

Thesis for the Degree of Doctor of Engineering

Analysis of environmental stress inducible genes of abalone, *Haliotis discus hannai* using expressed sequence tags and cDNA

microarray

by Eun Mi Park

Department of Biotechnology and Bioengineering The Graduate School Pukyong National University

August 2007

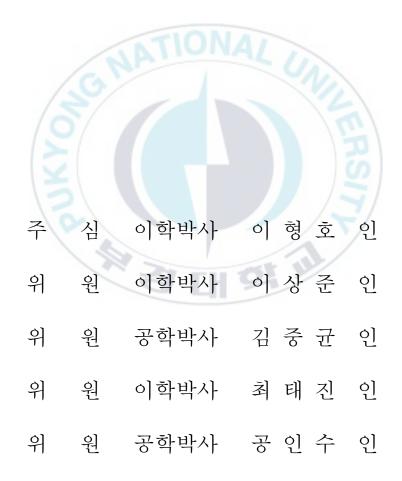
Analysis of environmental stress inducible genes of abalone, *Haliotis discus hannai* using expressed sequence tags and cDNA microarray

(EST와 cDNA microarray를 이용한 참전복, *Haliotis discus hannai* 의 환경 스트레스 관련 유전자 분석)

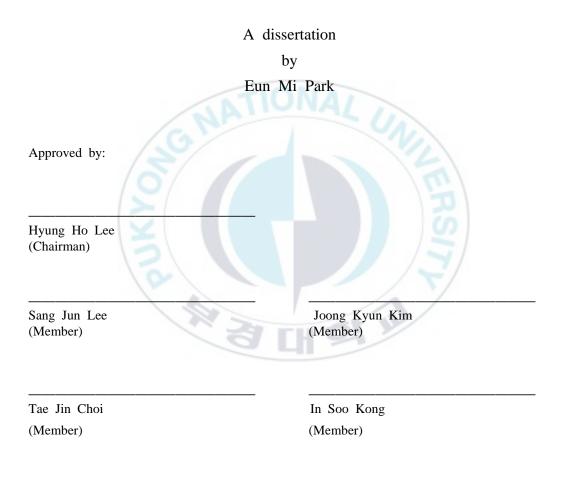
Adivisor: Prof. In Soo Kong

by

Eun Mi Park


A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Engineering

in Department of Biotechnology and Bioengineering, The Graduate School, Pukyong National University


August 2007

박은미의 공학박사 학위논문을 인준함

2007년 8월 31일

Analysis of environmental stress inducible genes of abalone, Haliotis discus hannai using expressed sequence tags and cDNA microarray

August. 31, 2007

TABLE OF CONTENTS

LIST OF TABLES iv
LIST OF FIGURES vi
ABSTRACT (in Korean) vii
Chapter I 1
General introduction
General information on abalone culture
Environmental stress on abalone
Molecular techniques applicable in the study of environmental stress 4
Objectives of the study
REFERENCES
Chapter II
EST-based survey of genes in seven different tissues of abalone, Haliotis
discus hannai
ABSTRACT
INTRODUCTION 11
MATERIALS AND METHODS 13
Animals and tissue preparation
Construction of abalone cDNA libraries
Plasmid preparation and sequencing 13
Bioinformatic analysis 14
Identification of microsatellite containing cDNAs 14

Distribution of the identified clones in the three subtracted cDNA libraries
Isolation of stress or immune response-related genes from the three
subtracted cDNA libraries 84
Isolation of EST clones containing microsatellite
REFERENCES

Chapter IV 126
Expression profiling of environmental stress-related genes from abalone,
Haliotis discus hannai using cDNA microarrays
ABSTRACT
INTRODUCTION 128
MATERIALS AND METHODS 130
Preparation of abalone cDNA microarray 130
RNA preparation, labeling and hybridization for microarray analysis 130
Microarray analysis
RT-PCR verification
RESULTS AND DISCUSSION
Microarray analysis 137
Differentially expressed genes in three stress conditions 137
Confirmation of microarray results
REFERENCES ······ 155

SUMMARY	157
ACKNOWLEDGEMENTS	160

LIST OF TABLES

Chapter II.
Table 1. General characteristics of seven tissues ESTs taken from abalone
Table 2. EST-containing MS cDNA clones from the seven tissues cDNA
libraries of abalone
Table 3. List of identified ESTs from the gill cDNA library of abalone
Table 4. List of identified ESTs from the gut cDNA library of abalone
Table 5. List of identified ESTs from the hepatopancreas cDNA library of
abalone 44
Table 6. List of identified ESTs from the skin cDNA library of abalone
Table 7. List of identified ESTs from the muscle cDNA library of
abalone 51
Table 8. List of identified ESTs from the testis cDNA library of abalone \cdot
Table 9. List of identified ESTs from the ovary cDNA library of abalone

Chapter III.

Table 1. Primers used in RT-PCR77
Table 2. General characteristics of the three subtracted cDNA libraries
from abalone
Table 3. Putative stress-related genes of abalone SSH cDNA libraries 86
Table 4. Putative immune-related genes of abalone SSH cDNA libraries
Table 5. EST-containing MS cDNA clones from the abalone SSH cDNA
libraries ····· 89
Table 6. List of identified ESTs from the heat-shock abalone subtracted
cDNA library 90
Table 7. List of identified ESTs from the cold-shock abalone subtracted
cDNA library95
Table 8. List of identified ESTs from the hyposalinity abalone subtracted
cDNA library 112

Chapter IV.

Table 1. Primers used in RT-PCR
Table 2. Gene expression changes of abalone exposed to three different
environmental stresses
Table 3. List of up-regulated genes by heat-shock 144
Table 4. List of down-regulated genes by heat-shock 146
Table 5. List of up-regulated genes by cold-shock 147
Table 6. List of down-regulated genes by cold-shock 149
Table 7. List of up-regulated genes by hyposalinity 151
Table 8. List of down-regulated genes by hyposalinity 154

-

4

LIST OF FIGURES

Chapter II.

Fig.	1. Expression profiles and sequencing redundancy in the analysis of
ESTs	from the seven tissues of abalone 21
Fig.	2. Functional categorization of the seven tissues cDNA libraries taken
from	abalone 23

Chapter III.

Chapter IV.

Fig. 1. The standard of constructed microarray, (A); Syto61 staining image of spotted microarrays, (B).
Fig. 2. Reliability of the hybridized microarrays. Technical replicates and scatter plot of signal values from replicates on a microarray.
141
Fig. 3. Reverse transcription-PCR analysis of three representative genes identified as being differentially expressed in the microarray analysis.
143

EST와 cDNA microarray를 이용한 참전복, *Haliotis discus hannai* 의 환경 스트레스 관련 유전자 분석

박 은 미

부경대학교 대학원 생물공학과

요약

전복류는 전 세계적으로 100여종이 분포하며, 식용으로 기호성이 높기 때문에 생물학적 연구가 많이 이루어져 왔다. 그 중에서도 양식 환경에서 질병이나 스트레스에 대한 내성, 성장 등에 관심이 모아지고 있다. 해양생물의 생존 및 성장에 가장 큰 영향을 미치는 환경 요인으로는 수온과 염분을 들 수 있다. 해 양생물 가운데 전복은 운동성이 제한되어 있어 수온이나 염분 농도의 변화는 대량 폐사를 유발할 수 있 다.

최근 인간을 비롯한 많은 생물체에서 발현유전자 조각 (EST; expressed sequence tag)의 분석으로 유전자 발현양상에 대한 많은 연구가 이루어지고 있으나 EST 데이터 베이스의 대부분은 육상동물, 특히 포유류에 국한되어 있고, 전복을 비롯한 패류에 대한 EST자료는 극히 소수에 불과하다. 따라서 본 연구 는 참전복, *Haliotis discus hannai*의 7 조직(아가미, 소화관, 간췌장, 표피, 근육, 정소, 난소)으로부터 EST를 확보하였으며, 환경 스트레스로 작용하는 수온과 염분 농도를 변화 시킨 후 유전자의 발현 양상을 조사하였다. 그 후 microarray 방법을 통하여 환경 스트레스 노출 시 발현의 정도를 분석하고 특성을 연 구하였다.

전복의 조직별 유전자 발현의 특성을 밝히기 위하여, 생물정보학을 이용하여 전복의 주요 조직으로부 터 확보된 1,393개의 EST를 분석한 결과 cluster는 135개, singleton은 951개로 구성되어 있으며, 발현 중복율은 22%로 나타났다. 또한 BLASTX를 이용하여 유전자 검색 결과 1,278개 (91.7%)의 EST가 이미 알려진 유전자와 상동성을 가지는 것으로 나타났고, 나머지 115개 (8.3%)의 EST는 이제까지 알려지지 않은 유전자로 밝혀졌다.

전복의 주요 조직에서 밝혀진 발현 유전자 정보를 바탕으로, 전복의 수온과 염분 스트레스 시 전복에 서 유도되는 유전자들을 탐색하기 위하여 고수온, 저수온, 저염분에 노출 시킨 후 suppression subtractive hybridization (SSH) 방법을 통하여 EST를 확보하였다. 총 1316개의 EST가 분석되었으며, 998개 (75.8%)의 EST가 이미 알려진 유전자와 상동성을 가지는 것으로 나타났고, 나머지 318개 (24.2%)의 EST는 알려지지 않은 유전자로 밝혀졌다. 밝혀진 유전자들을 분석한 결과 HSC, HSP family, major histocompatibility complex (MHC) class IIa chain, CD45, IRF7 등 다수의 클론들은 스트레스와 면역에 관 련된 유전자와 상동성을 나타내었다.

전복의 환경변화 노출 시에 발현되는 스트레스 관련 유전자의 발현 차이를 조사하기 위하여 cDNA microarray 분석을 수행하였다. 우선 전복의 7개 조직으로부터 확보한 1,457개의 cDNA clone과 환경스트레 스 노출에 의해 확보된 1,536개의 cDNA clone을 이용하여 3K cDNA microarray를 구축한 후, 수온 또는 염

분 스트레스에 대한 발현 정도를 조사하였다. 그 결과 스트레스와 면역에 관련된 많은 인자들이 유의적인 차 이를 보이고 있었으며, 기존에 알려진 유전자와 상동성을 지니지 않은 유전자들 가운데도 스트레스 조건에 따 른 유의적인 차이를 보이는 유전자들이 조사되었다.

본 연구는 전복의 정상 조직의 발현유전자들의 특성을 조사하고, 환경 스트레스 노출 하에서 발현 차이를 EST 와 cDNA microarray 방법을 통하여 분석하였다. 분석된 결과들은 상대적으로 부족한 패류의 환경 스트 레스 (수온, 염분)와 면역관련 유전자들에 대한 기초적 자료로 이용될 뿐만 아니라 유전자 발현양상의 특성을 조사함으로써 개체 및 조직 특이적 분석, 스트레스 특이적 유전자 표지 개발, 그리고 전체 cDNA 와 발현조 절 부위 분리, 기능 분석에 응용 할 수 있다. 뿐만 아니라 스트레스 특이적 유전자와 유용 형질 유전자에 대한 탐색과 개발은 분자육종의 기초가 되는 유전자 지도 작성에 이용할 경우 신품종의 효율적 선발이나 유전자원 의 평가와 같은 여러 분야에 활용이 가능하다.

따라서 본 연구 결과를 통해 전복의 환경스트레스 조건하에서 특이적으로 발현되는 유전자들의 정보를 확 보하고 특성을 연구함으로써 패류 유전체학의 유용한 정보로 이용될 뿐만 아니라 향후 내병성, 내환경성 전복 의 품종 개발을 통해 전복 양식에 밑바탕이 될 것으로 기대 된다.

Chapter I.

General introduction

Chapter I. General introduction

General information on abalone culture

Abalone is one of the most prized sea delicacies worldwide. Farming of abalone was begun in the late 1950's and early 1960's in Japan and China, respectively, and developed very rapidly in the 1990s, and culture of abalone is now widespread in many countries including East Asia (especially in China, Japan, and Korea), Latin America (especially Chile) and South East Asia.

About one hundred abalone species are found through the world. Of them, six species are found along the coasts of Korea. They are *Haliotis diversicolor supertexta*, *H. diversicolor diversicolor*, *H. discus hannai*, *H. discus discus*, *H. sieboldii*, and *H. gigantea*. *H. discus hannai* is a commercially important shellfish species in East Asia especially in China, Japan and Korea. This species has several desirable characteristics for aquaculture including tolerance to low water temperatures, establishment of seedling production, and ability to withstand high stocking density [1-3].

Farming of *H. discus hannai* in Korea has been developed since 1970 and aquaculture production is currently increasing rapidly. It is likely to maintain this increasing trend in the production because of the decrease in wild abalone captures due to overexploitation, water pollution, and other causes. However, intensive culture of abalone in enclosed spaces like tanks, cages, and ponds make the shellfish more susceptible to stress and disease [4, 5]. Environmental stress is responsible for the outbreak mass mortalities and has caused vast economic losses.

Environmental stress on abalone

Stress response is the mechanism by which animals can maintain homeostasis when exposed to physical (e.g., temperature or salinity) or biological (e.g., food quantity and quality, competition for space or sexual partners, presence of pathogens) changes induced by natural or anthropogenic perturbations. Studies on organisms from various phyla demonstrated a link between stress and increased mortality, apparently due to reduced disease resistance [6-10].

In shellfish farming, production may be subjected to various limiting factors including mortality outbreaks. For several decades now, various shellfish livestock have presented abnormal mortality outbreaks during the summer period, which is called summer mortality. The representative case of summer mortality is Pacific oyster, *Crassostrea gigas*. Since the beginning of the 1960s, abnormal episoces of *C. gigas* mortality have increased in the world, as reported in Japan and North America since the 1940s [11-13]. Cheney et al. have hypothesised that summer mortality outbreaks are the result of multiple factors, including elevated temperatures and physiological stress associated with sexual maturation, aquaculture practices, pathogens or pollutants [14].

In Korea, due to various stress during the summer period, large

numbers of shellfish such as abalone, oyster, shortnek clam, and red shell in farming areas died during last 20 years and the aquaculture industry is in bad shape. Despite of the increasing seriousness of mass mortality, research on the stress response of abalone is limited.

Since 1970, mass mortality of the abalone *H. discus hannai* has occurred in the southern coast of Korea during the rainy season of summer. Mortalities of abalone are the result of multiple factors or stressors including elevated temperature and hyposalinity by poured floodwaters in the rainy season. Environmental stress such as temperature or salinity changes can affect the defense mechanisms of marine invertebrate organisms [15].

Molecular techniques applicable in the study of environmental stress

Now, new families of "omics" technologies that provide a massive and reliable analysis of cellular component such as RNA, DNA, and protein are introduced. These technologies are very powerful tools for the identifying novel genes and further studying the correlation of these genes and proteins, which enables researchers to sufficiently understand the response of organisms to environmental stress or infectious disease [16].

Techniques used for these thechonlogies include expressed sequence tages (ESTs) analysis, suppressive subtractive hybridization (SSH), differential display reverse transcriptase polymerase chain reaction (DD RT-PCR), serial analysis of gene expression (SAGE), and ultimately, microarray [17]. These PCR based techniques make it possible to screen massively differential expressed gene by environmental stress, simultaneously. Nevertheless, the importance of obtaining cDNA sequences, studies for their expression pattern analysis and physiological properties of each gene or protein should not be overlooked.

Objectives of the study

This study aimed to build up a wide array of genes expressed in abalone, *H. discus hannai* and to analyze environmental stress inducible genes of abalone by ESTs and cDNA microarray.

In order to obtain cDNA sequences from this species, cDNA libraries were constructed from major seven tissues in abalone *H. discus hannai* and then 1,393 ESTs were analyzed. After exposure to environmental stress, differential expressed genes were cloned using SSH methods and 1,316 ESTs were analyzed. Additionaly, 3K cDNA microarray was designed and produced, which targeted primarily toward environmental stress-related genes. The changes of expression levels of stress-related genes or some unkown genes induced by environmental stress were evaluated to better understand the abalone defense system using cDNA microarray analysis.

REFERENCES

- Kikuchi S, Uki N. Technical study of artificial spawning of abalone, genus *Haliotis* I. Relationship between water temperature and advancing sexual maturity of *Haliotis discus hannai* Ino. Bull Tohoku Reg Fish Res Lab 1974; 33: 69-78.
- Uki N, Kikuchi S. Technical study on artificial spawning of abalone, genus Haliotis IX. Influence of food levels on maturation and spawning of the abalone, Haliotis discus hannai related to effective accumulative temperature. Bull Tohoku Reg Fish Res Lab 1982; 45: 45-53.
- Kim BH, Lee SM, Go CS, Kim JW, Myeong JI. Optimum stocking density of juvenile abalone (*Haliotis discus hannai*) fed formulated diet or macroalgae (Undaria). J Korean Fish Soc 1998; 31: 869-74.
- Schreck CB. Immunomodulation: Endogenous factors. In: The Fish Immune System: Organism, Pathogen, and Environment. Academic Press, 1996; 3: 311-37.
- 5. Schreck CB, Contreras-Sanchez W, Fitzpatrick MS. Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture 2001; 197: 3-24.
- Snieszko SF. The effects of environmental stress on outbreaks of infectious diseases of fishes. J Fish Biol 1973; 6: 197-208.
- Sindermann CJ. Pollution-associated diseases and abnormalities of fish and shellfish. Fish Bull 1979; 76: 717-49.
- 8. Bricelj VM, Ford SE, Borrero FJ, Perkins FO, Rivara G, Hillman RE, Elston

RA, Chang J. Unexplained mortalities of hatchery-reared, juvenile oysters, *Crassostrea virginica* (Gmelin). J Shellfish Res 1992; 11: 331-47.

- Chu F-LE, Hale RC. Relationship between pollution and susceptibility to infectious disease in the Eastern Oyster, *Crassostrea virginica*. Marine Envir Res 1994; 38: 243-56.
- Lee M, Taylor GT, Bricelj M, Ford SE, Zahn S. Evaluation of Vibrio spp. and microplankton blooms as causative agents of juvenile oyster disease in *Crassostrea virginica* (Gmelin). J Shellfish Res 1996; 15: 319-29.
- Cheney DP, MacDonald BF, Elston RA. Summer mortality of Pacific oysters, *Crassostrea gigas* (Thunberg): Initial findings on multiple environmental stressors in Puget Sound, Washington, 1998; J Shellfish Res 1998; 19: 353-9.
- Glude JB. A summary report of Pacific Coastoyster mortality investigations 1965-1972. In: (Proceedings of the Third U.S.-Japan Meeting on Aquaculture at Tokyo, eds) 1974; 28.
- Koganezawa A. Present status of studies on the mass mortality of cultured oysters in Japanand its prevention. In: (Proceedings of the Third U.S.-Japan Meeting on Aquaculture at Tokyo, eds) 1974; 29-34.
- 14. Goulletquer P, Soletchnik P, Le Moine O, Razet D, Geairon P, Faury N, Taillade S. Summer mortality of the Pacific cupped oyster *Crassostrea gigas* in the Bay of Marennes-Oleron (France). ICES Mariculture Committee CM, Copenhagen, 1998.
- 15. Cheng TC, Combes C. Influence of environmental factors on the invasion of

molluscs by parasites: with special reference to Europe. Biological invasions in Europe and the Mediterranean Basin 1990; 307-32.

- 16. Waters MD, Selkirk JK, Olden K. The impact of new technologies on human population studies. Mutat Res 2003; 544: 349-60.
- 17. Woychik RP, Klebig ML, Justice MJ, Magnuson TR, Avner ED. Functional genomics in the post-genome era. Mutat Res 1998; 400(1-2): 3-14.

Chapter II.

EST-based survey of genes in seven different tissues

of abalone, Haliotis discus hannai

Chapter II. EST-based survey of genes in seven different tissues of abalone, *Haliotis discus hannai*

ABSTRACT

Analysis of expressed sequence tags (ESTs) is an efficient approach for gene discovery, expression profiling, and development of resources useful for functional genomics. To analysis the transcriptome of abalone, EST analysis was conducted using seven cDNA libraries made from gill, gut, heptopancreas, skin, muscle, testis, and ovary of abalone. Redundant ESTs were assembled into overlapping contigs by using the assembly program ICAtools software. The results showed that the 1,393 ESTs were composed of 135 clusters and 951 singletons, suggesting that the overall redundancy of the library was 22%. of the 1,393 clones, 1,278 clones (91.7%) were identified as known genes by BLAST searches and 115 clones (8.3%) did not match to any previously described genes. Based on major function of their encoded proteins, the identified clones were classified into 16 broad categories. Sequence analysis of the ESTs revealed the presence of microsatellite-containing genes that may be valuable for further gene mapping studies. This study contributes to the identification of many EST clones that could be useful for genetics and developmental biology of abalone.

Key words : abalone, *Haliotis discus hannai*, expressed sequence tag (EST), expression profile, marker.

INTRODUCTION

Identification of the genes expressed within the cell of a given tissue is a basic step in the determination of gene function and the analysis of tissue physiology. One efficient approach in the characterization of gene transcript involves partial sequencing of cDNA clones from cDNA libraries obtaining expressed sequence tags, which are commonly refferred to as ESTs [1]. EST analysis not only enables the identification of genes transcribed within specific tissues, but also reveals the expression profiles of the tissues from which the cDNA library was constructed. The second primary use of ESTs involves their application as molecular reagents for comparative functional genomic studies, using cDNA microarray technology [2]. ESTs can also be employed in the development of polymorphism markers [3].

Abalone is one of the most widely cultivated shellfish in East Asia including China, Japan, and Korea. Research on abalone to date has focused mainly on environmental factors and their relation to aquaculture such as culture techniques, tank design, and nutrition [4]. A better understanding on various genes of abalone and the differences with the genes of other organisms will provide an insight into abalone physiology at molecular level, leading to the introduction of genes with desired characters such as disease resistance and rapid growth. However, the number of shellfish-related ESTs stored in public databases remains minuscule relative to the amount of mammalian sequences, and relatively few tissue-specific cDNA libraries are available [5]. The expression profiles inherent to tissue-specific cDNA libraries sometimes provide novel and different information, which can also provide more profound functional meaning.

In the present study, as a component of a transcriptome analysis of abalone, seven cDNA libraries were constructed from gill, gut, heptopancreas, skin, muscle, testis and ovary of adult abalone, and 1,393 expressed sequence tag (EST) clones were analyzed.

MATERIALS AND METHODS

Animals and tissue preparation

Abalones, *Haliotis discus hannai* were suplied by Jeju Fisheries Research Institute (Jeju, Republic of Korea) and acclimatized to laboratory conditions. The seven tissues including gill, gut, heptopancreas, skin, muscle, testis, and ovary were collected and cut into small pieces as possible. Pooled tissues were rapidly frozen with liquid nitrogen and ground with a mortar and pestle.

Construction of abalone cDNA libraries

mRNAs were isolated from seven tissues using a PolyA Tract mRNA isolation kit (Promega). cDNA synthesis was carried out using a cDNA synthesis kit with oligo-(dT) primer. The cDNA library was constructed in Uni-ZAP XR vectors according to the manufacturer's instruction (Stratagene). All primary libraries were amplified and aliquots of each amplified library were stored at both 4°C and -80°C.

Plasmid preparation and sequencing

Conversion of the recombinant Uni-ZAP XRs into pBluescript phagemids was carried out by *in vivo* excision according to the manufacturer's instruction (Stratagene). Plasmid DNA was prepared by the alkaline lysis method [6] using the Qiagen Spin Column Mini-plasmid kits. Single-pass sequencing of 5 ' -termini of selected cDNA clones in phagemid form was performed using the ABI 3730 automatic DNA sequencer (PE Applied Biosystems) and the ABI Prism Big Dye Terminatior Cycle Sequencing Ready Reaction kit (PE Applied Biosystems).

Bioinformatic analysis

Bioinformatic analysis was conducted to determine gene identities using GeneMaster 3.0 software (Ensoltek). Briefly, vector sequence was removed and database search was limited to ESTs >100bp in length. ESTs were then assembled in clusters of contigous sequences (contig) using ICAtools program [7]. Gene annotation procedures and homology searches of the sequenced ESTs have been locally done by BLASTX for amino acid similarity comparisons [8]. Matches were considered to be significant only when the probability (P) was less than 1×10^{-3} using BLASTX with all parameters at the defaults. All ESTs that were not identified as orthologues of known genes were designated as unknown EST clones and hypothetical proteins were considered as known EST clones.

Identification of microsatellite containing cDNAs

During the complication of EST sequences, genes that containing microsatellites were identified and their microsatellites were characterized in terms of complexity and repeat number. Clones containing microsatellites were identified by determination of a minimal number of repeats in the microsatellite sequences: dinucleotide, eight repeats; trinucleotide, five repeats; tetranucleotide,

three repeats. Single nucleotide repeats were not included since they are not very useful for polymorphic markers. Some cDNA clones contained more than one type of repeat, in which case these clones were categorized according to the longest repeats.

RESULTS AND DISCUSSION

Summary of EST clones in cDNA libraries from seven tissues of abalone

cDNA libraries were constructed from seven different tissues of abalone including gill, gut, hepatopancreas, skin, muscle, testis, and ovary, consisting of 1.0×10^6 pfu/ml from polyadenylated fractions of RNA isolated from abalone tissue. The number of clones in the constructed cDNA libraries were believed to be sufficient to encompass the predominantly expressed mRNA within each tissues. The average length of the insert cDNA fragment was found to be 1.7 kb, in a range from 0.5 to 3 kb. Total of 1,457 clones were randomly selected from the seven cDNA libraries. The nucleotide sequences of these clones were determined using T3 primer, and then homologous sequences were searched in GenBank database. A summary of the identified genes is shown in Table 1. The initial ESTs were grouped into total 1,086 consensus sequeces, comprised of 158 clusters (gill, 31; gut, 24; hepatopancreas, 9; skin, 15; muscle, 19; testis, 13 and ovary, 24) and 794 singletons (gill, 196; gut, 214; hepatopancreas, 77; skin, 120; muscle, 115; testis, 119 and ovary, 110), suggesting that the libraries had an overall redundancy of 31.7%. BLASTX comparisons established that 1,278 (91.7%) of the clones were orthologues of known genes (157 (12.3%) of known genes were identified as hypothetical protein) and the remaining 115 (8.3%) clones were not identified via similarity comparisons $(E\pm1\times e^{-3})$. Among the 1,086 EST clones, six unique genes were identified as homologues of previously reported abalone ESTs, and 1080 (99.5%) genes were identified as orthologues of known genes from other organisms. These results suggest that EST analysis constitutes a powerful technique for the rapid discovery of large numbers of useful genes in shellfish.

	Gill	Gut	Hepato pancreas	Skin	Muscle	Testis	Ovary	Sum
Number of clones sequenced	288	288	101	171	204	199	206	1,457
Number of clones analysed	287	284	99	158	196	173	196	1,393
Average insert size (kb)	1.6±0.6	1.7±0.4	2.0±0.5	1.3±0.6	1.6±0.4	1.8±0.4	1.7±0.3	1.7±0.5
EST clusters	31	24	9	15	19	13	24	158
Unigene	227	238	86	135	134	132	134	952
Redundancy (%)	20.9%	16.2%	15.2%	14.6%	31.6%	23.7%	31.6%	31.7%
ESTs with E value $< 1 \times e^{-3}$	268	263	90	141	173	158	185	1278
(matched)(%)	(90.9%)	(92.6%)	(90.9%)	(89.2%)	(88.3%)	(91.3%)	(94.4%)	(91.7%
ESTs with E value $\geq 1 \times e^{-3}$	19	21	9	17	23	15	11	115
(unknown)(%)	(6.6%)	(7.4%)	(9.1%)	(10.8%)	(11.7%)	(8.7%)	(5.6%)	(8.3%)

Table 1. General characteristics of seven tissues ESTs taken from abalone

Expression profile in seven tissues of abalone

The expression profiles of the known genes identified in seven tissues of abalone are provided in Fig. 1. Among 952 identified genes, 794 genes (83.4%) were sequenced only once; 115 genes (12.1%) 2-4 times; 43 (4.5%) 5 times or more. The percentage of singletons was acceptable, although redundancy tends to increase with increasing numbers of sequenced clones. The most abundantly expressed genes in the seven tissues were as follows: in gill, peroxidasin (4.4%), actin A3 (4.0%), actin (4.0%), and guanine nucleotide-binding protein 7 (3.1%); in gut, serine protease (3.8%), cytochrome c oxidase subunit I (2.9%), translation elongation factor 1-alpha (2.1%), and actin A3 (2.1%); in hepatopancreas, ferritin-like protein 4 (4.7%) and elongation factor 1 alpha 3 (3.5%); in skin, actin A3 (4.4%), cytochrome c oxidase subunit I (3.0%), and laminin receptor precursor (3.0%); in muscle, cytoskeletal beta actin (14.9%), actin A1 (12.7%),myosin essential light chain (7.5%),and aminodeoxychorismate lyase (5.2%); in testis, arginine kinase (12.9%), putative alpha-tubulin (5.3%), and elongation factor 1 alpha (4.5%); in ovary, vitellin coat protein 41 (6.7%) and 42 (6.0%), vitellogenin structural genes (yolk protein genes) family member (vit-1) (6.0%), and alpha tubulin (5.2%) (Fig. 1).

Distribution of the identified clones in seven tissues of abalone

Based on the major functions of their encoded proteins, the identified

clones were classified into 16 broad categories, as follows: biogenesis of cellular components, cell cycle/ DNA processing, cell fate, cell rescue/ defense/ virulence, cell type differentiation, cellular communication/signal transduction mechanism, cellular transport/ transport facilitation/ transport routes, development (systemic), energy, interaction with the cullular environment, metabolism, protein activity regulation, protein fate (folding, modification, destination), protein synthesis, protein with binding function/ cofactor requirement (structural or catalytic), and transcription. The distribution of identified clones from the cDNA libraries of seven tissues is shown in Fig. 2.

Libraries derived from seven tissues of abalone show some differences in overall patterns of gene expression that reflect their different function in abalone. However, notable differences were not detected. Clones associated with cell cycle/ DNA processing, cellular transport/ transport facilitation/ transport routes, metabolism, and protein synthesis were all represented in high percentages. In other hand, a reverse trend was also noted; namely, clones associated with cellular communication/signal transduction mechanism, development (systemic), and protein activity regulation were represented at relatively low percentages.

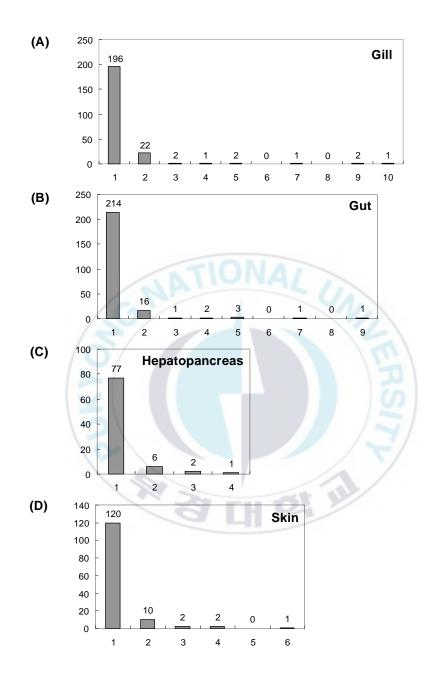


Fig. 1. Expression profiles and sequencing redundancy in the analysis of ESTs from the seven tissues of abalone. (redundancy, X axis; hits per gene, Y axis)

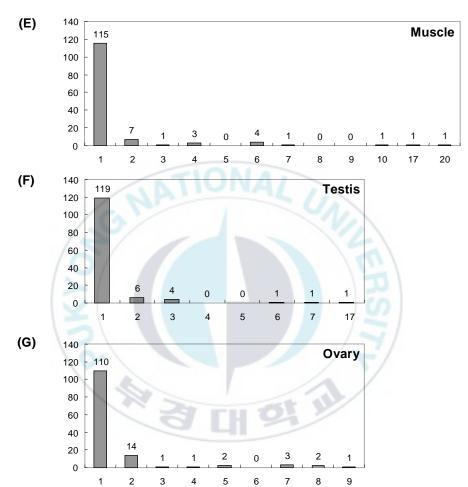


Fig. 1. (continued)

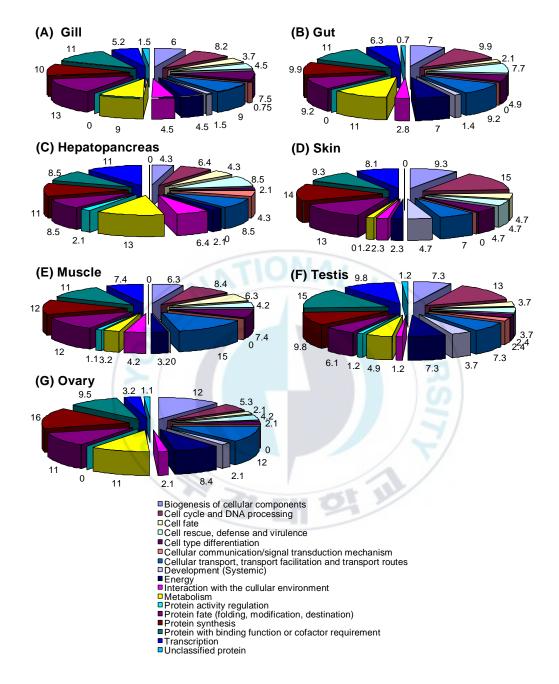


Fig. 2. Functional categorization of the seven tissues cDNA libraries taken from abalone.

Genes potentially involved in defense mechanisms

- Group I: Immune and stress related genes

Another object of this study was the identification of cDNA clones in abalone tissues that may be involved in immune and stress response activities. Database searches identified putative immuneor stress response-related genes from the abalone cDNA clones. The putative amino acids sequence deduced from one cDNA clone, DGT-207, was identified as the macrophage migration inhibitory factor (MIF). MIF was initially described as an immune activity isolated from the supernatants of T lymphocytes and inhibited the random migration of macrophages [9]. Expression of MIF was associated with physiological stress or as a consequence of systemic inflammatory conditions such as endotoxemia [10]. The putative amino acids sequence deduced from one cDNA clone, GIL71, was identified as the bcl2-associated athanogene, a cell death-inhibitory protein. During apoptosis, mitochondrial swelling allows cytochrome c to leak into the cytosol, a process which results in subsequent DNA fragmentation. Bcl2 interacts with the mitochondrial outer membrane, which affects a blockage of mitochondrial swelling [11].

Several ESTs (DGT-152, GIL-143, GIL-165, and SKN117) with high homology to various heat shock proteins (HSPs) were identified in seven libraries. HSPs are well known as stress proteins because various forms of stress enhance their transcriptional activation and biosynthesis in organisms, ranging from bacteria to humans [12]. In recent years, cDNAs encoding HSP70 and HSP90 were described from abalone (HSP70; GeneBank accession no. DQ324856)[13] and tube abalone, *Haliotis tuberculata* (HSP70; EMBL accession no.; AM283516.1, HSP90; EMBL accession no.; AM283515.1)[14]. Our libraries also contain clones matched with HSP70 (GIL165) and HSP90 (DGT152).

- Group II: Recognition proteins

In the gut library, clone DGT-151 matched with immune recognition molecules β -1,3 glucan binding protein (β -GBP). β -GBP is also known as lipoprotein 1 (LP1), which is associated with lipid transport to ovary [15-21].

A related EST (RM-162) from the muscle library showed similarity to a scavenger receptor, expressed by human endothelial cells, which mediates the binding and degradation of acetylated low density lipoprotein (LDL) [22]. This EST contained a cysteine-rich region that is homologous to the scavenger receptor cysteine-rich (SRCR) domains characteristic of the SRCR superfamily. In addition to binding to modified LDL, these receptors can also bind bacterial endotoxins as well as intact gram-negative bacteria [23, 24].

- Group III : Proteinases and proteinase inhibitors

With respect to invertebrate immune function, the role of proteinases and proteinase inhibitors has been well characterized in the regulation of melanization, mediated by the prophenoloxidase system, and hemolymph coagulation [25, 26]. In support of their protective role in molluscan immunity, antibodies against various cathepsins, and cysteine proteinases, have been demonstrated the presence of these proteins in the granules of hemocytes from *Mytilus edulis* [27]. Proteinase inhibitors also support host defense mechanisms by affording protection from a variety of proteinases associated with pathogenic virulence [26]. A comparative study demonstrated the presence of proteinase inhibitors in the hemolymph of *Crassostrea spp.* [28]. In addition to inhibiting a variety of activities attributable to the mechanistic classes of proteinases, plasma from *Crassostrea spp.* inhibited extracellular proteinases produced by *Perkinsus marinus* and *Vibrio vulnificus* [28]. The production of extracellular serine proteinases by *Perkinsus marinus* is an important factor in the virulence of this parasite. Interestingly, *C. gigas*, which is resistant to *Perkinsus*, appears to possess proteinase inhibitors with greater activity compare to those in *C. virginica* [28, 29].

In support of these previous observations, two cysteine proteinases were identified from seven tissues cDNA libraries. A single EST (GIL-257) in the gill library showed similarity to cathepsin B. Two clones (VHP-215 and GIL-269) of cathepsin L were identified from the hepatopancreas and gill libraries, respectively.

One clone (VHP-242) of multicystatin (cysteine proteinase inhibitor) was identified in the hepatopancreas library. Cystatins, along with proteinases, were demonstrated to play a role in coagulation and complement activation [30, 31, 32]. Interestingly, these molecules were expressed from gill and hepatopancreas of abalone. It could be speculated that gill and hepatopancreas are the site for the production of immune related molecules.

- Group IV: Other immune effectors

Several other immune and potential immune transcripts were identified in the cDNA libraries from seven tissues of abalone. Among them, transcripts of metal binding protein are sequenced. Two major metal binding proteins of ferritin (VHP227) and metallothionein 1 (GOF031) were found from hepatopancreas and ovary, respectively. Homologues to ferritin were quite common in the hepatopancreas cDNA libraries. Ferritin, a major intracellular iron binding protein, protects cells (both prokaryotic and eukaryotic) from oxidative stresses [33, 34] and can sequester free iron from bacterial pathogens. Metallothioneins, also metal-binding proteins, bind heavy metals and are involved in detoxification processes. Metallothioneins are scavengers of reactive oxygen intermediates and are upregulated during immune responses in vertebrates, as well as in invertebrates. An abalone cyclophilin was also identified (RM-084). Cyclophilins have diverse regulatory functions in mammalian cells, but it is interesting to note that they can be involved in viral attachment to cells [35] and in the stress response to oxygen depletion [36].

