1, 호기조1, 무산소조2 및 호기조2의 최 적 체류시간을 구하기 위하여 minitab 프로그램을 사용하여 혼합물 분석을 시행하였다.

	Reter	ntion time	e of reacto	or(hr)	Estimated effluent(mg/L)			
case	Anoxic1	Oxic1	Anoxic 2	Oxic2	BOD	COD	TN	ТР
1	0.79	7.57	1.14	0.50	9.83	16.05	36.59	1.64
2	1.48	4.72	2.13	1.67	10.35	15.32	52.61	1.30
3	1.14	6.52	1.63	0.71	9.63	15.03	36.72	1.74
4	3.64	3.86	1.74	0.76	10.27	15.28	53.85	0.18
5	2.01	3.85	2.89	1.26	11.55	15.66	54.63	1.47
6	2.55	4.52	2.04	0.89	12.98	16.10	54.64	1.55
7	1.33	4.25	1.92	2.50	9.87	15.20	45.92	0.08
8	0.99	6.34	1.43	1.24	9.64	15.16	32.55	1.63
9	1.35	4.31	3.50	0.84	10.61	15.29	53.84	1.71
10	1.60	5.10	2.30	1.00	12.10	15.40	53.86	1.60
11	1.76	5.62	1.52	1.10	11.04	15.54	51.77	1.51
12	1.10	3.49	4.73	0.68	12.37	15.91	54.27	1.81
13	2.54	4.05	1.83	1.59	9.70	15.13	54.04	0.06
14	1.92	6.11	1.38	0.60	9.55	15.11	50.05	1.56
15	1.03	5.45	2.46	1.07	9.43	15.09	50.96	1.68
16	0.92	5.86	2.64	0.57	10.28	15.35	50.20	1.76
17	2.30	3.67	3.31	0.72	11.14	15.55	54.46	1.66
18	1.67	5.31	2.40	0.63	10.64	15.43	53.72	1.73
19	1.20	3.83	3.46	1.50	10.99	15.51	54.26	1.50

Table 4.1 Effluent characteristics of AOAS according to variation of retention time in anoxic, oxic reactor at 7 $^{\rm o}{\rm C}$

	Reter	ntion time	e of reacto	or(hr)	Estimated effluent(mg/L)			
case	Anoxic1	Oxic1	Anoxic 2	Oxic2	BOD	COD	TN	TP
1	0.79	7.57	1.14	0.50	8.86	14.98	33.09	1.78
2	1.48	4.72	2.13	1.67	8.98	14.98	19.64	1.74
3	1.14	6.52	1.63	0.71	8.83	14.96	25.53	1.77
4	3.64	3.86	1.74	0.76	10.97	15.53	31.87	1.64
5	2.01	3.85	2.89	1.26	10.08	15.27	28.12	1.66
6	2.55	4.52	2.04	0.89	9.53	15.12	22.50	1.70
7	1.33	4.25	1.92	2.50	9.00	14.99	22.63	1.73
8	0.99	6.34	1.43	1.24	8.81	14.95	27.43	1.77
9	1.35	4.31	3.50	0.84	9.94	15.23	25.20	1.68
10	1.60	5.10	2.30	1.00	8.95	14.97	18.22	1.76
11	1.76	5.62	1.52	1.10	8.87	14.96	20.43	1.76
12	1.10	3.49	4.73	0.68	11.85	15.80	31.84	1.65
13	2.54	4.05	1.83	1.59	8.43	14.83	24.12	1.89
14	1.92	6.11	1.38	0.60	8.83	14.96	23.78	1.78
15	1.03	5.45	2.46	1.07	8.84	14.96	23.34	1.76
16	0.92	5.86	2.64	0.57	8.84	14.96	24.05	1.77
17	2.30	3.67	3.31	0.72	10.73	15.45	29.02	1.65
18	1.67	5.31	2.40	0.63	8.87	14.96	18.92	1.77
19	1.20	3.83	3.46	1.50	9.40	16.48	23.05	1.68

Table 4.2 Effluent characteristics of AOAS according to variation of retention time in anoxic, oxic reactor at 13 $^{\rm o}{\rm C}$
	Reter	ntion time	e of reacto	or(hr)	Est	imated ef	fluent(mg	g/L)
case	Anoxic1	Oxic1	Anoxic 2	Oxic2	BOD	COD	TN	ТР
1	0.79	7.57	1.14	0.50	7.84	14.73	29.99	1.94
2	1.48	4.72	2.13	1.67	8.29	14.82	15.20	1.87
3	1.14	6.52	1.63	0.71	7.86	14.72	20.90	1.95
4	3.64	3.86	1.74	0.76	12.34	15.96	26.78	1.74
5	2.01	3.85	2.89	1.26	9.83	15.23	21.44	1.76
6	2.55	4.52	2.04	0.89	9.37	15.11	17.10	1.80
7	1.33	4.25	1.92	2.50	8.27	14.82	19.03	1.87
8	0.99	6.34	1.43	1.24	7.84	14.72	22.50	1.94
9	1.35	4.31	3.50	0.84	10.23	15.35	19.49	1.79
10	1.60	5.10	2.30	1.00	8.32	14.82	12.50	1.87
11	1.76	5.62	1.52	1.10	7.94	14.74	14.64	1.93
12	1.10	3.49	4.73	0.68	8.09	14.77	12.74	1.90
13	2.54	4.05	1.83	1.59	8.64	14.90	16.07	1.79
14	1.92	6.11	1.38	0.60	7.84	14.72	20.43	1.96
15	1.03	5.45	2.46	1.07	7.89	14.73	18.00	1.94
16	0.92	5.86	2.64	0.57	7.89	14.78	19.39	1.94
17	2.30	3.67	3.31	0.72	11.13	15.61	23.26	1.74
18	1.67	5.31	2.40	0.63	7.96	14.74	13.46	1.93
19	1.20	3.83	3.46	1.50	8.96	14.99	16.49	1.80

Table 4.3 Effluent characteristics of AOAS according to variation of retention time in anoxic, oxic reactor at 20 $^{\circ}\mathrm{C}$

수질항목 전체를 고려한 최적 반응조의 부피를 선정하기 위하여 방류수의

BOD, COD, SS, TN 농도를 정규화(normalization) 시켜 Table 4.4 ~ Table 4.6에 기록하고 각 수질항목의 정규화된 값의 합계를 구하였다.

정규화 값 = 각 항목 가중치 * (계산값 - 최소값) / (최대값 - 최소값) 여기서 각 항목의 가중치는 각 항목의 (최대값 - 최소값)/평균값 이다.

Table 4.4 Normalized value of effluent according to variation of retention time of anoxic –oxic reactor at 7 $^{\rm o}{\rm C}$

case		HR	T(hr)	10	NA	No	ormalize	ed valu	ıe
	Anoxic1	Oxic1	Anoxic2	Oxic2	BOD	COD	TN	TP	Summation
1	0.79	7.57	1.14	0.50	0.576	0.027	0.096	1.859	2.559
2	1.48	4.72	2.13	1.67	0.032	0.056	0.096	0.326	0.509
3	1.14	6.52	1.63	0.71	0.077	0.063	0.000	0.153	0.293
4	3.64	3.86	1.74	0.76	0.032	0.056	0.080	0.206	0.373
5	2.01	3.85	2.89	1.26	0.015	0.044	0.096	1.239	1.394
6	2.55	4.52	2.04	0.89	0.086	0.056	0.096	0.000	0.237
7	1.33	4.25	1.92	2.50	0.023	0.044	0.096	1.187	1.350
8	0.99	6.34	1.43	1.24	0.108	0.061	0.085	0.241	0.496
9	1.35	4.31	3.50	0.84	0.592	0.000	0.128	1.841	2.562
10	1.60	5.10	2.30	1.00	0.077	0.061	0.096	0.259	0.493
11	1.76	5.62	1.52	1.10	0.149	0.072	0.085	0.424	0.729
12	1.10	3.49	4.73	0.68	0.009	0.044	0.096	0.805	0.954
13	2.54	4.05	1.83	1.59	0.018	0.044	0.090	1.143	1.295
14	1.92	6.11	1.38	0.60	0.037	0.051	0.105	0.353	0.546
15	1.03	5.45	2.46	1.07	0.203	0.077	0.105	0.212	0.597
16	0.92	5.86	2.64	0.57	0.000	0.056	0.096	0.672	0.823
17	2.30	3.67	3.31	0.72	0.011	0.050	0.096	0.679	0.836
18	1.67	5.31	2.40	0.63	0.078	0.056	0.092	0.097	0.323
19	1.20	3.83	3.46	1.50	0.543	0.061	0.069	2.156	2.829

2020		HRT(hr)					Normalized					
Case	Anoxic1	Oxic1	Anoxic2	Oxic2	BOD	COD	TN	ТР	Summation			
1	0.79	7.57	1.14	0.50	0.05	0.04	0.60	0.08	0.76			
2	1.48	4.72	2.13	1.67	0.06	0.04	0.06	0.06	0.22			
3	1.14	6.52	1.63	0.71	0.04	0.03	0.29	0.07	0.44			
4	3.64	3.86	1.74	0.76	0.27	0.20	0.55	0.00	1.02			
5	2.01	3.85	2.89	1.26	0.18	0.13	0.40	0.01	0.71			
6	2.55	4.52	2.04	0.89	0.12	0.08	0.17	0.03	0.41			
7	1.33	4.25	1.92	2.50	0.06	0.04	0.18	0.05	0.33			
8	0.99	6.34	1.43	1.24	0.04	0.03	0.37	0.07	0.52			
9	1.35	4.31	3.50	0.84	0.16	0.12	0.28	0.02	0.58			
10	1.60	5.10	2.30	1.00	0.06	0.04	0.00	0.07	0.16			
11	1.76	5.62	1.52	1.10	0.05	0.03	0.09	0.07	0.24			
12	1.10	3.49	4.73	0.68	0.36	0.27	0.55	0.01	1.18			
13	2.54	4.05	1.83	1.59	0.00	0.00	0.24	0.14	0.38			
14	1.92	6.11	1.38	0.60	0.04	0.03	0.22	0.08	0.38			
15	1.03	5.45	2.46	1.07	0.04	0.03	0.21	0.07	0.35			
16	0.92	5.86	2.64	0.57	0.04	0.03	0.23	0.07	0.39			
17	2.30	3.67	3.31	0.72	0.24	0.18	0.43	0.01	0.86			
18	1.67	5.31	2.40	0.63	0.05	0.03	0.03	0.07	0.18			
19	1.20	3.83	3.46	1.50	0.10	0.07	0.19	0.02	0.39			

Table 4.5 Normalized value of effluent according to variation of retention time of anoxic-oxic reactor at 13 $^{\rm o}{\rm C}$