Isolation of EST clones containing microsatellite

A number of the sequenced cDNA clones were found to harbor microsatellite sequences (Table 2). They were located in 5 ' or 3 ' untranslated regions (UTRs) with a high frequency (data not shown). Microsatellites are generally thought to occur primarily in noncoding DNA. However, surveys of other cDNA libraries have revealed that up to 8% of clones may harbor microsatellites [37]. These microsatellites, if they are polymorphic, may prove useful for genomic mapping. This study determined that the targeting of microsatellite regions within cDNAs is an efficient way to develop type I polymorphic markers representing genes of known function. Due to evolutionary conservation, the mutation rates within gene-coding sequences are lower than those detected in non-coding genomic sequences. As a result, the identification of type I polymorphic markers is usually more difficult to be identified. Therefore, by tagging the highly polymorphic microsatellites to known genes, the efficiency of the development of type I markers can be significantly enhanced. Since the primary objective of this study was to develop EST resources, polymorphism of these microsatellite clones was not attempted to characterize.

These EST clones isolated from this study, might be used as probe to develop molecular markers for tissue-specific or cell-specific, to determine full-length of cDNA or gene interest, and to utilize for gene expression or gene function of abalone.

Table 2. EST-containing MS cDNA clones from the seven tissues cDNA libraries of abalone

Clone Name	Nucleotide	Microsatellite	Cana nome
Clone Name	repeat unit	repeats	Gene name
GIL99.ab1	Dinucleotide	(GT)5	ENSANGP00000010305
SKN011-SK.ab1	Dinucleotide	(AT)5/(TG)4	AMP-dependent synthetase and ligase
GIL-219.ab1	Pentanucleotide	(GTGAC)3	hypothetical protein XP_780435
DGT-230.ab1	Dinucleotide	(GT)5	agrin isoform 1
VHP-286.ab1	Tetranucleotide	(ACAA)4	putative transposase b homolog
SKN101.ab1	Trinucleotide	(TCA)4	hypothetical protein AN4541.2
VHP-209.ab1	Dinucleotide	(CT)5	hypothetical protein
GIL74.ab1	Trinucleotide	(GCA)4	ENSANGP0000003404
DGT11.ab1	Trinucleotide	(GAT)6	LOC400590 protein
GIL140.ab1	Trinucleotide	(GAA)4	AFR490Cp
DGT112.ab1	Dinucleotide	(AG)5	unnamed protein product
GOF091-sk.ab1	Tetranucleotide	(ATTG)3	unknown
GIL108.ab1	Tetranucleotide	(CTCA)4	unknown
GOF086-SK.ab1	Dinucleotide	(GA)6	vitelline envelope sperm lysin receptor
GIL82.ab1	Trinucleotide	(CAA)4	unknown
DGT-213.ab1	Trinucleotide	(CCA)4	ependymin-related protein
DGT152.ab1	Trinucleotide	(GAA)4	heat shock protein 90
RM091.ab1	Tetranucleotide	(TGAG)4	unknown
RM042-SK.ab1	Tetranucleotide	(AGTG)3	hypothetical protein
GIL-210.ab1	Dinucleotide	(TC)5	MGC81140 protein
GOM067-sk.ab1	Trinucleotide	(CAG)4	ENSANGP0000003404
DGT183.ab1	Tetranucleotide	(ACCA)3	GA17076-PA
GIL5.ab1	Tetranucleotide	(GTGC)3/(GAGT)3	ferrisiderophore, outer membrane receptor
DGT20.ab1	Dinucleotide	(GA)5	Rho-related BTB domain-containing protein 1
SKN202.ab1	Trinucleotide	(CAC)4	unknown
SKN008-SK.ab1	Dinucleotide	(AT)5	Serpentine Receptor, class T family member (srt-7)
GOF049-sk.ab1	Trinucleotide	(TAT)4	keratin associated protein 10-2
VHP-221.ab1	Dinucleotide	(GA)5	hypothetical protein MGG_ch7g1038
GIL230.ab1	Dinucleotide	(TA)7/(TA)13/ (TA)7	unknown

Clone no.	Putative identification	Closest species	Accession no.	I ^a
GIL-193.ab1	RL22_TRIGR 60S ribosomal protein L22 (Development-specific protein 217)		4.5P13732	
GIL-194.ab1	KRP-A	Aplysia californica	CAA48558.1	89
GIL-195.ab1	Zgc:101545	Danio rerio	AAH86701.1	92
GIL-197.ab1	similar to retinoblastoma binding protein 4 isoform 6	Canis familiaris	XP_864405.1	76
GIL-198.ab1	eukaryotic translation initiation factor 3, subunit 6 interacting protein	Gallus gallus	NP_001012553.1	64
GIL-199.ab1	ADP-ribosylation factor	Cryptosporidium hominis TU502	XP_666445.1	47
GIL-200.ab1	Tis11 family protein	Crassostrea virginica	AAB69448.1	54
GIL-202.ab1	cytochrome c oxidase subunit I	Haliotis rubra	YP_026069.1	84
GIL-203.ab1	importin beta 1	Aplysia californica	AAY81965.1	79
GIL-204.ab1	ribosomal protein L11	Ixodes scapularis	AAY66938.1	78
GIL-205.ab1	integral membrane protein	Plasmodium berghei strain ANKA	XP_674371.1	40
GIL-206.ab1	Birc2-prov protein	Xenopus laevis	AAH77368.1	32
GIL-207.ab1	Atp5a1-prov protein	Xenopus tropicalis	AAH91067.1	80
GIL-208.ab1	mFLJ00070 protein	Mus musculus	BAD21376.1	29
GIL-210.ab1	MGC81140 protein	Xenopus laevis	AAH68707.1	28
GIL-211.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_703995.1	30
GIL-212.ab1			_	0
GIL-213.ab1	unnamed protein product	Spisula solidissima	CAA33513.1	37
GIL-214.ab1	hypothetical protein cihA8B16	Ciona intestinalis	AAP91745.1	28
GIL-215.ab1	hypothetical protein XP_511394	Pan troglodytes	XP_511394.1	54
GIL-217.ab1	hypothetical protein, conserved	Trypanosoma brucei	AAZ12294.1	42
GIL-218.ab1	similar to CG33525-PF, isoform F	Strongylocentrotus purpuratus	XP_780930.1	49
GIL-219.ab1	hypothetical protein XP_780435	Strongylocentrotus purpuratus	XP_785528.1	29
GIL-220.ab1	Conserved hypothetical protein	Streptococcus pneumoniae R6	AAK98929.1	34
GIL-221.ab1	hypothetical protein AN1024.2	Aspergillus nidulans FGSC A4	XP_658628.1	31
GIL-222.ab1	ZK829.7	Caenorhabditis elegans	NP_502269.1	37
GIL-224.ab1	guanine nucleotide-binding protein	Petromyzon marinus	AAM88904.1	82
GIL-225.ab1	hypothetical protein	Guillardia theta	NP_113184.1	34
GIL-226.ab1	Rho1 GTPase	Paracoccidioides brasiliensis	AAQ93069.2	42
GIL-227.ab1	similar to seryl-aminoacyl-tRNA synthetase 2	Strongylocentrotus purpuratus	XP_785096.1	26
GIL-228.ab1	conserved hypothetical protein	Pseudomonas aeruginosa	AAP22559.1	33
GIL-229.ab1	MGC79564 protein	Xenopus tropicalis	AAH79933.1	83
GIL-230.ab1	-		_	0
GIL-231.ab1	hemocyanin type 1	Haliotis tuberculata	CAB76379.1	78
GIL-232.ab1	putative ubiquitin-conjugating enzyme	Homalodisca coagulata	AAT01083.1	91
GIL-233.ab1	Hypothetical protein LOC406376	Danio rerio	AAH65987.1	88
GIL-234.ab1	-		_	0
GIL-235.ab1	ENSANGP0000003537	Anopheles gambiae str. PEST	EAA09204.2	37
GIL-236.ab1	CG10687-PA	Drosophila melanogaster	NP_609948.1	80
GIL-237.ab1	cyclin g-associated kinase, putative	Plasmodium falciparum 3D7	NP_701816.1	50
GIL-238.ab1	hypothetical protein DDB0220669	Dictyostelium discoideum	XP_641585.1	34

Table 3. List of identified ESTs from the gill cDNA library of abalone

Table 3. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
GIL-239.ab1	unnamed protein product	Aspergillus oryzae	BAE64514.1	33
GIL-240.ab1	hypothetical protein	Plasmodium berghei strain ANKA	XP_678539.1	23
GIL-243.ab1	similar to RIKEN cDNA 2810451A06	Strongylocentrotus purpuratus	XP_788624.1	38
GIL-244.ab1	ENSANGP0000027568	Anopheles gambiae str. PEST	EAL41525.1	70
GIL-247.ab1	actin A3	Haliotis iris	AAX19288.1	100
GIL-248.ab1	Hypothetical protein LOC406766	Danio rerio	AAH71537.1	47
GIL-249.ab1	exocyst complex component 7 isoform b	Homo sapiens	NP_056034.2	59
GIL-250.ab1	unnamed protein product	Aspergillus oryzae	BAE63051.1	25
GIL-251.ab1	Ghitm-prov protein	Xenopus laevis	AAH41226.1	67
GIL-252.ab1	similar to Paf1/RNA polymerase II complex component		XP_922595.1	42
GIL-253.ab1	ferritin GF2	Crassostrea gigas	AAP83794.1	81
GIL-253.ab1 GIL-254.ab1	ENSANGP0000020368	Anopheles gambiae str. PEST	EAA08459.1	29
GIL-256.ab1	Zgc:92282	Danio rerio	AAH75983.1	67
GIL-250.ab1 GIL-257.ab1	cathepsin B-like proteinase	Triatoma sordida	AAT48984.1	56
GIL-257.ab1 GIL-258.ab1	hypothetical protein TP02_0615	Theileria parva strain Muguga	XP_765181.1	36
GIL-259.ab1 GIL-259.ab1	Hypothetical protein CBG06905	Caenorhabditis briggsae	CAE62742.1	27
GIL-259.ab1 GIL-260.ab1	similar to ankyrin repeat domain protein 17	00	XP_786997.1	40
~	isoform b, partial			
GIL-261.ab1	Leukocyte cell derived chemotaxin 1	Danio rerio	AAH66426.1	22
GIL-262.ab1	RE01051p	Drosophila melanogaster	AAV36923.1	28
GIL-263.ab1	ENSANGP0000001657	Anopheles gambiae str. PEST	EAA06779.3	25
GIL-264.ab1	CG11387-PA, isoform A	Drosophila melanogaster	NP_524764.1	28
GIL-265.ab1	hypothetical protein	Brassica napus	BAC98910.1	30
GIL-266.ab1	similar to microsomal glutathione S-transferase 3	Strongylocentrotus purpuratus	XP_793267.1	55
GIL-267.ab1	FGF receptor	Halocynthia roretzi	AAG27717.1	29
GIL-268.ab1	Hypothetical protein CBG15123	Caenorhabditis briggsae	CAE69098.1	28
GIL-269.ab1	similar to Cathepsin L precursor (Cysteine proteinase 1)	Strongylocentrotus purpuratus	XP_780580.1	64
GIL-270.ab1	unnamed protein product	Tetraodon nigroviridis	CAF93389.1	45
GIL-270.ab1 GIL-271.ab1	hypothetical protein XP_790877	Strongylocentrotus purpuratus	XP_795970.1	35
GIL-273.ab1	similar to ubiquitin-like 7 (bone marrow	Strongylocentrotus purpuratus	XP_782544.1	34
GIL-274.ab1	stromal cell-derived) hypothetical protein XP_787841	Strongylocentrotus purpuratus	XP_792934.1	51
GIL-277.ab1	similar to Wnt inhibitory factor 1 precursor (WIF-1)	Gallus gallus	XP_422145.1	27
GIL-282.ab1	unnamed protein product	Tetraodon nigroviridis	CAF96443.1	95
GIL-283.ab1	NifU-like protein	Branchiostoma belcheri tsingtaunese	AAQ83894.1	74
GIL-286.ab1	peritrophin 1	Mamestra configurata	AAP33177.1	23
GIL-288.ab1	hypothetical chloroplast RF1	Zygnema circumcarinatum	AAX45877.1	29
GIL1.ab1	hypothetical protein DDB0186385	Dictyostelium discoideum	XP_638358.1	37
GIL10.ab1	acetyl coenzyme A-transferase	Artemia franciscana	AAP68833.1	62
GIL100.ab1	ribosomal protein S2	Chlamys farreri	AAM94271.1	90

Table 3. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
GIL102.ab1	similar to CG17941-PA	Strongylocentrotus purpuratus	XP_785445.1	40
GIL103.ab1	similar to CG4170-PA, isoform A	Apis mellifera	XP_392925.2	30
GIL104.ab1	hexokinase II	Oryza sativa (japonica cultivar-group)	XP_477001.1	43
GIL105.ab1	Zgc:101858	Danio rerio	AAH81417.1	40
GIL106.ab1	malate dehydrogenase precursor	Nucella lapillus	AAF27650.1	74
GIL107.ab1	unnamed protein product	Tetraodon nigroviridis	CAF92618.1	89
GIL108.ab1	-		_	0
GIL109.ab1	hypothetical protein XP_923464	Mus musculus	XP_928557.1	29
GIL110.ab1	HyTSRp1 protein	Hydra vulgaris	CAJ65510.2	44
GIL111.ab1	hypothetical protein ECH_0700	Ehrlichia chaffeensis str. Arkansas	YP_507505.1	30
GIL112.ab1	maltose permease	Pichia angusta	AAX92669.1	41
GIL113.ab1	hypothetical protein LOC320871	Mus musculus	NP_796254.1	36
GIL114.ab1	ribosomal protein L4	Danio rerio	NP_998272.1	82
GIL115.ab1	cytoplasmic intermediate filament protein A	Aplysia californica	CAA42839.1	47
GIL116.ab1	cytochrome b5	Crassostrea gigas	CAD92095.1	62
GIL117.ab1	NADH dehydrogenase subunit 2	Haliotis rubra	YP_026068.1	64
GIL118.ab1	Achalasia, adrenocortical insufficiency, alacrimia (Allgrove, triple-A)	Homo sapiens	AAH00659.1	42
GIL119.ab1	unnamed protein product	Mus musculus	BAC29012.1	77
JIL12.ab1	-			0
		Orgyia pseudotsugata multicapsid	-	÷
GIL120.ab1	inhibitor of apoptosis protein 3	nucleopolyhedrovirus	NP_046191.1	36
GIL122.ab1	hypothetical protein XP_697260	Danio rerio	XP_702352.1	29
GIL122.ab1	Phosphoserine aminotransferase 1	Danio rerio	AAH64289.1	63
GIL123.ab1 GIL124.ab1	MGC52542 protein	Xenopus laevis	AAH41183.1	45
GIL124.ab1 GIL125.ab1	120-kDa protein	Sarcophaga peregrina	BAA92143.1	29
GIL125.ab1 GIL126.ab1		Surcophaga peregrina		0
51120.401		Prochlorococcus marinus subsp.	-	0
GIL127.ab1	Translation initiation factor IF-2		CAE19953.1	29
NH 100 1 1		pastoris str. CCMP1986	A A NIZE 45 4 1	<i>с</i> 4
GIL128.ab1	Na-dependent Cl/HCO3 exchanger	Loligo pealei	AAN75454.1	54
GIL129.ab1	-		-	0
	similar to Multiple EGF-like-domain protein			
GIL13.ab1	5 precursor (Multiple epidermal growth	Bos taurus	XP_613349.2	27
	factor-like domains 9)			
GIL130.ab1	Lysophospholipase, putative	Paramecium tetraurelia	YP_054235.1	23
GIL131.ab1	similar to signal peptide, CUB domain, EGF-like 3	Canis familiaris	XP_538874.2	42
GIL132.ab1	putative chitin synthase	ericoid mycorrhizal fungus PSIV	CAC95227.1	27
GIL133.ab1	hypothetical protein CHGG_08236	Chaetomium globosum CBS 148.51	EAQ86983.1	30
GIL134.ab1	Hypothetical protein CBG06318	Caenorhabditis briggsae	CAE62259.1	32
GIL135.ab1	MGC83180 protein	Xenopus laevis	AAH71044.1	35
GIL137.ab1	-	-		0

Table 3. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
GIL138.ab1	immobilization antigen LA	Tetrahymena thermophila	AAG38116.1	24
GIL139.ab1	similar to CG9285-PA, isoform A, partial	Strongylocentrotus purpuratus	XP_795581.1	62
GIL14.ab1	KARG_NORMA Arginine kinase (AK)		P51544	73
GIL140.ab1	AFR490Cp	Ashbya gossypii ATCC 10895	AAS53861.1	38
GIL141.ab1	similar to WD repeat domain 41	Strongylocentrotus purpuratus	XP_782810.1	46
GIL142.ab1	COG3025	Rubrivivax gelatinosus PM1	ZP_00242551.1	32
GIL143.ab1	heat shock protein gp96	Strongylocentrotus purpuratus	AAO21341.1	72
GIL145.ab1	protein Y94A7B.2 - Caenorhabditis elegans	Caenorhabditis elegans	F89402	37
GIL146.ab1	probable Major facilitator superfamily (MFS) transporter	Psychrobacter arcticus 273-4	AAZ19359.1	38
GIL147.ab1	ribosomal protein P1	Biomphalaria glabrata	AAZ39530.1	56
GIL148.ab1	-		_	0
GIL150.ab1	GA21175-PA	Drosophila pseudoobscura	EAL26100.1	35
GIL152.ab1	similar to tubulin, beta, 2	Strongylocentrotus purpuratus	XP_791790.1	80
GIL154.ab1	, NIUN	A	_	0
GIL155.ab1	protoheme IX farnesyltransferase	Bdellovibrio bacteriovorus	CAE77947.1	33
GIL156.ab1	CHH_CANPG Crustacean hyperglycemic horn	mone (CHH)	8.6P81032	
GIL157.ab1	ribosomal protein L7	Crassostrea gigas	CAD89885.1	77
GIL158.ab1	cytochrome b	Haliotis rubra	YP_026076.1	88
	Oxidoreductase, N-terminal:Oxidoreductase,	Chlorobium phaeobacteroides		
GIL159.ab1	C-terminal	DSM 266	ZP_00529298.1	38
GIL16.ab1	Asparagine synthetase	Danio rerio	AAH67140.1	55
GIL160.ab1	X-prolyl aminopeptidase (aminopeptidase P) 1. soluble	Danio rerio	AAH64889.1	47
GIL162.ab1	hypothetical protein PFL1085w	Plasmodium falciparum 3D7	NP_701579.1	38
GIL165.ab1	heat shock protein 70	Crassostrea virginica	CAB89802.1	52
GIL165.ab1	asparagine synthetase	Gallus gallus	NP_001026148.1	69
GIL169.ab1	acyl-coenzyme A: cholesterol acyltransferase	Homo sapiens	AAC37532.2	52
GIL109.ab1	DNL1_XENLA DNA ligase I (Polydeoxyribonucleotide synthase)	ATP	P51892	52 73
GIL171.ab1	(Torydeoxyrroondeleonde synthase)			0
GIL171.ab1 GIL172.ab1	mu class glutathione S-transferase	Crassostrea gigas	– CAD90167.1	60
GIL172.ab1 GIL173.ab1	LIM protein	Mytilus edulis	ABB73031.1	61
GIL175.ab1 GIL174.ab1	67kD laminin receptor precursor	Xenopus laevis	AAW62261.1	79
GIL174.ab1 GIL175.ab1	similar to tripartite motif-containing 2	Strongylocentrotus purpuratus	XP_780295.1	29
GIL175.ab1 GIL176.ab1	ENSANGP00000014400	Anopheles gambiae str. PEST	EAA14482.2	36
OIL170.a01	similar to Coagulation factor XII precursor	Anophetes gumblae str. 1 ES1	LAA14402.2	50
GIL177.ab1	(Hageman factor) (HAF) isoform 4	Bos taurus	XP_888407.1	42
GIL178.ab1	CG10231-PA	Drosophila melanogaster	NP_609885.1	25
GIL179.ab1	olfactory receptor 152	Mus musculus	NP_666857.1	25
GIL18.ab1	LOC570288 protein	Danio rerio	AAH90688.1	53
GIL180.ab1	maturase	Haworthia attenuata var. britteniana	CAD54547.2	40
GIL181.ab1	alpha-tubulin 1	Branchiostoma floridae	AAM73981.1	98
GIL182.ab1	tryptophan 2,3-dioxygenase	Chlamys farreri	AAY32933.1	46

Table 3. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
GIL183.ab1	-		_	0
GIL184.ab1	conserved hypothetical protein	Rhodoferax ferrireducens DSM 15236	ZP_00693303.1	26
GIL186.ab1	plancitoxin I	Acanthaster planci	BAD13432.1	43
GIL187.ab1	-		_	0
GIL188.ab1	Ctsql2 protein	Rattus norvegicus	AAH97257.1	35
GIL189.ab1	bicaudal D homolog 1 isoform 1	Homo sapiens	NP_001705.2	56
GIL19.ab1	phosphohistidine phosphatase	Mus musculus	NP_083569.1	53
GIL190.ab1	similar to CG12002-PA, isoform A	Danio rerio	XP_698715.1	43
GIL191.ab1	ST1C2_HUMAN Sulfotransferase 1C2 (SULT	1C) (SULT1C#2)	6.00E-30O75897	
GIL192.ab1	Hypothetical protein MGC76172	Xenopus tropicalis	AAH68215.1	43
GIL2.ab1	similar to proteasome subunit beta 7 isoform 1	Danio rerio	XP_682902.1	79
GIL20.ab1	stromal cell derived factor 2-like protein	Branchiostoma belcheri tsingtaunese	AAT34988.1	38
GIL22.ab1	GTPase, IMAP family member 7 similar to Asparaginyl-tRNA synthetase,	Mus musculus	AAH26200.1	24
GIL23.ab1	cytoplasmic (AsparaginetRNA ligase) (AsnRS)	Bos taurus	XP_873087.1	60
GIL24.ab1	COG0596: Predicted hydrolases or acyltransferases (alpha/beta hydrolase superfamily)	Burkholderia pseudomallei S13	ZP_00497519.1	33
GIL25.ab1	similar to Neurogenic locus notch homolog protein 2 precursor	Strongylocentrotus purpuratus	XP_793179.1	33
GIL26.ab1	isochorismate synthase	Bacillus subtilis subsp. subtilis str. 168	CAB15189.1	33
GIL28.ab1	_			0
GIL29.ab1			-	0
	similar to leucine rich repeat containing 49,		-	
GIL3.ab1	partial	Bos taurus	XP_875201.1	39
GIL30.ab1	actin	Haliotis discus hannai	AAQ92368.1	99
GIL32.ab1	Hypothetical protein CBG00049	Caenorhabditis briggsae	CAE57199.1	42
GIL33.ab1	similar to huntingtin-associated protein interacting protein (duo)	Gallus gallus	XP_422102.1	31
GIL36.ab1	calponin homolog	Schistosoma japonicum Trypanosoma cruzi strain CL	AAD11976.1	62
GIL37.ab1	serine/threonine protein phosphatase	Brener	XP_808861.1	38
GIL38.ab1	hypothetical protein FG05827.1	Gibberella zeae PH-1	XP_386003.1	30
GIL39.ab1	unnamed protein product	Mus musculus	BAC41141.1	30
GIL4.ab1	conserved hypothetical protein	Streptococcus pneumoniae	CAI33513.1	27
GIL41.ab1	SJCHGC02792 protein	Schistosoma japonicum	AAW25342.1	73
GIL43.ab1	-		_	0
GIL44.ab1	SLC25A3 protein	Homo sapiens	AAH51367.1	67
GIL46.ab1	unnamed protein product	Tetraodon nigroviridis	CAF91219.1	46

Table 3. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
GIL47.ab1	similar to vomeronasal 1 receptor, E12	Mus musculus	XP_893239.1	42
GIL48.ab1	hypothetical protein	Plasmodium chabaudi chabaudi	XP_743225.1	34
GIL49.ab1	putative carbohydrate kinase	Yersinia pestis biovar Medievalis str. 91001	AAS64055.1	33
GIL5.ab1	TonB dependent, hydroxamate-type ferrisiderophore, outer membrane receptor	Rhodobacter sphaeroides 2.4.1	ABA77581.1	36
GIL50.ab1	-		_	0
GIL51.ab1	similar to Golgi autoantigen, golgin subfamily A member 1 (Golgin-97)	Strongylocentrotus purpuratus	XP_783013.1	44
GIL56.ab1	hypothetical protein	Azoarcus sp. EbN1	CAI10525.1	34
~~ ~	similar to mitochondrial ATP synthase lipid			
GIL57.ab1	binding protein precursor	Apis mellifera	XP_623661.1	40
GIL58.ab1	variable region-containing chitin-binding protein 1	Branchiostoma floridae	AAN62848.1	36
GIL59.ab1	similar to eukaryotic translation initiation factor 5A	Strongylocentrotus purpuratus	XP_785877.1	66
GIL6.ab1	139R protein	Yaba-like disease virus	CAC21377.1	38
GIL60.ab1	repressor	Neurospora crassa	CAA32753.1	31
GIL61.ab1	INVO_PONPY Involucrin		P14708	36
GIL65.ab1	SJCHGC01867 protein	Schistosoma japonicum	AAW25067.1	25
GIL66.ab1	TCB2_CAEBR Transposable element Tcb2 tr		6.00E-14Q04202	
GIL69.ab1	Hypothetical protein CBG21335	Caenorhabditis briggsae	CAE73785.1	38
GIL70.ab1	polyubiquitin	Artemia franciscana	CAA52416.1	93
GIL71.ab1	similar to bcl2-like, partial	Strongylocentrotus purpuratus	XP_787479.1	33
GIL72.ab1	similar to KIAA1958	Danio rerio	XP_698239.1	32
GIL74.ab1	ENSANGP0000003404	Apis mellifera	XP_624359.1	81
GIL75.ab1	unnamed protein product	Tetraodon nigroviridis	CAF92450.1	38
GIL77.ab1	MGC83093 protein	Xenopus laevis	AAH74470.1	50
GIL78.ab1	lipase class 3-like	Oryza sativa (japonica cultivar-group)	XP_465669.1	35
GIL79.ab1	unnamed protein product	Tetraodon nigroviridis	CAG02734.1	79
GIL8.ab1	phosphoribosyl pyrophosphate synthase isozyme 4	Spinacia oleracea	CAB43602.1	47
GIL80.ab1	similar to EQYK340	Gallus gallus	XP_413861.1	25
	similar to Dipeptidyl-peptidase II precursor			
GIL81.ab1	(DPP II) (Dipeptidyl aminopeptidase II) (Quiescent cell proline dipeptidase)	Strongylocentrotus purpuratus	XP_797434.1	54
	(Dipeptidyl peptidase 7)			
GIL82.ab1	-		_	0
GIL83.ab1	cingulin	Xenopus laevis	AAF20208.1	32
GIL84.ab1	spermatogenesis associated 4	Ciona intestinalis	NP_001029005.1	62
GIL87.ab1	unnamed protein product	Aspergillus oryzae	BAE63146.1	36
GIL89.ab1	NADH dehydrogenase subunit 2	Lagonosticta virata	AAQ97038.1	25

Table 3. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
GIL92.ab1	type II protein geranylgeranyltransferase	Plasmodium yoelii yoelii str.	XP 729872.1	20
GIL92.ab1	subunit beta	17XNL	AP_/298/2.1	29
GIL93.ab1	tonoplast intrinsic protein		AAB17284.1	50
GIL95.ab1	Signal sequence receptor, alpha	Rattus norvegicus	AAH98008.1	46
GIL96.ab1	-		_	0
GIL97.ab1	chitin synthase	Atrina rigida	AAY86556.1	28
GIL99.ab1	ENSANGP00000010305	Anopheles gambiae str. PEST	EAA12308.2	37
GIL-278.ab1	Hypothetical protein LOC606663	Danio rerio	AAI00057.1	56
GIL-279.ab1	similar to jumonji domain containing 1B	Apis mellifera	XP_392473.2	77
GIL-281.ab1	TPA: TPA_exp: HDC17201	Drosophila melanogaster	DAA03187.1	32

^a Identity(%)

Clone no.	Putative identification	Closest species	Accession no.	I ^a
DGT-195.ab1	SJCHGC04784 protein	Schistosoma japonicum	AAW26731.1	42
DGT-196.ab1	cytochrome c oxidase subunit III	Haliotis rubra	YP_026066.1	76
DGT-198.ab1	-		_	0
DGT-199.ab1	similar to ribosomal protein L11	Apis mellifera	XP_393094.2	94
DGT-200.ab1	hypothetical protein 44.t00024	Entamoeba histolytica HM-1:IMSS	XP_654768.1	35
DGT-201.ab1	Na(+)-translocating NADH-quinone reductase subunit B	Alteromonas macleodii 'Deep ecotype'	ZP_01111024.1	33
DGT-202.ab1	unnamed protein product	Tetraodon nigroviridis	CAG01328.1	50
DGT-203.ab1	putative envelope protein	Enterobacteria phage lambda	NP_597781.1	100
DGT-204.ab1	hypothetical protein jk0583	Corynebacterium jeikeium K411	YP_250360.1	36
DGT-205.ab1	ferritin-like protein	Pinctada fucata	AAQ12076.1	83
		Danio rerio	AAM63548.1	79
DGT-206.ab1	Arp3	Branchiostoma belcheri	771000040.1	19
DGT-207.ab1	macrophage migration inhibitory factor II	tsingtaunese	AAT77698.1	52
DGT-208.ab1	unnamed protein product	Haliotis rufescens	CAA50572.1	77
DGT-209.ab1	hypothetical protein	Trypanosoma cruzi strain CL Brener	XP_812821.1	37
DGT-210.ab1	hypothetical protein UM03624.1	Ustilago maydis 521	XP_759771.1	22
OGT-211.ab1	putative zinc-binding protein	Oryza sativa (japonica cultivar-group)	XP_464434.1	42
DGT-212.ab1	ribosomal protein L4 variant	Homo sapiens	BAD92214.1	79
	neosonia protein 21 valant	Branchiostoma belcheri	5115/221 111	.,
OGT-213.ab1	ependymin-related protein	tsingtaunese	AAQ19608.1	30
DGT-214.ab1	hypothetical protein	Strongylocentrotus purpuratus	XP_795237.1	28
OGT-215.ab1	similar to notch homolog 5, partial	Strongylocentrotus purpuratus	XP_798650.1	32
OGT-216.ab1	Elongator protein 3/MiaB/NifB	Clostridium beijerincki NCIMB 8052	ZP_00909118.1	33
DGT-217.ab1	similar to Carboxypeptidase A1 precursor isoform 1	Canis familiaris	XP_532424.2	26
DGT-218.ab1	multidrug translocase MdfA, chloramphenicol resistance pump Cmr	Legionella pneumophila subsp. pneumophila str. Philadelphia 1	AAU27487.1	33
DGT-219.ab1	hypothetical protein MGG_ch7g450	Magnaporthe grisea 70-15	EAQ71043.1	30
DGT-219.ab1 DGT-220.ab1	cysteine peptidase 2 cathepsin-B-like	Lonomia obliqua	AAV91452.1	50 64
		Rhampholeon kerstenii		32
DGT-222.ab1	recombination activating protein 1	*	AAT36607.1	
DGT-223.ab1	unnamed protein product	Mus musculus	BAB27678.2	72
OGT-224.ab1	similar to leukotriene B4 12-hydroxydehydrogenase	Strongylocentrotus purpuratus	XP_781982.1	46
OGT-225.ab1	unnamed protein product	Tetraodon nigroviridis	CAG09510.1	23
DGT-226.ab1	cytochrome c oxidase subunit I	Haliotis rubra	YP_026069.1	84
OGT-229.ab1	conserved hypothetical protein	Anabaena variabilis ATCC 29413		28
OGT-230.ab1	similar to agrin isoform 1	Canis familiaris	XP_536713.2	37
DGT-231.ab1	-			0
	similar to COMM domain containing 2	Strongylocentrotus purpuratus	-	~

Table 4. List of identified ESTs from the gut cDNA library of abalone

Table 4. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
OGT-233.ab1	actin	Haliotis discus hannai	AAQ92368.1	91
OGT-234.ab1	similar to Butyrate response factor 1 (TIS11H protein)	³ Strongylocentrotus purpuratus	XP_782811.1	48
OGT-235.ab1	ENSANGP00000022619	Anopheles gambiae str. PEST	EAA43623.1	64
OGT-236.ab1	Heat shock protein htpG	Fusobacterium nucleatum subsp. nucleatum ATCC 25586	AAL94527.1	32
OGT-237.ab1	translation elongation factor 1-alpha	Ancylostoma ceylanicum	ABB53348.1	96
OGT-238.ab1	ENSANGP0000021821	Anopheles gambiae str. PEST	EAA03959.3	74
GT-239.ab1	Tubulin, alpha 1	Mus musculus	AAH83344.1	100
GT-241.ab1	novel hemicentin protein	Danio rerio	CAI11663.1	48
GT-242.ab1	MGC81227 protein	Xenopus laevis	AAH68740.1	69
GT-243.ab1	Hypothetical protein LOC553722	Danio rerio	AAH95794.1	46
GT-245.ab1	LP10960p	Drosophila melanogaster	AAM49985.1	27
GT-247.ab1	similar to Sorbitol dehydrogenase (L-iditol 2-dehydrogenase)	Gallus gallus	XP_413719.1	53
OGT-248.ab1	similar to CG15544-PA	Apis mellifera	XP_623992.1	28
GT-248.ab1 GT-250.ab1	sinnar to CO15544-FA	Apis metujeru	AF_023992.1	20
01-250.a01	-		-	0
GT-251.ab1	similar to Angiotensin-converting enzyme, testis-specific isoform precursor (ACE-T)	Strongylocentrotus purpuratus	XP_798005.1	56
GT-252.ab1	putative peroxidase	Oryza sativa (japonica cultivar-group)	XP_467718.1	31
GT-253.ab1	heat shock 90 kDa protein	Priapulus caudatus	ABB29634.1	70
01 200.001	PREDICTED: similar to COP9 signalosome	Trapanas canadras	1002000111	70
GT-254.ab1	subunit 6, partial	Strongylocentrotus purpuratus	XP_790338.1	72
GT-255.ab1	similar to cubilin isoform 4	Mus musculus	XP_914901.1	21
GT-256.ab1	unknown protein; 28005-31097	Arabidopsis thaliana		43
GT-258.ab1	pyridoxine biosynthesis protein	Dehalococcoides ethenogenes 195	AAW40334.1	76
GT-259.ab1	CD98hc amino acid transporter protein	Aedes aegypti	AAP76306.1	41
GT-260.ab1	hypothetical protein PFF0340c	Plasmodium falciparum 3D7	XP_966059.1	32
GT-261.ab1	axonemal dynein light chain p33	Strongylocentrotus purpuratus	NP_999680.1	83
GT-262.ab1	hemocyanin type 1	Haliotis tuberculata	CAB76379.1	84
GT-263.ab1	hypothetical protein PB2503_03532	Parvularcula bermudensis HTCC2503	ZP_01016573.1	31
OGT-264.ab1	R04B5.5	Caenorhabditis elegans	NP_505591.1	55
GT-265.ab1	SPCC18B5.08c	Schizosaccharomyces pombe	CAB52155.1	37
GT-265.ab1	SJCHGC02321 protein	Schistosoma japonicum	AAX25813.2	38
GT-267.ab1	unnamed protein product	Tetraodon nigroviridis	CAF98179.1	42
GT-267.ab1 GT-268.ab1	centrin-related-protein,putative	°	CAF98179.1 CAI38942.1	
GT-268.ab1 GT-269.ab1	hypothetical protein DDB0219680	Paramecium tetraurelia Dictvostelium discoideum		36 44
		Dictyostelium discoideum Equus caballus	XP_635304.1 BAA82274.1	
GT-270.ab1	dopamine beta-hydroxylase	Equus caballus		28
GT-271.ab1	similar to methyltransferase Cyt19	Gallus gallus Mutilus adulis	XP_421735.1	37
GT-273.ab1	60S ribosomal protein L13A	Mytilus edulis	ABA46793.1	80
OGT-275.ab1	unnamed protein product	Homo sapiens Branchiostoma belcheri	BAD18552.1	25
GT-276.ab1	peroxiredoxin V protein	tsingtaunese	AAM18076.1	58

Table 4. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
DGT-277.ab1	similar to 5 nucleotidase, partial undecaprenyl-PP-N-acetylmuramic	Strongylocentrotus purpuratus	XP_797421.1	48
DGT-278.ab1	acid-pentapeptide N-acetylglucosamine transferase	Enterococcus faecalis	AAC45636.1	48
DGT-279.ab1	BAG-family molecular chaperone regulator-3; BAG-3	Homo sapiens	AAD16122.2	41
DGT-281.ab1	Zgc:56585 protein	Danio rerio	AAH66622.1	49
DGT-282.ab1	similar to regucalcin	Canis familiaris	XP_538011.2	63
DGT-283.ab1	-		_	0
DGT-285.ab1	-		_	0
DGT-286.ab1	actin	Haliotis discus hannai	AAQ92368.1	100
DGT-287.ab1	-		_	0
DGT-288.ab1	acrosin	Rattus norvegicus	NP_036622.1	58
DGT1.ab1	actin A3	Haliotis iris	AAX19288.1	100
DGT10.ab1	hypothetical protein XP_511394	Pan troglodytes	XP_511394.1	54
DGT100.ab1	Hypothetical protein LOC406376	Danio rerio	AAH65987.1	86
DGT101.ab1	- /.0/		_	0
DGT103.ab1	HesB-like domain protein similar to transposable element tcb1	Plasmodium falciparum 3D7	NP_473335.1	27
DGT104.ab1	transposase (2C227)	Strongylocentrotus purpuratus	XP_788852.1	30
DGT106.ab1	QM protein	Pinctada fucata	AAN85578.1	85
DGT107.ab1	unknown protein	Oryza sativa (japonica cultivar-group)	AAV44016.1	40
DGT108.ab1	hypothetical protein	Plasmodium falciparum 3D7	AAN36826.1	23
DGT109.ab1	similar to CG4785-PA	Strongylocentrotus purpuratus	XP_795990.1	54
DGT110.ab1	similar to solute carrier family 2 (facilitated glucose transporter), member 13	Danio rerio	_ XP_687870.1	37
DGT112.ab1	unnamed protein product	Aspergillus oryzae	BAE56181.1	30
DGT112.ab1	LOC447981 protein	Xenopus tropicalis	AAH76693.1	77
DGT115.ab1 DGT114.ab1	Rpsa protein	Mus musculus	AAH92041.1	68
DGT116.ab1	RE46519p	Drosophila melanogaster	AAR30186.1	34
DGT110.ab1 DGT117.ab1	-	Drosophila metanogasier	///////////////////////////////////////	0
DGT118.ab1	Rab7	Aiptasia pulchella	– AAQ23388.1	92
DGT119.ab1	S-adenosylhomocysteine hydrolase	Aurelia aurita	AAX09927.1	72
DGT12.ab1	KARG_NORMA Arginine kinase (AK)		P51544	76
DGT120.ab1	-		101011	0
DGT120.ab1 DGT121.ab1	similar to ENSANGP0000020783	Apis mellifera	- XP_395511.2	27
DGT121.ab1 DGT122.ab1	chitobiase	Arthrobacter sp.	CAB72127.1	32
DGT122.ab1 DGT123.ab1	hypothetical protein XP_785342	Strongylocentrotus purpuratus	XP_790435.1	35
DGT125.ab1 DGT124.ab1	unnamed protein product	Tetraodon nigroviridis	CAG04980.1	29
DGT125.ab1	SPAC3A11.11c	Schizosaccharomyces pombe	CAB16386.1	45
DGT126.ab1	hypothetical protein PB000759.00.0	• •	XP_670334.1	28
DGT120.ab1 DGT127.ab1	thioester-containing protein	Euphaedusa tau	BAE44110.1	57
DGT129.ab1	CG32685-PC	Drosophila melanogaster	NP_727393.1	36