		HR	Normalized						
case	Anoxic1	Oxic1	Anoxic2	Oxic2	BOD	COD	TN	ТР	Summation
1	0.79	7.57	1.14	0.50	0.00	0.00	0.92	0.11	1.03
2	1.48	4.72	2.13	1.67	0.05	0.03	0.14	0.07	0.30
3	1.14	6.52	1.63	0.71	0.00	0.00	0.44	0.11	0.56
4	3.64	3.86	1.74	0.76	0.51	0.34	0.75	0.00	1.61
5	2.01	3.85	2.89	1.26	0.23	0.15	0.47	0.01	0.86
6	2.55	4.52	2.04	0.89	0.17	0.11	0.24	0.03	0.56
7	1.33	4.25	1.92	2.50	0.05	0.03	0.35	0.07	0.50
8	0.99	6.34	1.43	1.24	0.00	0.00	0.53	0.11	0.64
9	1.35	4.31	3.50	0.84	0.27	0.18	0.37	0.03	0.85
10	1.60	5.10	2.30	1.00	0.05	0.03	0.00	0.07	0.16
11	1.76	5.62	1.52	1.10	0.01	0.01	0.11	0.10	0.23
12	1.10	3.49	4.73	0.68	0.03	0.02	0.01	0.09	0.14
13	2.54	4.05	1.83	1.59	0.09	0.06	0.19	0.03	0.37
14	1.92	6.11	1.38	0.60	0.00	0.00	0.42	0.12	0.54
15	1.03	5.45	2.46	1.07	0.01	0.00	0.29	0.11	0.41
16	0.92	5.86	2.64	0.57	0.01	0.01	0.36	0.11	0.48
17	2.30	3.67	3.31	0.72	0.38	0.25	0.57	0.00	1.19
18	1.67	5.31	2.40	0.63	0.01	0.01	0.05	0.10	0.17
19	1.20	3.83	3.46	1.50	0.13	0.08	0.21	0.03	0.45

Table 4.6 Normalized value of effluent according to variation of retention time of anoxic-oxic reactor at 20 $^{\rm o}{\rm C}$

Table 4.7 에서와 같이 AOAS공정의 각반응조 온도변화에 따른 정규화 값 은 각 7 °C, 13 °C 및 20 °C의 분산분석에서 P값이 7 °C에서는 0.122로 유 의하지 않았으나, 13 °C 및 20 °C에서는 각각 0.001 및 0.009로 유의하였다. 결정계수 R²은 7 °C에서는 0.692, 13 °C에서는 0.936, 그리고 20 °C에서는 0.847이었다.

Table 4.7 ANOVA according to variation of reactor temperature

ANOVA of reactor temp $(7^{\circ}C)$										
active of		OVI OF ICA								
source of	DF	SS	MS	F	Р					
variation										
regression	9	8.145	0.905	2.25	0.122					
linear	3	2.2692	0.180484	0.45	0.724					
quadratic	6	5.8758	0.979303	2.43	0.111					
error	9	3.6212	0.402355							
total	18	11.7662								
	V									
ANOVA of reactor temp(13 °C)										
source of	DD	00		T	D					
variation	DF	55	MS	F	Р					
regression	9	1.36806	0.152006	14.72	0.001					
linear	3	0.512	0.106284	10.29	0.003					
quadratic	6	0.85606	0.142676	13.82	< 0.001					
error	9	0.09294	0.010327							
total	18	1.461								
	AN	OVA of read	ctor temp(20	°C)						
source of	DB			D	D					
variation	DF	55	MS	F	Р					
regression	9	2.23435	0.248261	5.53	0.009					
linear	3	0.74487	0.245388	5.47	0.02					
quadratic	6	1.48948	0.248246	5.53	0.012					
error	9	0.4037	0.044856							
total	18	2.63805								

Table 4.4, Table 4.5 및 Table 4.6의 결과를 혼합물 분석법에 적용시켜 Minitab 프로그램을 Fig. 4.1 과 같이 실행하면 Fig. 4.2와 같이 7 °C, 13 °C 및 20°C에서 동시에 최적화된 AOAS공정의 각 반응조의 수리학적 체류시간을 구할 수 있다.

▶ MINITAB - 장림 혼합물 설계 7-2	0 도.MPJ		
🚰 🖬 🎒 🐰 🛍 🛍 🗠 🗠 📴	1 ↓ 凾 爵 〇 ? 鹵	+C 🖬 🗟 🛈 🖻 🗒	1 🖥 🖽 🕮 🔳 🚿 🔤 📲 🖓 🥵 🔤
_ 파일(E) 편집(E) 데이터(<u>A</u>) 계산(<u>C</u>)	통계학(<u>S</u>) 그래프(<u>G</u>) 편집기	I(D) 도구(T) 창(₩) 도움	응말(<u>H</u>)
	기초 통계학(<u>B</u>) 회귀(<u>B</u>) 분산 분석(<u>A</u>) DOE(<u>D</u>)	요인 설계(F) →	
	관리도(<u>C</u>) •	반응 표면 설계(<u>R</u>) ▶	
0	품질 도구(<u>Q</u>) → 신뢰성/생존 분석(<u>L</u>) →	혼합물 설계(X) → Taguchi 설계(<u>T</u>) →	▲ 혼합물 설계 생성(C) ▲ 사용자 정의 혼합물 설계 정의(D)
13	나면당 분석(<u>M</u>) → 시계열 분석(<u>S</u>) → 표(T) →	फ़₀ 설계 수정(M) फ़₀, 설계 표시(D)	▲ 최적 설계 선택(S) ▲ 심플렉스 설계 플롯(P)
	·_· 비모수 통계학(<u>N</u>) → 탐색적 데이터 분석(<u>E</u>) →		 ▲ 혼합물 설계 분석(<u>A</u>)
X	검정력 및 표본 크기(₽) ▶		送 반응 궤적 플롯(I) ⁶ 등고선/표면 플롯(N)
12			<mark>⊘</mark> " 겹쳐진 등고선 플롲(<u>0</u>) <mark>└</mark> 반응 최적화 도구(<u>B</u>)

Fig. 4. 1 Procedure of mixture design by minitab.

HOI)

Fig. 4. 2 Optimized retention time of each reactor according to the variation of temperature($^{\circ}$ C).

4.4 결론

- 생물학적 고도처리동정에서 반응조의 총 부피가 정해졌을 때 각 반응조
 의 크기는 혼합물 분석법에 이용하여 최적화 시킬 수 있었다.
- 2) 각 수질항목의 normalize 값을 합계한 경우를 기준으로 7 °C, 13 °C 및 20°C에서 동시에 최적화된 AOAS공정의 각반응조의 수리학적 체류시간 은 무산소조1 체류시간이 1.95 시간, 호기조1 체류시간이 5.22 시간, 무산 소조2 체류시간이 1.44 시간, 호기조2 체류시간이 1.39 시간으로 각 반응 조 부피의 최적비는 1.95(무산소조1) : 5.22(호기조1) : 1.44(무산소조2) : 1.39(호기조2)로 나타났다.

5. 종합결론

- 표면반응분석법은 국내의 AOAS로 운전되는 하수처리장 1년 운영자료를 사용한 ASM3 매개변수 추정에 효과적이었다.
- 추정된 매개변수의 값은 b_A는 0.12/d, b_H는 0.26/d, b_{PAO}는 0.22/d, μ_A는 1.17/d, μ_H는 3.05/d, μ_{PAO}는 1.00/d 이며 q_{PP}는 1.19/d 이었다.
- 3) 생물학적 고도처리공정에서 반응조의 총 부피가 정해졌을 때 각 반응조
 의 크기는 혼합물 분석법을 이용하여 최적화 시킬 수 있었다.
- 4) 7 °C, 13 °C 및 20°C에서 각 수질항목의 normalize 값을 합계한 경우를 기준으로 동시에 최적화된 AOAS공정의 각반응조의 수리학적 체류시간 을 통하여 구한 각 반응조의 최적 부피비는 1.95(무산소조1) : 5.22(호기조 1) : 1.44(무산소조2) : 1.39(호기조2)로 나타났다.

6. 참고문헌

강성욱, 정종훈, 조욱상, 김성중(2005), 국내하수유입수의 특성에 적합한 ASM모델의 적용에 관한 연구, 한국물환경학회·대한상하수도학회 공동춘 계학술발표회 논문집, pp. 841-844.

김종락, 김상현, 이성학, 김창원, 우혜진(2003), 연속회분식반응기의 산화환원 전위 거동예측을 위한 시계열분석과 유전자 알고리즘의 적용, 대한환경공학 회지, 25(8), pp. 970-976.

박성현(2005), 실험계획법, 민영사, pp. 453-518.

부산광역시(1999), 장림하수처리장 개선보고서.

이병현(2005), 생물학적 영양소제거공정 전산모델링, 부경대학교 환경연구소. 이병헌, 이민규, 이재성, 최해경(2000), 음식물 산 발효액을 외부탄소원으로 이용한 AOAS공정의 하수처리특성, 한국수처리기술연구회 8(3), pp. 75-83. 정형석, 최동진, 신항식(2004), 호흡률 측정법과 유전자 알고리즘을 이용한 ASM3의 유기물 분해와 질산화 공정의 매개변수 추정, 대한환경공학회지, 26(8), pp. 904-910.

최의소(2003), 상하수도공학, 청문각, pp. 231-257.

- Copp, J. and Spanjers, H.(2004), Simulation of respirometry-based detection and mitigation of activated sludge toxicity, *Control Engineering Practice*, 12(3), pp. 305–313.
- Cornell, J(2002), Experiments with Mixtures 3rd ed., New York, John Wiley and Sons.
- Crosetto, M., Tarantola, S. and Saltelli, A.(2000), Sensitivity and uncertainty analysis in spatial modelling based on GIS, *Agriculture*,

Ecosystems & Environment, 81(1), pp. 71-79.

- Gujer Willi, Mogens H., T. Mino and M. van Loosdrecht(1999) Activated Sludge Model No. 3, *Water Science and Technology*, 39(1), pp. 183-193.
- Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., Marais, G. R. and van Loosdrecht, M.C. M.(1999). Activated Sludge Model No.2d. *Water Science and Technology*, 39(1), pp. 165–182.
- Henze, M., Gujer, W., Mino, T., Matsuo ,T., Wentzel, M. C. and Marais, G.R.(1995). Activated Sludge Model No.2, IAWQ Scientific and Technical Report No.3. IAWQ Publishing, London, UK.
- Isaacs, S. H. and Henze, M.(1995), Controlled carbon source addition to an alternating nitrification-denitrification wastewater treatment process including biological P removal, *Water Research*, 29(1), pp. 77-89.
- Myers, Raymond and Montgomery Douglas(2002), Response Surface Methodology, 2nd ed., New York, John Wiley and Sons.
- Naidoo, V., Urbain, V. and Buckley, C.A.(1998) Characterization of wastewater and activated sludge from European municipal wastewater treatment plants using the NUR test, *Water Science and Technology*, 38(1), pp. 303-310.