Table 4. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
DGT130.ab1	triple gene block	grapevine Rupestris stem pitting	AAC62911.1	50
D01150.001	ulple gene block	associated virus	11100291111	50
DGT132.ab1	cytochrome c oxidase subunit II	Haliotis rubra	YP_026070.1	76
DGT133.ab1	similar to gamma-glutamyltranspeptidase	Staphylococcus aureus subsp.	BAB56371.1	29
	precursor	aureus Mu50		
DGT134.ab1	cytosolic malate dehydrogenase	Homo sapiens	NP_005908.1	71
DGT135.ab1	C38C10.2	Caenorhabditis elegans	NP_499065.1	48
DGT136.ab1	unnamed protein product	Mus musculus	BAE27593.1	39
DGT137.ab1	tektin 3	Xenopus tropicalis	NP_001016475. 1	55
DGT138.ab1	similar to CG7466-PA, partial	Apis mellifera	XP_625133.1	55
DGT139.ab1	ethylene-responsive protein, putative	Arabidopsis thaliana	AAM66054.1	38
DGT14.ab1	glutathione S-transferase sigma	Bombyx mori	BAD91107.1	43
DGT141.ab1	hemocyanin type 1	Haliotis tuberculata	CAB76379.1	79
DGT142.ab1	similar to reduced expression 2 isoform 9	Mus musculus	XP_905490.1	33
DGT143.ab1			_	0
DGT144.ab1	NEQ325	Nanoarchaeum equitans Kin4-M	AAR39173.1	38
DGT149.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_702713.1	28
OGT15.ab1			-	0
OGT151.ab1	lipopolysaccharide- and beta-1,3-glucan-binding protein	Chlamys farreri	AAP82240.1	63
DGT152.ab1	heat shock protein 90	Chlamys farreri	AAR11781.1	88
OGT154.ab1	hypothetical protein	Nocardia farcinica IFM 10152	BAD60035.1	28
OGT155.ab1	hypothetical protein D1044.3 - Caenorhabditis elegans	Caenorhabditis elegans	T15881	31
DGT156.ab1	LOC495363 protein	Xenopus laevis	AAH84827.1	42
DGT157.ab1	similar to regucalcin, partial	Strongylocentrotus purpuratus	XP_780550.1	51
DGT158.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_704759.1	45
DGT159.ab1	mFLJ00114 protein	Mus musculus	BAD21383.1	54
	similar to 3-hydroxyacyl-CoA dehydrogenase	0		
OGT16.ab1	type II (Type II HADH) (Scully protein)	Strongylocentrotus purpuratus	XP_780014.1	71
	isoform 1			
OGT160.ab1	GRAAL protein	Drosophila melanogaster	CAB64653.1	30
OGT161.ab1	Na-dependent Cl/HCO3 exchanger	Loligo pealei	AAN75454.1	67
OGT162.ab1	similar to CG9291-PB, isoform B	Strongylocentrotus purpuratus	XP_788561.1	88
DGT163.ab1	similar to Betainehomocysteine S-methyltransferase	Strongylocentrotus purpuratus	XP_785340.1	38
DGT164.ab1	cobalamin-5-phosphate synthase CobS	Thiobacillus denitrificans ATCC 25259	YP_316468.1	37
OGT165.ab1	-	/	_	0
OGT166.ab1	-		_	0
OGT168.ab1	selenoprotein W1	Danio rerio	_ AAO86696.1	62
DGT169.ab1	similar to notch homolog 5	Canis familiaris	XP_539440.2	26
DGT17.ab1	MGC80936 protein	Xenopus laevis		75

Table 4. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
	similar to Guanine nucleotide-binding protein			
OGT167.ab1	G(olf), alpha subunit (Adenylate	Pan troglodytes	XP_512019.1	31
01107.001	cyclase-stimulating G alpha protein, olfactory	T un noglouyles	/m_512019.1	51
OGT171.ab1	type) ENSANGP00000020389	Anopheles gambiae str. PEST	EAA01312.2	55
OGT171.ab1 OGT172.ab1	-	Anophetes gambiae sir. FEST	EAA01512.2	0
		Rhodopseudomonas palustris		
OGT173.ab1	putative long-chain fatty acidCoA ligase	CGA009	CAE26892.1	33
GT174.ab1	Aldh1-A protein	Xenopus laevis	AAH77256.1	73
GT175.ab1	similar to olfactory receptor, family 8,	Bos taurus	XP_870538.1	32
	subfamily S, member 1			
GT177.ab1	unnamed protein product	Tetraodon nigroviridis	CAF98538.1	52
GT178.ab1	moj29	Drosophila arizonae	AAZ42765.1	75
GT179.ab1	GH01128p	Drosophila melanogaster	AAM12266.1	30
GT18.ab1	cellulase EGX	Ampullaria crossean	AAP31839.1	44
GT180.ab1	similar to likely ortholog of mouse klotho	Canis familiaris	XP_544736.2	44
	lactase-phlorizin hydrolase related protein			
GT181.ab1	similar to Deoxycytidylate deaminase (dCMP	Canis familiaris	XP_849027.1	59
CTT102 11	deaminase) isoform 1			20
GT182.ab1 GT183.ab1	LOC443666 protein GA17076-PA	Xenopus laevis	AAH73564.1	30 82
01165.a01	similar to Zinc finger protein 93 (Zinc finger	Drosophila pseudoobscura	EAL24720.1	62
GT184.ab1	protein HTF34)	Strongylocentrotus purpuratus	XP_797334.1	39
GT186.ab1	hypothetical protein AN9416.2	Aspergillus nidulans FGSC A4	XP_868798.1	48
GT187.ab1	PCK2 protein	Xenopus laevis	AAH44042.1	78
GT188.ab1	aquaporin	Pyrocoelia rufa	AAL09065.1	41
GT189.ab1	phospholipid-transporting P-type ATPase	Entamoeba histolytica	XP_649745.1	24
01109.001	phospholipid dullsporting 1 type 1111 use	HM-1:IMSS	<u></u>	21
GT190.ab1	methionine adenosyltransferase	Haliotis rufenscens	AAZ30689.1	92
GT192.ab1	ENSANGP0000013237	Anopheles gambiae str. PEST	EAA04177.2	30
GT20.ab1	similar to Rho-related BTB domain-containing protein 1 isoform 4	Bos taurus	XP_886685.1	24
GT22.ab1	elongation factor 1 alpha	Haliotis rufenscens	AAZ30688.1	93
GT23.ab1				0
GT24.ab1	hypothetical protein, conserved	Theileria annulata	– CAI75758.1	28
GT25.ab1	ZK829.7	Caenorhabditis elegans	NP_502269.1	38
GT26.ab1	ribosomal protein S5	Crassostrea gigas	CAD91445.1	90
GT27.ab1	-	~ ~	_	0
CT20 -1-1	similar to transposable element tcb1	Ctuon out of a management of		14
GT28.ab1	transposase (2C227)	Strongylocentrotus purpuratus	XP_788852.1	44
OT20 11	ATPase, H+ transporting, lysosomal accessory		A A TIOSS 41 1	47
GT29.ab1	protein 1	Danio rerio	AAH85541.1	47
ост2 ₋ 1 1	-	Bacillus thuringiensis serovar	A ATTEO 452 1	20
OGT3.ab1	phosphoesterase	konkukian str. 97-27	AAT59453.1	38

Table 4. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
DGT30.ab1	tropomyosin 2	Haliotis asinina	AAP85232.1	80
DGT33.ab1	Hypothetical LOC304860	Rattus norvegicus	AAH82004.1	36
DGT34.ab1	alpha-tubulin 1	Myxine glutinosa	AAM73997.1	99
DGT37.ab1	-	· -	_	0
DGT38.ab1	MGC80281 protein	Xenopus laevis	AAH72175.1	41
DGT4.ab1	plancitoxin I	Acanthaster planci	BAD13432.1	40
DGT40.ab1	hypothetical protein UM06345.1	Ustilago maydis 521	XP_762492.1	71
DGT41.ab1	similar to protein tyrosine phosphatase,	Danio rerio	XP_683017.1	37
DGT42.ab1	receptor type, Q isoform 1 precursor			0
DGT42.ab1 DGT43.ab1	- hemocyanin	Haliotis tuberculata	- CAC20588.1	89
	•			
DGT44.ab1	ENSANGP00000015804	Anopheles gambiae str. PEST	EAA01581.2	47
DGT45.ab1	similar to CG12132-PA	Mus musculus	XP_911461.1	25
DGT46.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_703995.1	30
DGT47.ab1	hypothetical protein CHGG_04568	Chaetomium globosum CBS 148.51	EAQ87949.1	21
DGT48.ab1	unnamed protein product	Tetraodon nigroviridis	CAG10060.1	35
DGT49.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_473201.1	44
DGT5.ab1	MGC107844 protein	Xenopus tropicalis	NP_001015715. 1	29
DGT50.ab1	hypothetical protein TP03_0696	Theileria parva strain Muguga	XP_762820.1	34
DGT51.ab1	keratin associated protein 5-2	Homo sapiens	NP_001004325.	52
DGT52.ab1	unnamed protein product	Tetraodon nigroviridis	CAF92929.1	41
DGT53.ab1	ENSANGP00000012047	Anopheles gambiae str. PEST	EAA00609.3	31
DGT54.ab1	cytochrome c oxidase subunit I	Haliotis rubra	YP_026069.1	84
DGT55.ab1	ATP synthase F0 subunit 6	Haliotis rubra	YP_026072.1	84
DGT56.ab1	similar to WD repeat domain 34	Strongylocentrotus purpuratus	XP_788363.1	48
DGT58.ab1	galaxin	Galaxea fascicularis	BAC41519.1	37
DGT59.ab1	SJCHGC04882 protein	Schistosoma japonicum	AAW25230.1	44
DGT60.ab1	ENSANGP00000010271	Anopheles gambiae str. PEST	EAA08121.2	43
DGT61.ab1	Plasmodium chabaudi chabaudi elongation factor G	Plasmodium chabaudi chabaudi	XP_746107.1	27
DGT62.ab1	guanine nucleotide-binding protein	Petromyzon marinus	AAM88904.1	83
DGT63.ab1	chloride intracellular channel protein	Bombyx mori	AAS91556.1	34
DGT64.ab1	asparaginyl-tRNA synthetase	Pan troglodytes	XP_512149.1	74
		Oryza sativa (japonica		, ,
DGT65.ab1	putative serine/threonine kinase	cultivar-group)	XP_479261.1	32
DGT66.ab1	putative ATP-dependent dsDNA exonuclease	Yersinia pseudotuberculosis IP 32953	CAH20155.1	41
DGT67.ab1	glr3907	Gloeobacter violaceus PCC 7421	BAC91848.1	38
DGT68.ab1	similar to Agmatinase, mitochondrial	Strongylocentrotus purpuratus	XP_795606.1	64
DCT40 -1-1	precursor	Stuar and a surface of the second	VD 702010 1	27
DGT69.ab1	similar to WD repeat domain 41	Strongylocentrotus purpuratus	XP_782810.1	37

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
DGT7.ab1	similar to transposable element tcb1 transposase (2C227)	Strongylocentrotus purpuratus	XP_788852.1	43
DGT70.ab1	RH01388p	Drosophila melanogaster	AAO39468.1	30
DGT71.ab1	similar to membrane frizzled-related protein	Strongylocentrotus purpuratus	XP_795691.1	47
DGT72.ab1	unnamed protein product	Kluyveromyces lactis	XP_453121.1	27
DGT73.ab1	var1 ribosomal protein	Saccharomyces servazzii	CAD23422.1	26
DGT74.ab1	ribosomal protein L	Argopecten irradians	AAN05596.1	85
DGT75.ab1	-		_	0
DGT76.ab1	H3 histone, family 3A	Mus musculus	AAH88835.1	100
DGT77.ab1	cytosol non-specific dipeptidase	Lactobacillus acidophilus NCFM	AAV41940.1	41
DGT78.ab1	-		_	0
DGT79.ab1	hypothetical protein SERP1032	Staphylococcus epidermidis RP62A	YP_188609.1	28
DGT8.ab1	similar to Wnt inhibitory factor 1 precursor (WIF-1)	Gallus gallus	XP_418688.1	28
DGT80.ab1	similar to heme binding protein 2	Strongylocentrotus purpuratus	XP_797226.1	53
DGT81.ab1	GA22070-PA	Drosophila pseudoobscura	EAL26285.1	56
DGT82.ab1	hypothetical protein CaO19_10195	Candida albicans SC5314	XP_720203.1	33
DGT84.ab1	sigma-54 dependent transcriptional regulator	Vibrio sp. MED222	ZP_01063316.1	24
DGT85.ab1	similar to sperm associated antigen 8 isoform 2	Strongylocentrotus purpuratus	XP_781437.1	44
DGT87.ab1	Pole2 protein	Danio rerio	AAH76287.1	33
DGT90.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_704222.1	43
DGT91.ab1	similar to CG6383-PA	Strongylocentrotus purpuratus	XP_786539.1	37
DGT93.ab1	pannexin 5	Aplysia californica	AAX24144.1	30
DGT94.ab1	Splicing factor, arginine/serine-rich 2 (SC-35)		AAH64167.1	80
DGT95.ab1			_	0
DGT96.ab1	AT22870p	Drosophila melanogaster		51
DGT97.ab1	60S acidic ribosomal protein P0	Ixodes scapularis	AAY66850.1	75
DGT98.ab1	cytochrome b	Haliotis rubra	YP_026076.1	87
DGT99.ab1	hypothetical protein Tb11.02.4690	Trypanosoma brucei TREU927	XP_828759.1	34

^a Identity(%)

Table 5. List of identified ESTs from the hepatopancreas cDNA library of abalone

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
VHP-193.ab1	DNA-binding response regulator, putative	Campylobacter jejuni RM1221	AAW36204.1	31
VHP-194.ab1	GH28017p	Drosophila melanogaster	AAL39380.1	25
VHP-195.ab1	hypothetical protein	Pongo pygmaeus	CAH91930.1	65
VHP-196.ab1	LOC447981 protein	Xenopus tropicalis	AAH76693.1	81
VHP-197.ab1	selenium dependent salivary glutathione peroxidase	Ixodes scapularis	AAY66814.1	47
VHP-198.ab1	glr4144	Gloeobacter violaceus PCC 7421	BAC92085.1	35
VHP-199.ab1	60S acidic ribosomal protein P0	Ixodes scapularis	AAY66850.1	76
VHP-200.ab1	actin A1	Haliotis iris	AAX19286.1	98
VHP-201.ab1	hypothetical protein FG10911.1	Gibberella zeae PH-1	XP_391087.1	26
VHP-202.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_703995.1	30
VHP-203.ab1			—	0
VHP-204.ab1	ribosomal protein S3a	Crassostrea gigas	– CAD91420.1	83
VHP-205.ab1	similar to transposable element tcb1 transposase (2C227)	Strongylocentrotus purpuratus	XP_788852.1	34
VHP-206.ab1	similar to NOD3 protein	Danio rerio	XP_693781.1	34
VHP-207.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_705104.1	36
	CPK27; ATP binding / calcium ion binding /	· · · · · · · · · · · · · · · · · · ·		
VHP-208.ab1	kinase/ protein kinase/ protein serine/threonine	Arabidopsis thaliana	NP_192379.2	31
v111 -200.a01	kinase/ protein-tyrosine kinase		111_192379.2	51
VHP-209.ab1	hypothetical protein Tc00.1047053507395.40	Trypanosoma cruzi strain CL Brener	XP_805930.1	31
VHP-210.ab1	Myc homolog	Crassostrea virginica	AAB34577.1	32
VIII 210.001	similar to Keratin, type II cytoskeletal 8	Crussosirea virginea	10054577.1	52
VHP-211.ab1		Canis familiaris	XP_852709.1	24
	(Cytokeratin 8) (Cytokeratin endo A)			
VHP-212.ab1	similar to deleted in malignant brain tumors	Strongylocentrotus purpuratus	XP_784537.1	26
			_	
VHP-213.ab1	endo-1,3-beta-D-glucanase	Mizuhopecten yessoensis	AAW34372.1	50
VHP-214.ab1	hypothetical protein LOC393259	Danio rerio	NP_956583.1	50
VHP-215.ab1	similar to Cathepsin L precursor (Cysteine proteinase 1)	Strongylocentrotus purpuratus	XP_780580.1	60
VHP-216.ab1	-		_	0
VHP-217.ab1	unnamed protein product	Tetraodon nigroviridis	CAF96443.1	90
VHP-218.ab1	LOC446918 protein	Xenopus laevis	AAI06213.1	41
VHP-219.ab1	Myc homolog	Crassostrea virginica	AAB34577.1	40
VHP-220.ab1	alginate lyase	Haliotis discus hannai	BAC87758.1	79
VHP-221.ab1	hypothetical protein MGG_ch7g1038	Magnaporthe grisea 70-15	EAQ71631.1	24
VHP-224.ab1	hypothetical protein	Phthorimaea operculella granulovirus	NP_663208.1	39
VHP-225.ab1	alkaline phosphatase	-	AAA27331.1	30
VHP-226.ab1	P-553	Borrelia hermsii	AAX19498.1	24
VHP-227.ab1	ferritin-like protein	Pinctada fucata	AAQ12076.1	70

Table 5. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
VHP-228.ab1	YadA-like, C-terminal:Haemagluttinin motif:Hep_Hag	Burkholderia vietnamiensis G4	ZP_00423121.	23
VHP-229.ab1	NADH dehydrogenase subunit 2	Haliotis rubra	YP_026068.1	66
/HP-230.ab1	hypothetical protein	Plasmodium berghei strain ANKA	XP_676960.1	31
/HP-231.ab1	hypothetical protein XP_525377	Pan troglodytes	XP_525377.1	33
VHP-232.ab1	unnamed protein product	Aspergillus oryzae	BAE61882.1	46
VHP-233.ab1	C-type LECtin family member (clec-49)	Caenorhabditis elegans	NP_507829.1	44
VHP-234.ab1	hypothetical protein DDB0205241	Dictyostelium discoideum	XP_641211.1	40
VHP-236.ab1	Y-box factor-like protein	Lymnaea stagnalis	AAT97092.1	81
VHP-237.ab1	collagen pro alpha-chain	Haliotis discus	BAA75669.1	87
/HP-239.ab1	similar to hydrolase (3B446)	Strongylocentrotus purpuratus	XP_796058.1	41
/HP-240.ab1	GA14168-PA	Drosophila pseudoobscura	EAL32817.1	25
/HP-242.ab1	multicystatin	Vigna unguiculata	AAQ62561.1	33
/HP-243.ab1	V (tail component;256)	bacteriophage lambda	AAA96545.1	93
VHP-246.ab1	Staphylococcal nuclease domain containing 1	Xenopus tropicalis	AAH63211.1	62
VHP-247.ab1	hypothetical protein PTD2_08194	Pseudoalteromonas tunicata D2	ZP_01133610. 1	30
VHP-248.ab1	Rab7	Aiptasia pulchella	AAQ23388.1	89
VHP-249.ab1	hypothetical protein	Plasmodium berghei strain ANKA	XP_675556.1	33
/HP-250.ab1	GA11607-PA	Drosophila pseudoobscura	EAL32579.1	56
VHP-251.ab1	hypothetical protein XP_794737	Strongylocentrotus purpuratus	XP_799830.1	38
VHP-252.ab1	defender against apopototic cell death 1	Argopecten irradians		81
VHP-254.ab1	TPA: TPA_exp: spermidine/spermine N-1 acetyltransferase 2	Sus scrofa	DAA01468.1	47
/HP-255.ab1	ribosomal 5S rRNA E-loop binding protein Ctc/L25/TL5	Acidiphilium cryptum JF-5	ZP_01145877. 1	36
/HP-256.ab1	COG0841: Cation/multidrug efflux pump	Yersinia mollaretii ATCC 43969	ZP_00826169. 1	30
HID 057 11	D-xylulose 5-phosphate/D-fructose 6-phosphate	e Cyanobacteria bacterium	ND 475200 1	- 11
VHP-257.ab1	phosphoketolase family protein	Yellowstone A-Prime	YP_475388.1	31
VHP-258.ab1	Myc homolog	Crassostrea virginica	AAB34577.1	68
VHP-259.ab1	cytochrome c oxidase subunit I	Haliotis diversicolor supertexta	AAQ84296.1	83
VHP-261.ab1	-	*	_	0
	novel protein similar to vertebrate eukaryotic			
VHP-262.ab1	translation elongation factor 1 delta (guanine	Danio rerio	CAI21007.1	31
/HP-263.ab1	nucleotide exchange protein) (EEF1D) mature-parasite-infected erythrocyte surface an	tigen	4.00E-08AAA2	
			9651.1	
VHP-264.ab1	eukaryotic translation initiation factor 3, subunit 6 interacting protein	Gallus gallus	NP_001012553 .1	67
/HP-265.ab1	-		_	0
VHP-266.ab1	ENSANGP00000019033	Anopheles gambiae str. PEST Trypanosoma cruzi strain CL	 EAA06842.2	29
/HP-268.ab1	phosphoribosylpyrophosphate synthetase	Brener	XP_807546.1	27

Table 5. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
VHP-270.ab1	hypothetical protein AcidDRAFT_3587	Solibacter usitatus Ellin6076	ZP_00523593	29
VHP-271.ab1	-		_	0
VHP-272.ab1	IMP dehydrogenase/GMP	Desulfuromonas acetoxidans DSM	ZP_00551385.	29
v пР-2/2.a01	reductase: Thrombospondin type 3 repeat	684	1	29
VHP-274.ab1	similar to ENSANGP0000026584	Apis mellifera	XP_623167.1	58
VHP-275.ab1	COG5295: Autotransporter adhesin	Cytophaga hutchinsonii	ZP_00310324. 1	31
VHP-277.ab1	putative sphingosine-1-phosphate lyase	Symbiobacterium thermophilum IAM 14863	BAD40259.1	51
VHP-278.ab1	Myc homolog	Crassostrea virginica	AAB34577.1	38
VHP-279.ab1	Phosphoserine aminotransferase 1	Danio rerio	AAH64289.1	65
VHP-280.ab1	-		_	0
VHP-281.ab1	similar to alcohol dehydrogenase 5	Strongylocentrotus purpuratus	XP_784441.1	73
VHP-282.ab1	nitrate reductase 1 alpha subunit	Shigella flexneri 2a str.	AAP16726.1	100
VHP-283.ab1	putative sphingosine-1-phosphate lyase	Symbiobacterium thermophilum IAM 14863	BAD40259.1	55
VHP-284.ab1			_	0
VHP-286.ab1	putative transposase b homolog	Pyrococcus furiosus DSM 3638	AAL81139.1	33
VHP-287.ab1	elongation factor 1 alpha	Haliotis rufenscens	AAZ30688.1	91
VHP-288.ab1	SJCHGC05731 protein	Schistosoma japonicum	AAX28066.2	44
VHP039-2.ab1	sensory box/GGDEF family protein	Legionella pneumophila subsp. pneumophila str. Philadelphia 1	AAU28700.1	26
VHP058-2.ab1	- X		_	0
VHP103-2.ab1			_	0
VHP143-2.ab1	hypothetical protein XP_776172	Strongylocentrotus purpuratus	XP_781265.1	39
¹ Identity(%		DI II		

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
SKN001.ab1	hypothetical protein LOC84226	Homo sapiens	NP_115642.2	24
SKN002.ab1	-		_	0
SKN003.ab1	unnamed protein product TRANSMEMBRANE	Mus musculus	BAB27678.2	73
SKN004.ab1	SERINE/THREONINE-PROTEIN KINASE D PKNDb	Mycobacterium bovis AF2122/97	CAD93815.1	24
SKN005.ab1	CG34043-PA	Drosophila melanogaster	NP_001033893 .1	33
SKN006.ab1	cytochrome c oxidase subunit I	Haliotis diversicolor supertexta	AAQ84296.1	83
SKN007.ab1	hypothetical protein DDB0190674	Dictyostelium discoideum	XP_646407.1	36
SKN008.ab1	Serpentine Receptor, class T family member (srt-7)	Caenorhabditis elegans	NP_503842.1	33
SKN009.ab1	similar to CG16965-PA	Bos taurus	XP_589347.2	39
SKN010-2.ab1	60S ribosomal protein L37A	Cryptochiton stelleri	AAC15655.1	87
SKN010.ab1	60S ribosomal protein L37A	Cryptochiton stelleri	AAC15655.1	80
SKN011.ab1	AMP-dependent synthetase and ligase	Nitrosomonas europaea ATCC 19718	CAD86261.1	45
SKN013-2.ab1	67kD laminin receptor precursor	Xenopus laevis	AAW62261.1	79
SKN014.ab1	Putative transcriptional regulator, LytR family	Lactobacillus sakei subsp. sakei 23K	YP_394795.1	30
SKN015.ab1	protein disulfide isomerase		AAA85099.1	65
SKN016.ab1	unnamed protein product	Oryza sativa (japonica cultivar-group)	NP_913011.1	34
SKN017.ab1	nardilysin (N-arginine dibasic convertase)	Pan troglodytes	XP_513403.1	43
SKN018.ab1	similar to guanylate cyclase OlGC-R2	Danio rerio	XP_688499.1	59
SKN019.ab1	Hypothetical protein LOC283078	Homo sapiens	AAH36207.1	42
SKN020.ab1	SLACK-A isoform	Rattus norvegicus	AAX16016.1	29
SKN021.ab1	-		_	0
SKN022.ab1	SJCHGC02792 protein	Schistosoma japonicum	AAW25342.1	74
SKN023.ab1	similar to arylsulfatase I	Danio rerio	XP_691165.1	31
SKN024.ab1	Cobalamin synthesis protein/P47K	Burkholderia sp. 383	ABB10033.1	32
SKN025.ab1	-		_	0
SKN026.ab1	23S rRNA methyltransferase/RumA	Thermoanaerobacter ethanolicus ATCC 33223	ZP_00779347. 1	34
SKN027.ab1	guanine nucleotide-binding protein	Petromyzon marinus	AAM88904.1	84
SKN028.ab1	cytochrome b	Haliotis rubra	YP_026076.1	88
SKN029.ab1	hypothetical protein MYPE8400	Mycoplasma penetrans HF-2	NP_758228.1	26
SKN031.ab1	similar to fucosidase, alpha-L- 2, plasma	Strongylocentrotus purpuratus	XP_796773.1	37
SKN032.ab1	hypothetical protein cgd4_750	Cryptosporidium parvum Iowa II	XP_625677.1	36
SKN033.ab1	similar to ENSANGP00000014714	Apis mellifera	XP_624580.1	95
SKN034.ab1	putative alpha-tubulin	Oikopleura dioica	AAP80594.1	99
SKN035.ab1	hypothetical protein XP_511394	Pan troglodytes	XP_511394.1	64
SKN036.ab1	conserved hypothetical protein	Agrobacterium tumefaciens str. C58	AAL43459.1	31

Table 6. List of identified ESTs from the skin cDNA library of abalone

Table 6. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
SKN037.ab1	hypothetical protein	uncultured Acidobacteria bacterium	AAP58583.1	40
SKN038.ab1	unnamed protein product	Kluyveromyces lactis	XP_454119.1	37
SKN039.ab1	-	5 5	_	0
SKN040.ab1	-		_	0
SKN042.ab1	hypothetical protein CHGG_06887	Chaetomium globosum CBS 148.51	EAQ85634.1	30
SKN043.ab1	-		_	0
SKN045.ab1	putative protein tyrosine kinase	Dictyostelium discoideum	XP_644816.1	28
SKN046.ab1	caveolin-3	Xenopus laevis	AAM76916.1	40
SKN047.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_704864.1	24
SKN048.ab1	cubilin	Rattus norvegicus	NP_445784.1	28
SKN049.ab1	beta-tubulin	Halocynthia roretzi	BAA22382.1	91
SKN050.ab1	mucin	Rattus norvegicus	AAC53312.1	30
SKN052.ab1	hypothetical protein SAV7203	Streptomyces avermitilis MA-4680		47
SKN053.ab1	laminin receptor 1	Danio rerio	AAQ91246.1	74
SKN054.ab1	similar to RNA (guanine-9-) methyltransferas domain containing 1	e Strongylocentrotus purpuratus	XP_799221.1	36
SKN055.ab1	similar to IQ motif containing D	Strongylocentrotus purpuratus	XP_784878.1	76
SKN056.ab1	similar to tubulin alpha 6	Pan troglodytes	XP_509043.1	85
SKN057.ab1	inhibitor of apoptosis 2 protein	Glossina morsitans morsitans		48
SKN058.ab1	unknown protein	Synechocystis sp. PCC 6803	BAD01833.1	25
SKN059.ab1	conserved hypothetical protein	Pseudomonas putida F1	ZP_00899862. 1	42
SKN060.ab1				0
SKN061.ab1	NADH dehydrogenase subunit 2	Haliotis rubra	- YP_026068.1	63
		Entamoeba histolytica		
SKN063.ab1	hypothetical protein 470.t00006	HM-1:IMSS	XP_648359.1	35
SKN065-2.ab1	unnamed protein product	Homo sapiens	BAD18580.1	29
SKN066.ab1	annaned protein product	nomo suprens	BAD10500.1	0
SKN067.ab1	- Mcm5-prov protein	Xenopus laevis	– AAH47250.1	75
SKN069.ab1	Y47D3B.4	Caenorhabditis elegans	NP_499469.2	23
		Caenormabantis elegans		23 99
SKN070.ab1	lysin	Sus sarafa	AAA91565.1 AAR22525.2	
SKN071.ab1 SKN072.ab1	lymphocyte antigen 86 similar to Tubulin alpha-3 chain	Sus scrofa Strongylocentrotus purpuratus	XP_795276.1	28 89
	(Alpha-tubulin 3)	2 engytocentronus purpuratus		0,
SKN073.ab1	ENSANGP00000021588	Anopheles gambiae str. PEST	EAA10553.2	44
SKN074.ab1	ENSANGP00000017945	Anopheles gambiae str. PEST	EAA00085.2	26
SKN075.ab1	-		_	0
	similar to novel gene similar to human and			
SKN076-2.ab1	rodent IER5 (immediately early response 5)	Danio rerio	XP_706732.1	32
	isoform 2			
SKN076.ab1	-		-	0
SKN077.ab1	unknown	Aeromonas hydrophila	AAR06617.1	35
SKN079-2.ab1	reverse transcriptase-like protein	Takifugu rubripes	AAD19348.1	50

Table 6. (continued)

Clone no.	Putative identification	Closest species	Accession no.	I ^a
SKN079.ab1	similar to CG6454-PB, isoform B	Strongylocentrotus purpuratus	XP_782090.1	54
SKN080.ab1	hypothetical protein UM01098.1	Ustilago maydis 521	XP_757245.1	36
SKN081.ab1	actin	Haliotis discus hannai	AAQ92368.1	96
SKN082.ab1	unnamed protein product	Rattus norvegicus	CAA33143.1	88
SKN084.ab1	ENSANGP00000011567	Anopheles gambiae str. PEST	EAA00829.2	51
SKN086.ab1	glutamine-dependent NAD(+) synthetase	Plasmodium yoelii yoelii str. 17XNL	XP_730516.1	37
SKN088-2.ab1	salivary selenoprotein M precursor	Ixodes scapularis	AAY66722.1	47
SKN088.ab1	salivary selenoprotein M precursor	Ixodes scapularis	AAY66722.1	45
SKN089.ab1	inositol 5-phosphatase 2	Dictyostelium discoideum	AAN85438.1	25
SKN090.ab1	-	,		0
SKN091.ab1	ATP-dependent RNA helicase, putative	Archaeoglobus fulgidus DSM	- NP_068912.1	31
51110071.001	fiff dependent fertif heneuse, putative	4304	141_0000712.1	51
SKN092-2.ab1	membrane protein, putative	Mycoplasma capricolum subsp. capricolum ATCC 27343	ABC01140.1	36
SKN092.ab1	unnamed protein product	Aspergillus oryzae	BAE58689.1	53
SKN093.ab1	delta-like protein	Schistocerca americana	AAU14846.1	27
SKN094-2.ab1	similar to ENSANGP00000017088	Apis mellifera	XP_396071.2	82
SKN095.ab1	olfactory receptor Olfr779	Mus musculus	AAS99802.1	35
SKN096.ab1	immediate-early protein	Serinus canaria	AAA49537.1	48
SKN097.ab1	unnamed protein product	Tetraodon nigroviridis	CAG03487.1	36
SKN099.ab1	PRAJA1BETA	Homo sapiens	AAM53040.1	37
SKN101.ab1	hypothetical protein AN4541.2	Aspergillus nidulans FGSC A4	XP_662145.1	31
SKN102.ab1	acidic ribosomal phosphoprotein P0	Rattus norvegicus	NP_071797.1	79
SKN103.ab1	-			0
SKN104.ab1	similar to CG1106-PB, isoform B	Strongylocentrotus purpuratus	_ XP_788777.1	60
SKN105-2.ab1	similar to RIKEN cDNA 1200009H11	Gallus gallus	XP_417954.1	35
SKN106.ab1	intermediate filament protein	Biomphalaria glabrata	AAZ39528.1	46
SKN108.ab1	MAS-related GPR, member A4	Mus musculus	NP_705744.1	44
SKN109.ab1	gp164	Mycobacteriophage Omega	NP_818464.1	32
SKN110.ab1	methionyl-tRNA synthetase	Candidatus Blochmannia	AAZ41101.1	43
or in the former		pennsylvanicus str. BPEN		
SKN111.ab1	retrograde protein 51	Lymnaea stagnalis	AAT01542.1	50
SKN112.ab1	putative secreted major subunit of curlin, may bind calcium	Pseudoalteromonas tunicata D2	ZP_01133744. 1	27
SKN113.ab1	hypothetical protein Chro.60269	Cryptosporidium hominis TU502	XP_668328.1	27
SKN114.ab1	-			0
SKN115.ab1	actin A3	Haliotis iris	– AAX19288.1	99
SKN116.ab1	unknown protein	Arabidopsis thaliana	NP_564234.1	36
SKN117.ab1	heat shock protein gp96	Xenopus laevis	AAO21339.1	68
SKN118.ab1	ribosomal protein L7	Loligo pealei	AAU11097.1	77
SKN120.ab1	unknown protein	Arabidopsis thaliana	NP_850717.1	33
SKN120.ab1 SKN121.ab1	similar to carboxylesterase	Apis mellifera	XP_397022.2	29
SKN121.ab1	similar to thyroid hormone receptor interactor 12	· ·	XP_694020.1	63

Table 6. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
SKN123.ab1	myosin regulatory light chain interacting protein	Danio rerio	AAQ97996.1	26
SKN124.ab1	actin	Haliotis discus hannai	AAQ92368.1	10
SKN125.ab1	open reading frame (196 AA)	Mus musculus	BAA00448.1	32
SKN127-2.ab1	similar to Actin-binding protein IPP (MIPP protein)	Gallus gallus	XP_422442.1	46
SKN128-2.ab1	hypothetical protein DDB0186385	Dictyostelium discoideum	XP_638358.1	37
SKN129.ab1	QM protein	Pinctada fucata	AAN85578.1	89
SKN130.ab1	hypothetical protein Tb09.211.3900	Trypanosoma brucei TREU927	XP_827531.1	41
SKN131.ab1	Major facilitator superfamily (MFS_1) transporter	Burkholderia sp. 383	ABB12598.1	33
SKN132.ab1	unnamed protein product	Mus musculus	BAE36777.1	27
SKN134.ab1	growth arrest and DNA damage-inducible protein 45	Felis catus	BAD60923.1	40
SKN135.ab1	Rpsa protein	Mus musculus	AAH92041.1	58
SKN136.ab1	pannexin 5	Aplysia californica	AAX24144.1	29
SKN137-2.ab1	0		_	0
SKN137.ab1			_	0
SKN138.ab1			_	0
SKN139.ab1	leucine-tRNA ligase	Plasmodium chabaudi chabaudi	XP_744802.1	38
SKN140.ab1	X-box binding protein 1	Mytilus edulis	ABA43316.1	5′
SKN142.ab1	RPLP0 protein	Homo sapiens	AAH70194.1	8
SKN143.ab1	glycerol 3-phosphate dehydrogenase GfdA	Aspergillus fumigatus Af293	XP_749965.1	33
SKN197.ab1	Hypothetical protein CBG05788	Caenorhabditis briggsae	CAE61818.1	32
SKN198.ab1	ferritin GF2	Crassostrea gigas	AAP83794.1	80
SKN199.ab1	hypothetical protein, unknown function	Leishmania major	CAJ03287.1	32
SKN200.ab1	putative receptor-like kinase	Oryza sativa (japonica cultivar-group)	NP_909780.1	3
SKN202.ab1			_	0