7. 부록

1. 7 개의 요인을 갖는 경우의 반응표면분석법에 의한 실험계획

Case	X1	X2	X3	X4	X5	X6	X7
1	1	-1	-1	-1	-1	-1	1
2	0	0	0	0	0	0	0
3	1	1	-1	-1	-1	1	1
4	-1	1	-1	-1	-1	-1	-1
5	-1	-1	1	1	1	-1	-1
6	-1	-1	1	1	-1	-1	1
7	-1	-1	1	1	-1	1	1
8	1	-1	1	-1	-1	-1	-1
9	1	-1	-1	1	-1	-1	-1
10	1	1	1	-1	-1	-1	-1
11	-1 /	-1	-1	1	1	-1	-1
12	-1/	-1	1	-1	-1	-1	1
13	1	-1	-1	-1	-1	-1	-1
14	1	1	-1	1	1	-1	-1
15	1	1	-1	1	-1	1	1
16	-1	-1	-1	1	1	1	1
17	1	1	1	1	-1	-1	-1
18	-1	1	1	1	-1/	-1	1
19	1	-1	1	-1	1	1	1
20	0	0	0	3.36359	0	0	0
21	-1	1	-1	-1	1	-1	-1
22	-1	1	<u>01</u>	1	1	1	-1
23	1	1	1	-1	1	-1	1
24	-1	-1	1	1	-1	1	-1
25	-1	-1	-1	-1	1	-1	-1
26	1	1	-1	-1	-1	1	-1
27	1	1	1	1	1	1	1
28	-1	1	1	-1	1	1	1
29	1	1	1	1	1	1	-1
30	-1	-1	1	-1	1	-1	1

31	1	-1	-1	-1	1	-1	1
32	1	1	1	1	-1	1	1
33	1	1	1	1	-1	1	-1
34	1	-1	1	-1	1	1	-1
35	0	0	0	0	0	0	-3.36359
36	3.36359	0	0	0	0	0	0
37	1	1	-1	1	1	1	-1
38	1	1	-1	1	1	1	1
39	1	-1	1	1	-1	-1	1
40	-1	1	1	1	-1	1	1
41	-1	-1	1	-1	-1	1	-1
42	-1	-1	-1	-1	-1	-1	1
43	0	0	0	0	3.36359	0	0
44	1	1	-1	-1	1	1	1
45	1 /	(-1)	1	1	-1	1	1
46	1/	1	-1	-1	1	-1	-1
47	1	1	-1	1	-1	-1	-1
48	0	0	0	0	0	-3.36359	0
49	1	-1	-1	1	-1	-1	1
50	0	0	0	0	0	3.36359	0
51	1	-1	1	1	1 /	-1	1
52	-1	-1	1	-1	1/	1	1
53	1	1	1	-1	1	-1	-1
54	-1	1	1	-1	-1	-1	1
55	1	1	1	-1	1	1	1
56	1	1	0	-1	-1	1	1
57	1	-1	1	1	1	-1	-1
58	-1	1	1	-1	-1	1	-1
59	0	0	0	-3.36359	0	0	0
60	1	-1	-1	-1	1	1	-1
61	1	1	1	1	1	-1	-1
62	1	-1	-1	1	1	1	-1
63	1	-1	1	-1	-1	-1	1
64	-1	1	-1	1	1	1	-1
65	1	1	1	1	-1	-1	1

66	-1	-1	1	-1	-1	-1	-1
67	-3.36359	0	0	0	0	0	0
68	0	0	0	0	0	0	0
69	-1	1	-1	-1	-1	1	-1
70	-1	-1	-1	1	-1	-1	1
71	0	0	0	0	0	0	3.36359
72	-1	1	-1	1	-1	1	-1
73	-1	1	1	-1	1	-1	1
74	1	-1	-1	-1	1	-1	-1
75	-1	1	-1	-1	-1	1	1
76	1	1	-1	-1	1	1	-1
77	1	-1	1	1	-1	-1	-1
78	-1	-1	-1	-1	7	1	1
79	1	-1	-1	1	1	1	1
80	1 /	-1	-1	1	-1	1	1
81	1/	-1	-1	-1	-1	1	1
82	1	1	1	1	1	-1	1
83	1	-1	1	-1	-1	1	-1
84	-1	1	-1	1	1	-1	1
85	1	-1	1	-1	1	9-1	1
86	-1	-1	-1	1	-1 /	-1	-1
87	-1	-1	1	-1	-1/	1	1
88	-1	-1	1	1	-1	-1	-1
89	1	-1	-1	1	-1	1	-1
90	1	-1	31-	-1	1	-1	-1
91	0	-3.36359	0	0	0	0	0
92	-1	-1	1	1	1	-1	1
93	-1	-1	1	-1	1	-1	-1
94	1	1	-1	-1	1	-1	1
95	-1	1	-1	1	1	1	1
96	-1	-1	1	-1	1	1	-1
97	-1	1	-1	-1	1	1	-1
98	-1	-1	-1	-1	-1	1	-1
99	-1	1	1	1	1	1	1
100	-1	-1	-1	1	-1	1	1