Table 7. List of identified ESTs from the muscle cDNA library of abalone

Clone no.	Putative identification	Closest species	Accession no.	Identit y
RM001.ab1	-		_	0
RM002.ab1	cytochrome c oxidase subunit II	Haliotis rubra	YP_026070.1	82
RM003.ab1	similar to 60S acidic ribosomal protein P0 (L10E) isoform 1	Canis familiaris	XP_535894.1	75
RM005-2.ab1	-		_	0
RM005.ab1	-		_	0
RM006.ab1	sec61 protein	Ciona intestinalis	NP_001027676.	77
RM007.ab1	troponin T similar to Peripheral-type benzodiazepine	Mizuhopecten yessoensis	BAA20456.1	62
	receptor-associated protein 1 (PRAX-1)			
RM008.ab1	(Peripheral benzodiazepine receptor	Canis familiaris	XP_548232.2	28
	interacting protein) (PBR-IP) (RIM binding			
	protein 1) (RIM-BP1)			
RM010.ab1	ENSANGP0000027068	Anopheles gambiae str. PEST	EAL41847.1	32
		Entamoeba histolytica		
RM011.ab1	hypothetical protein 205.t00018	HM-1:IMSS	XP_650673.1	23
RM012.ab1	unnamed protein product	Tetraodon nigroviridis	CAF97279.1	52
RM015.ab1			_	0
RM016.ab1	ubiquitin	Biomphalaria glabrata	AAG49540.1	99
RM017.ab1			1-	0
RM019.ab1	- 2		/ -	0
RM021.ab1	myosin essential light chain	Crassostrea gigas	CAD91423.1	69
RM022.ab1	CG10228-PA	Drosophila melanogaster	NP_610999.3	26
RM024.ab1	olfactory receptor Olfr420	Mus musculus	AAP70939.1	35
RM027.ab1	40S ribosomal protein S9 Alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-	Ictalurus punctatus	AAK95191.1	93
	1, 3-N-acetyl-galactosaminide			
	alpha-2,6-sialyltransferase			
RM032.ab1	(NeuAc-alpha-2,3-Gal-beta-1,3-GalNAc-alpha-	Canis familiaris	XP_851433.1	46
	2, 6-sialyltransferase) (ST6GalNAc IV)			
	(Sialyltransferase 7D) (Sialyltransferase 3C)			
RM034.ab1	KARG_NORMA Arginine kinase (AK)		P51544	93
RM035.ab1	CO4A2_ASCSU Collagen alpha-2(IV) chain	precursor	4.00E-51P2739)5
		-	3	
RM036.ab1	putative sugar transporter	Arabidopsis thaliana	AAF27022.1	43
RM039.ab1	RPL18A protein	Xenopus laevis	AAH42256.1	73
RM040.ab1	60S ribosomal protein L13A	Mytilus edulis	ABA46793.1	68
RM041.ab1	-		-	0
RM042.ab1	MtrDRAFT_AC148971g2v1	Medicago truncatula	ABD28540.1	37
RM043.ab1	tropomyosin 1	Haliotis asinina	AAP85231.1	86

Table 7. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
RM044.ab1	hypothetical glycine-rich protein	Mesorhizobium loti MAFF303099	BAB48146.1	29
RM045.ab1	troponin I	Mizuhopecten yessoensis	BAA22853.1	57
RM046.ab1	calcium-dependent protein kinase	Crassostrea gigas	AAU93878.1	47
RM048.ab1	hypothetical protein	Neurospora crassa N150	XP_955763.1	35
RM049.ab1	unnamed protein product	Homo sapiens	BAC87430.1	23
RM051.ab1	MGC79134 protein	Xenopus laevis	AAH77247.1	86
RM052.ab1	-	*	_	0
RM053.ab1	Aminodeoxychorismate lyase	Bradyrhizobium sp. BTAil	ZP_00861034.1	28
RM054-2.ab1	Hydrogenase-1 large chain	Escherichia coli CFT073	AAN79582.1	99
RM055.ab1	putative lysosomal trafficking regulator 2	Oryza sativa (japonica cultivar-group)	BAD27684.1	36
RM056.ab1	similar to bromodomain and WD repeat domain containing 2	Strongylocentrotus purpuratus	XP_791604.1	31
RM057.ab1	- ION			0
RM058-2.ab1	unnamed protein product	Candida glabrata CBS138	– CAG60755.1	27
RM060.ab1	LysM domain protein	Geobacter sulfurreducens PCA	AAR36666.1	29
RM061.ab1	ribosomal protein P1	Biomphalaria glabrata	AAZ39530.1	55
RM062.ab1		Biomphalanta giabraia	1	0
RM063.ab1	unnamed protein product	Tetraodon nigroviridis	- CAG01120.1	37
RM064-2.ab1	calponin-like protein	Mytilus galloprovincialis	BAB60813.1	50
RM064.ab1	JMJD2D protein	Homo sapiens	AAH74739.1	41
RM065-2.ab1	cytochrome b5	Crassostrea gigas	CAD92095.1	62
KW005-2.a01		mice, D2, liver microsomes,	CAD92095.1	02
RM065.ab1	cytochrome b5	Peptide Partial, 97 aa, segment 1 of 2	AAB22636.1	77
RM067-2.ab1				0
RM067.ab1			-	0
RM068-2.ab1	salivary selenoprotein M precursor	Ixodes scapularis	– AAY66722.1	47
RM068.ab1	hypothetical protein UM04059.1	Ustilago maydis 521	XP_760206.1	50
RM070-2.ab1	-	Ostilago mayais 521	n _/00200.1	0
RM070.ab1			-	0
RM070.ab1			-	0
RM072.ab1	ribosomal protein L24	Crassostrea gigas	– CAD91424.1	82
RM072.ab1 RM073.ab1	plasminogen activator inhibitor 2 type A	Rattus norvegicus	CAA45864.1	42
RM075.ab1 RM074.ab1	RL4_URECA 60S ribosomal protein L4 (L1)	ē	P49165	42 56
	-			
RM075-2.ab1	calponin homolog	Schistosoma mansoni	AAB47536.1	69
RM075.ab1	Serpentine Receptor, class H family member (srh-112)	Caenorhabditis elegans	NP_507363.1	34
RM076.ab1	tropomyosin	Haliotis diversicolor	AAG08987.1	98
RM077.ab1	CG7467-PC, isoform C	Drosophila melanogaster	NP_996228.1	40
RM078.ab1	hypothetical protein GSU0714	Geobacter sulfurreducens PCA	AAR34044.1	44
RM079.ab1	MYL5 protein	Homo sapiens	AAH40050.1	68
RM081.ab1	similar to Drosophila melanogaster CG1746	Drosophila yakuba	AAR09940.1	47
RM082.ab1	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase 2	Homo sapiens	AAH96821.1	45

Table 7. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
	Peptidyl-prolyl cis-trans isomerase (PPIase)			
RM084.ab1	(Rotamase) (Cyclophilin) (Cyclosporin	Apis mellifera	XP_393381.2	71
	A-binding protein)			
RM085.ab1	similar to GA14769-PA	Apis mellifera	XP_391958.2	68
RM086.ab1	polyprotein	Human coxsackievirus B3	CAC27393.1	28
RM087.ab1	hypothetical protein	Oryza sativa (japonica cultivar-group)	XP_465902.1	44
RM088.ab1	actin	Haliotis rufescens	AAB87082.1	95
RM089.ab1	actin A1	Haliotis iris	AAX19286.1	98
RM090.ab1	LIM protein	Mytilus edulis	ABB73031.1	52
RM091.ab1	-	2	_	0
RM092.ab1	GDP-mannose 4,6-dehydratase	Rubrobacter xylanophilus DSM 9941	 ZP_00601579.1	43
RM093.ab1	hypothetical protein	Plasmodium berghei strain ANKA	XP 6786351	31
RM094.ab1	ATP synthase F0 subunit 6	Haliotis rubra	YP_026072.1	84
RM095.ab1	saccharopine dehydrogenase (putative)	Gallus gallus	NP_001012893.	54
RM096.ab1	peroxisomal membrane protein pex16,	Cryptococcus neoformans var.	AAW43797.1	30
DM100 -1-1	putative	neoformans JEC21	VD (021(7.1	59
RM100.ab1	similar to ENSANGP00000026584	Apis mellifera	XP_623167.1	59 88
RM101-2.ab1 RM102.ab1	thymosin beta 12 COG2199: FOG: GGDEF domain	perch, liver, Peptide, 43 aa Clostridium difficile QCD-32g58	AAB21004.1 ZP_01032874.1	00 44
RM102.ab1 RM103.ab1	protein disulfide isomerase	Closiniaiam alficite QCD-52g58	AAA85099.1	68
RM105.ab1 RM104.ab1	hypothetical protein DEHA0B05918g	Debaryomyces hansenii CBS767	XP_457224.1	69
RM104.ab1 RM106.ab1	olfactory receptor Olfr779	Mus musculus	AAS99802.1	35
RM100.ab1 RM107.ab1	SJCHGC06220 protein	Schistosoma japonicum	AAX30635.2	51
RM108.ab1	DNA-directed RNA polymerase	<i>Glycine max</i>	CAA36734.1	31
RM109.ab1	unnamed protein product	Aspergillus oryzae	BAE65858.1	46
RM111.ab1	-	naper ginas or your	Dimotoron	0
RM112.ab1	ARF_DUGJA ADP-ribosylation factor		– P91924	91
RM113.ab1				0
RM114.ab1	GA15696-PA	Drosophila pseudoobscura	– EAL25448.1	40
RM117.ab1	hypothetical protein	Plasmodium falciparum 3D7 Plasmodium yoelii yoelii str.	NP_703251.1	31
RM118.ab1	hypothetical protein PY07113	17XNL	XP_727906.1	30
RM120.ab1	MYSP_MYTGA Paramyosin		O96064	68
RM121.ab1	similar to ENSANGP0000003616	Apis mellifera	XP_624843.1	58
RM122.ab1	Tis11 family protein	Crassostrea virginica	AAB69448.1	64
RM124.ab1	myosin:SUBUNIT=regulatory light chain		1803425D	62
RM126.ab1	hypothetical protein ELI_06385	Erythrobacter litoralis HTCC2594	ABC63369.1	38
RM128.ab1	similar to KIAA1683 protein	Homo sapiens	XP_371125.2	23
RM130.ab1	lectin-like receptor kinase 1;1	Medicago truncatula	AAR11301.1	44
RM131.ab1	ENSANGP00000022107	Anopheles gambiae str. PEST	EAA07850.2	40

Table 7. (continued)

		Closest species	no.	ľ
RM132.ab1	expressed protein	Cryptococcus neoformans var. neoformans JEC21	AAW46404.1	54
RM134.ab1	similar to forkhead box E1 (thyroid transcription factor 2)	Canis familiaris	XP_854932.1	35
RM135.ab1	KARG_NORMA Arginine kinase (AK)		P51544	100
RM136.ab1	myosin heavy chain	Mytilus galloprovincialis	CAB64662.1	69
RM137.ab1	hypothetical protein	Yarrowia lipolytica	XP_503715.1	30
RM138.ab1	-		_	0
RM140.ab1	60S ribosomal protein P2	Cryptochiton stelleri	AAC15656.1	48
RM141.ab1	hypothetical protein	Plasmodium falciparum 3D7	AAN36787.1	80
RM144.ab1	adaptin-like protein, possible	Cryptosporidium parvum	CAD98311.1	54
RM145.ab1	-		_	0
RM148.ab1	collagen pro alpha-chain	Haliotis discus	BAA75669.1	42
RM149.ab1	Bardet-Biedl syndrome 4	Homo sapiens	NP_149017.2	65
RM156.ab1	elongation factor 1 alpha	Haliotis rufenscens	AAZ30688.1	91
RM158.ab1	polyprotein similar to Ubiquitin-like 1 activating enzyme	Poliovirus	ABA29244.1	34
RM159.ab1	E1A (SUMO-1 activating enzyme subunit 1) isoform 1		XP_533632.1	48
RM161.ab1	similar to CG9291-PB, isoform B similar to scavenger receptor class F,	Strongylocentrotus purpuratus	XP_788561.1	88
RM162.ab1	member 1 isoform 1 precursor	Canis familiaris	XP_853984.1	32
RM163.ab1	cytochrome c oxidase subunit III	Haliotis rubra	YP_026066.1	76
RM167.ab1	hypothetical protein ClimDRAFT_0912	Chlorobium limicola DSM 245	ZP_00512949.1	40
RM168.ab1	hypothetical protein XP_687931	Danio rerio	XP_693023.1	41
RM169.ab1	hypothetical protein PY01809	Plasmodium yoelii yoelii str. 17XNL	XP_729615.1	37
RM171.ab1	actin A1	Haliotis iris	AAX19286.1	97
RM172.ab1	protease	Aeromonas veronii bv. sobria	BAD22597.1	48
RM174.ab1			_	0
RM176.ab1	similar to histocompatibility 28	Canis familiaris		35
RM178.ab1	cytochrome c oxidase subunit I	Haliotis rubra	YP_026069.1	85
RM181.ab1	polyprotein	Foot-and-mouth disease virus		34
RM183.ab1	-		_	0
RM187.ab1	-		_	0
RM188.ab1	interleukin 18	Canis familiaris	_ NP_001003169. 1	42
	ENSANGP0000020389	Anopheles gambiae str. PEST	EAA01312.2	33

a Identity(%)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
GOM001.ab1	ribosomal protein L24e	Hister sp. APV-2005	CAJ17316.1	70
GOM002-2.ab1	rh187	Cercopithecine herpesvirus 8	YP_068276.1	32
GOM002.ab1	unnamed protein product	Tetraodon nigroviridis	CAF93381.1	54
GOM004.ab1	unnamed protein product	Tetraodon nigroviridis	CAF97217.1	45
GOM006-2.ab1	hypothetical protein XP_776172	Strongylocentrotus purpuratus	XP_781265.1	41
GOM007.ab1	Peptidase M14, carboxypeptidase A	Paracoccus denitrificans PD1222	ZP_00631125.1	24
	similar to Tripartite motif protein 3 (RING			
GOM008.ab1	finger protein 22) (RING finger protein	Danio rerio	XP_706631.1	33
	HAC1) isoform 6			
GOM009.ab1	dendritic cell protein variant	Homo sapiens	BAD96284.1	50
GOM010.ab1	similar to echinoderm microtubule associated protein like 5	Strongylocentrotus purpuratus	XP_785437.1	52
GOM011.ab1	similar to CG10979-PA, partial	Strongylocentrotus purpuratus	XP_797107.1	46
GOM012.ab1	FK506-binding protein 6	Homo sapiens	AAH36817.1	38
GOM014.ab1	unnamed protein product	Homo sapiens	BAC86459.1	28
GOM015.ab1	similar to CG17870-PA, isoform A	Apis mellifera	XP_623302.1	60
GOM016.ab1	heat shock cognate	Artemia franciscana	AAL27404.1	85
GOM017.ab1			-	0
GOM018.ab1	putative alpha-tubulin	Oikopleura dioica	AAP80594.1	99
GOM019.ab1			1	0
GOM021.ab1	similar to histone H2A	Mus musculus		86
GOM023.ab1	OSJNBa0086P08.18	Oryza sativa (japonica cultivar-group)	NP_913586.1	35
GOM024.ab1	adaptor-related protein complex 2, sigma 1 subunit	Mus musculus	NP_941015.1	35
GOM025.ab1	guanine nucleotide-binding protein	Petromyzon marinus	AAM88904.1	81
GOM028.ab1	mini chromosome maintenance deficient 6	Rattus norvegicus	XP_344136.2	81
GOM029.ab1	ENSANGP0000029380	Anopheles gambiae str. PEST	EAL38972.1	30
GOM030.ab1	hypothetical protein XP_774971	Strongylocentrotus purpuratus	XP_780064.1	53
GOM031.ab1	similar to armadillo repeat containing 4	Strongylocentrotus purpuratus	XP_794287.1	54
GOM034.ab1	similar to Myb DNA binding domain-containing protein	Rattus norvegicus	XP_226205.3	37
GOM035.ab1	-		_	0
GOM037.ab1	hypothetical protein XP_778462	Strongylocentrotus purpuratus	_ XP_783555.1	52
GOM038.ab1	hypothetical protein GLP_577_38920_45159	Giardia lamblia ATCC 50803	XP_768963.1	56
GOM040.ab1	-		-	0
GOM041.ab1	unnamed protein product	Macaca fascicularis	– BAE00904.1	66
	COG1368: Phosphoglycerol transferase and	Pediococcus pentosaceus ATCC		
GOM042-2.ab1	related proteins, alkaline phosphatase superfamily	25745	ZP_00322570.1	36
GOM045.ab1	polyadenylate-binding protein nuclear 1	Danio rerio	NP_998424.1	56
GOM046.ab1	WW domain-containing binding protein 4	Gallus gallus	NP_001025995.1	42

Table 8. List of identified ESTs from the testis cDNA library of abalone

Table 8. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
GOM047.ab1	hypothetical protein	Oryza sativa (japonica cultivar-group)	XP_450816.1	32
GOM048.ab1	ferritin GF2	Crassostrea gigas	AAP83794.1	81
GOM049.ab1	similar to hypothetical protein	Rattus norvegicus	XP_578172.1	21
GOM050.ab1	tripartite motif-containing 59	Gallus gallus		34
GOM051.ab1	ENSANGP0000003474	Anopheles gambiae str. PEST	EAA13257.2	70
GOM052.ab1	fertilization protein		AAC37229.1	62
GOM053.ab1	hypothetical protein XP_397399	Apis mellifera	XP 397399.2	68
GOM056.ab1	similar to CG5186-PA, isoform A	Strongylocentrotus purpuratus	XP_783148.1	38
GOM057.ab1	LOC400590 protein	Homo sapiens	AAH62632.1	69
GOM058.ab1	similar to actin (41.8 kD) (act-2)	Strongylocentrotus purpuratus	XP_786585.1	98
GOM059.ab1	general transcription factor IIH, polypeptide 5	Xenopus tropicalis	 NP_001017298.1	72
GOM061.ab1	hypothetical protein, conserved in P. falciparum	Plasmodium falciparum 3D7	NP_702673.1	39
GOM062.ab1	similar to Meiotic recombination protein REC8-like 1 (Cohesin Rec8p)	Canis familiaris	XP_547744.1	42
GOM063.ab1	putative alpha-tubulin	Oikopleura dioica	AAP80594.1	93
GOM064.ab1	centromere protein F, 350\/400ka (mitosin)	Homo sapiens	CAH73032.1	34
GOM066.ab1	hypothetical protein XP_795449, partial	Strongylocentrotus purpuratus	XP_800542.1	24
GOM067.ab1	similar to ENSANGP0000003404	Apis mellifera Prochlorococcus marinus str.	XP_624359.1	83
GOM068.ab1	conserved hypothetical protein	MIT 9312	ABB49340.1	39
GOM071.ab1	similar to CG10510-PA	Strongylocentrotus purpuratus	XP_790738.1	71
GOM072.ab1	similar to leucine-rich repeat containing protein family member (104.2 kD) (5M953)	Strongylocentrotus purpuratus	XP_787322.1	53
GOM073.ab1	mitochondrial DNA-directed RNA polymerase, putative	Leishmania major	CAJ04832.1	28
GOM076.ab1	similar to armadillo repeat containing 4	Strongylocentrotus purpuratus	XP_794287.1	82
GOM077.ab1	-	2		0
00110771401	GRIP and coiled-coil domain-containing 2		-	0
GOM079.ab1		Homo sapiens	NP_055450.1	28
GOM080.ab1	isoform b similar to ribophorin II	Strong locantrotus numeratur	VD 783800 1	41
	similar to carboxylesterase	Strongylocentrotus purpuratus Apis mellifera	XP_783899.1 XP_397022.2	29
GOM084.ab1	similar to HYLS1 protein	Apis mellifera Danio rerio		29 26
GOM086.ab1	*	Danio rerio	XP_695583.1	
GOM087-2.ab1		Piomphalania clabasta	- A A K 26226 1	0
GOM089.ab1	thioredoxin peroxidase BgTPx	Biomphalaria glabrata	AAK26236.1	84 88
GOM090.ab1	elongation factor 1 alpha	Axinella verrucosa Mizuhanaeten vessoensis	CAE45763.1	
GOM091.ab1	calcineurin A	Mizuhopecten yessoensis	BAA94542.1	88
GOM092.ab1	cytochrome c oxidase subunit III	Haliotis rubra	YP_026066.1	80
GOM093.ab1	ribosomal protein S10	Branchiostoma belcheri tsingtaunese	AAO31776.1	7
GOM094.ab1	similar to t-complex testis expressed 1	Strongylocentrotus purpuratus	XP_783725.1	83
GOM095.ab1	H3 histone, family 3A	Mus musculus	AAH88835.1	10

Table 8. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
GOM097-2.ab1	conserved hypothetical protein	Agrobacterium tumefaciens str. C58	AAL43459.1	31
GOM098.ab1	hypothetical protein XP_775895, partial	Strongylocentrotus purpuratus	XP_780988.1	39
GOM100-2.ab1	POL precursor	Human immunodeficiency virus	CAC19075.1	56
	hypothetical protein XP_683358	Danio rerio	XP_688450.1	51
GOM101.ab1	hypothetical protein XP_683358	Danio rerio	XP_688450.1	48
GOM102.ab1	KARG_NORMA Arginine kinase (AK) similar to A-kinase anchoring		P51544	77
GOM103.ab1	protein-associated sperm protein, partial	Strongylocentrotus purpuratus	XP_793854.1	81
	SJCHGC02792 protein	Schistosoma japonicum	AAW25342.1	73
GOM106.ab1	-		_	0
GOM107.ab1	ENSANGP0000002287	Anopheles gambiae str. PEST	EAA12220.3	30
GOM109-2.ab1	hypothetical protein, WD40 domain	Paramecium tetraurelia	YP_053986.1	30
GOM109.ab1			_	0
GOM110-2.ab1	lysin		AAA91565.1	100
GOM110.ab1	lysin		AAA91565.1	100
GOM111.ab1	Ribosomal protein L3	Bos taurus	AAI02254.1	84
GOM112.ab1	fibroblast growth factor 13	Homo sapiens	CAI42699.1	30
GOM113.ab1	unnamed protein product similar to eukaryotic translation elongation	Tetraodon nigroviridis	CAG08376.1	30
GOM114-2.ab1	factor 1 beta 2; eukaryotic translation	Pan troglodytes	XP_520983.1	76
GOM116.ab1	elongation factor 1 beta 1 anaerobic glycerol-3-phosphate dehydrogenase, subunit A	Salinibacter ruber DSM 13855	YP_446536.1	26
GOM117.ab1 GOM119-2.ab1	similar to toll interacting protein isoform 1	Canis familiaris	XP_540778.2	51 0
GOM119-2.ab1 GOM119.ab1	guanylyl cyclase	Plasmodium falciparum 3D7	- NP_701254.1	31
GOM117.ab1	unknown	Arabidopsis thaliana	AAN60345.1	32
GOM121.ab1	similar to CDK5 regulatory subunit	Strongylocentrotus purpuratus	XP_780426.1	61
	associated protein 1 isoform a isoform 1			07
GOM123.ab1	beta-tubulin	Crassostrea gigas	AAU93877.1	87
GOM124.ab1 GOM125.ab1	hypothetical protein MYPE6230 similar to Hypothetical protein MGC27934,	Mycoplasma penetrans HF-2	NP_758009.1	24 48
	partial	Gallus gallus	XP_428973.1	
GOM126.ab1	Hypothetical protein LOC381353	Mus musculus	AAH65698.1	26
GOM127.ab1	Sdhb-prov protein	Xenopus laevis	AAH43859.1	81
GOM128.ab1	MGC68964 protein	Xenopus laevis	AAH56029.1	52
GOM129.ab1	similar to cofactor required for Sp1 transcriptional activation, subunit 2, 150kDa	Danio rerio	XP_694175.1	51
GOM130.ab1	similar to Tumor protein p53 inducible nuclear protein 2	Danio rerio	XP_697918.1	43
GOM131.ab1	malate dehydrogenase precursor	Nucella lapillus	AAF27650.1	73
GOM132.ab1	Hypothetical protein Y76G2A.2	Caenorhabditis elegans	AAC78489.2	35
GOM133.ab1	~ 1	0		0

Table 8. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
GOM135.ab1	similar to A-kinase anchoring protein-associated sperm protein, partial	Strongylocentrotus purpuratus	XP_793854.1	76
GOM136.ab1	cytochrome c oxidase subunit I	Haliotis diversicolor supertexta	AAQ84296.1	92
GOM138.ab1	KARG_NORMA Arginine kinase (AK)		P51544	64
GOM139.ab1	RH43215p	Drosophila melanogaster	AAL68352.1	46
GOM140.ab1	similar to MOV10-like 1, partial	Gallus gallus	XP_427733.1	51
GOM141-2.ab1	similar to enkurin	Strongylocentrotus purpuratus	XP_784094.1	54
GOM141.ab1	Interferon-activatable protein 203 (Ifi-203) (Interferon-inducible protein p203)	Mus musculus	XP_910316.1	36
GOM143-2.ab1	similar to HORMA domain containing 1	Strongylocentrotus purpuratus	XP_784162.1	72
GOM143.ab1	conserved hypothetical protein	Chlorobium phaeobacteroides BS1	ZP_00532124.1	45
GOM144-2.ab1			_	0
GOM144.ab1			_	0
GOM145-2.ab1	similar to nicotinic acetylcholine receptor beta 4 subunit	Danio rerio	XP_696993.1	41
GOM147.ab1	similar to AAT1-alpha, partial	Strongylocentrotus purpuratus	XP_795692.1	70
GOM148.ab1	YBOXH_APLCA Y-box factor homolog (APY1)		P41824	79
GOM150.ab1	fertilization protein		AAC37229.1	63
GOM151.ab1				0
GOM152.ab1	F12K11.17	Arabidopsis thaliana	_ AAF24822.1	34
GOM154.ab1	40S ribosomal protein S9	Corbicula fluminea	AAT76788.1	90
GOM155.ab1	similar to mitochondrial ATP synthase lipid binding protein precursor	Apis mellifera	XP_623661.1	42
GOM156.ab1	Hypothetical protein B0546.1 similar to Microsomal signal peptidase 12	Caenorhabditis elegans	AAB92010.1	60
GOM157-2.ab1	kDa subunit (SPase 12 kDa subunit)	Strongylocentrotus purpuratus	XP_788906.1	65
	(SPC12)			
GOM157.ab1	-			0
GOM157.ab1 GOM158.ab1			-	0
GOM150.ab1	RPLP0 protein	Homo sapiens	– AAH70194.1	82
GOM161.ab1	TPR-repeat-containing proteins	Bacteroides thetaiotaomicron VPI-5482	AA077001.1	31
GOM163.ab1	similar to Thiosulfate sulfurtransferase (Rhodanese)	Strongylocentrotus purpuratus	XP_786526.1	30
GOM164-2.ab1	cytochrome b	Haliotis rubra	YP_026076.1	63
GOM164.ab1	cytochrome b	Todarodes pacificus	YP_112461.1	88

['] Identity(%)

Clone no.	Putative identification	Closest species	Accession no.	ľ
GOF00.ab1	CG11079-PC, isoform C	Drosophila melanogaster	NP_726312.1	46
GOF004.ab1	cytochrome c oxidase subunit I	Haliotis discus discus	AAQ84300.1	76
GOF006.ab1	similar to a disintegrin and metalloproteinase with thrombospondin motifs 9 preproprotein	Canis familiaris	XP_848393.1	34
GOF007.ab1	ornithine decarboxylase	Sus scrofa	AAS55915.1	59
GOF008.ab1	vitelline envelope sperm lysin receptor	Haliotis rufescens	AAL50827.1	44
GOF009.ab1	similar to signal recognition particle 72kDa	Strongylocentrotus purpuratus	XP_797070.1	49
GOF011.ab1	unknown	Schistosoma japonicum	AAW27335.1	97
GOF012.ab1	snRNP-associated protein	Danio rerio	NP_991230.1	64
GOF013.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	37
GOF014.ab1	unnamed protein product	Aspergillus oryzae	BAE58095.1	31
GOF018.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	36
GOF022.ab1	KIAA0101	Homo sapiens	BAA03491.2	52
GOF023.ab1	vitelline coat protein 42	Tegula pfeifferi	BAB15930.1	42
GOF024.ab1	Trafficking protein particle complex 4	Rattus norvegicus	AAH98628.1	68
GOF027.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	45
GOF030.ab1	similar to KIAA1237 protein	Gallus gallus	XP_422104.1	53
GOF031.ab1	metallothionein	Megathura crenulata	AAM51554.1	70
GOF033.ab1	Hypothetical protein CBG22046	Caenorhabditis briggsae	CAE74333.1	56
GOF035.ab1	ribosomal protein L	Argopecten irradians	AAN05596.1	85
GOF036.ab1	chaperonin containing TCP1, subunit 4 (delta)	Gallus gallus	NP_996761.1	70
GOF038.ab1	GM25382p	Drosophila melanogaster	AAM50726.1	43
GOF039.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	53
GOF041.ab1	COG0477: Permeases of the major facilitator superfamily	Microbulbifer degradans 2-40	ZP_00314882.1	38
GOF042.ab1	KARG_NORMA Arginine kinase (AK)		P51544	74
GOF044.ab1	malate dehydrogenase precursor	Nucella lapillus	AAF27650.1	70
GOF045.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	44
GOF047.ab1	hypothetical protein	Plasmodium chabaudi chabaudi	XP_742690.1	26
GOF049.ab1	keratin associated protein 10-2	Homo sapiens	NP_941966.1	36
GOF050-2.ab1	hypothetical protein LOC415159	Danio rerio	NP_001002069.1	58
GOF052.ab1	Hypothetical protein CBG15191	Caenorhabditis briggsae	CAE69160.1	24
GOF053.ab1	TPA: TPA_exp: type V P-type ATPase isoform 3	Mus musculus	DAA05589.1	53
GOF054.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	32
GOF055.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_704796.1	28
GOF056.ab1	unnamed protein product	Mus musculus	BAE23538.1	39
GOF057.ab1	PDI	Oxyuranus scutellatus scutellatus		63
GOF058.ab1	-	,		0
GOF060.ab1	ribosomal protein S8	Argopecten irradians	– AAN05595.1	72
GOF062.ab1	vitelline envelope sperm lysin receptor	Haliotis rufescens	AAL50827.1	47
GOF064.ab1	similar to hypothetical protein MGC2817	Pan troglodytes	XP_527457.1	38

Table 9. List of identified ESTs from the ovary cDNA library of abalone

Table 9. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
GOF065.ab1	similar to mitochondrial ATP synthase lipid binding protein precursor	Apis mellifera	XP_623661.1	42
GOF067.ab1	type B DNA polymerase	Bacillus cereus ATCC 14579	AAP12349.1	26
GOF069.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	43
GOF070.ab1	similar to ARP3 actin-related protein 3 homolog isoform 2	Strongylocentrotus purpuratus	XP_801966.1	84
GOF072.ab1	ARP3 actin-related protein 3 homolog	Xenopus tropicalis	AAH64225.1	88
GOF073.ab1	shisa-4	Xenopus laevis	BAE53533.1	37
GOF074.ab1	protein disulfide isomerase	-	AAA85099.1	65
GOF077.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	33
GOF078.ab1	adenosylhomocysteinase	Branchiostoma belcheri tsingtaunese	AAQ96656.1	78
GOF079.ab1	actin	Biomphalaria tenagophila	AAK68714.1	98
GOF080.ab1	hypothetical protein	Gallus gallus	CAG32462.1	81
GOF081.ab1	dihydrolipoamide dehydrogenase precursor	Cricetulus griseus	AAN15202.1	80
GOF083.ab1	SJCHGC02792 protein	Schistosoma japonicum	AAW25342.1	73
GOF084.ab1	hypothetical protein LOC417699	Gallus gallus	NP_001025898.1	74
501004.401		Ganas ganas	NI _001023898.1	/4
GOF085.ab1	similar to Serine/threonine phosphatase 4 regulatory subunit 1	Bos taurus	XP_587353.2	70
GOF086.ab1	vitelline envelope sperm lysin receptor	Haliotis rufescens	AAL50827.1	40
GOF088.ab1	- 101 I		-	0
GOF089.ab1	alpha tubulin 2	Patella vulgata	CAA55978.1	90
GOF091.ab1			-	0
GOF093.ab1	Peptidylprolyl isomerase A	Rattus norvegicus	AAH59141.1	71
GOF094.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	39
GOF096.ab1	QM protein	Plutella xylostella	BAD26683.1	91
GOF099.ab1	vitelline coat protein 42	Tegula pfeifferi	BAB15930.1	50
GOF100.ab1	similar to transposable element tcb1 transposase (2C227)	Strongylocentrotus purpuratus	XP_788852.1	46
GOF101.ab1	variant-specific surface protein	Giardia lamblia ATCC 50803	XP_768389.1	34
GOF102.ab1	-			0
GOF103-2.ab1	Hypothetical protein SSO3103	Sulfolobus solfataricus P2	– AAK43206.1	27
GOF104.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	37
GOF105.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	42
GOF106.ab1	vitelline envelope sperm lysin receptor	Haliotis rufescens	AAL50827.1	53
GOF107.ab1	mitochondrial malate dehydrogenase	Monodonta lineata	AAN23843.1	86
	precursor			-
GOF110.ab1	-		-	0
GOF111.ab1	similar to Ubiquitin-activating enzyme E1 1	Strongylocentrotus purpuratus	XP_795302.1	40
GOF112.ab1	-		_	0
GOF113.ab1	similar to Probable G-protein coupled receptor 20	Canis familiaris	XP_539182.2	27
GOF114.ab1	Ribosomal protein S3	Bos taurus	AAI02091.1	92
GOF115.ab1	similar to MSTP052	Danio rerio	XP_694177.1	37
GOF116.ab1	similar to contactin associated protein 1	Strongylocentrotus purpuratus	XP_780441.1	24

Table 9. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
GOF117.ab1	similar to ENSANGP0000009968	Apis mellifera	XP_392432.2	73
GOF118.ab1	conserved hypothetical protein; putative methyltransferase	Acinetobacter sp. ADP1	CAG68478.1	59
GOF119.ab1	F46B3.1	Caenorhabditis elegans	NP_507973.1	37
GOF120.ab1	similar to ENSANGP0000024947	Apis mellifera	XP_623472.1	33
GOF123.ab1	Zgc:101545	Danio rerio	AAH86701.1	92
GOF124.ab1	similar to ENSANGP00000027643	Apis mellifera	XP_623876.1	38
GOF127.ab1	methionine adenosyltransferase	Haliotis rufenscens	AAZ30689.1	98
GOF128.ab1	GA18268-PA	Drosophila pseudoobscura	EAL30077.1	58
GOF129.ab1	MGC68601 protein	Xenopus laevis	AAH60466.1	30
GOF130.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	28
GOF131.ab1	similar to transmembrane protein 14C	Strongylocentrotus purpuratus	XP_795741.1	74
GOF132-2.ab1	hypothetical protein Tb11.01.6940	Trypanosoma brucei TREU927	XP_829587.1	34
GOF133.ab1	similar to kinesin family member 18A	Strongylocentrotus purpuratus	XP_786465.1	40
GOF134.ab1	Nr		_	0
GOF136.ab1	similar to CDA02 protein	Gallus gallus	NP_001026494.1	44
GOF138.ab1	guanine nucleotide-binding protein	Petromyzon marinus	AAM88904.1	83
	similar to chaperonin containing TCP1,	E		
GOF139.ab1	subunit 5 (epsilon) isoform 1	Strongylocentrotus purpuratus	XP_780016.1	84
	similar to alpha 2 type IV collagen			
GOF140.ab1		Gallus gallus	XP_416952.1	32
COE141 11	preproprotein; canstatin	- D (VD 502521.2	22
GOF141.ab1	similar to transmembrane protein 2	Bos taurus	XP_593521.2	32
GOF142.ab1	67kD laminin receptor precursor	Xenopus laevis	AAW62261.1	79
GOF146-2.ab1			-	0
GOF146.ab1	hypothetical protein	Gallus gallus	CAH65290.1	58
GOF147.ab1	RPLP0 protein	Homo sapiens	AAH70194.1	80
GOF151.ab1			-	0
GOF152.ab1	NADH dehydrogenase subunit 2	Pygopus orientalis	AAO06338.1	29
GOF154.ab1	ubiquitin	Biomphalaria glabrata	AAG49540.1	99
GOF155.ab1	hypothetical protein LOC424533	Gallus gallus	NP_001026447.1	45
GOF156.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	29
GOF157.ab1	putative cell adhesion protein Sym32	Anthopleura elegantissima	AAF65308.1	48
GOF158.ab1	ENSANGP0000022045	Anopheles gambiae str. PEST	EAA05138.2	70
GOF160.ab1	keratin associated protein 5-8	Homo sapiens	NP_066384.1	23
GOF161.ab1	Hypothetical protein CBG12915	Caenorhabditis briggsae	CAE67426.1	50
GOF162.ab1	similar to nuclear receptor binding protein	Danio rerio	XP_691098.1	36
GOF163.ab1	apolipoprotein D	Branchiostoma belcheri tsingtaunese	AAP30079.1	47
GOF164.ab1	polyadenylate binding protein	Petromyzon marinus	AAB88449.1	89
GOF165.ab1	isocitrate dehydrogenase	Crassostrea gigas	AAT44354.1	74
GOF168.ab1	unknown protein	Arabidopsis thaliana	NP_197560.2	34
GOF170.ab1	vitelline envelope sperm lysin receptor	Haliotis rufescens	AAL50827.1	31
GOF171.ab1	Transcription termination factor Rho	Gluconobacter oxydans 621H	AAW60839.1	28
GOF172.ab1	vitelline coat protein 41	Tegula pfeifferi	BAB15843.1	40
GOF175.ab1	unnamed protein product	Tetraodon nigroviridis	CAF90415.1	31

Table 9. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
GOF176.ab1	Hypothetical protein CBG16767	Caenorhabditis briggsae	CAE70263.1	22
GOF177.ab1	vitelline coat protein 42	Tegula pfeifferi	BAB15930.1	42
GOF179.ab1	ubiquitin ligase	Giardia lamblia ATCC 50803	XP_778668.1	25
GOF180.ab1	vitelline envelope sperm lysin receptor	Haliotis rufescens	AAL50827.1	29
GOF181.ab1	60S acidic ribosomal protein P0	Ixodes scapularis	AAY66850.1	76
GOF182.ab1	-		_	0
GOF183.ab1	COP1-like protein	Ostreococcus tauri	AAU14277.1	37
GOF184.ab1	LOC400590 protein	Homo sapiens	AAH62632.1	69
GOF185.ab1	beta-tubulin	Sycon sp. AR-2003	AAP49559.1	100
GOF186.ab1	Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain	Danio rerio	AAH95591.1	80
GOF187.ab1	ribosomal protein P1	Biomphalaria glabrata	AAZ39530.1	56
GOF188.ab1	SJCHGC02697 protein	Schistosoma japonicum	AAW26877.1	82
GOF189.ab1	unknown protein	Arabidopsis thaliana	AAG51466.1	36
GOF190.ab1	Nr		_	0
GOF191.ab1	ENSANGP0000000511	Anopheles gambiae str. PEST	EAA07049.3	48
GOF192.ab1	P2RF1	Human herpesvirus 6	AAA16738.1	30

11 19

^a Identity(%)

-

REFERENCES

- Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC. Complementray DNA sequencing : expressed sequence tags and human genome project. Science 1991; 252: 1651-6.
- Johnston M. Gene chips: array of hope for understanding gene regulation. Curr Biol 1998; 8: R171-4.
- Liu ZJ, Karsi A, Dunham R. Development of polymorphic EST markers suitable for genetic linkage mapping of catfish. Mar Biotechnol 1999; 1: 437-47.
- 4. Powers DA,V Kirby, M Gomez-Ghiarri. Genetic engineering abalone: gene transfer and ploidy manipulation. J Shellfish Res 1996; 15: 477.
- Ton C, Hwang DM, Dempsey AA, Tang HC, Yoon J, Lim M, Mably JD. Fishman MC, Liew CC. Identification, characterization, and mapping of expressed sequence tags from and embryonic zebrafish heart cDNA library. Genom Res 2000; 10: 1915-27.
- Sambrook J, Frisch EF, Maniatis T. Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; 1989.
- Parsons JD. Improved tools for DNA comparison and clustering. Comp Appl Biosci 1995; 11: 603-13.
- 8. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,

Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search program. Nucleic Acids Res 1997; 25: 3389-402.