101	-1	1	-1	1	1	-1	-1
102	1	-1	1	1	1	1	1
103	1	1	1	-1	1	1	-1
104	-1	-1	-1	1	1	-1	1
105	-1	-1	-1	-1	1	1	-1
106	-1	1	-1	1	-1	1	1
107	-1	1	-1	-1	1	1	1
108	-1	1	1	-1	-1	-1	-1
109	-1	-1	-1	-1	-1	-1	-1
110	-1	1	-1	-1	1	-1	1
111	-1	1	-1	1	-1	-1	1
112	1	1	-1	1	1	-1	1
113	-1	1	1	A 1	-1	-1	-1
114	-1	-1	-1	1	-1	1	-1
115	1 /	0-1	-1	-1	1	1	1
116	1	-1	-1	1	1	-1	1
117	-10	/ 1	1	1	-1	1	-1
118	-1	-1	1	1	1	1	-1
119	1	1	-1	1	-1	1	-1
120	1	-1	1	-1	-1	1	1
121	1	-1	1	1	1 🔪	1	-1
122	0	3.36359	0	0	0	0	0
123	-1	1	1	-1		-1	-1
124	-1	The second secon	-1	-1/1	-1/	1	1
125	-1	1	2-1-1	1	-1	-1	-1
126	1	1		1	-1	-1	1
127	0	0	3.36359	0	0	0	0
128	-1	1	1	1	1	-1	-1
129	1	1	-1	-1	-1	-1	-1
130	1	1	1	-1	-1	-1	1
131	1	-1	-1	-1	-1	1	-1
132	-1	1	1	1	1	-1	1
133	0	0	-3.36359	0	0	0	0
134	1	1	1	-1	-1	1	-1
135	-1	1	1	-1	1	1	-1

(계	소)
1	11		1

136	-1	-1	-1	-1	1	-1	1
137	0	0	0	0	-3.36359	0	0
138	1	-1	-1	1	1	-1	-1
139	-1	1	1	-1	-1	1	1
140	-1	-1	1	1	1	1	1
141	1	-1	1	1	-1	1	-1
142	-1	1	-1	-1	-1	-1	1
143	-1	-1	-1	1	1	1	-1
144	1	1	-1	-1	-1	-1	1

부록 2.	7	개의	매개변수의	변화에	따른	측정값과	계산값의	오차	합
-------	---	----	-------	-----	----	------	------	----	---

Case	bA	b _H	b _{PAO}	μ _A	$\mu_{\rm H}$	μ рао	Q PP	오차의 합
1	0.188	0.150	0.150	0.750	1.500	0.750	1.875	3332.874352
2	0.150	0.200	0.200	1.000	2.000	1.000	1.500	711.2196942
3	0.188	0.250	0.150	0.750	1.500	1.250	1.250	106119.704
4	0.113	0.250	0.150	0.750	1.500	0.750	1.250	2761.643531
5	0.113	0.150	0.250	1.250	2.500	0.750	1.250	351221659.1
6	0.113	0.150	0.250	1.250	1.500	0.750	1.875	41753.07227
7	0.113	0.150	0.250	1.250	1.500	1.250	1.875	852.8717751
8	0.188	0.150	0.250	0.750	1.500	0.750	1.250	3046.423315
9	0.188	0.150	0.150	1.250	1.500	0.750	1.250	707.6589154
10	0.188	0.250	0.250	0.750	1.500	0.750	1.250	799.2409552
11	0.113	0.150	0.150	1.250	2.500	0.750	1.250	883.4172547
12	0.113	0.150	0.250	0.750	1.500	0.750	1.875	911.920571
13	0.188	0.150	0.150	0.750	1.500	0.750	1.250	3292.637757
14	0.188	0.250	0.150	1.250	2.500	0.750	1.250	800.7627576
15	0.188	0.250	0.150	1.250	1.500	1.250	1.875	106104.9885
16	0.113	0.150	0.150	1.250	2.500	1.250	1.875	2845.428586
17	0.188	0.250	0.250	1.250	1.500	0.750	1.250	807.006879
18	0.113	0.250	0.250	1.250	1.500	0.750	1.875	772.5160421
19	0.188	0.150	0.250	0.750	2.500	1.250	1.875	3256.970346
20	0.150	0.200	0.200	1.840	2.000	1.000	1.500	698.3727752
21	0.113	0.250	0.150	0.750	2.500	0.750	1.250	1375.288112
22	0.113	0.250	0.250	1.250	2.500	1.250	1.250	879.2237537
23	0.188	0.250	0.250	0.750	2.500	0.750	1.875	914.7783758
24	0.113	0.150	0.250	1.250	1.500	1.250	1.250	276568686.6
25	0.113	0.150	0.150	0.750	2.500	0.750	1.250	2247.759705
26	0.188	0.250	0.150	0.750	1.500	1.250	1.250	2147.488491
27	0.188	0.250	0.250	1.250	2.500	1.250	1.875	800.6047582
28	0.113	0.250	0.250	0.750	2.500	1.250	1.875	3450.533678
29	0.188	0.250	0.250	1.250	2.500	1.250	1.250	735.8814446
30	0.113	0.150	0.250	0.750	2.500	0.750	1.875	1951.872386