- Bacher M, Meinhardt A, Lan HY, Mu W, Metz CN, Chesney JA, Calandra T, Gemsa D, Donnelly T, Atkins RC, Bucala R. Migration inhibitory factor expression in experimentally induced endotoxemia. Am. J. Pathol. 1997; 150: 235-46.
- Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003; 10: 791-800.
- 11. Cosulich SC, Savory PJ, Clarke PR. Bcl-2 regulates amplification of caspase activation by cytochrome c, Curr Biol 1999; 9: 147-50.
- 12. Lindquist S. The heat-shock response. Annu Rev Biochem 1986; 55: 1151-91.
- Cheng P, Liu X, Zhang G, He J. Cloning and expression analysis of a HSP70 gene from Pacific abalone (*Haliotis discus hannai*). Fish Shellfish Immunol. 2007; 22(1-2): 77-87.
- Farcy E, Serpentini A, Fievet B, Lebel JM. Identification of cDNAs encoding HSP70 and HSP90 in the abalone *Haliotis tuberculata*: Transcriptional induction in response to thermal stress in hemocyte primary culture. Comp Biochem Physiol B Biochem Mol Biol. 2007; 146(4): 540-50.
- 15. Vargas-Albores F, Jimnez-Vega F, Sderhll K. A plasma protein isolated from Brown Shrimp (*Penaeus californiensis*) which enhances the activation of prophenoloxidase system by beta-1,3-glucan. Dev Comp Immunol 1996;

20: 299-306.

- 16. Yepis-Plascencia G, Sotelo-Mundo R, Vasquez-Moreno L, Ziegler R, Higuera-Ciaparal I. A non-sex-specific hemolymph lipoprotein from the white shrimp *Penaeus vannamei* Boon. Isolation and partial characterization. Comp Biochem Physiol 1995; 111B: 181-7.
- Yepiz-Plascencia G, Vargas-Albores F, Jimenez-Vega F, Ruiz-Vedugo LM, Romo-Figuera G. Shrimp plasma HDL and -glucan binding protein (BGBP): comparison and biochemical characteristics. Comp Biochem Physiol 1998; 121B: 309-14.
- Vargas-Albores F, Jimenez-Vega F, Yepiz-Plascencia G. Purification and comparison of -1-3-glucan binding protein from white shrimp (*Penaneus vannamei*). Comp Biochem Physiol 1997; 116B: 453-8.
- 19. Lubzens E, Ravid T, Khayat M, Daube N, Tietz A. Isolation and characterization of the high density lipoproteins from the hemolymph and ovary of the penaeid shrimp *Penaeus semisulcatus* (de Haan); aproproteins and lipids. J Exp Zool 1997; 278: 339-48.
- Ruiz-Verdugo LM, Garcia-Banuelos ML, Vargas-Albores F, Higuera-Ciapara I, Yepiz-Plascencia GM. Amino acids and lipids of plasma HDL from the white shrimp *Penaeus vannamei* Boone. Comp Biochem Physiol 1997; 118: 91-6.
- Ravid T, Tietz A, Khayat M, Boehm E, Michelis R, Lubzens E. Lipid accumulation in the ovaries of a marine shrimp [*Penaeus semisulcatus* (de Haan)]. J Exp Bio 1999; 202: 1819-29.

- Adachi H, Tsujimoto M, Arai H, Inoue K. Expression cloning of a novel scavenger receptor from human endothelial cells. J Biol Chem 1997; 272: 31217-20.
- 23. Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA. The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci USA 1994 91: 1863-7.
- 24. Resnick D, Pearson A, Krieger M. The SRCR superfamily: a family reminiscent of the Ig superfamily. Trends Biochem Sci 1994; 19:5-8.
- 25. Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 1998; 10: 23-28.
- Kanost MR. Serine proteinaseinhibitors in arthropod immunity. Dev Comp Immunol 1999; 23: 291-301.
- 27. Pipe RK. Hydrolytic enzymes associated with the granular haemocytes of the marine mussel *Mytilus edulis*. Histochem J 1990; 22: 595-603.
- Faisal M, MacIntyre EA, Adham KG, Tall BD, Kothary MH, La Peyre JF. Evidence for the presence of protease inhibitors in eastern (*Crassestrea virginica*) and pacific (*Crassostrea gigas*) oysters. Comp Biochem Physiol B Biochem Mol Biol 1998; 121: 161-8.
- Faisal M, Oliver JL, Kaattari SL. Potential role of protease-antiprotease interactions in Perkinsus marinus infection in *Crassostrea spp.* Bull Eur Assoc Fish Pathol 1999; 19: 269-76.
- 30. Iwanaga S, Kawabata S, Muta T. New types of clotting factors and defense molecules found in horseshoe crab hemolymph their structures and

functions. J Biochem 1998; 123: 1-15.

- Smith LC, Azumi K, Nonaka M. Complement systems in invertebrates. The ancient alternative and lectin pathways. Immunopharmacology 1999; 42:107-120.
- 32. Vasta GR, Cheng TC, Marchalonis JJ. A lectin on the hemocyte membrane of the oyster (*Crassostrea virginica*). Cell Immunol 1984; 88: 475-88.
- 33. Epsztejn S, Glickstein H, Picard V, Slotki IN, Breuer W, Beaumont C, Cabantchik ZI. H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties. Blood 1999; 94: 3593-603.
- 34. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 1992; 267: 18148-153.
- 35. Saphire AC, Bobardt MD, Gallay PA. Host cyclophilin A mediates HIV-1 attachment to target cells via heparans. EMBO J 1999; 18: 6771-85.
- 36. Santos AN, Korber S, Kullertz G, Fischer G, Fischer B. Oxygen stress increases prolyl cis/trans isomerase activity and expression of cyclophilin 18 in rabbit blastocysts. Biol Reprod 2000; 62: 1-7.
- Depeiges A, Goubely C, Lenoir A, Cocherel S, Picard G, Raynal M, Grellet
 F, Delseny M. Identification of the most represented repeated motifs in Arabidopsis thaliana microsatellite loci. Theor Appl Genet 1995; 91: 160-8.

Chapter III.

Bulk isolation of stress-related genes by expressed

sequence tags of abalone, Haliotis discus hannai

Chapter III. Bulk isolation of stress-related genes by expressed sequence tags of abalone, *Haliotis discus hannai*

ABSTRACT

Temperature and salinity are the primary physical factors affecting the life of molluscs. In order to analyze expressed genes under temperature and salinity change, suppression subtractive hybridization (SSH) method was used and constructed three cDNA libraries from abalone exposed to heat-shock, cold-shock or hyposalinity stress. Putative function could be assigned to 75.8% of the 1,536 sequenced cDNAs. Based on sequence similarities, candidate genes was identified that may be involved in stress response or immune function. Among them, several stress- and immune-related genes HSC, HSP, major histocompatibility complex (MHC) class IIa chain, CD45 homolog, and IRF7 were identified from three subtracted cDNA libraries. The expressions of these genes were investigated in abalone exposed to stress. They were induced in response to stress, supporting their involvement in abalone immunity.

These EST libraries could be the rich source of stress or immune-related genes, and supplements for other publicly available libraries for comprehensive analysis of the invertebrate stress-response transcriptome.

Key words : abalone, *Haliotis discus hannai*, expressed sequence tag (EST), suppression subtractive hybridization (SSH), environmental stress

INTRODUCTION

Invertebrates are increasingly being brought into mariculture, where it is important to monitor immune function and to minimise stresses that could suppress immunity. The understanding of immune systems and stress responses in abalone is based on limited work on abalone, variable amounts of work on other molluscs (mostly focused on a few gastropods and bivalves), work on other invertebrates and a huge body of work on vertebrates [1].

The stress response has a complex relationship with disease and has been implicated in disease outbreaks in many animals, including abalone. Especially, temperature and salinity are the primary physical factors affecting the life of molluscs. Limited research has been undertaken to date on stress and/or immune responses in abalone. Recently, a link has been established in abalone between increased stress and decreased immune functional capacity [2-8], leading to increased rates of bacterial infections and increased mortality [4-8]. This link is based on immune function tests carried out after applying stressors such as altered salinity, shaking, decreased dissolved oxygen, increased concentrations of ammonia and nitrate and increased temperature. In abalone and other molluscs, both the stress response and the immune response appear to be centered on the hemocyte, as these blood cells produce mediators of stress and the main immune responses [9-11]. Partial cDNA sequencing to generate expressed sequence tags (ESTs) has been used for the fast and efficient gathering of a detailed profile of genes expressed in various tissues, cell types, or developmental stages [12]. Recently, Munasinghe and coworkers have identified expressed genes in digestive gland of Disk abalone, *Haliotis duscus discus* by expressed sequence tags [13]. However, this previous EST study showed limited number of stress or immune response genes. This is due to the abundant transcripts such as housekeeping genes masked the identification of rare genes, i.e., stress inducible genes which are specifically expressed and degraded during short periods of time in stress response cells.

In this study, three subtracted cDNA libraries were constructed from heat-shock, cold shock or hyposalinity treated abalone for the screening of stress or immune response related genes from abalone, *Haliotis discus hannai*.

19111

E 14 2

MATERIALS AND METHODS

Animals

Abalones, *Haliotis discus hannai* were suplied by Jeju Fisheries Research Institute (Jeju, Republic of Korea) and maintained in 6 tons flow-through tank at 18-20°C under a natural photoperiod. Abalone was exposed heat-shock or cold-shock from ambient sea water (18°C) to 28°C or 4°C, respectively. Hyopsalinity was derived from ambient sea water (35‰) to 20‰. The treated abalones (3 individuals per each time point) were sampled at 0, 0.5, 1, 2, 3, 4 and 5h in heat-shock treatment, or at 0, 3, 6, 9 and 24h in cold-shock treatment, or at 0, 1, 3, 6, 9 and 24h in hyosalinity treatment. The collected samples were ground immediately under liquid nitrogen for RNA preparation.

Total RNA isolation

Total RNA was extracted using Trizol reagent (Invitrogen) according to the manufacturer's instructions. Collected samples were pooled and ground into liquid nitrogen. Three volumes Trizol of sample was added and mixed with 0.2 volumes chloroform. The suspension was then centrifuged at $12,000 \times g$ for 15 min. The clear upper phase was aspirated and placed in a clean tube. The same volumes of isopropanol was then added, and samples were centrifuged at $12,000 \times g$ for 10 min. 75% The **RNA** pellet was washed with ethanol, dissolved in diethylpyrocarbonate-treated water and stored at -80° C.

mRNA isolation

mRNAs were isolated using a PolyA Tract mRNA isolation kit (Promega). After total RNA of each samples were pooled and adjusted to 0.5 mg, then, placed into 15 ml tube and RNase-free water was added to make 500 ul of final volume, and heated for 10 min at 65 °C. Mixture of $3\mu\ell$ biotinylated-Oligo (dT) probe and $13\mu\ell$ 20X SSC was added to the RNA tube. The annealed mixture was hybridized to Streptavidin-Paramagnetic Particles (SM-PMP), then mRNA-bound SM-PMP was captured with magnetic. Hybrid mRNA was dissolved with 250 $\mu\ell$ DEPC-water. After addition of 0.1 volume of 3M sodium acetate (NaOAc) and 1 volume of isopropanol the mRNA was, stored at -20°C for cDNA synthesis.

Suppression subtractive hybridization

The suppression subtractive hybridization technique (SSH) [14] was used to characterize new genes involved in stress and immune response. Briefly, cDNA was synthesized from 1µg of each mRNA (stress treated and control) using the SMART PCR cDNA Synthesis Kit (Clontech), which allowed the full-length amplification of cDNA from mRNA transcripts. A SSH assay was then performed using the PCR-Select cDNA Subtraction Kit (Clontech). The cDNA from the tester and from the driver were digested with *Rsa* I, and the tester cDNA was then ligated to either two different cDNA adaptors. During a first hybridization, excess driver was added to tester cDNA samples, which were then denatured and allowed to anneal. In the second hybridization, the two primary hybridization samples were mixed without denaturation. For further selection of differentially expressed sequences, denatured driver cDNA was again added to these hybrid samples. As a result, the remaining subtracted, equalized single-stranded tester cDNA reassociated to form hybrids with a different adaptor on each end. This forward-subtracted sample (genes present or up-regulated in stress treated compared with controls) was then used in PCR to amplify the differentially expressed sequences. PCR mixture was ligated using pGEM-T Easy system (Promega) and transformed into *E. coli* competent cells. A reverse subtracted library was also performed following the same protocol identify genes present or up-regulated in controls compared with infected tissues.

Selected colonies were amplified by PCR using Nested PCR primer 1 and 2R from PCR-Select cDNA Subtraction Kit. Agarose gel electrophoresis was performed to visualize the amplified fragments and to select by size the samples to be sequenced and arrayed. The PCR profile consisted of: initial denaturation for 5 min at 94°C; 35 cycles of 30 s denaturation at 94°C, 30 s annealing at 65°C and 1.5 min elongation at 72°C; final extension for 7 min at 72°C. Excess of primers and nucleotides was removed by enzymatic digestion using 10 and 1 U of ExoI and SAP, respectively (Amersham Biosciences) at 37°C for 1 h followed by inactivation of the enzymes at 80°C for 15 min. DNA sequencing was performed using the ABI 3730 automatic DNA sequencer (PE Applied Biosystems) and the ABI Prism Big Dye Terminatior Cycle Sequencing Ready Reaction kit (PE Applied Biosystems).

Bioinformatic analysis

Bioinformatic analysis was conducted to determine gene identities using GeneMaster 3.0 software (Ensoltek). Briefly, vector sequence was removed and database search was limited to ESTs >100bp in length. ESTs were then assembled in clusters of contigous sequences (contig) using ICAtools program [15]. Gene annotation procedures and homology searches of the sequenced ESTs was locally done by BLASTX for amino acid similarity comparisons [16]. Matches were considered to be significant only when the probability (P) was less than 1×10^{-3} using BLASTX with all parameters at the defaults. All ESTs that were not identified as orthologues of known genes were designated as unknown EST clones and hypothetical proteins were considered as known EST clones.

RT-PCR verification

Verification of expression levels of candidate genes was carried out by RT-PCR. Total RNA samples were extracted from the collected samples according to each stress condition using TRIzol reagent (Invitrogen). Subsequently, first-strand cDNA synthesis was carried out using the Advantage RT-for-PCR Kit (BD Biosciences). The expression levels of selected genes were detected by RT-PCR using specific primers, which were based on the nucleotide sequence of EST clones. As an internal control, β -actin was amplified using the appropriate primers (Table 1). The PCR conditions were as follows: 95°C for 5 min, followed by 30 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s, with a final step of 72°C for 7 min. The amplified PCR products were analyzed on an 1.5% agarose gel containing ethidium bromide (100 ng/ml).

Identification of microsatellite containing cDNAs

During the complication of EST sequences, genes that contained microsatellites were identified and their microsatellites were characterized in terms of complexity and repeat number. Clones containing microsatellites were identified by determination of a minimal number of repeats in the microsatellite sequences: dinucleotide, eight repeats; trinucleotide, five repeats; tetranucleotide, three repeats. Single nucleotide repeats were not included since they are not very useful for polymorphic markers. Some cDNA clones contains more than one type of repeat, in which case these clones were categorized according to the longest repeats.

Table 1. Primers used in RT-PCR

β-actin-RT-F	5'-GCCGCTTGACTCTTGTGTGC-3'
β-actin-RT-R	5'-CTCCTCTGGTGCAACGCGG-3'
HSC-RT-F	5'-CTGTGCGCTGACCTGTTTCG-3'
HSC-RT-R	5'-CGAGGTACGCAACTGCTTC-3'
HSC70-RT-F	5'-GTCGGCCTTGCTTAGACGAC-3'
HSC70-RT-R	5'-CTTGGCAAGTTTGAGCTCAC-3'
HSP84-RT-F	5'-GGTTTCCAATCGTCTGGTTAC-3'
HSP84-RT-R	5'-GTCTTCCAGGGAGAAGCC-3'
HSP26-RT-F	5'-CAGAGTCCTTGGGCGATCTAAC-3'
HSP26-RT-R	5'-GCAGGAGCTTTCTCATCGGCTTC-3'
cHSP70-RT-F	5'-GGACTTGCCAGTGCTCTTGTC-3'
cHSP70-RT-R	5'-GGACACGAGCGACGCCATC-3'
HSP71-RT-F	5'-GCCACGTGGTGTGCCTCAG-3'
HSP71-RT-R	5'-CGGCTTGTCTCACGCTGAAG-3'

RESULTS AND DISCUSSION

Summary of EST clones in heat-shock, cold-shock or hyposalinity subtracted cDNA libraries

A total of 1,536 random clones from the heat-shock, cold-shock or hyposalinity subtracted cDNA libraries were partially sequenced; 384 clones from the heat-shock library, 672 clones from the cold-shock library and 480 clones from hyposalinity library. A summary of the identified genes from three subtracted cDNA libraries is shown in Table 2.

The initial ESTs were grouped into 1,074 consensus sequences, comprised of 124 clusters (heat-shock: 42, cold-shock: 52 and hyposalinity: 21) and 950 singletons (heat-shock: 217, cold-shock: 491 and hyposalinity: 278). This suggests that the library had an overall redundany of 18.3%. BLASTX comparisons established that 1,150 (87.4%) of the clones were orthologues of known genes (82 (7.1%) of known genes were identified as hypothetical protein), and the remaining 166 (12.6%) clones were unidentifiable via similarity comparisons ($E\pm1\times e^{-3}$). Among the 1,074 EST clones, only 4 unique genes were identified as homologues of previously reported abalone ESTs and 1,070 (99.6%) genes were identified as orthologues of known genes from other organisms. These results suggest that EST analysis constitues a powerful technique for the rapid discovery of large numbers of useful genes in shellfish.

	S	Grand		
	Heat-shock	Cold-shock	Hyposalinity	Sum
Number of clones sequenced	384	672	480	1,536
Number of clones analysed	346	639	331	1316
EST clusters	42	52	21	124
Unigene	259	543	299	1074
Redundancy (%)	25.1	15	9.7	18.3
ESTs with E value < 1×e ⁻³ (matched)(%)	303 (87.6)	403(63.1)	292 (88.2)	1150 (87.4)
ESTs with E value $\ge 1 \times e^{-3}$ (unknown)	43 (12.4)	236 (36.9)	39 (11.8)	166 (12.6)

Table 2. General characteristics of the three subtracted cDNA libraries from abalone.

Expression profile in the three subtracted cDNA libraries

The expression profiles of the known genes identified in the three subtracted cDNA libraries are provided in Fig. 1. Among 1101 identified genes, 986 genes (89.6%) were sequenced only once; 91 genes (8.3%) 2-4 times; 24 genes (2.2%) 5 times or more. The percentage of singletons may be acceptable, although redundancy will tend to increase with increasing numbers of sequenced clones. The most abundantly expressed gene in the heat-shock subtracted cDNA library were as follows: small heat shock protein p26 (3.2%), heat shock 27kDa protein 2 (2.9%), erythrocyte membrane protein 1 (2.6%), heat shock protein 70 (2.0%) and cytoplasmic heat shock protein 70 (1.7%). The most abundantly expressed genes in the cold-shock subtracted cDNA library were as follows: trypsinogen 2 (1.4%), chymotrypsinogen 2 (1.1%), trypsinogen 1(1.1%), carboxypeptidase A1 (0.9%) and hemoglobin beta-A chain (0.6%). The most abundantly expressed genes in the hyposalinity subtracted cDNA library were as follows: actin (1.8%), cytoplasmic heat shock protein 70 (1.5%) and calcium binding protein 1(0.6%). The expression profile in the heat-shock or cold-shock subtracted cDNA library then, was more polarized than in its hyposalinity subtracted cDNA libraries.

Distribution of the identified clones in the three subtracted cDNA libraries

Based on the major functions of their encoded proteins, the identified clones were classified into sixteen broad categories; biogenesis of cellular components, cell cycle/ DNA processing, cell fate, cell rescue/ defense/ virulence. cell type differentiation, cellular communication/signal transduction mechanism, cellular transport/ transport facilitation/ transport routes, development (Systemic), energy, interaction with the cullular environment, metabolism, protein activity regulation, protein fate (folding, modification, destination), protein synthesis, protein with binding function/ cofactor requirement (structural or catalytic) and transcription. The distribution of identified clones from the three subtracted cDNA libraries is shown in Fig 2. No notable differences were detected between the cold-shock and hyposalinity subtracted cDNA libraries. However, the distribution of identified clones from the heat-shock subtracted library showed some differences, compared to others. Especially, cell rescue/ defense/ virulence, cellular transport/ transport facilitation/ transport routes, protein fate (folding, modification, destination) and protein with binding function/ cofactor requirement (structural or catalytic) were more abundant than the others.

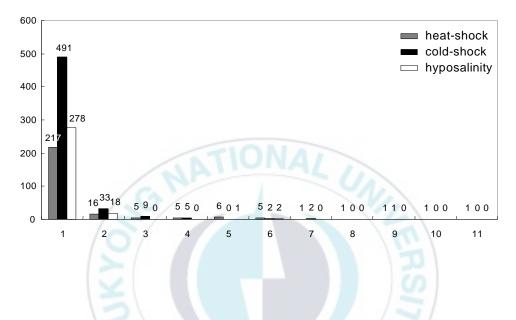


Fig. 1. Expression profiles and sequencing redundancy in the analysis of ESTs from the three subtracted cDNA libraries of abalone. (redundancy, X axis; hits per gene, Y axis)

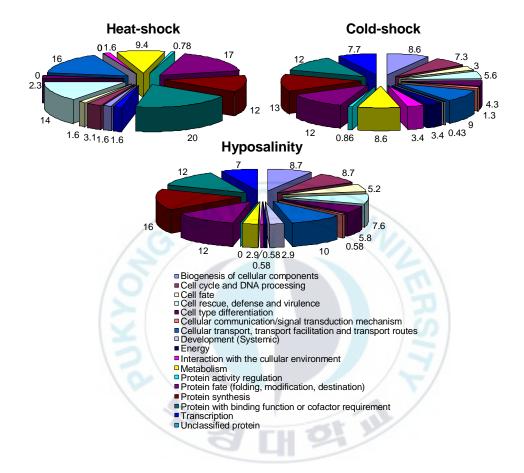


Fig. 2. Functional categorization of the three subtracted cDNA libraries taken from abalone.

Isolation of stress or immune response-related genes from the three subtracted cDNA libraries

Database searches identified putative stress response-related genes that were expressed in the three subtracted cDNA libraries (Table 3). The putative amino acid sequence deduced from several cDNA clone were identified as the heat shock protein. Heat shock proteins (HSPs) are well known as stress proteins because various forms of stress enhance their transcriptional activation and biosynthesis in organisms, ranging from bacteria to humans [17]. According to their average apparent molecular masses they are designed as HSP100, HSP90, HSP70, HSP60, and small-size HSPs [18, 19]. In this study, HSP molecules of various size were identified and RT-PCR was performed using some HSP genes (Table 3) to confirm the results of our study. Several HSPs was gradually expressed in thermal stress conditions. Interestingly, the expression sHSP26 was not induced by cold shock even that of HSP70 was strongly induced (Fig. 3). These results indicate that the abalone sHSP26 induced only by cold shock.

Various stress- or immune-related genes were identified (Table 4). The identified clones included a major component of immune system and revealed significant homology to other known immune-related genes. This work initiates a complementary approach to EST mass sequencing by identification of highly up-regulated genes in response to thermal and salinity stress. Most of the genes identified in this work have not yet been characterized in molluscs. Data of this work will complement those

already obtained on the same species and will provide more information in future studies. In addition, the genes and ESTs identified in this study can be mapped onto genetic linkage maps and potentially serve as candidates for the mapping of stress-resistant genes/Quantitative Traits of Loci(QTLs).

Clone no.	Putative identification	Closest species	Identity
ABHSL-4-H11-T3.ab1	heat shock cognate protein		82
ABHSL-3_F06_46_12.ab1	heat shock cognate 70	Tetranychus urticae	79
ABHSL-3_G04_31_14.ab1	84kDa heat shock protein	Haliotis tuberculata	91
AHSL-1_E04_29_10.ab1	heat shock protein hsp40	homo sapiens	98
AHSL-2_D11_84_07.ab1	small heat shock protein p26	Artemia persimilis	23
ABHSL-4-A9-T3.ab1	heat shock protein 71	Haliotis tuberculata	96
ABHSL-4-H9-T3.ab1	cytoplasmic heat shock protein 70	strea edulis	79
ABHSL-4-D2-T3.ab1	heat shock 70kD protein 1B	Strongylocentrotus purpuratus	91
ABHSL-3_A06_41_02.ab1	heat shock protein 70	Bombyx mori	52
ABHSL-3_H08_64_16.ab1	70kDa heat shock protein	Crassostrea gigas	61
AHSL-2_G05_39_13.ab1	heat shock protein 70	Wuchereria bancrofti	66

Table 3. Putative stress-related genes of abalone SSH cDNA libraries

Table 4. Putative immune-related genes of abalone SSH cDNA libraries

Clone no.	Putative identification	Closest species	Identity
ABLSL-1-A10-T7.ab1	cathepsin L-like cysteine proteinase B	Rhipicephalus haemaphysaloides haemaphysaloides	76
ABLSL-1-B8-T7.ab1	MHC class II A antigen	Paralichthys olivaceus	70
ABLSL-1-C6-T7.ab1	IRF7	Siniperca chuatsi	71
ABLSL-1-C8-T7.ab1	leukocyte elastase inhibitor	Oncorhynchus mykiss	72
ABLSL-1-F6-T7.ab1	CD45	Takifugu rubripes	70
ABLSL-1-H9-T7.ab1	B-cell receptor CD22-A isoform	Danio rerio	28
ABLSL-2-F3-T7.ab1	CD36 antigen	Bos taurus	55
ABLSL-3-B4-T7.ab1	pancreatic protein with two somatomedin B domains	Paralichthys olivaceus	97
ABLSL-3-C11-T7.ab1	suppressor of cytokine signaling 3	Takifugu rubripes	77
ABLSL-3-H11-T7.ab1	Contains similarity to NBS/LRR disease resistance protein		38
ABLSL-3-H3-T7.ab1	CD3 epsilon precursor	Gallus gallus	33
ABLSL-4-B9-T7.ab1	ubiquitin fusion degradation 1-like	Danio rerio	90
ABLSL-4-C10-T7.ab1	hemoglobin beta-A chain	Siniperca chuatsi	88
ABLSL-4-F2-T7.ab1	MHC II invariant chain	Siniperca chuatsi	73

Heat shock	0	0.5	1	2	3	4	5 (h)
β-actin	1		1	1	1	1	1
heat shock cognate protein		-	-	-	-	-	-
heat shock cognate 70					_		—
84kDa heat shock protein	_	-	-	1	-	-	-
small heat shock protein p26							
cytoplasmic heat shock protein 70		_	-	-	-	-	-

Cold shock	0	3	6	9	24 (h)
β-actin	î	I	I	I	1
heat shock cognate protein					-
heat shock protein 71	-	-	-	-	-
cytoplasmic heat shock protein 70		-	-	-	-

Fig. 3. Expression level of putative stress-related genes. HSP familes were analysed by RT-PCR. Hotil

12

Isolation of EST clones containing microsatellite

Among 1,536 sequenced cDNA clones, 18 unique EST clones harbor microsatellite sequences (Table 5). These microsatellites are potentially useful for genomic mapping if they are polymorphic. This study have been found that targeting microsatellite regions within cDNAs is an efficient way to develop type I molecular markers representing genes of known functions [20]. Because of the evolutionary conservation, mutation rates within gene-coding sequences are lower than those in non-coding genomic sequences. As a result, type I polymorphic markers are often more difficult to identify. By tagging the highly polymorphic microsatellites to known genes, the efficiency for the development of type I markers can be dramatically enhanced. The major objective of this study was to develop EST resources, polymorphism of these microsatellite clones was not attempted to characterize.

EST analysis may be one of the most efficient ways for the development of polymorphic type I markers as well as through tagging of microsatellites existing within cDNAs. ESTs will also be valuable molecular reagents for the production of microarrays. In particular, the application of cDNA microarrays may facilitate research attempting to answer questions concerning stress responses and other protective responses of abalone exposured by environmental stress.

Table 5. EST-containing MS cDNA clones from the abalone SSH cDNA libraries

Clone Name	Nucleotide repeat unit	Microsatellite repeats	Gene name
LSASL-2_C4_06.ab1	Dinucleotide	(GT)6	inhibitor of DNA binding 4
LSASL-2_B11_03.ab1	Tetranucleotide	(TCAC)4	unknown
AHSL-2_G10_79_14.ab1	Trinucleotide	(TCT)4	ribosomal protein S15
ABLSL7-H6-T7.ab1	Dinucleotide	(CA)5	type 1 collagen alpha 1
ABHSL-3_C06_43_06.ab1	Dinucleotide	(AT)7	Twin-arginine translocation pathway signal
ABLSL7-D6-T7.ab1	Dinucleotide	(AT)6	unknown
ABLSL6-D2-T7.ab1	Dinucleotide	(GA)6	unknown
ABLSL7-E6-T7.ab1	Trinucleotide	(TTG)4	unnamed protein product
ABLSL7-A11-T7.ab1	Trinucleotide	(CCT)4	beta actin
ABLSL7-A10-T7.ab1	Trinucleotide	(GGA)4	unknown
ABLSL5-E7-T7.ab1	Dinucleotide	(GT)8	unknown
ABLSL-4-E12-T7.ab1	Trinucleotide	(GGA)4	unknown
ABLSL-3-C11-T7.ab1	Dinucleotide	(AC)6	suppressor of cytokine signaling 3
ABLSL-4-B2-T7.ab1	Trinucleotide	(AGG)4	unnamed protein product
ABLSL-3-F12-T7.ab1	Trinucleotide	(TTA)4	unknown
	,/Tetranucleotide	/(TCAA)4	
ABLSL-3-D1-T7.ab1	Trinucleotide	(TCC)4	beta actin
ABLSL-1-E6-T7.ab1	Dinucleotide	(AC)5	unknown
ABLSL-1-G3-T7.ab1	Trinucleotide	(CTT)4	ribosomal protein S24

Table 6. List of identified ESTs from the heat-shock abalone subtracted cDNA library

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
ABHSL-3_A02_9_02.ab1	CG3696-PA, isoform A	Drosophila melanogaster	NP_523441.1	24
ABHSL-3_A04_25_02.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	100
ABHSL-3_A06_41_02.ab1	heat shock protein 70	Bombyx mori	ABD36134.1	52
ABHSL-3_A07_49_01.ab1	-		_	0
ABHSL-3_A08_57_02.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	85
ABHSL-3_A09_65_01.ab1	PREDICTED: similar to alanyl-tRNA synthetase	Strongylocentrotus purpuratus	XP_794517.1	30
ABHSL-3_A10_73_02.ab1	cellulase EGX	Ampullaria crossean	AAP31839.1	50
ABHSL-3_A11_81_01.ab1	ribosomal protein L18	Crassostrea gigas	CAD91422.1	77
ABHSL-3_B02_10_04.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	85
ABHSL-3_B03_18_03.ab1	GM03761p	Drosophila melanogaster	AAL47998.1	47
ABHSL-3_B04_26_04.ab1	ALIGINAL		_	0
ABHSL-3_B05_34_03.ab1	BAG-family molecular chaperone regulator-3; BAG-3	Homo sapiens	AAD16122.2	40
ABHSL-3_B06_42_04.ab1	hypothetical protein LOC548934	Xenopus tropicalis	NP_00101618 0.1	70
ABHSL-3_B07_50_03.ab1	proline rich protein MP4	Mus musculus	NP_444481.1	30
ABHSL-3_B08_58_04.ab1	nitric oxide synthase 1, neuronal	Mus musculus	NP_032738.1	42
ABHSL-3_B09_66_03.ab1			_	0
ABHSL-3_B10_74_04.ab1	heat shock protein 70	Mytilus galloprovincialis	BAD99026.1	53
ABHSL-3_B11_82_03.ab1	BAGS_BOMMO BAG domain-containing protein Samui		Q9BLJ6	38
ABHSL-3_B12_90_04.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	80
ABHSL-3_C01_3_05.ab1	similar to Homeodomain-interacting protein kinase 2	Gallus gallus	XP_416335.1	31
ABHSL-3_C03_19_05.ab1	similar to mitochondrial ATP synthase lipid binding protein precursor	Apis mellifera	XP_623661.1	42
ABHSL-3 C04 27 06.ab1	similar to 40S ribosomal protein S16	Rattus norvegicus	XP 341816.2	74
ABHSL-3 C05 35 05.ab1		Chlamys farreri	AAR11781.1	64
ADHSL-5_C05_55_05.a01	heat shock protein 90	Rhodobacter		04
ABHSL-3_C06_43_06.ab1	Twin-arginine translocation pathway signal	sphaeroides ATCC 17025	ZP_00915527. 1	27
ABHSL-3_C07_51_05.ab1	formin-related protein, possible	Cryptosporidium parvum	CAD98456.1	52
ABHSL-3_C08_59_06.ab1	actine	Elaeis guineensis	AAT45848.1	95
ABHSL-3_C09_67_05.ab1	similar to TAF10 RNA polymerase II, TATA box binding protein (TBP)-associated factor	Mus musculus	XP_122081.2	57
ABHSL-3_C10_75_06.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	73
ABHSL-3_C11_83_05.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	85
ABHSL-3_D01_4_07.ab1	hypothetical protein BC1906	Bacteriophage phBC6A51	NP_852540.1	24
ABHSL-3_D02_12_08.ab1	similar to CG5290-PA	Bos taurus	XP_614813.2	25
ABHSL-3_D03_20_07.ab1			_	0
	similar to notch1 preproprotein	Strongylocentrotus	- XP_789629.1	41

Table	6.	(continued)
I aoio	0.	(contrinction)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
BHSL-3_D05_36_07.ab1	unnamed protein product	Tetraodon nigroviridis	CAG08894.1	30
BHSL-3_D06_44_08.ab1	hypothetical protein UM04162.1	Ustilago maydis 521	XP_760309.1	33
ABHSL-3_D08_60_08.ab1	hypothetical protein LOC541384	Danio rerio	NP_00101352 9.1	46
BHSL-3_D09_68_07.ab1	-		_	0
ABHSL-3_D10_76_08.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	85
ABHSL-3_D12_92_08.ab1	unnamed protein product	Tetraodon nigroviridis	CAF99499.1	57
ABHSL-3_E01_5_09.ab1	hypothetical protein Gmet_0599	Geobacter metallireducens GS-15	ABB30842.1	31
ABHSL-3_E02_13_10.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	100
ABHSL-3_E03_21_09.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	100
BHSL-3_E04_29_10.ab1	similar to PTPL1-associated RhoGAP 1	Pan troglodytes	XP_513574.1	48
ABHSL-3_E06_45_10.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	100
ABHSL-3_E07_53_09.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	85
ABHSL-3_E08_61_10.ab1	cytoplasmic heat shock protein 70	Ostrea edulis	AAM46634.1	73
ABHSL-3_E09_69_09.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	100
	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	80
ABHSL-3_E11_85_09.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	92
ABHSL-3_E12_93_10.ab1	Mfd	Pasteurella multocida subsp. multocida str. Pm70	AAK03125.1	43
ABHSL-3_F02_14_12.ab1	_		_	0
ABHSL-3_F03_22_11.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	33
BHSL-3_F04_30_12.ab1	malate-H+/Na+-lactate antiporter	Bacillus subtilis subsp. subtilis str. 168	CAB14288.1	35
ABHSL-3_F05_38_11.ab1	Hypothetical protein ZK380.2	Caenorhabditis elegans	AAC17011.1	43
ABHSL-3_F06_46_12.ab1	heat shock cognate 70	Tetranychus urticae	ABC33921.1	79
	similar to ENSANGP00000018891	Apis mellifera	XP_393575.2	43
BHSL-3_F09_70_11.ab1	cytoplasmic heat shock protein 70	Ostrea edulis	AAM46634.1	83
	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	100
ABHSL-3_F11_86_11.ab1	ribosomal protein S1 (rpsA)	Treponema pallidum subsp. pallidum str. Nichols	AAC65266.1	39
ABHSL-3_F12_94_12.ab1	vdg3	Mytilus edulis	ABB76764.1	41
BHSL-3_G01_7_13.ab1	-		_	0
BHSL-3_G03_23_13.ab1	SBCFR-1 protein	Paralabrax nebulifer	CAA67355.1	42
BHSL-3_G04_31_14.ab1	heat shock protein 90	Chlamys farreri	AAR11781.1	66
ABHSL-3_G07_55_13.ab1	hypothetical protein	Oryza sativa (japonica cultivar-group)	BAD82383.1	36
ABHSL-3_G08_63_14.ab1	heat shock protein 70	Haliotis discus hannai	ABC54952.1	98
BHSL-3_G10_79_14.ab1	unnamed protein product	Tetraodon nigroviridis	CAF93683.1	41
ABHSL-3_G11_87_13.ab1	similar to PTPL1-associated RhoGAP 1	Pan troglodytes	XP_513574.1	39
ABHSL-3_H01_8_15.ab1	similar to COP9 signalosome subunit 6; H_NH0506M12.12; COP9 subunit 6; MOV34 homolog, 34 kD	Pan troglodytes	XP_519247.1	68
ABHSL-3_H02_16_16.ab1	BAGS_BOMMO BAG domain-containing protein Samui		Q9BLJ6	30

Table 6. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
ABHSL-3_H03_24_15.ab1	RE15268p	Drosophila melanogaster	AAS93748.1	32
ABHSL-3_H07_56_15.ab1	Cell division transporter substrate-binding protein FtsY	Pseudoalteromonas tunicata D2	ZP_01136122. 1	36
ABHSL-3_H08_64_16.ab1	70kDa heat shock protein	Crassostrea gigas	BAD15286.1	61
ABHSL-3_H10_80_16.ab1	PREDICTED: similar to baculoviral IAP repeat-containing 2, partial	Strongylocentrotus purpuratus	XP_789042.1	27
ABHSL-3_H11_88_15.ab1	-		_	0
ABHSL-3_H12_96_16.ab1	ribosomal protein S15A	Lysiphlebus testaceipes	AAX62449.1	85
ABHSL-4-A10-T3.ab1	-		_	0
ABHSL-4-A11-T3.ab1	-		_	0
ABHSL-4-A12-T3.ab1	similar to Paxillin	Pan troglodytes	XP_509424.1	36
ABHSL-4-A2-T3.ab1	SJCHGC02336 protein	Schistosoma japonicum	AAW25825.1	34
ABHSL-4-A3-T3.ab1	unnamed protein product	Kluyveromyces lactis	XP_454560.1	47
ABHSL-4-A4-T3.ab1	similar to guanine nucleotide exchange factor p532	Strongylocentrotus purpuratus	 XP_781527.1	41
ABHSL-4-A5-T3.ab1	hypothetical protein 3	Microplitis demolitor bracovirus	YP_239367.1	42
ABHSL-4-A7-T3.ab1	0/		_	0
ABHSL-4-A8-T3.ab1	ribosomal protein S5	Crassostrea gigas	CAD91445.1	95
ABHSL-4-A9-T3.ab1	heat shock protein 70	Haliotis discus hannai	ABC54952.1	96
ABHSL-4-B10-T3.ab1	ribosomal protein L24e	Hister sp. APV-2005	CAJ17316.1	59
ABHSL-4-B11-T3.ab1	vdg3	Mytilus edulis	ABB76764.1	40
ABHSL-4-B12-T3.ab1	hypothetical protein Pfl_2663	Pseudomonas fluorescens PfO-1	ABA74404.1	26
ABHSL-4-B2-T3.ab1	vdg3	Mytilus edulis	ABB76764.1	38
ABHSL-4-B3-T3.ab1	similar to Protein transport protein Sec24D (SEC24-related protein D)	Bos taurus	XP_580541.2	41
ABHSL-4-B5-T3.ab1	hypothetical protein Noc_0748	Nitrosococcus oceani ATCC 19707	ABA57261.1	42
ABHSL-4-B6-T3.ab1	ENSANGP00000014375	Anopheles gambiae str. PEST	EAA14477.2	30
ABHSL-4-B7-T3.ab1	HYPOTHETICAL PROTEIN	Lactococcus lactis subsp. lactis Il1403	AAK05469.1	26
ABHSL-4-B8-T3.ab1	hypothetical protein PTD2_08194	Pseudoalteromonas tunicata D2	ZP_01133610. 1	28
ABHSL-4-B9-T3.ab1	-		_	0
ABHSL-4-C1-T3.ab1	developmentally-regulated vdg3	Haliotis asinina	AAX11341.1	63
ABHSL-4-C10-T3.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_473185.2	30
ABHSL-4-C11-T3.ab1	-		_	0
ABHSL-4-C3-T3.ab1	erythrocyte membrane protein 1	Plasmodium falciparum	AAL11649.1	25
ABHSL-4-C4-T3.ab1	hypothetical protein	Yarrowia lipolytica	XP_503304.1	38
ABHSL-4-C6-T3.ab1	-	A	_	0
ABHSL-4-C9-T3.ab1	unknown	Crassostrea gigas	– AAU93882.1	33
ABHSL-4-D1-T3.ab1	novel protein similar to vertebrate gliacolin (C1Q)	Danio rerio	CAE17630.1	37
ABHSL-4-D10-T3.ab1	-		_	0
ABHSL-4-D11-T3.ab1	-		-	0

Clone no.	Putative identification	Closest species	Accession no.	Ia
ABHSL-4-D2-T3.ab1	PREDICTED: similar to heat shock 70kD protein 1B	Strongylocentrotus purpuratus	XP_780151.1	91
ABHSL-4-D4-T3.ab1 ABHSL-4-D5-T3.ab1	unnamed protein product	Tetraodon nigroviridis	CAG10208.1	26 0
ABHSL-4-D6-T3.ab1	Hypothetical protein F41G3.12	Caenorhabditis elegans	– AAP13779.1	48
ABHSL-4-D8-T3.ab1	-		-	0
ABHSL-4-E1-T3.ab1 ABHSL-4-E10-T3.ab1	78kDa glucose regulated protein ribosomal protein S2	Crassostrea gigas Chlamys farreri	BAD15288.1 AAM94271.1	69 90
ABHSL-4-E12-T3.ab1	similar to sushi domain containing 1	Mus musculus	XP_620037.2	34
ABHSL-4-E2-T3.ab1	upregulated in colorectal cancer gene 1 protein precursor	Homo sapiens	NP_060019.1	27
ABHSL-4-E3-T3.ab1	heat shock protein 70	Mytilus galloprovincialis	CAH04108.1	69
ABHSL-4-E5-T3.ab1	_		-	0
ABHSL-4-E6-T3.ab1	General substrate transporter:Major facilitator superfamily	Burkholderia ambifaria AMMD	ZP_00686283. 1	34
ABHSL-4-E7-T3.ab1	similar to Protein transport protein Sec61 beta subunit	Strongylocentrotus purpuratus	XP_786999.1	70
ABHSL-4-E8-T3.ab1	heat-shock protein 70	Biomphalaria glabrata	AAB99911.1	86
ABHSL-4-E9-T3.ab1	yhaP	Bacillus subtilis subsp. subtilis str. 168	CAB12830.1	45
ABHSL-4-F10-T3.ab1			_	0
ABHSL-4-F11-T3.ab1	hypothetical protein	Plasmodium chabaudi chabaudi	XP_743395.1	29
ABHSL-4-F12-T3.ab1	-		_	0
ABHSL-4-F2-T3.ab1	NADH dehydrogenase subunit 4	Haliotis rubra	YP_026074.1	91
ABHSL-4-F3-T3.ab1			_	0
ABHSL-4-F4-T3.ab1	heat shock protein protein	Paracentrotus lividus	CAA43653.1	57
ABHSL-4-F6-T3.ab1	hypothetical protein	Yarrowia lipolytica	XP_501418.1	31
ABHSL-4-F8-T3.ab1	PREDICTED: similar to ENSANGP00000018891	Apis mellifera	_ XP_393575.2	32
ABHSL-4-F9-T3.ab1	small heat shock protein p26	Artemia sinica	ABC41137.1	31
ABHSL-4-G11-T3.ab1	4Fe-4S ferredoxin, iron-sulfur binding protein	Anaeromyxobacter dehalogenans 2CP-C	YP_467283.1	39
ABHSL-4-G12-T3.ab1	hypothetical protein 151.t00004	Entamoeba histolytica HM-1:IMSS	XP_651700.1	40
ABHSL-4-G2-T3.ab1	unnamed protein product	Mus musculus	BAE27774.1	26
ABHSL-4-G3-T3.ab1	PREDICTED: similar to hect (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHC1)-like domain (RLD) 1	Danio rerio	XP_698091.1	45
ABHSL-4-G5-T3.ab1	GA21098-PA	Drosophila pseudoobscura	EAL32786.1	30
ABHSL-4-G6-T3.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_704192.1	44
ABHSL-4-G8-T3.ab1	similar to mucin 19, partial	Strongylocentrotus purpuratus	XP_793965.1	35
ABHSL-4-G9-T3.ab1	-		_	0
ABHSL-4-H10-T3.ab1	LIM-homeobox domain protein		AAB08752.1	42
ABHSL-4-H3-T3.ab1	Col3a1 protein	Mus musculus	AAH28248.1	40
ABHSL-4-H5-T3.ab1	blastula protease-10	Paracentrotus lividus	CAA39673.1	32

Table 6. (continued)

Table	6. (<i>(continued)</i>
I aoio	0. 1	(contractor)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
ABHSL-4-H2-T3.ab1	similar to hect (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHC1)-like domain (RLD) 1	Danio rerio	XP_698091.1	45
ABHSL-4-H6-T3.ab1	heat shock protein 70	Manduca sexta	AAO65964.1	57
ABHSL-4-H8-T3.ab1	fatty acid binding protein	Clonorchis sinensis	AAN04089.1	29
AHSL-1_A01_1_01.ab1	ENSANGP0000009540	Anopheles gambiae str. PEST	EAA04007.2	35
AHSL-1_A02_9_02.ab1	developmentally-regulated vdg3	Haliotis asinina	AAX11341.1	73
AHSL-1_A07_49_01.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	100
AHSL-1_A09_65_01.ab1	similar to pim (mammalian oncogene) Related Kinase (prk-1), partial	Danio rerio	XP_699228.1	49
AHSL-1_A11_81_01.ab1	-		_	0
AHSL-1_A12_89_02.ab1	conserved hypothetical protein	Chlamydophila abortus S26/3	CAH64374.1	43
AHSL-1_B04_26_04.ab1	156D suface antigen	Paramecium primaurelia	CAA65436.1	39
AHSL-1_B06_42_04.ab1	ribosomal protein S14	Bombyx mori	AAU11819.1	36
AHSL-1_B09_66_03.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	83
AHSL-1_B11_82_03.ab1	polyketide synthase	Mycosphaerella zeae-maydis	AAR85531.1	35
AHSL-1_B12_90_04.ab1	midasin	Aspergillus fumigatus Af293	XP_755547.1	35
AHSL-1_C01_3_05.ab1	ependymin-related protein precursor; EpenHg precursor	Holothuria glaberrima	AAR89380.1	46
AHSL-1_C02_11_06.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	100
AHSL-1_C03_19_05.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	100
AHSL-1_C05_35_05.ab1	fasciclin domain protein	Cyanobacteria bacterium Yellowstone A-Prime	YP_473783.1	51
AHSL-1_C08_59_06.ab1	hypothetical protein, conserved	Leishmania major	CAJ03405.1	34
AHSL-1_C09_67_05.ab1	hypothetical protein	Oryza sativa (japonica cultivar-group)	XP_462982.1	46
AHSL-1_C11_83_05.ab1	hypothetical protein XP_686536	Danio rerio	XP_691628.1	41
AHSL-1_C12_91_06.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	80
AHSL-1_D01_4_07.ab1	ribosomal protein L24	Crassostrea gigas	CAD91424.1	87
AHSL-1_D02_12_08.ab1			_	0
AHSL-1_D04_28_08.ab1	unnamed protein product	Tetraodon nigroviridis	CAF99140.1	38
AHSL-1_D05_36_07.ab1	heat shock protein 70	Bombyx mori	ABD36134.1	57
AHSL-1_D06_44_08.ab1	brain-specific fatty acid binding protein	Oryzias latipes	BAE72542.1	35
AHSL-1_D07_52_07.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	100
AHSL-1_D08_60_08.ab1	alginate lyase	Haliotis discus hannai	BAC87758.1	100
AHSL-1_D09_68_07.ab1	-		-	0
AHSL-1_D10_76_08.ab1	-		-	0
AHSL-1_D11_84_07.ab1	surface antigen S	Paramecium primaurelia	AAS59562.1	48
AHSL-1_E01_5_09.ab1	expressed protein	Cryptococcus neoformans var. neoformans JEC21	AAW42212.1	30
AHSL-1_E04_29_10.ab1	heat shock protein hsp40 homolog - human	human	G02272	68
AHSL-1_E06_45_10.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	50
AHSL-1_E08_61_10.ab1	asparaginyl-tRNA synthetase	Pan troglodytes	XP_512149.1	74

Table 6. (continued

Clone no.	Putative identification	Closest species	Accession no.	ľ
AHSL-1_E10_77_10.ab1	matrilin 1, cartilage matrix protein	Rattus norvegicus	NP_00100698 0.1	30
AHSL-1_E12_93_10.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	100
AHSL-1_F01_6_11.ab1	ribosomal protein L35	Mus musculus	NP_079868.1	79
AHSL-1_F02_14_12.ab1	ATP-dependent RNA helicase, DEAD/DEAH box family protein	Rhodobacterales bacterium HTCC2654	ZP_01012424. 1	48
AHSL-1_F03_22_11.ab1	2-hydroxymuconic semialdehyde dehydrogenase	Burkholderia cepacia	AAP32788.1	32
AHSL-1_F04_30_12.ab1	heat shock protein 70	Bombyx mori	ABD36134.1	55
AHSL-1_F07_54_11.ab1	Dienelactone hydrolase	Synechococcus sp. WH 7805	ZP_01122724. 1	31
AHSL-1_F08_62_12.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	82
AHSL-1_F09_70_11.ab1	SJCHGC01954 protein	Schistosoma japonicum	AAX26850.2	53
AHSL-1_F10_78_12.ab1	hypothetical protein, unknown function	Leishmania major	CAJ08568.1	51
AHSL-1_F11_86_11.ab1	temptin	Aplysia brasiliana	AAS92605.1	56
AHSL-1_F12_94_12.ab1	similar to Lactase-phlorizin hydrolase precursor (Lactase-glycosylceramidase)	Strongylocentrotus purpuratus	XP_783049.1	58
AHSL-1_G01_7_13.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	84
AHSL-1_G02_15_14.ab1				0
AHSL-1_G04_31_14.ab1	similar to angiomotin isoform 2	Bos taurus	_ XP_879786.1	33
AHSL-1_G05_39_13.ab1	heat shock protein 70	Bombyx mori	ABD36134.1	57
AHSL-1_G06_47_14.ab1	MGC80644 protein	Xenopus laevis	AAH73276.1	34
AHSL-1_G07_55_13.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	100
AHSL-1_H01_8_15.ab1	F1F0-type ATP synthase subunit g	Ixodes scapularis	AAY66986.1	46
AHSL-1_H02_16_16.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	62
AHSL-1_H03_24_15.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	85
AHSL-1_H05_40_15.ab1	OSJNBa0035I04.9	Oryza sativa (japonica cultivar-group)	CAE05421.2	45
AHSL-1_H07_56_15.ab1		3		0
AHSL-1_H08_64_16.ab1	heat shock protein Hsp70b	Drosophila lummei	– AAR17097.2	48
AHSL-1_H10_80_16.ab1	-	Brosophila laniner	111111105712	0
AHSL-1_H11_88_15.ab1	alpha-amylase	Corbicula fluminea	– AAO17927.2	53
AHSL-1_H12_96_16.ab1	tetraspanin-CD63 receptor	Geodia cydonium	CAA77025.1	33
AHSL-2_A01_1_01.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	85
AHSL-2_A02_9_02.ab1	CONSERVED HYPOTHETICAL PROTEIN	Mycobacterium bovis AF2122/97	CAD94260.1	29
AHSL-2_A04_25_02.ab1	DRIM-related protein, putative	Paramecium tetraurelia	YP_054339.1	46
AHSL-2_A06_41_02.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	100
AHSL-2_A08_57_02.ab1	MK2 non-allergic IgE heavy chain IGHV2-5 MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	92
		nonio supieno		12
AHSL-2_A09_65_01.ab1	similar to Sulfatase modifying factor 2 precursor (C-alpha-formyglycine-generating enzyme 2), partial	Strongylocentrotus purpuratus	XP_789318.1	58
AHSL-2_A10_73_02.ab1	RH19795p	Drosophila melanogaster	AAM29578.1	36
AHSL-2_B01_2_03.ab1	-		_	0
AHSL-2_B02_10_04.ab1	-		_	0
AHSL-2_B03_18_03.ab1	actin	Pinus taeda	_ AAD47902.1	77

Table 6. (continued)

	,		Accession	
Clone no.	Putative identification	Closest species	no.	I ^a
AHSL-2_B06_42_04.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	100
AHSL-2_B07_50_03.ab1	proline rich protein 2 (predicted)	Rattus norvegicus	NP_00101322 9.1	40
AHSL-2_B08_58_04.ab1	hypothetical protein PF14_0644	Plasmodium falciparum 3D7	AAN37257.1	35
AHSL-2_B09_66_03.ab1	nonmuscle myosin essential light chain	Ixodes scapularis	AAY66877.1	68
AHSL-2_C02_11_06.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	92
AHSL-2_C03_19_05.ab1	MGC80065 protein	Xenopus laevis	AAH72146.1	80
AHSL-2_C04_27_06.ab1	myosin:SUBUNIT=regulatory light chain		1803425D	62
AHSL-2_C05_35_05.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	100
AHSL-2_C07_51_05.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	46
AHSL-2_C08_59_06.ab1	ENSANGP00000025203	Anopheles gambiae str. PEST	EAA45629.2	35
AHSL-2_C09_67_05.ab1			_	0
AHSL-2_C11_83_05.ab1	TIONAL		_	0
AHSL-2_D03_20_07.ab1	Ac2-246	Rattus norvegicus	AAP86271.1	93
AHSL-2_D05_36_07.ab1			-	0
AHSL-2_D06_44_08.ab1	Heat shock protein Hsp20	Solibacter usitatus Ellin6076	ZP_00527347. 1	28
AHSL-2_D08_60_08.ab1	ribosomal protein S18	Branchiostoma belcheri	AAN52390.1	87
AHSL-2_E03_21_09.ab1	RL4_URECA 60S ribosomal protein L4 (L1)		P49165	51
AHSL-2_E04_29_10.ab1	4		_	0
AHSL-2_E05_37_09.ab1	NADH dehydrogenase subunit 1	Haliotis rubra	YP_026078.1	78
AHSL-2_E06_45_10.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	92
AHSL-2_E07_53_09.ab1	hypothetical protein Pfl_2663	Pseudomonas fluorescens PfO-1	ABA74404.1	26
AHSL-2_E08_61_10.ab1	Flagellar biosynthetic protein FlhB	Nitrosococcus oceani ATCC 19707	ABA58619.1	34
AHSL-2_E09_69_09.ab1	small heat shock protein p26	Artemia urmiana	ABC41141.1	24
AHSL-2_E12_93_10.ab1	small heat shock protein p26	Artemia franciscana	ABC41136.1	32
AHSL-2_F01_6_11.ab1	hypothetical protein DDB0169123	Dictyostelium discoideum	XP_642739.1	28
AHSL-2_F02_14_12.ab1	G H S	/	-	0
AHSL-2_F03_22_11.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	85
AHSL-2_F05_38_11.ab1	-		-	0
AHSL-2_F07_54_11.ab1	GA20963-PA	Drosophila pseudoobscura	EAL26527.1	47
AHSL-2_F09_70_11.ab1	-		-	0
AHSL-2_F12_94_12.ab1	Hypothetical protein CBG21955	Caenorhabditis briggsae		43
AHSL-2_G01_7_13.ab1	heat shock protein 70	Mytilus galloprovincialis		54
AHSL-2_G02_15_14.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	100
AHSL-2_G03_23_13.ab1	vdg3	Mytilus edulis	ABB76764.1	31
AHSL-2_G05_39_13.ab1	heat shock protein 70	Wuchereria bancrofti	AAF66987.1	66
AHSL-2_G09_71_13.ab1	hypothetical protein	Arabidopsis thaliana	AAD25572.1	30
AHSL-2_G10_79_14.ab1	ribosomal protein S15	Mytilus edulis	ABB73035.1	62
AHSL-2_G12_95_14.ab1	MK2 non-allergic IgE heavy chain IGHV2-5	Homo sapiens	AAW29114.1	92
AHSL-2_H01_8_15.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	85
AHSL-2_H03_24_15.ab1	glyceraldehyde phosphate dehydrogenase	Vibrio fischeri	AAC80272.2	78

Table 6. (continued)

Clone no.	no. Putative identification Closest species		Accession no.	\mathbf{I}^{a}
AHSL-2_H05_40_15.ab1	-		_	0
AHSL-2_H07_56_15.ab1	Hypothetical protein CBG22012	Caenorhabditis briggsae	CAE74305.1	36
AHSL-2_H10_80_16.ab1	-		_	0
AHSL-2_H11_88_15.ab1	-		_	0
AHSL-2_H12_96_16.ab1	-		_	0
^a Identity(%)				

^a Identity(%)

Table 7. List of identified ESTs from the cold-shock abalone subtracted cDNA library

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
ABLSL-1-A1-T7.ab1	-		_	0
		Rhipicephalus		
ABLSL-1-A10-T7.ab1	cathepsin L-like cysteine proteinase B	haemaphysaloides	AAQ16118.1	76
	1 2 1	haemaphysaloides		
ABLSL-1-A11-T7.ab1	_	naemapnysaioiaes		0
ABLSL-1-A2-T7.ab1	_		-	0
ABLSL-1-A3-T7.ab1	heat shock protein 90 beta	Paralichthys olivaceus	– AAO92751.1	90
ABLSL-1-A4-T7.ab1	Ruvbl1 protein	Xenopus laevis	AAH71105.1	92
ABLSL-1-A5-T7.ab1	-	nenopus nevus	10011	0
ABLSL-1-A6-T7.ab1	_		-	0
ABLSL-1-A7-T7.ab1			-	0
	similar to DNA-damage-inducible transcript		-	0
ABLSL-1-A8-T7.ab1	4-like	Danio rerio	XP_699459.1	43
ABLSL-1-B1-T7.ab1	4-11Ke			0
	similar to Urnothatical motion MCC76219	Callus callus	- VD 415050 1	76
ABLSL-1-B10-T7.ab1	similar to Hypothetical protein MGC76218	Gallus gallus Tabifusu muhuinas	XP_415059.1	
ABLSL-1-B11-T7.ab1	sorting nexin 3	Takifugu rubripes	AAM61764.1	88
ABLSL-1-B12-T7.ab1			-	0
ABLSL-1-B2-T7.ab1		Devident	-	0
ABLSL-1-B3-T7.ab1	aminopeptidase N	Pseudopleuronectes	AAC32754.1	81
		americanus		
ABLSL-1-B4-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF91569.1	74
ABLSL-1-B5-T7.ab1	ARP3_FUGRU Actin-like protein 3		100073723	
ABLSL-1-B6-T7.ab1	chitinase	Oncorhynchus mykiss	CAD59687.1	62
ABLSL-1-B7-T7.ab1	ribosomal protein P1	Biomphalaria glabrata	AAZ39530.1	55
ABLSL-1-B8-T7.ab1	MHC class II A antigen	Paralichthys olivaceus	AAY18782.1	70
ABLSL-1-B9-T7.ab1			_	0
ABLSL-1-C1-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF93821.1	84
ABLSL-1-C10-T7.ab1		1	_	0
ABLSL-1-C12-T7.ab1	elongation factor 1 alpha	Paralichthys olivaceus	BAE48211.1	97
ABLSL-1-C2-T7.ab1			_	0
ABLSL-1-C3-T7.ab1	-		_	0
ABLSL-1-C4-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF98499.1	97
ABLSL-1-C6-T7.ab1	IRF7	Siniperca chuatsi	AAV65045.1	71
ABLSL-1-C7-T7.ab1	-		_	0
ABLSL-1-C8-T7.ab1	leukocyte elastase inhibitor	Oncorhynchus mykiss	AAU14875.1	72
ABLSL-1-C9-T7.ab1	-		_	0
ABLSL-1-D1-T7.ab1	-		_	0
ABLSL-1-D10-T7.ab1	Hypothetical protein LOC449806	Danio rerio	AAH83431.1	94
ABLSL-1-D11-T7.ab1	Hypothetical protein MGC66080	Danio rerio	AAH56561.1	93
ABLSL-1-D12-T7.ab1	hsc71	Paralichthys olivaceus	BAD05136.1	99
ABLSL-1-D2-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG12999.1	83
ABLSL-1-D3-T7.ab1	-	0	_	0
ABLSL-1-D5-T7.ab1	ribosomal protein L28	Haliotis asinina	_ AAX11340.1	74

Table 7. (continued)

Clone no.	Putative identification Closest species		Accession no.	\mathbf{I}^{a}	
ABLSL-1-D6-T7.ab1	-		_	0	
ABLSL-1-D7-T7.ab1	-		_	0	
ABLSL-1-D9-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG04978.1	66	
ABLSL-1-E10-T7.ab1	-		_	0	
ABLSL-1-E12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF91411.1	87	
ABLSL-1-E3-T7.ab1	-		_	0	
ABLSL-1-E5-T7.ab1	-		_	0	
ABLSL-1-E6-T7.ab1	-		_	0	
ABLSL-1-E7-T7.ab1	-		_	0	
ABLSL-1-E8-T7.ab1	N-myc downstream regulated gene 1 protein, ndrg1	Danio rerio	CAE18169.1	75	
ABLSL-1-E9-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF94246.1	73	
ABLSL-1-F1-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG02536.1	57	
ABLSL-1-F12-T7.ab1	TIONA		_	0	
ABLSL-1-F3-T7.ab1	ATIONA/		_	0	
ABLSL-1-F4-T7.ab1	hsc71	Paralichthys olivaceus	BAD05136.1	98	
ABLSL-1-F5-T7.ab1	receptor for activated protein kinase C	Paralichthys olivaceus	AAT35603.1	98	
ABLSL-1-F6-T7.ab1	CD45	Takifugu rubripes	CAB96212.1	70	
ABLSL-1-F7-T7.ab1			_	0	
ABLSL-1-F8-T7.ab1	similar to transitional epithelia response protein	Danio rerio	 XP_686705.1	96	
ABLSL-1-F9-T7.ab1	similar to Thbs2, partial	Danio rerio	XP 694690.1	51	
ABLSL-1-G1-T7.ab1	-	0		0	
ABLSL-1-G10-T7.ab1	RhAG-1 protein	Takifugu rubripes		61	
ABLSL-1-G11-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG05898.1	80	
ABLSL-1-G12-T7.ab1				0	
ABLSL-1-G2-T7.ab1			-	0	
ABLSL-1-G3-T7.ab1	ribosomal protein S24	Ixodes scapularis	– AAY66904.1	63	
ABLSL-1-G4-T7.ab1				0	
ABLSL-1-G5-T7.ab1	unnamed protein product	Tetraodon nigroviridis	– CAG03728.1	74	
ABLSL-1-G8-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG09558.1	69	
ABLSL-1-H1-T7.ab1	-			0	
ABLSL-1-H10-T7.ab1	-		-	0	
ABLSL-1-H11-T7.ab1	unnamed protein product	Tetraodon nigroviridis	_ CAF99350.1	48	
ABLSL-1-H12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG09775.1	74	
ABLSL-1-H2-T7.ab1	elastase A precursor	Gadus morhua	AAB58351.1	77	
ABLSL-1-H3-T7.ab1	-			0	
ABLSL-1-H4-T7.ab1	unnamed protein product	Tetraodon nigroviridis	– CAG05778.1	65	
ABLSL-1-H5-T7.ab1	similar to ZDHHC7 protein	Gallus gallus	XP_414183.1	72	
ABLSL-1-H6-T7.ab1	-	0	_	0	
ABLSL-1-H8-T7.ab1	-		-	0	
ABLSL-1-H9-T7.ab1	similar to B-cell receptor CD22-A isoform	Danio rerio	– XP_699631.1	28	
ABLSL-2-A1-T7.ab1	triglyceride lipase	Anguilla japonica	BAB85636.1	47	

Table	7.	(continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
ABLSL-2-A11-T7.ab1	-		_	0
ABLSL-2-A12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG06284.1	33
ABLSL-2-A2-T7.ab1	-		_	0
ABLSL-2-A3-T7.ab1	40S ribosomal protein S7	Oncorhynchus mykiss	CAJ43764.1	98
ABLSL-2-A4-T7.ab1	-		_	0
ABLSL-2-A5-T7.ab1	activin A receptor type II-like 1	Danio rerio	NP_705929.1	71
ABLSL-2-A7-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF95307.1	80
ABLSL-2-A8-T7.ab1	-		-	0
ABLSL-2-A9-T7.ab1	NS1-associated protein 1	Danio rerio	AAQ97822.1	96
ABLSL-2-B1-T7.ab1	-		-	0
ABLSL-2-B10-T7.ab1	\$26	Suberites domuncula	AAX48902.1	69
ABLSL-2-B12-T7.ab1	similar to Actin, cytoplasmic 2 (Gamma-actin)	Rattus norvegicus	XP_215761.3	71
ABLSL-2-B2-T7.ab1	TIONAL	T 1 1 1 1 1	-	0
ABLSL-2-B3-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG06211.1	67
ABLSL-2-B4-T7.ab1			-	0
ABLSL-2-B5-T7.ab1	1.0	T 1 1 1 1 1 1	-	0
ABLSL-2-B6-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG04058.1	91 06
ABLSL-2-B7-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG03524.1	96 (2
ABLSL-2-B8-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG06540.1	62
ABLSL-2-B9-T7.ab1	- trialuanida linasa	Anguilla japonica	- DAD95626 1	0
ABLSL-2-C11-T7.ab1 ABLSL-2-C12-T7.ab1	triglyceride lipase	Anguilla Japonica	BAB85636.1	42 0
ABLSL-2-C12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	– CAG06540.1	95
ABLSL-2-C2-17.ab1 ABLSL-2-C3-T7.ab1	Hypothetical protein LOC550513	Danio rerio	AAH92803.1	93 98
ADL5L-2-C5-17.a01	Hypothetical plotent EOC350515	Strongylocentrotus	AA1172005.1	90
ABLSL-2-C4-T7.ab1	similar to notch1 preproprotein	purpuratus	XP_789629.1	43
ABLSL-2-C5-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF98815.1	81
ABLSL-2-C7-T7.ab1	stk19	Danio rerio	XP_691236.1	75
ABLSL-2-C9-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG06540.1	60
ABLSL-2-D10-T7.ab1	ribosomal protein L19	Argopecten irradians	AAN05588.1	67
ABLSL-2-D12-T7.ab1	similar to MGC97608 protein	Apis mellifera	XP_395079.2	46
ABLSL-2-D2-T7.ab1	-		_	0
ABLSL-2-D3-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF95090.1	82
ABLSL-2-D4-T7.ab1	-		-	0
ABLSL-2-D5-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG07447.1	92
ABLSL-2-D7-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG04213.1	83
ABLSL-2-D9-T7.ab1	-		-	0
ABLSL-2-E1-T7.ab1	-		-	0
ABLSL-2-E11-T7.ab1	-		-	0
ABLSL-2-E12-T7.ab1	protein tyrosine phosphatase, non-receptor type 22 (lymphoid)	Mus musculus	NP_033005.1	31
ABLSL-2-E2-T7.ab1	heat shock cognate 70 kDa protein	Pimephales promelas	AAS46619.1	100
ABLSL-2-E3-T7.ab1	-	- *	_	0
ABLSL-2-E4-T7.ab1	TCP1-beta	Notothenia coriiceps		89

Table 7. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
ABLSL-2-E5-T7.ab1	-		_	0
ABLSL-2-E6-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG14264.1	86
ABLSL-2-E7-T7.ab1	similar to alpha 2 type VI collagen isoform 2C2a precursor	Danio rerio	XP_696164.1	36
ABLSL-2-E9-T7.ab1	HBAB_SERQU Hemoglobin alpha-B subunit (Hemoglobin alpha-B chain) (Alpha-B-globin)		68Q9PVM3	
ABLSL-2-F1-T7.ab1	-		_	0
ABLSL-2-F10-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF96772.1	77
ABLSL-2-F11-T7.ab1	-		_	0
ABLSL-2-F2-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG08351.1	59
ABLSL-2-F3-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG02411.1	58
ABLSL-2-F4-T7.ab1	-		_	0
ABLSL-2-F5-T7.ab1			_	0
ABLSL-2-F6-T7.ab1	GA18441-PA	Drosophila pseudoobscura	EAL29084.1	29
ABLSL-2-F7-T7.ab1		UAN		0
ABLSL-2-F9-T7.ab1	unnamed protein product	Tetraodon nigroviridis	_ CAG12186.1	59
ABLSL-2-G1-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF97838.1	70
			NP_00101782	
ABLSL-2-G10-T7.ab1	hypothetical protein LOC550527	Danio rerio	9.1	81
ABLSL-2-G12-T7.ab1	heat shock cognate 70 kDa protein	Pimephales promelas	AAS46619.1	98
ABLSL-2-G2-T7.ab1	hemoglobin beta-A chain	Siniperca chuatsi	AAY79276.1	87
ABLSL-2-G3-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF97070.1	50
ABLSL-2-G4-T7.ab1	similar to MGC86483 protein	Danio rerio	XP_689383.1	63
ABLSL-2-G5-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF97552.1	81
ABLSL-2-G6-T7.ab1	PDZ/coiled-coil domain binding partner for the rho-family GTPase TC10	Danio rerio	AAH56565.1	91
ABLSL-2-G7-T7.ab1	ribosomal protein L18	Crassostrea gigas	CAD91422.1	75
ABLSL-2-G8-T7.ab1		00		0
ABLSL-2-H1-T7.ab1		V/	_	0
ABLSL-2-H10-T7.ab1			—	0
ABLSL-2-H11-T7.ab1	HBAB_SERQU Hemoglobin alpha-B subunit		_ 66Q9PVM3	
ABLSL-2-H12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF97070.1	50
ABLSL-2-H2-T7.ab1	-			0
ABLSL-2-H3-T7.ab1	unnamed protein product	Tetraodon nigroviridis	– CAG09847.1	63
ABLSL-2-H5-T7.ab1	cytochrome c oxidase subunit III	Haliotis rubra	YP_026066.1	83
ABLSL-2-H8-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG06475.1	57
ABLSL-2-H9-T7.ab1	Zgc:56053	Danio rerio	AAH45887.1	62
ABLSL-2-H9-17.ab1 ABLSL-3-A10-T7.ab1	elastase 2-like protein	Sparus aurata	AAT45251.1	89
10L0L-3-A10-17.401	ensuse 2-nice protein	Pseudopleuronectes	1173231.1	09
ABLSL-3-A11-T7.ab1	trypsinogen 1 precursor	americanus	AAC32751.1	43
ABLSL-3-A12-T7.ab1	-		_	0
ABLSL-3-A2-T7.ab1	40S ribosomal protein S5	Pagrus major	AAP20199.1	98
ABLSL-3-A3-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG10857.1	95

T 11	7	(.• D
Table		(continued)
I uoro	<i>'</i> •	(communed)

Clone no.	Putative identification	Closest species	Accession no.	ľ	
ABLSL-3-A4-T7.ab1	MEP1A protein	Danio rerio	NP_00102545 2.1	78	
ABLSL-3-A5-T7.ab1	sp2 protein	Ciona intestinalis	NP_00102774 0.1	35	
ABLSL-3-A7-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG09292.1	85	
ABLSL-3-A8-T7.ab1	Surf4 protein	Danio rerio	AAH66509.1	81	
ABLSL-3-A9-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF97758.1	81	
ABLSL-3-B10-T7.ab1	GDP dissociation inhibitor 2	Danio rerio	AAQ91240.1	87	
ABLSL-3-B11-T7.ab1	-		_	0	
ABLSL-3-B12-T7.ab1	-		_	0	
ABLSL-3-B2-T7.ab1	-		_	0	
ABLSL-3-B3-T7.ab1	similar to Histone H3.3 isoform 5	Bos taurus	XP_888206.1	95	
ABLSL-3-B4-T7.ab1	pancreatic protein with two somatomedin B domains	Paralichthys olivaceus	BAA88246.1	97	
ABLSL-3-B5-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG06065.1	64	
ABLSL-3-B6-T7.ab1		()A	_	0	
ABLSL-3-B7-T7.ab1	10.		_	0	
ABLSL-3-B8-T7.ab1	hypothetical protein LOC550606	Danio rerio	_ NP_00101790 7.1	70	
ABLSL-3-B9-T7.ab1			_	0	
ABLSL-3-C10-T7.ab1			_	0	
ABLSL-3-C11-T7.ab1	suppressor of cytokine signaling 3	Takifugu rubripes		77	
ABLSL-3-C12-T7.ab1	-	, , , , , , , , , , , , , , , , , , ,		0	
ABLSL-3-C2-T7.ab1	RPL27 protein	Homo sapiens	_ AAH21886.1	73	
ABLSL-3-C4-T7.ab1	Degenerative spermatocyte homolog, lipid desaturase	Danio rerio	AAH53183.1	87	
ABLSL-3-C7-T7.ab1	trypsinogen 1	Paralichthys olivaceus	BAA82362.1	96	
ABLSL-3-D10-T7.ab1	-			0	
ABLSL-3-D11-T7.ab1		· · · /	-	0	
ABLSL-3-D12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	_ CAF94990.1	81	
ABLSL-3-D2-T7.ab1			_	0	
ABLSL-3-D3-T7.ab1			_	0	
ABLSL-3-D4-T7.ab1	HBAA_SERQU Hemoglobin alpha-A subunit		73Q9PVM4		
ABLSL-3-D5-T7.ab1			_	0	
ABLSL-3-D6-T7.ab1	similar to ribosomal protein L23	Gallus gallus	XP_418122.1	90	
ABLSL-3-D7-T7.ab1	-	-	_	0	
ABLSL-3-D9-T7.ab1	-		_	0	
ABLSL-3-E1-T7.ab1	RPL18A protein	Xenopus laevis	AAH42256.1	73	
ABLSL-3-E10-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF96615.1	56	
ABLSL-3-E11-T7.ab1	-	÷	_	0	
ABLSL-3-E12-T7.ab1	unnamed protein product phosphoinositide-3-kinase, regulatory subunit 5,	Tetraodon nigroviridis	_ CAG05204.1 NP_00102586	73	
ABLSL-3-E2-T7.ab1	p101	Gallus gallus	8.1	55	
ABLSL-3-E3-T7.ab1	cytochrome c oxidase subunit I	Haliotis discus discus	AAQ84300.1	80	
ABLSL-3-E5-T7.ab1	procollagen C-proteinase enhancer protein	Takifugu rubripes	AAB94049.1	78	