31	0.188	0.150	0.150	0.750	2.500	0.750	1.875	3192.859183
32	0.188	0.250	0.250	1.250	1.500	1.250	1.875	3013.075117
33	0.188	0.250	0.250	1.250	1.500	1.250	1.250	765.6758821
34	0.188	0.150	0.250	0.750	2.500	1.250	1.250	2423.070997
35	0.150	0.200	0.200	1.000	2.000	1.000	0.240	711.218679
36	0.276	0.200	0.200	1.000	2.000	1.000	1.500	5143.843614
37	0.188	0.250	0.150	1.250	2.500	1.250	1.250	773.7519586
38	0.188	0.250	0.150	1.250	2.500	1.250	1.875	3583.19812
39	0.188	0.150	0.250	1.250	1.500	0.750	1.875	10260441.4
40	0.113	0.250	0.250	1.250	1.500	1.250	1.875	772.52098
41	0.113	0.150	0.250	0.750	1.500	1.250	1.250	861.8232426
42	0.113	0.150	0.150	0.750	1.500	0.750	1.875	2954.022682
43	0.150	0.200	0.200	1.000	3.680	1.000	1.500	1358.630504
44	0.188	0.250	0.150	0.750	2.500	1.250	1.875	3583.155032
45	0.188	0.150	0.250	1.250	1.500	1.250	1.875	659.7174602
46	0.188	0.250	0.150	0.750	2.500	0.750	1.250	1810.888231
47	0.188	0.250	0.150	1.250	1.500	0.750	1.250	805.7798711
48	0.150	0.200	0.200	1.000	2.000	0.160	1.500	711.2034633
49	0.188	0.150	0.150	1.250	1.500	0.750	1.875	707.6366532
50	0.150	0.200	0.200	1.000	2.000	1.840	1.500	885.250091
51	0.188	0.150	0.250	1.250	2.500	0.750	1.875	1249.494734
52	0.113	0.150	0.250	0.750	2.500	1.250	1.875	3193.281487
53	0.188	0.250	0.250	0.750	2.500	0.750	1.250	914.815256
54	0.113	0.250	0.250	0.750	1.500	0.750	1.875	781.9543092
55	0.188	0.250	0.250	0.750	2.500	1.250	1.875	3495.574843
56	0.188	0.250	0.250	0.750	1.500	1.250	1.875	3668.132492
57	0.188	0.150	0.250	1.250	2.500	0.750	1.250	904.7409413
58	0.113	0.250	0.250	0.750	1.500	1.250	1.250	865.3868848
59	0.150	0.200	0.200	0.160	2.000	1.000	1.500	3415.552614
60	0.188	0.150	0.150	0.750	2.500	1.250	1.250	2701.098817

61	0.188	0.250	0.250	1.250	2.500	0.750	1.250	8938949.688
62	0.188	0.150	0.150	1.250	2.500	1.250	1.250	311217066.6
63	0.188	0.150	0.250	0.750	1.500	0.750	1.875	1230.923082
64	0.113	0.250	0.150	1.250	2.500	1.250	1.250	288042475.4
65	0.188	0.250	0.250	1.250	1.500	0.750	1.875	806.970836
66	0.113	0.150	0.250	0.750	1.500	0.750	1.250	821.8547613
67	0.024	0.200	0.200	1.000	2.000	1.000	1.500	711.9020662
68	0.150	0.200	0.200	1.000	2.000	1.000	1.500	711.2146929
69	0.113	0.250	0.150	0.750	1.500	1.250	1.250	865.3680819
70	0.113	0.150	0.150	1.250	1.500	0.750	1.875	714.525982
71	0.150	0.200	0.200	1.000	2.000	1.000	3.364	3031.297208
72	0.113	0.250	0.150	1.250	1.500	1.250	1.250	740.9845621
73	0.113	0.250	0.250	0.750	2.500	0.750	1.875	760.8212437
74	0.188	0.150	0.150	0.750	2.500	0.750	1.250	3185.650707
75	0.113	0.250	0.150	0.750	1.500	1.250	1.875	106111.7062
76	0.188	0.250	0.150	0.750	2.500	1.250	1.250	815.9051682
77	0.188	0.150	0.250	1.250	1.500	0.750	1.250	828.3719318
78	0.113	0.150	0.150	0.750	2.500	1.250	1.875	3396.171442
79	0.188	0.150	0.150	1.250	2.500	1.250	1.875	3396.087474
80	0.188	0.150	0.150	1.250	1.500	1.250	1.875	3600.705042
81	0.188	0.150	0.150	0.750	1.500	1.250	1.875	3600.684331
82	0.188	0.250	0.250	1.250	2.500	0.750	1.875	800.6420361
83	0.188	0.150	0.250	0.750	1.500	1.250	1.250	833.8041299
84	0.113	0.250	0.150	1.250	2.500	0.750	1.875	772.065401
85	0.188	0.150	0.250	0.750	2.500	0.750	1.875	2423.086098
86	0.113	0.150	0.150	1.250	1.500	0.750	1.250	714.5165539
87	0.113	0.150	0.250	0.750	1.500	1.250	1.875	3445.081812
88	0.113	0.150	0.250	1.250	1.500	0.750	1.250	772.4995302
89	0.188	0.150	0.150	1.250	1.500	1.250	1.250	917.7331569
90	0.188	0.150	0.250	0.750	2.500	0.750	1.250	2423.084974
91	0.150	0.032	0.200	1.000	2.000	1.000	1.500	3029.72147
92	0.113	0.150	0.250	1.250	2.500	0.750	1.875	34407142.21