Table	7.	(continued)

Clone no.	Putative identification Closest species		Accession no.	\mathbf{I}^{a}	
ABLSL-3-E6-T7.ab1	-		_	0	
ABLSL-3-E7-T7.ab1	-		_	0	
ABLSL-3-E9-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG03300.1	78	
ABLSL-3-F1-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF93955.1	58	
ABLSL-3-F11-T7.ab1	type 1 collagen alpha 1	Paralichthys olivaceus	BAD77968.1	93	
ABLSL-3-F12-T7.ab1	-		_	0	
ABLSL-3-F2-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF91199.1	66	
ABLSL-3-F3-T7.ab1	-		_	0	
ABLSL-3-F4-T7.ab1	-		_	0	
ABLSL-3-F6-T7.ab1	bile salt-activated lipase	Pseudopleuronectes americanus	AAN63868.1	84	
ABLSL-3-G10-T7.ab1	carboxypeptidase B	Paralichthys olivaceus	BAC53789.1	97	
ABLSL-3-G11-T7.ab1	Unknown (protein for MGC:66050)	Danio rerio	AAH59804.1	74	
ABLSL-3-G2-T7.ab1	-			0	
ABLSL-3-G3-T7.ab1	- INTIUNA/		-	0	
ABLSL-3-G6-T7.ab1	NAME		-	0	
ABLSL-3-G8-T7.ab1			-	0	
ABLSL-3-H1-T7.ab1	unnamed protein product	Tetraodon nigroviridis	- CAG02842.1	83	
ABLSL-3-H10-T7.ab1	similar to PYRIN-containing APAF1-like	Danio rerio	XP_689864.1	66	
ADI (I. 2 1111 TT 1 1	protein 7			0	
ABLSL-3-H11-T7.ab1	-	TT 10.1	-	0	
ABLSL-3-H12-T7.ab1	developmentally-regulated vdg3	Haliotis asinina	AAX11341.1	38	
ABLSL-3-H2-T7.ab1	ribosomal protein L27	Fundulus heteroclitus	AAU50549.1	88	
ABLSL-3-H3-T7.ab1			-	0	
ABLSL-3-H4-T7.ab1	2		-	0	
ABLSL-3-H5-T7.ab1			-	0	
ABLSL-3-H6-T7.ab1	triglyceride lipase	Anguilla japonica	BAB85636.1	59	
ABLSL-3-H7-T7.ab1	similar to CCCH zinc finger protein C3H-1	Danio rerio	XP_692984.1	32	
ABLSL-3-H9-T7.ab1	Actin-related protein 10 homolog	Danio rerio	AAH45412.1	92	
ABLSL-4-A11-T7.ab1			-	0	
ABLSL-4-A12-T7.ab1	Thioredoxin interacting protein	Danio rerio	AAH49493.1	73	
ABLSL-4-A2-T7.ab1	Hypothetical protein LOC450016	Danio rerio	AAH83378.1	92	
ABLSL-4-A4-T7.ab1	cytochrome c oxidase subunit III	Paralichthys olivaceus	NP_037588.1	67	
ABLSL-4-A5-T7.ab1	-		-	0	
ABLSL-4-A6-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF99511.1	97	
ABLSL-4-A7-T7.ab1	-		_	0	
ABLSL-4-B1-T7.ab1	-		_	0	
ABLSL-4-B10-T7.ab1	-		_	0	
ABLSL-4-B11-T7.ab1	Nuclear protein 1 (Protein p8) (Candidate of metastasis 1) isoform 1	Bos taurus	XP_872550.1	61	
ABLSL-4-B12-T7.ab1	LOC495127 protein	Xenopus laevis	AAH92115.1	79	
ABLSL-4-B4-T7.ab1	ferritin-like protein	Pinctada fucata	AAQ12076.1	78	
ABLSL-4-B6-T7.ab1	ribosomal protein S24	Ixodes scapularis	AAY66904.1	62	
ABLSL-4-B7-T7.ab1	unnamed protein product	Haliotis rufescens	CAA50572.1	92	
	unimited protein product	interiority injescents	C. 11 10 00 / 2.1	0	

Table	7. ((continued)
I uore	· • •	(contrinction)

Clone no.	Putative identification	Closest species	Accession no.	ľ
ABLSL-4-B9-T7.ab1	ubiquitin fusion degradation 1-like	Danio rerio	NP_00100245 1.1	90
ABLSL-4-C1-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG09552.1	81
ABLSL-4-C10-T7.ab1	hemoglobin beta-A chain	Siniperca chuatsi	AAY79276.1	88
ABLSL-4-C12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG10891.1	90
ABLSL-4-C3-T7.ab1	thymosin beta 12	perch, liver, Peptide, 43 aa	AAB21004.1	65
ABLSL-4-C4-T7.ab1	-		_	0
ABLSL-4-C7-T7.ab1	MGC86316 protein	Xenopus laevis	AAH77634.1	84
ABLSL-4-C8-T7.ab1	-		_	0
ABLSL-4-C9-T7.ab1	40S ribosomal protein S3	Pseudopleuronectes americanus	AAT01919.1	95
ABLSL-4-D1-T7.ab1				0
ABLSL-4-D10-T7.ab1	tropomyoshin1-1	Takifugu rubripes	– BAC57564.1	78
ABLSL-4-D12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG09508.1	95
ABLSL-4-D2-T7.ab1		0		0
ABLSL-4-D4-T7.ab1	unnamed protein product	Tetraodon nigroviridis	_ CAG09508.1	87
ABLSL-4-D5-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG04219.1	92
ABLSL-4-D6-T7.ab1				0
ABLSL-4-D7-T7.ab1	unnamed protein product	Tetraodon nigroviridis	– CAG08374.1	80
ABLSL-4-D8-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG02645.1	81
ABLSL-4-D9-T7.ab1	carboxypeptidase A1 (pancreatic)	Gallus gallus	NP_989915.1	65
ABLSL-4-E1-T7.ab1	-		_	0
ABLSL-4-E11-T7.ab1	bile salt-activated lipase	Pseudopleuronectes americanus	AAN63868.1	89
ABLSL-4-E2-T7.ab1	splicing factor 3b, subunit 1 isoform 1	Canis familiaris	XP_857064.1	90
ABLSL-4-E3-T7.ab1			_	0
ABLSL-4-E4-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG07447.1	92
ABLSL-4-E5-T7.ab1	ribosomal protein L1	Lonomia obliqua	AAV91386.1	63
ABLSL-4-E7-T7.ab1	PAS1	Takifugu rubripes	AAC34392.1	72
ABLSL-4-E9-T7.ab1	KRP-A	Aplysia californica	CAA48558.1	83
ABLSL-4-F10-T7.ab1			_	0
ABLSL-4-F11-T7.ab1	-		_	0
ABLSL-4-F2-T7.ab1	MHC II invariant chain	Siniperca chuatsi	AAS77256.1	73
ABLSL-4-F3-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF93208.1	60
ABLSL-4-F5-T7.ab1	serum lectin isoform 2	Verasper variegatus	BAE44114.1	59
ABLSL-4-F8-T7.ab1	-		_	0
ABLSL-4-F9-T7.ab1	-		_	0
ABLSL-4-G1-T7.ab1	-		_	0
ABLSL-4-G11-T7.ab1	-		_	0
ABLSL-4-G12-T7.ab1	-		_	0
ABLSL-4-G3-T7.ab1	-		_	0
ABLSL-4-G4-T7.ab1	elastase A precursor	Gadus morhua		77
ABLSL-4-G6-T7.ab1	-		_	0
ABLSL-4-G7-T7.ab1	-			0

Clone no.	Putative identification	Closest species	Accession no.	ľ
ABLSL-4-G8-T7.ab1	-		_	0
ABLSL-4-G9-T7.ab1	Unknown (protein for MGC:112201)	Danio rerio	AAH93263.1	44
ABLSL-4-H12-T7.ab1	-		_	0
ABLSL-4-H2-T7.ab1	S26	Suberites domuncula	AAX48902.1	51
ABLSL-4-H3-T7.ab1	ribosomal protein L27	Homo sapiens	NP_000979.1	75
ABLSL-4-H4-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF99822.1	70
BLSL-4-H7-T7.ab1	serum lectin isoform 2	Verasper variegatus	BAE44114.1	67
ABLSL-4-H8-T7.ab1	-		_	0
ABLSL5-A1-T7.ab1	-		_	0
BLSL5-A11-T7.ab1	triglyceride lipase	Anguilla japonica	BAB85636.1	46
BLSL5-A12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG12999.1	84
BLSL5-A2-T7.ab1	chymotrypsinogen 2	Paralichthys olivaceus	BAA82366.1	93
BLSL5-A3-T7.ab1	sodium potassium ATPase alpha subunit	Rhabdosargus sarba	AAT48993.1	84
BLSL5-A4-T7.ab1	FIONIA		_	0
BLSL5-A5-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG06274.1	86
BLSL5-A6-T7.ab1	unnamed protein product	Mus musculus	BAE33678.1	95
BLSL5-A7-T7.ab1			_	0
BLSL5-A8-T7.ab1	perforin	Fundulus heteroclitus	AAU50521.1	67
BLSL5-A9-T7.ab1	L-threonine dehydrogenase	Danio rerio	AAH63962.1	93
BLSL5-B1-T7.ab1	Calrl protein	Danio rerio	AAH46906.1	69
BLSL5-B10-T7.ab1	mediator of RNA polymerase II transcription, subunit 31 homolog	Danio rerio	NP_00100241 7.1	61
BLSL5-B11-T7.ab1	perforin	Fundulus heteroclitus	AAU50521.1	74
BLSL5-B12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG02712.1	85
BLSL5-B2-T7.ab1	trypsinogen 1	Paralichthys olivaceus	BAA82362.1	98
BLSL5-B3-T7.ab1			_	0
BLSL5-B4-T7.ab1			-	0
BLSL5-B5-T7.ab1			-	0
BLSL5-B6-T7.ab1			-	0
BLSL5-B7-T7.ab1	similar to 40S ribosomal protein S29	Mus musculus	_ XP_910773.1	97
BLSL5-B8-T7.ab1	60S ribosomal protein L13A	Platichthys flesus	CAH57701.1	66
BLSL5-B9-T7.ab1		ju ju		0
BLSL5-C1-T7.ab1	-		-	0
BLSL5-C10-T7.ab1	unnamed protein product	Tetraodon nigroviridis	– CAF99350.1	42
BLSL5-C11-T7.ab1	cytochrome c oxidase subunit I	Haliotis discus discus	AAQ84300.1	63
BLSL5-C12-T7.ab1	Hypothetical protein CBG01620	Caenorhabditis briggsae	CAE58478.1	31
BLSL5-C2-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF91666.1	76
BLSL5-C3-T7.ab1	-	-	_	0
BLSL5-C4-T7.ab1	-		_	0
BLSL5-C5-T7.ab1	-		_	0
BLSL5-C6-T7.ab1	unnamed protein product	Mus musculus	_ BAC31241.1	47
BLSL5-C7-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG06274.1	88
BLSL5-C8-T7.ab1	RNA helicase	Takifugu rubripes	AAB96360.1	96
BLSL5-C9-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF99350.1	48
ABLSL5-D1-T7.ab1				0

Table 7. (continued)

Table	7.	(continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
ABLSL5-D10-T7.ab1	unnamed protein product similar to Lysyl oxidase homolog 2 precursor	Tetraodon nigroviridis	CAG06274.1	87
ABLSL5-D11-T7.ab1	(Lysyl oxidase-like protein 2) (Lysyl oxidase related protein 2) (Lysyl oxidase-related	Danio rerio	XP_693880.1	72
ABLSL5-D2-T7.ab1	protein WS9-14)			0
ABLSL5-D2-17.ab1 ABLSL5-D3-T7.ab1	-		-	0
ADL5L5-D5-17.401		Magnetospirillum	-	0
ABLSL5-D4-T7.ab1	hypothetical protein	gryphiswaldense	CAJ30042.1	57
ABLSL5-D5-T7.ab1	-		_	0
ABLSL5-D6-T7.ab1	-		_	0
ABLSL5-D7-T7.ab1	cytochrome P450 1C2	Stenotomus chrysops	AAL78299.1	79
ABLSL5-D8-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG01916.1	44
ABLSL5-D9-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG06540.1	74
ABLSL5-E1-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF94413.1	65
ABLSL5-E10-T7.ab1	apolipoprotein E1	Takifugu rubripes	BAD83859.1	58
ABLSL5-E11-T7.ab1	H2A histone family, member V	Gallus gallus	NP_00102654 5.1	98
ABLSL5-E12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF95107.1	75
ABLSL5-E2-T7.ab1			_	0
ABLSL5-E4-T7.ab1			_	0
ABLSL5-E6-T7.ab1			_	0
ABLSL5-E7-T7.ab1	<u> </u>		_	0
ABLSL5-E8-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG03215.1	93
ABLSL5-E9-T7.ab1	unknown	Sparus aurata	AAT45247.1	75
ABLSL5-F1-T7.ab1	hypothetical protein XP_697578	Danio rerio	XP_702670.1	73
ABLSL5-F10-T7.ab1			_	0
ABLSL5-F11-T7.ab1	Casein kinase 2 alpha 1	Danio rerio	AAH44403.1	80
ABLSL5-F12-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG12450.1	76
ABLSL5-F2-T7.ab1		1	_	0
ABLSL5-F3-T7.ab1	9412		_	0
ABLSL5-F4-T7.ab1			-	0
ABLSL5-F5-T7.ab1	-		-	0
ABLSL5-F6-T7.ab1	novel protein	Mus musculus	CAI24017.1	55
ABLSL5-F7-T7.ab1	developmentally-regulated vdg3	Haliotis asinina	AAX11341.1	68
ABLSL5-F8-T7.ab1	-		_	0
ABLSL5-F9-T7.ab1	Unknown (protein for MGC:83116)	Xenopus laevis	AAH68911.1	75
ABLSL5-G1-T7.ab1	-		_	0
ABLSL5-G10-T7.ab1	-		_	0
ABLSL5-G11-T7.ab1	-		_	0
ABLSL5-G12-T7.ab1	trypsinogen 2	Paralichthys olivaceus	BAA82363.1	93
ABLSL5-G2-T7.ab1	tubulin alpha 6	Danio rerio	AAQ94598.1	93
ABLSL5-G4-T7.ab1	unknown	Sparus aurata	AAT45249.1	46
ABLSL5-G5-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG03362.1	73
ABLSL5-G6-T7.ab1	Hypothetical protein LOC406819	Danio rerio	AAH65893.1	66

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
ABLSL5-G7-T7.ab1	-		_	0
ABLSL5-G9-T7.ab1	-		_	0
ABLSL5-H10-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF92165.1	48
ABLSL5-H11-T7.ab1	perforin	Fundulus heteroclitus	AAU50521.1	71
ABLSL5-H12-T7.ab1	NADH dehydrogenase subunit 4	Paralichthys olivaceus	NP_037591.1	86
ABLSL5-H2-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG02185.1	77
ABLSL5-H3-T7.ab1	-	-	_	0
ABLSL5-H4-T7.ab1	-		_	0
ABLSL5-H5-T7.ab1	-		_	0
ABLSL5-H6-T7.ab1	-		_	0
ABLSL5-H7-T7.ab1	-		_	0
ABLSL5-H8-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF95281.1	100
ABLSL5-H9-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG10432.1	76
ABLSL6-A1-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG12092.1	75
ABLSL6-A10-T7.ab1	ATIONA/		_	0
ABLSL6-A11-T7.ab1	NATION		_	0
ABLSL6-A12-T7.ab1	trypsinogen 2	Paralichthys olivaceus	BAA82363.1	99
ABLSL6-A2-T7.ab1	complement component C4	Takifugu rubripes	CAD45003.1	65
ABLSL6-A3-T7.ab1	receptor for activated protein kinase C	Paralichthys olivaceus	AAT35603.1	84
ABLSL6-A4-T7.ab1	NADH dehydrogenase subunit 2	Paralichthys olivaceus	NP_037583.1	69
ABLSL6-A5-T7.ab1	LOC565117 protein	Danio rerio	AAH76049.1	64
ABLSL6-A6-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG11361.1	89
ABLSL6-A7-T7.ab1	ribosomal protein L17	Paralichthys olivaceus	AAF61071.1	98
ABLSL6-A8-T7.ab1				0
ABLSL6-A9-T7.ab1			-	0
ABLSL6-B1-T7.ab1	kelch-like ECH-associated protein 1	Danio rerio	_ NP_878284.1	73
ABLSL6-B10-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG13267.1	96
ABLSL6-B11-T7.ab1				0
ABLSL6-B12-T7.ab1			-	0
ABLSL6-B2-T7.ab1		· · · /	-	0
ABLSL6-B5-T7.ab1	trypsinogen 3	Paralichthys olivaceus	– BAA82364.2	100
ABLSL6-B6-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF95073.1	79
ABLSL6-B8-T7.ab1	-	Ten dodon ingrornidas	011,000,011	0
ABLSL6-B9-T7.ab1	unnamed protein product	Tetraodon nigroviridis	– CAG01716.1	33
ABLSL6-C1-T7.ab1				0
ABLSL6-C11-T7.ab1	similar to RIKEN cDNA 2810457106	Danio rerio	_ XP_686867.1	91
ABLSL6-C12-T7.ab1	ubiquitously transcribed tetratricopeptide repeat, X chromosome	Homo sapiens	CAI41479.1	77
ABLSL6-C2-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF96616.1	84
ABLSL6-C3-T7.ab1	-		_	0
ABLSL6-C4-T7.ab1	-		_	0
ABLSL6-C6-T7.ab1	-		_	0
ABLSL6-C7-T7.ab1	-		_	0
ABLSL6-C8-T7.ab1	Eukaryotic translation elongation factor 2, like	Danio rerio	AAH45488.1	81
ABLSL6-C9-T7.ab1	-		_	0
ABLSL6-D10-T7.ab1	-			0

Table 7. (continued)

Table 7. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
ABLSL6-D12-T7.ab1	Similar to tubulin, gamma 1	Danio rerio	AAH45486.1	96
ABLSL6-D2-T7.ab1	-		_	0
ABLSL6-D4-T7.ab1	-		_	0
ABLSL6-D6-T7.ab1	-		_	0
ABLSL6-D7-T7.ab1	-		_	0
ABLSL6-D8-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG06445.1	84
ABLSL6-D9-T7.ab1	antifreeze protein type IV	Paralichthys olivaceus	AAM46175.1	95
ABLSL6-E1-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF90221.1	61
ABLSL6-E10-T7.ab1	-		_	0
ABLSL6-E11-T7.ab1	Hypothetical protein FLJ11749-like	Danio rerio	AAH95171.1	75
ABLSL6-E12-T7.ab1	-		_	0
ABLSL6-E2-T7.ab1	-		_	0
ABLSL6-E3-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG06274.1	93
ABLSL6-E4-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF95324.1	75
ABLSL6-E5-T7.ab1	ATIONA		_	0
ABLSL6-E6-T7.ab1	N		_	0
ABLSL6-E7-T7.ab1	antifreeze protein type IV	Paralichthys olivaceus	AAM46175.1	98
			NP_00102785	
ABLSL6-E8-T7.ab1	chaperonin containing TCP-1 delta	Takifugu rubripes	1.1	92
ABLSL6-E9-T7.ab1				0
ABLSL6-F10-T7.ab1	elastase 2 precursor	Paralichthys olivaceus	– BAA82368.1	98
		Acanthopagrus		
ABLSL6-F11-T7.ab1	beta actin	schlegelii	AAR84618.1	100
ABLSL6-F12-T7.ab1	<u> </u>	schiegen		0
ABLSL6-F3-T7.ab1	unnamed protein product	Tetraodon nigroviridis	– CAG12384.1	54
ABLSL6-F4-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG12384.1 CAG10851.1	51
ABLSL6-F5-T7.ab1	unnamed protein product	Terrababh higroviriais	CA010651.1	0
ABLSL6-F6-T7.ab1			-	0
ABLSL6-F7-T7.ab1			-	0
ABLSL6-F8-T7.ab1	- triglyceride lipase	Anguilla japonica	– BAB85636.1	45
ABLSL6-F9-T7.ab1	apolipoprotein E1	Takifugu rubripes		43 71
	aponpoprotein E1	Tukijugu Tubripes	BAD83859.1	0
ABLSL6-G1-T7.ab1 ABLSL6-G10-T7.ab1	- unnamed protein product	Tetraodon nigroviridis	– CAG13267.1	84
ABLSL6-G11-T7.ab1	actin-related protein 2/3 complex	Pagrus major	CAG15267.1 AAP20158.1	83
ABLSL6-G12-T7.ab1	unnamed protein product	Pagrus major Mus musculus	BAC37136.1	83 97
	hypothetical protein XP_678391	Mus musculus Danio rerio	XP 683483.1	97 44
ABLSL6-G3-T7.ab1 ABLSL6-G4-T7.ab1	unnamed protein product	Danio rerio Tetraodon nigroviridis	CAF89942.1	44
	unnamed protein product	Terrababh nigroviriais	CAF 69942.1	40
ABLSL6-G5-T7.ab1 ABLSL6-G8-T7.ab1	-		-	0
	-		-	
ABLSL6-H10-T7.ab1	-		-	0
ABLSL6-H11-T7.ab1	-		-	0
ABLSL6-H12-T7.ab1	-		-	0
ABLSL6-H2-T7.ab1	-		- DAA92262.1	0
ABLSL6-H3-T7.ab1	trypsinogen 1	Paralichthys olivaceus	ВАА82362.1	90
ABLSL6-H5-T7.ab1	-		-	0
ABLSL6-H6-T7.ab1	-		_	0

Table 7. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
ABLSL6-H7-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF90567.1	72
ABLSL7-A1-T7.ab1	-		_	0
ABLSL7-A10-T7.ab1	-		_	0
ABLSL7-A11-T7.ab1	beta actin	Acanthopagrus schlegelii	AAR84618.1	100
ABLSL7-A12-T7.ab1	unnamed protein product	Tetraodon nigroviridis Pseudopleuronectes	CAG03728.1	77
ABLSL7-A2-T7.ab1	glutathione S-transferase alpha	americanus	AAO13011.1	56
ABLSL7-A3-T7.ab1	-		_	0
ABLSL7-A5-T7.ab1	-		_	0
	similar to cofactor required for Sp1			
ABLSL7-A6-T7.ab1	transcriptional activation, subunit 6, 77kDa,	Danio rerio	XP_695952.1	89
	partial			
ABLSL7-A7-T7.ab1	TIONAL		_	0
ABLSL7-A8-T7.ab1	Hypothetical protein LOC406819	Danio rerio	AAH65893.1	77
ABLSL7-A9-T7.ab1	transglutaminase 1	Danio rerio	XP_694950.1	87
ABLSL7-B1-T7.ab1	similar to H3 histone, family 3B	Bos taurus	XP_869677.1	71
ABLSL7-B10-T7.ab1			_	0
ABLSL7-B11-T7.ab1	ornithine decarboxylase antizyme large isoform	Paralichthys olivaceus	AAP82035.1	98
ABLSL7-B3-T7.ab1	ENSANGP00000023518	Anopheles gambiae str. PEST	EAA45498.1	60
ABLSL7-B4-T7.ab1			_	0
ABLSL7-B5-T7.ab1	claudin 5	Danio rerio	NP_998439.1	64
	Date La U2/francialia	D.1	ZP_00505509.	32
ABLSL7-B6-T7.ab1	Beta-Ig-H3/fasciclin	Polaromonas sp. JS666	1	32
	similar to type 1 tumor necrosis factor			
ABLSL7-B8-T7.ab1	receptor shedding aminopeptidase regulator,	Bos taurus	XP_592495.2	70
	partial			
ABLSL7-B9-T7.ab1				0
ABLSL7-C10-T7.ab1			-	0
ABLSL7-C11-T7.ab1	unnamed protein product	Tetraodon nigroviridis	_ CAG04362.1	53
ABLSL7-C12-T7.ab1	-		_	0
ABLSL7-C2-T7.ab1	-		_	0
ABLSL7-C3-T7.ab1	LOC553228 protein	Danio rerio	AAH93328.1	51
ABLSL7-C4-T7.ab1	Hypothetical protein FLJ11749-like	Danio rerio	AAH95171.1	75
ABLSL7-C5-T7.ab1	-		_	0
ABLSL7-C6-T7.ab1	-		_	0
ABLSL7-C7-T7.ab1	-		_	0
ABLSL7-C8-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG02279.1	39
ABLSL7-C9-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF92165.1	90
ABLSL7-D1-T7.ab1	-		_	0
ABLSL7-D10-T7.ab1	-		_	0
ABLSL7-D11-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF89831.1	71
ABLSL7-D12-T7.ab1	-		_	0
ABLSL7-D2-T7.ab1	carboxypeptidase B	Paralichthys olivaceus	BAC53789.1	99

Table 7. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
ABLSL7-D3-T7.ab1	-		_	0
ABLSL7-D4-T7.ab1	-		_	0
ABLSL7-D5-T7.ab1	-		_	0
ABLSL7-D6-T7.ab1	-		_	0
ABLSL7-E1-T7.ab1	-		_	0
ABLSL7-E10-T7.ab1	-		_	0
ABLSL7-E11-T7.ab1	elastase 4 precursor	Paralichthys olivaceus	BAA82370.1	99
ABLSL7-E12-T7.ab1	-		_	0
ABLSL7-E2-T7.ab1	-		_	0
ABLSL7-E3-T7.ab1	unknown protein	Arabidopsis thaliana	BAC42245.1	63
ABLSL7-E4-T7.ab1	-	*	_	0
ABLSL7-E5-T7.ab1	similar to procollagen, type XVI, alpha 1	Danio rerio		75
ABLSL7-E6-T7.ab1	unnamed protein product	Tetraodon nigroviridis	 CAG10864.1	89
ABLSL7-E7-T7.ab1	apolipoprotein B	Herpestes javanicus	AAY18256.1	34
ABLSL7-E8-T7.ab1		1 5		0
ABLSL7-E9-T7.ab1	NATIONAL		-	0
ABLSL7-F1-T7.ab1	heat shock protein 90 beta	Paralichthys olivaceus	_ AAO92751.1	90
ABLSL7-F10-T7.ab1	-	i araiteriitys otrraceus	11109270111	0
ABLSL7-F11-T7.ab1			-	0
ABLSL7-F12-T7.ab1	similar to protein phosphatase 1 (formerly 2C)-like	Danio rerio	- XP_685040.1	65
ABLSL7-F2-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG00997.1	67
ABLSL7-F3-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF94246.1	71
ABLSL7-F4-T7.ab1	<u> </u>		_	0
ABLSL7-F6-T7.ab1			_	0
ABLSL7-F7-T7.ab1			_	0
ABLSL7-F8-T7.ab1			_	0
ABLSL7-F9-T7.ab1			_	0
ABLSL7-G1-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG01849.1	70
ABLSL7-G11-T7.ab1	similar to Protein UNQ6350/PRO21055 homolog precursor	Canis familiaris	XP_546575.1	51
ABLSL7-G12-T7.ab1			_	0
ABLSL7-G2-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF99203.1	84
ABLSL7-G3-T7.ab1	-		_	0
ABLSL7-G4-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF90729.1	53
ABLSL7-G5-T7.ab1	Zgc:56053	Danio rerio	AAH45887.1	54
ABLSL7-G6-T7.ab1	Zgc:56053	Danio rerio	AAH45887.1	50
ABLSL7-G7-T7.ab1	intestinal fatty acid-binding protein	Danio rerio	AAO16213.1	65
ABLSL7-G8-T7.ab1	unnamed protein product	Tetraodon nigroviridis	CAG08259.1	89
ABLSL7-G9-T7.ab1	MGC80804 protein	Xenopus laevis	AAH73375.1	97
ABLSL7-H1-T7.ab1	-	-	_	0
ABLSL7-H10-T7.ab1	carboxypeptidase A1	Paralichthys olivaceus	BAC53788.1	100
ABLSL7-H12-T7.ab1	-	-	_	0
ABLSL7-H2-T7.ab1	mitochondrial citrate synthase precursor	Katsuwonus pelamis	– AAR98860.1	93
ABLSL7-H3-T7.ab1		1		0

Table 7. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
ABLSL7-H4-T7.ab1	EF1A_ORYLA Elongation factor 1-alpha		no. 90Q9YIC0 - BAD77968.1 CAD62448.1	
ADL3L/-H4-1/.a01	aa(EF-1-alpha)		90091100	
ABLSL7-H5-T7.ab1	-		_	0
ABLSL7-H6-T7.ab1	type 1 collagen alpha 1	Paralichthys olivaceus	BAD77968.1	93
ABLSL7-H7-T7.ab1	peroxisome proliferator-activated receptor beta	Pleuronectes platessa	CAD62448.1	96
ABLSL7-H8-T7.ab1	-		_	0
ABLSL7-H9-T7.ab1	chymotrypsinogen 2	Paralichthys olivaceus	BAA82366.1	92
a Idontity(%)				

Identity(%)

Table 8. List of identified ESTs from the hyposalinity abalone subtracted cDNA library

Clone no.	Putative identification	Closest species	Accession no.	ľ
LSASL-2_A02_02.ab1	-		_	0
LSASL-2_A03_01.ab1	calcium binding protein 1	Biomphalaria glabrata	AAV91525.1	26
LSASL-2_A04_02.ab1	actin	Onychoteuthis compacta	AAF81170.1	97
LSASL-2_A05_01.ab1	G-protein-coupled receptor induced protein GIG2	Rattus norvegicus	AAG35664.1	67
LSASL-2_A06_02.ab1	RL44_PICJA 60S ribosomal protein L44 (60S ribosomal protein L41)		85P52809	
LSASL-2_A07_01.ab1	ribosomal protein L10a isoform B	Lysiphlebus testaceipes	AAX62471.1	62
LSASL-2_A09_01.ab1	putative ATPase	Monkeypox virus	AAY97545.1	31
LSASL-2_A10_02.ab1	2 (zwei) ig-domain protein protein 4	Caenorhabditis elegans	AAA68768.1	33
LSASL-2_A11_01.ab1	similar to WD repeat domain 36	Strongylocentrotus purpuratus	XP_780489.1	48
LSASL-2_A12_02.ab1	BAGS_BOMMO BAG domain-containing protein Samui		35Q9BLJ6	
LSASL-2_B02_04.ab1	ribosomal protein L10	Branchiostoma belcheri tsingtaunese	AAO31769.1	90
LSASL-2_B04_04.ab1	cI repressor	Bacteriophage EJ-1 Human	NP_945243.1	31
LSASL-2_B05_03.ab1	envelope glycoprotein	immunodeficiency virus 1	AAP60103.1	41
LSASL-2_B06_04.ab1	similar to Coagulation factor VII (Serum prothrombin conversion accelerator)	Pan troglodytes Cryptococcus	XP_509745.1	48
LSASL-2_B07_03.ab1	ribosomal protein P2, putative	neoformans var.	AAW44232.1	34
LSASL-2_B08_04.ab1	variant-specific surface protein TSA417	neoformans JEC21 Giardia intestinalis	AAD05040.1	25
LSASL-2_B10_04.ab1	variant-specific surface protein 157417	Giardia intestinatis	AAD05040.1	0
LSASL-2_B11_03.ab1			-	0
LSASL-2_B12_04.ab1	-		-	0
LSASL-2_D12_04.a01 LSASL-2_C01_05.ab1	- ETS-family transcription factor	Chlamys farreri	– AAU11487.2	55
LSASL-2_C01_05.ab1	CCAAT/enhancer binding protein	Aplysia kurodai	AAG61258.1	44
	01	1 2		44 79
LSASL-2_C03_05.ab1	ribosomal protein L5	Argopecten irradians	AAN05603.1	
LSASL-2_C04_06.ab1	inhibitor of DNA binding 4	Rattus norvegicus	NP_783172.1	46
LSASL-2_C06_06.ab1	a-agglutinin anchorage subunit	Giardia lamblia ATCC 50803	XP_767315.1	42
LSASL-2_C07_05.ab1	unnamed protein product	Tetraodon nigroviridis	CAG03416.1	38
LSASL-2_C08_06.ab1	LD46584p	Drosophila melanogaster	AAL68241.1	77
LSASL-2_C10_06.ab1	similar to golgi membrane protein SB140 isoform 1	Strongylocentrotus purpuratus	XP_780638.1	87

Table 8. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
LSASL-2_C12_06.ab1	baseplate wedge subunit	Enterobacteria phage RB49	NP_891710.1	36
LSASL-2_D02_08.ab1	similar to Calcium-binding protein 2 (CaBP2)	Canis familiaris	XP_854627.1	34
LSASL-2_D03_07.ab1	dipeptidase, putative	Chlamydophila pneumoniae AR39	AAF38320.1	32
LSASL-2_D04_08.ab1	similar to amylase 1, salivary	Strongylocentrotus purpuratus	XP_782094.1	28
LSASL-2_D05_07.ab1	complement component 2	Homo sapiens	CAI17453.1	39
LSASL-2_D06_08.ab1	polymerase	Lymphocytic choriomeningitis virus	AAR15899.1	40
LSASL-2_D07_07.ab1	Chaperonin Containing TCP-1 family member (cct-5)	Caenorhabditis elegans	NP_497915.3	44
LSASL-2_D08_08.ab1	actin	Ommastrephes bartramii	AAF81166.1	93
LSASL-2_D10_d10_08.a b1	similar to RIKEN cDNA A330021E22	Gallus gallus	XP_418644.1	42
LSASL-2_D1107.ab1	type X collagen		AAA48736.1	65
LSASL-2_D12_08.ab1	polymerase (RNA) II (DNA directed) polypeptide F	Gallus gallus	NP_990065.1	77
LSASL-2_E02_10.ab1	novel hemicentin protein	Danio rerio	CAI11663.1	48
LSASL-2_E03_09.ab1	Elongation FacTor family member (eft-2)	Caenorhabditis elegans	NP_492457.1	76
LSASL-2_E04_10.ab1	regulatory protein, LuxR:Response regulator receiver	Alkaliphilus metalliredigenes QYMF	ZP_00799383.1	34
LSASL-2_E05_09.ab1	hypothetical protein	Wolinella succinogenes	CAE10266.1	33
LSASL-2_E06_10.ab1	RPL15 protein	Homo sapiens	AAH81565.1	91
LSASL-2_E09_09.ab1	actin	Scyliorhinus torazame	AAG22088.1	73
LSASL-2_E10_10.ab1	Glycosyl transferase, family 2:Glycosyl transferase, group 1	Trichodesmium erythraeum IMS101	ZP_00675068.1	40
LSASL-2_E11_09.ab1		1	_	0
LSASL-2_E12_10.ab1	similar to cytosolic sialic acid 9-O-acetylesterase homolog, partial	Strongylocentrotus purpuratus	XP_789419.1	30
LSASL-2_F01_11.ab1	-		_	0
LSASL-2_F03_11.ab1	similar to 40S ribosomal protein S28 similar to Lysosomal alpha-mannosidase	Mus musculus	XP_914732.1	68
LSASL-2_F04_12.ab1	precursor (Mannosidase, alpha B) (Lysosomal acid alpha-mannosidase) (Laman) (Mannosidase alpha class 2B member 1)	Strongylocentrotus purpuratus	XP_795985.1	40
LSASL-2_F05_11.ab1	similar to CG5742-PA	Strongylocentrotus purpuratus	XP_791617.1	24
LSASL-2_F06_12.ab1	ATP synthase beta subunit	Pinctada fucata	ABC86835.1	28
LSASL-2_F07_11.ab1	conserved Theileria-specific sub-telomeric protein, SVSP family, putative	Theileria annulata	CAI74978.1	31

Table 8. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
LSASL-2_F09_11.ab1	hypothetical protein Tb10.100.0140	Trypanosoma brucei TREU927	XP_822285.1	37
LSASL-2_F10_12.ab1	ribosomal protein S8	Argopecten irradians	AAN05595.1	76
LSASL-2_F12_12.ab1	similar to deleted in malignant brain tumors 1 isoform c precursor	Pan troglodytes	XP_521642.1	31
LSASL-2_G01_13.ab1	adaptive-response sensory histidine kinase SasA	Cyanobacteria bacterium Yellowstone A-Prime	YP_474113.1	37
LSASL-2_G03_13.ab1	beta-tubulin	Halichondria sp. AR-2003	AAP49554.1	97
LSASL-2_G05_13.ab1	similar to CG4785-PA	Strongylocentrotus purpuratus	XP_795990.1	51
LSASL-2_G06_14.ab1	Eukaryotic translation initiation factor 3, subunit 8	Danio rerio	AAH57465.1	72
LSASL-2_G07_13.ab1	100		-	0
LSASL-2_G08_14.ab1	ENSANGP00000025543	Anopheles gambiae str. PEST	EAL41105.1	44
LSASL-2_G09_13.ab1	transcriptional regulator, ArsR family	Rhodobacter sphaeroides 2.4.1	ABA80224.1	34
LSASL-2_G11_13.ab1	similar to Ubiquitin carboxyl-terminal hydrolase 7 (Ubiquitin thiolesterase 7) (Ubiquitin-specific processing protease 7) (Deubiquitinating enzyme 7) (Herpesvirus associated ubiquitin-specific protease)	Apis mellifera	XP_392848.2	56
LSASL-2_G12_14.ab1	serine/threonine-specific protein kinase -like	Oryza sativa (japonica cultivar-group)	XP_550053.1	35
LSASL-2_H02_16.ab1	similar to sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1	Canis familiaris	XP_532030.2	43
LSASL-2_H03_15.ab1	odorant receptor	Danio rerio	ABC43377.1	31
LSASL-2_H04_16.ab1	MGC68600 protein	Xenopus laevis	AAH56661.1	43
LSASL-2_H06_16.ab1	similar to Sulfatase modifying factor 2 precursor (C-alpha-formyglycine-generating enzyme 2), partial	Strongylocentrotus purpuratus	XP_789318.1	58
LSASL-2_H08_16.ab1	-		_	0
LSASL-2_H10_16.ab1	-		_	0
LSASL-2_H11_15.ab1	cellulase	Haliotis discus	BAC67186.1	55
LSASL-1_A01_01.ab1	vitellogenin	Poecilia reticulata	AAN05434.1	35
LSASL-1_A02_02.ab1	polymerase (RNA) II (DNA directed) polypeptide F	Gallus gallus	NP_990065.1	76
LSASL-1_A03_01.ab1	thioester-containing protein	Euphaedusa tau	BAE44110.1	43
LSASL-1_A05_01.ab1	homeobox protein	Homo sapiens	CAB86198.1	39
LSASL-1_A06_02.ab1	ribosomal protein L19	Argopecten irradians	AAN05588.1	97
LSASL-1_A07_01.ab1	unnamed protein product	Tetraodon nigroviridis	CAF97630.1	78