93	0.113	0.150	0.250	0.750	2.500	0.750	1.250	1951.904009
94	0.188	0.250	0.150	0.750	2.500	0.750	1.875	3392.687786
95	0.113	0.250	0.150	1.250	2.500	1.250	1.875	3144.627583
96	0.113	0.150	0.250	0.750	2.500	1.250	1.250	590.5611902
97	0.113	0.250	0.150	0.750	2.500	1.250	1.250	906.8800781
98	0.113	0.150	0.150	0.750	1.500	1.250	1.250	850.1590522
99	0.113	0.250	0.250	1.250	2.500	1.250	1.875	775.4361574
100	0.113	0.150	0.150	1.250	1.500	1.250	1.875	3238.388848
101	0.113	0.250	0.150	1.250	2.500	0.750	1.250	773.5643862
102	0.188	0.150	0.250	1.250	2.500	1.250	1.875	1249.260325
103	0.188	0.250	0.250	0.750	2.500	1.250	1.250	919.7249495
104	0.113	0.150	0.150	1.250	2.500	0.750	1.875	883.4063104
105	0.113	0.150	0.150	0.750	2.500	1.250	1.250	1951.924662
106	0.113	0.250	0.150	1.250	1.500	1.250	1.875	67046.80469
107	0.113	0.250	0.150	0.750	2.500	1.250	1.875	3583.158574
108	0.113	0.250	0.250	0.750	1.500	0.750	1.250	781.9469532
109	0.113	0.150	0.150	0.750	1.500	0.750	1.250	2581.878209
110	0.113	0.250	0.150	0.750	2.500	0.750	1.875	3002.473003
111	0.113	0.250	0.150	1.250	1.500	0.750	1.875	913.1664808
112	0.188	0.250	0.150	1.250	2.500	0.750	1.875	1726.349502
113	0.113	0.250	0.250	1.250	1.500	0.750	1.250	766.9843435
114	0.113	0.150	0.150	1.250	1.500	1.250	1.250	909.9029128
115	0.188	0.150	0.150	0.750	2.500	1.250	1.875	3396.053014
116	0.188	0.150	0.150	1.250	2.500	0.750	1.875	1249.517215
117	0.113	0.250	0.250	1.250	1.500	1.250	1.250	935.6566084
118	0.113	0.150	0.250	1.250	2.500	1.250	1.250	11705.60852
119	0.188	0.250	0.150	1.250	1.500	1.250	1.250	4843.447499
120	0.188	0.150	0.250	0.750	1.500	1.250	1.875	3490.956192
121	0.188	0.150	0.250	1.250	2.500	1.250	1.250	2318326.465
122	0.150	0.368	0.200	1.000	2.000	1.000	1.500	2961.609578
123	0.113	0.250	0.250	0.750	2.500	0.750	1.250	760.4913105

(계	소)
	11		1

124	0.113	0.150	0.150	0.750	1.500	1.250	1.875	3600.814142
125	0.113	0.250	0.150	1.250	1.500	0.750	1.250	772.9594752
126	0.188	0.250	0.150	1.250	1.500	0.750	1.875	2102.726917
127	0.150	0.200	0.368	1.000	2.000	1.000	1.500	831.4435344
128	0.113	0.250	0.250	1.250	2.500	0.750	1.250	12625910.96
129	0.188	0.250	0.150	0.750	1.500	0.750	1.250	3513.33333
130	0.188	0.250	0.250	0.750	1.500	0.750	1.875	799.0989012
131	0.188	0.150	0.150	0.750	1.500	1.250	1.250	1502.298813
132	0.113	0.250	0.250	1.250	2.500	0.750	1.875	773.6313077
133	0.150	0.200	0.032	1.000	2.000	1.000	1.500	152670.1856
134	0.188	0.250	0.250	0.750	1.500	1.250	1.250	1049.398331
135	0.113	0.250	0.250	0.750	2.500	1.250	1.250	771.3069714
136	0.113	0.150	0.150	0.750	2.500	0.750	1.875	2775.734846
137	0.150	0.200	0.200	1.000	0.320	1.000	1.500	103927.0645
138	0.188	0.150	0.150	1.250	2.500	0.750	1.250	1249.462288
139	0.113	0.250	0.250	0.750	1.500	1.250	1.875	3644.890087
140	0.113	0.150	0.250	1.250	2.500	1.250	1.875	814.4941223
141	0.188	0.150	0.250	1.250	1.500	1.250	1.250	944.2506305
142	0.113	0.250	0.150	0.750	1.500	0.750	1.875	3313.929868
143	0.113	0.150	0.150	1.250	2.500	1.250	1.250	321630338
144	0.188	0.250	0.150	0.750	1.500	0.750	1.875	3598.096388
			1	51		1/		

부록 3.4 개의 요인을 갖는 경우의 혼합물 실험계획

Case	X1	X2	X3	X4
1	0.000	1.000	0.000	0.000
2	0.125	0.125	0.125	0.625
3	0.125	0.625	0.125	0.125
4	1.000	0.000	0.000	0.000
5	0.333	0.000	0.333	0.333
6	0.625	0.125	0.125	0.125
7	0.000	0.000	0.000	1.000
8	0.000	0.500	0.000	0.500
9	0.125	0.125	0.625	0.125
10	0.250	0.250	0.250	0.250
11	0.333	0.333	0.000	0.333
12	0.000	0.000	1.000	0.000
13	0.500	0.000	0.000	0.500
14	0.500	0.500	0.000	0.000
15	0.000	0.333	0.333	0.333
16	0.000	0.500	0.500	0.000
17	0.500	0.000	0.500	0.000
18	0.333	0.333	0.333	0.000
19	0.000	0.000	0.500	0.500

부록 4.	혼합물	분석설계에	의한	생물	반응조	각조의	체류시간
-------	-----	-------	----	----	-----	-----	------

case	Anoxic1	Oxic1	Anoxic2	Oxic2	Total
1	0.79	7.57	1.14	0.50	10
2	1.48	4.72	2.13	1.67	10
3	1.14	6.52	1.63	0.71	10
4	3.64	3.86	1.74	0.76	10
5	2.01	3.85	2.89	1.25	10
6	2.55	4.52	2.04	0.89	10
7	1.33	4.25	1.92	2.50	10
8	0.99	6.34	1.43	1.24	10
9	1.35	4.31	3.50	0.84	10
10	1.60	5.10	2.30	1.00	10
11	1.76	5.62	1.52	1.10	10
12	1.10	3.49	4.73	0.68	10
13	2.54	4.05	1.83	1.58	10
14	1.92	6.10	1.38	0.60	10
15	1.03	5.45	2.46	1.06	10
16	0.92	5.86	2.64	0.58	10
17	2.30	3.67	3.31	0.72	10
18	1.67	5.31	2.40	0.62	10
19	1.20	3.84	3.46	1.50	10