Table	8. ((continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
LSASL-1_A08_02.ab1	unknown protein	Arabidopsis thaliana	NP_187126.1	32
LSASL-1_A10_02.ab1	alginate lyase	Haliotis discus hannai	BAC87758.1	80
LSASL-1_A11_01.ab1	RPL18A protein	Xenopus laevis	AAH42256.1	73
LSASL-1_A12_02.ab1	PTPL1-associated RhoGAP 1	Pan troglodytes	XP_513574.1	37
LSASL-1_B01_03.ab1	-		_	0
LSASL-1_B02_04.ab1	hypothetical protein Noc_0748	Nitrosococcus oceani ATCC 19707	ABA57261.1	41
LSASL-1_B03_03.ab1	fructose-biphosphate aldolase 6-phospho-alpha-glucosidase	Biomphalaria glabrata Lactobacillus johnsonii	AAZ39527.1	77
LSASL-1_B04_04.ab1	(maltose-6'-phosphate hydrolase)	NCC 533	NP_965620.1	29
LSASL-1_B05_03.ab1	RC159	Ruegeria sp. PR1b	AAN05232.1	35
SASL-1abalone1-05071 5_B06_b6_04.ab1	unnamed protein product	Tetraodon nigroviridis	CAG09202.1	48
_SASL-1_B07_03.ab1	bifunctional dihydrofolate reductase-thymidylate synthase	Plasmodium falciparum 3D7	NP_702821.1	30
SASL-1_B08_04.ab1	hypothetical protein Bcep18194_A5494	Burkholderia sp. 383	ABB09088.1	65
SASL-1_B09_03.ab1	fertilization protein		AAC37229.1	46
_SASL-1_B10_04.ab1	RE74713p	Drosophila melanogaster	AAV36859.1	36
_SASL-1_B11_03.ab1	unnamed protein product	Tetraodon nigroviridis Strongylocentrotus	CAG10456.1	74
LSASL-1_B12_04.ab1	similar to cubilin, partial	purpuratus	XP_784754.1	31
LSASL-1_C01_05.ab1	hypothetical protein	Homo sapiens	CAB63768.1	37
.SASL-1_C02_06.ab1			_	0
.SASL-1_C03_05.ab1	similar to Protein C20orf29	Rattus norvegicus	XP_575239.1	53
.SASL-1_C05_05.ab1			_	0
LSASL-1_C06_06.ab1	Pancreatic lipase-related protein 2	Mus musculus	AAH94923.1	53
SASL-1_C07_05.ab1			_	0
SASL-1_C08_06.ab1	ferritin	Branchiostoma belcheri tsingtaunese	AAQ21039.1	67
.SASL-1_C10_06.ab1	ribosomal protein S10	Branchiostoma belcheri	AAN52385.1	73
SASL-1_C11_05.ab1	similar to ribosomal protein L22	Apis mellifera	XP_625009.1	70
SASL-1_D01_07.ab1	-	* •	_	0
SASL-1_D02_08.ab1	hypothetical protein MGG_ch7g424	Magnaporthe grisea 70-15	EAQ71017.1	44
_SASL-1_D03_07.ab1	ENSANGP00000011058	Anopheles gambiae str. PEST	EAA07595.2	71
SASL-1_D04_08.ab1	-		_	0
.SASL-1_D055_07.ab1	-		_	0
_SASL-1_D06_08.ab1	Hypothetical protein CBG19221	Caenorhabditis briggsae	CAE72125.1	28
LSASL-1_D07_07.ab1	agmatinase, putative	Pseudomonas fluorescens Pf-5	AAY90871.1	60
		junorescens 1 j 5		

Table	8.	(continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
LSASL-1_D09_07.ab1	Y48C3A.4	Caenorhabditis elegans	NP_496811.1	32
LSASL-1_D10_08.ab1	40S ribosomal protein S9	Ictalurus punctatus	AAK95191.1	87
LSASL-1_D11_07.ab1	-		_	0
LSASL-1_D12_08.ab1	-		_	0
LSASL-1_E01_09.ab1	Myc homolog	Crassostrea virginica	AAB34577.1	40
LSASL-1_E02_10.ab1	-		_	0
LSASL-1_E03_09.ab1	similar to methyltransferase Cyt19	Gallus gallus Branchiostoma belcheri	XP_421735.1	57
LSASL-1_E04_10.ab1	MyoD	tsingtaunese	AAR12640.1	60
LSASL-1_E05_09.ab1	Citrate synthase	Nitrococcus mobilis Nb-231	ZP_01126607.1	29
LSASL-1_E06_10.ab1	Hypothetical protein CBG01620	Caenorhabditis briggsae	CAE58478.1	32
LSASL-1_E08_10.ab1	alcohol dehydrogenase class 3	Branchiostoma	AAF73255.1	86
Londer 1_Loo_rollor	N	lanceolatum	1111 /020011	
LSASL-1_E10_10.ab1 LSASL-1_E11_09.ab1	similar to casein kinase 2, beta subunit	Canis familiaris	XP_532075.2	33 0
LSASE-1_E11_07.a01	similar to Thyrotropin-releasing hormone		-	0
	degrading ectoenzyme (TRH-degrading			
LOAGE 1 E10 10 11			VD (010261	27
LSASL-1_E12_10.ab1	ectoenzyme) (TRH-DE) (TRH-specific	Danio rerio	XP_691936.1	37
	aminopeptidase) (Thyroliberinase)			
	(Pyroglutamyl-peptidase II) (PAP-II)			
LSASL-1_F01_11.ab1			_	0
LSASL-1_F04_12.ab1	MGC64389 protein	Xenopus laevis	AAH53792.1	30
	similar to			
LSASL-1_F05_11.ab1	Dolichyl-diphosphooligosaccharideprotein	Gallus gallus	XP_414360.1	79
LSASL-1_105_11.a01	glycosyltransferase 67 kDa subunit precursor	Outius guitus	AI_414500.1	19
	(Ribophorin I) (RPN-I)			
		Drosophila		• •
LSASL-1_F06_12.ab1	CG32644-PB	melanogaster	NP_727652.1	38
LSASL-1_F07_11.ab1				0
LSASL-1_F08_12.ab1	-		_	0
 LSASL-1_F09_11.ab1	actin	Haliotis discus hannai		100
LSASL-1_F11_11.ab1	hypothetical protein	Plasmodium berghei strain ANKA	XP_679773.1	35
LSASL-1_F12_12.ab1	NADH dehydrogenase subunit F	Symphoricarpos	AAM28656.1	36
		orbiculatus		
LSASL-1_G01_13.ab1	unnamed protein product	Tetraodon nigroviridis	CAG01270.1	64
LSASL-1_G02_14.ab1	inhibitor of apoptosis protein	Trichoplusia ni	AAF19819.1	40
LSASL-1_G03_13.ab1	similar to	Danio rerio	XP_684696.1	37
LSASL-1_G04_14.ab1	ribosomal protein S9	Rattus norvegicus	NP_112370.1	88
LSASL-1_G05_13.ab1	developmentally-regulated vdg3	Haliotis asinina	AAX11341.1	66

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
LSASL-1_G06_14.ab1	CYT_CYPCA Cystatin precursor (Ovarian cystatin) (P12)		41P35481	
.SASL-1_G07_13.ab1	heat shock protein 70	Culex pipiens	AAX84696.1	76
SASL-1_G08_14.ab1	metalloprotease-disintegrin	Gallus gallus	XP_418639.1	37
SASL-1_G10_14.ab1	unnamed protein product	Mus musculus	BAE40001.1	73
SASL-1_G11_13.ab1	-		_	0
SASL-1_G12_14.ab1	-		_	0
SASL-1_H02_16.ab1	phytocyanin protein, PUP2	Arabidopsis thaliana	CAD66637.1	35
SASL-1_H04_16.ab1	heat shock protein 70	Manduca sexta	AAO65964.1	57
SASL-1_H05_15.ab1	actin	Stylophora pistillata	AAR13014.1	94
SASL-1_H0616.ab1	UDP-N-acetylglucosamine pyrophosphorylase	Shewanella sp. PV-4	ZP_00837958.1	25
SASL-1_H08_16.ab1	thioester-containing protein	Euphaedusa tau	BAE44110.1	60
SASL-1_H09_15.ab1	unnamed protein product	Xenopus laevis	CAA62212.1	45
SASL-1_H11_15.ab1	cytochrome b	Haliotis tuberculata	AAX35438.1	86
	HYPOTHETICAL TRANSMEMBRANE			
SASL-5-A1-T3.ab1	PROTEIN	Ralstonia solanacearum	CAD17006.1	33
		Chloroflexus		
SASL-5-A10-T3.ab1	Cytochrome oxidase assembly		ZP_00767116.1	35
		aurantiacus J-10-fl Strongylocentrotus		
SASL-5-A11-T3.ab1	hypothetical protein XP_778835		XP_783928.1	32
		purpuratus		
SASL-5-A12-T3.ab1	ferritin	Branchiostoma belcheri	AAQ21039.1	71
SAGE 5 ANZ 15.001	Territin	tsingtaunese	111021039.1	/1
CACL 5 A2 T2 -11	har that is a matrix PTD2 08104	Pseudoalteromonas	7D 01122610 1	25
SASL-5-A3-T3.ab1	hypothetical protein PTD2_08194	tunicata D2	ZP_01133610.1	35
SASL-5-A4-T3.ab1	disulfide isomerase	Ostertagia ostertagi	CAD11865.1	76
SASL-5-A5-T3.ab1	vitelline envelope sperm lysin receptor	Haliotis rufescens	AAL50827.1	46
SASL-5-A8-T3.ab1	eosinophil chemotactic cytokine	Gallus gallus	NP_989760.1	42
SASL-5-B1-T3.ab1	Tubulin, alpha 1	Mus musculus	AAH83344.1	92
SASL-5-B10-T3.ab1	fructose-biphosphate aldolase	Biomphalaria glabrata	AAZ39527.1	83
		Cryptosporidium		
SASL-5-B11-T3.ab1	hypothetical protein Chro.30218	hominis TU502	XP_668663.1	27
SASL-5-B3-T3.ab1	chitinase	Aedes aegypti	AAZ39947.1	33
SASL-5-B4-T3.ab1	microneme protein 4	Eimeria tenella	CAC34726.1	27
SASL-5-B5-T3.ab1	-	Limeria ienena	0/1054/20.1	0
SASL-5-B7-T3.ab1	Hdlbp-prov protein	Xenopus laevis	– AAH44314.1	43
5/15E 5 B7 15.001		Ommastrephes	/ MI++51+.1	75
SASL-5-B9-T3.ab1	actin	1	AAF81166.1	98
GAGE 5 C10 T2 11		bartramii		0
SASL-5-C10-T3.ab1	-	Discussion in the state	-	0
SASL-5-C11-T3.ab1	ubiquitin	Biomphalaria glabrata	AAG49540.1	98
SASL-5-C12-T3.ab1	CoA enzyme activase	Desulfitobacterium	ZP_00557506.1	31
		hafniense DCB-2		
SASL-5-C4-T3.ab1	ENSANGP00000016526, partial	Apis mellifera	XP_623859.1	33
SASL-5-C5-T3.ab1	tropomyosin	Crassostrea gigas	AAK96889.1	90
SASL-5-C9-T3.ab1	similar to ENSANGP00000007148	Apis mellifera	XP_392871.2	54

Table 8. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
LSASL-5-D10-T3.ab1	proteasome subunit Y	Lethenteron japonicum	BAA19761.1	72
LSASL-5-D11-T3.ab1	hypothetical protein XP_868675	Bos taurus	XP_873768.1	34
LSASL-5-D12-T3.ab1	Rps9 protein	Mus musculus	AAH12491.1	90
LSASL-5-D2-T3.ab1	similar to BTG2 protein (NGF-inducible protein TIS21)	Bos taurus	XP_586687.2	58
LSASL-5-D3-T3.ab1	hypothetical protein Afu5g06460	Aspergillus fumigatus Af293	XP_753987.1	21
LSASL-5-D8-T3.ab1	smooth muscle alpha actin	Xenopus laevis	AAX85448.1	83
LSASL-5-D9-T3.ab1	hypothetical protein, unknown function	Leishmania major	CAJ02124.1	27
LSASL-5-E10-T3.ab1	paramyosin protein MANA_MYTED Mannan	Crassostrea gigas	CAD79338.1	70
LSASL-5-E11-T3.ab1	endo-1,4-beta-mannosidase precursor (Beta-mannanase) (Endo-beta-1,4-mannanase) (ManA)		51Q8WPJ2	
LSASL-5-E3-T3.ab1	- similar to cGMP-dependent protein kinase 2		-	0
LSASL-5-E4-T3.ab1	(CGK 2) (cGKII) (Type II cGMP-dependent	Danio rerio	XP_686609.1	33
LSASL-5-E5-T3.ab1	protein kinase) ferritin GF2	Crassostrea gigas Symbiobacterium	AAP83794.1	81
LSASL-5-E6-T3.ab1	conserved hypothetical protein	thermophilum IAM 14863	BAD39566.1	36
LSASL-5-E7-T3.ab1	Tubulin, alpha 1	Mus musculus	AAH83344.1	97
LSASL-5-F1-T3.ab1			_	0
LSASL-5-F11-T3.ab1	similar to heat shock 70kD protein 1B	Strongylocentrotus purpuratus	XP_780151.1	84
LSASL-5-F4-T3.ab1	ENSANGP0000001678	Anopheles gambiae str. PEST	EAA06914.2	42
LSASL-5-F8-T3.ab1	beta-1,4-endoglucanase	Biomphalaria glabrata uncultured	AAT76428.1	60
LSASL-5-F9-T3.ab1	dissimilatory (bi-)sulfite reductase alpha subunit	sulfate-reducing bacterium	AAK61938.1	41
LSASL-5-G10-T3.ab1	ACT CALFI Actin	oucienum	Q92192	96
LSASL-5-G11-T3.ab1	KARG_NORMA Arginine kinase (AK)		93P51544	20
LSASL-5-G12-T3.ab1	662aa long hypothetical acetyl-CoA synthetase	Sulfolobus tokodaii str. 7	BAB65737.1	38
LSASL-5-G3-T3.ab1	alginate lyase	, Haliotis discus hannai	BAC87758.1	100
LSASL-5-G4-T3.ab1	cytoplasmic heat shock protein 70	Ostrea edulis	AAM46635.1	78
LSASL-5-G5-T3.ab1	ribosomal protein L31	Crassostrea gigas	CAD91431.1	85
LSASL-5-G6-T3.ab1				0
LSASL-5-G8-T3.ab1	GTP-binding nuclear protein RAN1	Chironomus tentans	_ CAE55862.1	70
LSASL-5-G9-T3.ab1	hypothetical protein	Plasmodium falciparum 3D7	NP_704653.1	33

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
LSASL-5-H12-T3.ab1	hillarin	Hirudo medicinalis	AAK49949.1	37
SASL-5-H2-T3.ab1	ribosomal protein L3 variant 1	Lysiphlebus testaceipes	AAX62422.1	70
SASL-5-H3-T3.ab1	retinitis pigmentosa GTPase regulator	Homo sapiens	AAG00551.1	36
SASL-5-H4-T3.ab1	similar to CG10687-PA	Apis mellifera	XP_623490.1	91
SASL-5-H5-T3.ab1	70kDa heat shock protein	Crassostrea gigas	BAD15286.1	88
SASL-5-H6-T3.ab1	actin	Pyrocystis lunula	AAO14682.1	85
SASL-5-H7-T3.ab1	-	5 5		0
LSASL-5-H9-T3.ab1	cytochrome c oxidase subunit III	Haliotis rubra	_ YP_026066.1	83
SASL3-A-1.ab1	-			0
		Strongylocentrotus	-	0
LSASL3-A-10.ab1	hypothetical protein XP_775808	purpuratus	XP_780901.1	65
LSASL3-A-11.ab1	ribosomal protein L19	Argopecten irradians	AAN05588.1	51
LSASL3-A-12.ab1	- · · · · ·	0.1		0
		Drosophila	-	
LSASL3-A-2.ab1	RH08259p		AAM29564.1	37
		melanogaster		
SASL3-A-3.ab1	similar to predicted CDS, reverse	Strongylocentrotus	XP_795356.1	40
	transcriptase family member (10840)	purpuratus	III _//0000011	
LSASL3-A-4.ab1	Myc homolog	Crassostrea virginica	AAB34577.1	59
LSASL3-A-5.ab1	vitelline coat protein 42	Tegula pfeifferi	BAB15930.1	44
LSASL3-A-6.ab1	F54D5.3	Caenorhabditis elegans	NP_496473.1	35
LSASL3-A-7.ab1	tubulin	Crassostrea gigas	BAD88768.1	98
LSASL3-B-1.ab1	Hypothetical protein LOC554120	Danio rerio	AAH95631.1	64
		Oryza sativa (japonica	NP_914878.1	33
LSASL3-B-10.ab1	OSJNBa0093F16.20	cultivar-group)		
LSASL3-B-2.ab1	ribosomal protain \$24	Ixodes scapularis	A A X C C 00 4 1	62
LSASL3-D-2.a01	ribosomal protein S24	/- / /	AAY66904.1	02
LSASL3-B-3.ab1	hypothetical protein CHGG_01091	Chaetomium globosum	EAQ92856.1	44
		CBS 148.51		
LSASL3-B-6.ab1	similar to ENSANGP0000003616	Apis mellifera	XP_624843.1	45
	similar of hereis and a model	Strongylocentrotus	VD 700045 1	12
LSASL3-B-7.ab1	similar to hemicentin 1, partial	purpuratus	XP_789045.1	43
		Hahella chejuensis		
LSASL3-C-1.ab1	probable phage resistance protein	KCTC 2396	YP_434638.1	32
LSASL3-C-2.ab1	hypothetical protein DDB0185347	Dictyostelium	XP_639223.1	43
		discoideum		
LSASL3-C-3.ab1	bicoid	Drosophila affinis	AAX13021.1	27
LSASL3-C-4.ab1	-		_	0
LSASL3-C-6.ab1	paramyosin protein	Crassostrea gigas	CAD79338.1	83
LSASL3-C-8.ab1	ribosomal protein L21	Argopecten irradians	AAN05604.1	72
LSASL3-D-1.ab1	similar to ENSANGP00000020389	Apis mellifera	XP_392114.1	54
LSASL3-D-3.ab1	60s ribosomal protein L10	Ixodes scapularis		52
	····· <u>i</u> ···· ·	Anopheles gambiae str.		
LSASL3-D-4.ab1	ENSANGP00000014375		EAA14477.2	30
		PEST		
LSASL3-D-5.ab1	RE15268p	Drosophila	AAS93748.1	35
		melanogaster		55

Table 8. (continued)

Table	8.	(continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
LSASL3-D-6.ab1	similar to CG9285-PA, isoform A, partial	Strongylocentrotus purpuratus	XP_795581.1	71
LSASL3-D-7.ab1	unnamed protein product	Tetraodon nigroviridis	CAF96213.1	54
LSASL3-D-8.ab1	ENSANGP00000027602	Anopheles gambiae str. PEST	EAL41007.1	29
LSASL3-D-9.ab1	Hypothetical protein B0546.1	Caenorhabditis elegans	AAB92010.1	52
LSASL3-E-1.ab1	similar to Thbs2, partial	Danio rerio	XP_694690.1	51
LSASL3-E-6.ab1	CG9476-PA	Drosophila melanogaster	NP_524297.1	95
LSASL3-E-7.ab1	hypothetical protein UM00449.1	Ustilago maydis 521	XP_756596.1	32
LSASL3-E-8.ab1	COG1198: Primosomal protein N' (replication factor Y) - superfamily II helicase	¹ Vibrio sp. Ex25	ZP_00762026.1	52
LSASL3-E-9.ab1	Hypothetical protein LOC406855	Danio rerio	AAH65319.1	49
LSASL3-F-4.ab1	baculoviral IAP repeat-containing 3	Homo sapiens	AAU88144.1	56
LSASL3-F-5.ab1	diaminopimelate epimerase	Prochlorococcus marinus str. NATL2A	AAZ57814.1	44
LSASL3-F-6.ab1	hypothetical protein LOC_Os12g28910	Oryza sativa (japonica cultivar-group)	ABA98481.1	38
LSASL3-G-6.ab1	Vanin 3	Xenopus tropicalis	AAH87969.1	41
LSASL3-G-7.ab1	putative calcium dependent protein kinase	Silene latifolia	CAF74837.1	35
LSASL3-H-1.ab1	unnamed protein product	Homo sapiens	BAC87532.1	43
LSASL3-H-12.ab1	ribosomal protein L19 YadA-like, C-terminal:Haemagluttinin	Argopecten irradians Burkholderia	AAN05588.1	67
LSASL3-H-2.ab1	motif:Hep_Hag	vietnamiensis G4	ZP_00423121.1	23
LSASL3-H-3.ab1	ENSANGP00000016786	Anopheles gambiae str. PEST	EAA14690.3	94
LSASL3-H-4.ab1	putative alkaline phosphatase	Idiomarina baltica OS145	ZP_01042468.1	36
LSASL3-H-5.ab1	similar to hypothetical protein A930013K19	Pan troglodytes	XP_526806.1	41
LSASL3-H-6.ab1	CG5394-PA, isoform A	Drosophila melanogaster	NP_524471.2	28
LSASL3-H-7.ab1	-		_	0
LSASL3-H-8.ab1	transmembrane receptor Unc5B	Danio rerio	AAU94928.1	37
LSASL4-A-11.ab1	repressible high-affinity phosphate permease		47AAA74899.1	
LSASL4-A-12.ab1	-		_	0
LSASL4-A-2.ab1	thioester-containing protein	Euphaedusa tau	BAE44110.1	59
LSASL4-A-3.ab1	odz, odd Oz\/ten-m homolog 1(Drosophila)		CAI42721.1	31
LSASL4-A-4.ab1	cathepsin L	Mytilus galloprovincialis	AAT39505.2	80
LSASL4-A-5.ab1	ARHE	Homo sapiens	CAG46835.1	37
LSASL4-B-2.ab1	hypothetical protein Afu5g08450	Aspergillus fumigatus Af293	XP_753792.1	41
LSASL4-B-3.ab1	GA20963-PA	Drosophila pseudoobscura	EAL26527.1	47

Table 8. (continued)

Clone no.	Putative identification	Closest species	Accession no.	ľ
LSASL4-B-4.ab1	MGC108090 protein	Xenopus tropicalis	AAH90371.1	36
LSASL4-B-5.ab1	GA22016-PA	Drosophila pseudoobscura	EAL30854.1	40
LSASL4-B-6.ab1	hypothetical protein DSM3645_09727	Blastopirellula marina DSM 3645	ZP_01088750.1	37
LSASL4-B-7.ab1	endo-1,4-beta-D-glucanase	Mytilus edulis	CAC59695.1	52
LSASL4-C-1.ab1	similar to Plasmodium falciparum. Hypothetical protein	Dictyostelium discoideum Rhodobacter	AAO53175.1	29
LSASL4-C-2.ab1	branched-chain amino acid aminotransferase, putative	sphaeroides ATCC 17025	ZP_00915995.1	31
LSASL4-C-3.ab1	HBA_TURTR Hemoglobin alpha subunit		45P18978	
LSASL4-C-5.a01	(Hemoglobin alpha chain) (Alpha-globin)		45118978	
LSASL4-C-4.ab1	-		-	0
LSASL4-C-5.ab1 LSASL4-C-6.ab1	Hypothetical protein H34I24.2 PDZ/DHR/GLGF	Caenorhabditis elegans Shewanella sp. MR-7	AAK18967.1 ZP_00856533.1	26 32
LSASL4-D-11.ab1	hypothetical protein AN0759.2	Aspergillus nidulans FGSC A4	XP_658363.1	42
LSASL4-D-12.ab1	calcium binding protein 2	Biomphalaria glabrata	AAV91522.1	41
LSASL4-D-2.ab1	fat tumor suppressor homolog 2	Rattus norvegicus	NP_075243.1	35
LSASL4-D-3.ab1	CEll Death abnormality family member (ced-1)	Caenorhabditis elegans	NP_001021773. 1	43
LSASL4-D-4.ab1	acetyl-CoA synthetase beta subunit	Syntrophus aciditrophicus SB	YP_460502.1	34
LSASL4-D-5.ab1	integrin beta 5	Bos taurus	AAS93434.1	37
LSASL4-D-6.ab1	ribosomal protein L21	Argopecten irradians	AAN05604.1	73
LSASL4-D-7.ab1	similar to Peptidyl-prolyl cis-trans isomerase C (PPIase) (Rotamase) (Cyclophilin C)	Gallus gallus	XP_424412.1	38
LSASL4-D-8.ab1		1	_	0
LSASL4-E-12.ab1	hypothetical protein DEHA0B04213g	Debaryomyces hansenii CBS767	XP_457149.1	33
LSASL4-E-8.ab1	MYSP_MYTGA Paramyosin		O96064	61
LSASL4-F-10.ab1	chromodomain helicase DNA binding protein	Giardia lamblia ATCC 50803	XP_769479.1	25
LSASL4-F-5.ab1	hypothetical protein LOC549394	Xenopus tropicalis	NP_001016640. 1	87
LSASL4-G-11.ab1	similar to AMP deaminase 3	Danio rerio	XP_684156.1	30
LSASL4-G-12.ab1	similar to ENSANGP00000018891	Apis mellifera	XP_393575.2	37
LSASL4-G-6.ab1	cell cycle dependent kinase B	Ostreococcus tauri	AAV68596.1	35
LSASL4-H-1.ab1	Unknown (protein for IMAGE:7977719)	Xenopus laevis	AAI06200.1	69
LSASL4-H-11.ab1	transcription factor Crx	Gallus gallus	AAQ14340.1	51
LSASL4-H-12.ab1	Exodeoxyribonuclease V, RecC subunit	Geobacter uraniumreducens Rf4	ZP_01140309.1	40

Table 8. (continued)

Clone no.	Putative identification	Closest species	Accession no.	\mathbf{I}^{a}
LSASL4-H-2.ab1	40S ribosomal protein S23	Dermacentor variabilis	AAP04351.1	94
LSASL4-H-3.ab1	similar to ENSANGP00000012845	Apis mellifera	XP_624775.1	38
LSASL4-H-5.ab1	-		_	0
a Idontity(%)				

^a Identity(%)

REFERENCES

- Hooper C, Day R, Slocombe R, Handlinger J, Benkendorff K. Stress and immune responses in abalone: limitations in current knowledge and investigative methods based on other models. Fish Shellfish Immunol. 2007; 22(4): 363-79.
- Martello L, Tjeerdema RS. Combined effects of pentachorophenol and salinity stress on chemiluminescence activity in two species of abalone, Aquat Toxicol 2001; 51: 351-62.
- Malham S, Lacoste A, Gelebart F, Cueff A, Poulet S. Evidence for a direct link between stress and immunity in the mollusc *Haliotis tuberculata*, J Exp Zool 2003; 295: 136-44.
- Cheng W, Hsiao IS, Chen JC. Effect of ammonia on the immune response of Taiwan abalone *Haliotis diversicolor supertexta* and its susceptibility to *Vibrio parahaemolyticus*, Fish Shellfish Immunol 2004; 17: 193-202.
- Cheng W, Hsiao IS, Chen JC. Effect of nitrite on immune response of Taiwan abalone *Haliotis diversicolor supertexta* and its susceptibility to *Vibrio* parahaemolyticus, Dis Aquat Org 2004; 60: 157-64.
- Cheng W, Hsiao IS, Hsu CH, Chen JC. Change in water temperature on the immune response of Taiwan *abalone Haliotis diversicolor supertexta* and its susceptibility to *Vibrio parahaemolyticus*, Fish Shellfish Immunol 2004; 17: 235-43.
- 7. Cheng W, Juang FM, Chen JC. The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio

*parahaemolyticus*at different salinity levels, Fish Shellfish Immunol 2004; 16: 295-306.


- 8. Cheng W, Li CH, Chen JC. Effect of dissolved oxygen on the immune response of *Haliotis diversicolor supertexta* and its susceptibility to *Vibrio parahaemolyticus*, Aquaculture 2004; 232: 103-15.
- 9. Ottaviani E, Franceschi C. The neuroimmunology of stress from invertebrates to man, Prog Neurobiol 1996; 48: 421-40.
- Ottaviani E, Franceschi C. The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine systems, Immunol Today 1997; 18: 169-73.
- 11. Ottaviani E, Caselgrandi E, Kletsas D. Effect of PDGF and TGF-B on the release of biogenic amines from invertebrate immunocytes and their possible role in the stress response, FEBS Lett 1997; 403: 236-38.
- Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC. Complementray DNA sequencing : expressed sequence tags and human genome project. Science 1991; 252: 1651-56.
- Munasinghe H, Kang HS, Lee J. Analysis of Digestive Gland Expressed Sequence Tag Library from the Disk Abalone, *Haliotis discus discus*. J World Aqua Soci 2006; 37 (1): 96-106.
- Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD. Suppression subtractive hybridization: a method for generating differentially

regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A. 1996 93(12): 6025-30.

- Parsons JD. Improved tools for DNA comparison and clustering. Comp Appl Biosci 1995; 11: 603-13.
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search program. Nucleic Acids Res 1997; 25: 3389-402.
- 17. Lindquist S.The heat-shock response. Annu Rev Biochem. 1986; 55: 1151-91.
- Haslbeck M, Miess A, Stromer T, Walter S, Buchner J. Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem 2005; 280: 23861-8.
- Cashikar AG, Duennwald M, Lindquist SL. A chaperone pathway in protein disaggregation: HSP26 alters the nature of protein aggregates to facilitate reactivation by HSP104. J Biol Chem 2005; 280: 23869-75.
- 20. Karsi A, Cao D, Li P, Patterson A, Kocabas A, Feng J, Ju Z, Mickett KD, Liu Z. Transcriptome analysis of channel catfish (*Ictalurus punctatus*): initial analysis of gene expression and microsatellite-containing cDNAs in the skin. Gene. 2002; 285(1-2): 157-68.

Chapter IV.

Expression profiling of environmental stress-related genes from abalone, *Haliotis discus hannai* using cDNA microarrays

chapter IV. Expression profiling of environmental stress-related genes from abalone, *Haliotis discus hannai* using cDNA microarrays

ABSTRACT

Changes in environmental conditions challenge an organism to maintain their homeostasis. Salinity and temperature are two factors that fluctuate greatly in marine environmental. These factors affect not only the physiological mechanisms but also mortality of aquatic organisms such as fish and shellfish. In the present study, to investigate the response of abalone to environmental stress by heat-shock, cold-shock or hyposalinity using a cDNA microarray consisting of over 2,993 different amplicons was done. Reverse transcription-RCR assays were used to verify the differential expression of candiate genes. The differentially expressed genes were previously revealed by suppression subtractive hybridization and EST surveys and were recognized to encode other organisms components of the stress or immune system. Some of genes identified in this study were not previously recognized as a stress-associated genes. In addition, a number of genes with no known homologs were uncovered. Determination of their specific roles during stress condition may lead to a better understanding of stress response system.

Key words : abalone, Haliotis discus hannai, expressed sequence tag (EST), stress, microarray.

INTRODUCTION

Host defense mechanisms in molluscan are comprised of various innate and nonadaptive mechanisms. The primary cell responsible for immunoregulation is the hemocyte, which participates in a variety of functions, such as digestion and nutrient transport, wound healing, shell repair, excretion, and internal defense [1]. Since there are some methological restrictions in studying the abalone immune system, information on stress- or immune-related molecules of abalone is still limited.

Recently, remarkable progress has been made in genetic technology. Rapid expressed sequence tag (EST) analysis allows acquisition of huge number of DNA sequence information in a short time for many organisms including several species of aquatic organisms. In chapter II & III, EST analysis was done to determine the stress-related genes of abalone using subtracted cDNA libraries from abalone exposed to environmental stresses (heat-shock, cold-shock or hyposalinity).

Among the 1,316 ESTs analyzed, many ESTs were identified as stressor immune-related genes involving in cell division, signal transduction, defense, metabolism and proliferation. However, simple BLAST searches allowed identification of 12.6% ESTs which did not show any significant identity and homology to DNA sequences available in the GenBank. Some of these unknown genes may be involved in function of the stress system. One way to elucidate the functions of these genes is to analyze their expression patterns. Microarray technology is suitable for analysis of expression patterns of a large number of genes [2]. The analysis of gene expressions of large sets of genes facilitates the discovery of function of genes and signal transduction pathways. Microarray is particularly useful for study of species with limited genetical information and for analysis of complicated system like stress response. In this study, microarray analysis was conducted in order to investigate shellfish stress response under thermal or salinity stress.

MESTERIALS AND METHODS

Preparation of abalone cDNA microarray

A cDNA chip was made using abalone ESTs selected from the cDNA libraries prepared from the seven tissues of abalone and the environmental stress induced abalone subtracted cDNA libraries. The cDNA inserts were amplified by PCR using the T3 primer (5'-AATTA ACCCTCACTAAAGGG-3') and T7 primer (5'- TAATACGACTCACTATA GGG-3') in 90 μ reactions using 2μ of the appropriate plasmids as templates. The samples were preheated at 95°C for 5 min and subjected to 30 cycles of amplification each consisting of 30s at 95°C, 30s at 5 °C, 1min at 72°C, with a 5min extension at 72°C during the last step. PCR products were purified using a PCR 96 cleanup kit (Millipore). The presenced of products was confirmed by agarose gel electrohoresis, and the remainder of the DNA was resuspended in 50% DMSO. The 2,993 clones were spotted in dupicate to amino-silane coated CMT GAPS II slides (Corning) using an OmniGrid microarrayer (GeneMachines).

RNA preparation, labeling and hybridization for microarray analysis

Abalone was exposed to heat-shock or cold-shock from ambient sea water (18°C) to 28°C or 4°C, respectively. Hyopsalinity was derived from ambient sea water (35‰) to 20‰. The treated abalones (3 individuals per each time point)

were sampled at 0, 0.5, 1, 2, 3, 4 and 5h in heat-shock treatment (HT), or at 0, 3, 6, 9 and 24h in cold-shock treatment (CT), or at 0, 1, 3, 6, 9 and 24h in hyposalinity treatment (HST). The collected samples were ground immediately under liquid nitrogen for RNA preparation. Corresponding non-treated abalone (HTcon, CTcon, HSTcon) were sampled at the same time points to use as controls. Total RNA was prepared from pooled sample of each stess condition and 100 µg of each RNA was labeled with Cy3 (HTcon, CTcon, HSTcon) or Cy5 (HT, CT, HST) monoreactive dyes (Amersham) using a Superscript cDNA system (Gibco BRL). The Cy3and Cy5-labeled cDNA probes were cleaned using a Qiaquick nucleotide removal kit (Qiagen). The purified probes were dried and resuspended in $40\mu\ell$ of hybridization buffer consisting of 5×SSC, 0.1% SDS, 20 μ g of Cot-1 DNA (Gibco BRL), 204g of poly (A) RNA (Promega) and 204g of yeast tRNA (Gibco BRL). The probes were denatured at 95°C for 3min and then applied to the microarray slides. An indirect comparison method was used in this study; i.e. total RNA, HTcon was used as a reference for heat-shock treatment abalone (HT). Total RNA, CTcon was used as a reference for cold-shock treatment abalone (CT) and total RNA, HSTcon was used as a reference for hyposalinity treatment abalone (HST). Hybridization was performed at 42°C for 16 h, whereupon the microarray slides were washed once with $2 \times SSC$, 0.1% SDS at $42^{\circ}C$ for 4 min, once with $0.1 \times SSC$, 0.1% SDS at room temperature for 10 min and three times with $0.1 \times SSC$ at room temperature for 1 min. Finally, the microarray

slides were rinsed with distilled water and spin-dried.

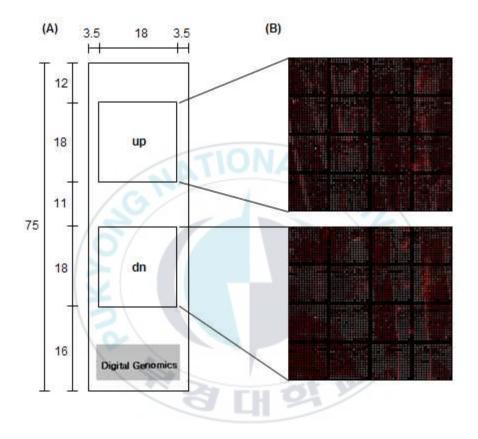


Fig. 1. The standard of constructed microarray, (A); Syto61 staining image of spotted microarrays, (B).

Microarray analysis

Microarray scanning and data normalizations were performed using a GenePix 4000B scanner and the GenePix Pro 6.0 software package (Axon Instruments). Poor-quality spots (sum of median <500) were filtered from the raw data prior to analysis. Background fluorescene was subtracted from the spot intensities and spots were flagged and removed from the data set if the signal to background ration was less than 1, or the signal intensity was less than 100. The filtered images were analyzed with GeneSpring GX 7.4 (Agilent technologies) to obtain gene expression ratios (treated vs. control). Logged gene expression ratios were normalized by the locally weighted non-linear regression (LOWESS) method [3].

RT-PCR verification

Verification of expression levels of candidate genes were carried out by RT-PCR. Total RNA samples were extracted from the collected samples according to each stress condition using TRIzol reagent (Invitrogen). Subsequently, first-strand cDNA synthesis was carried out using the Advantage RT-for-PCR Kit (BD Biosciences). The levels of selected genes expression were determined by RT-PCR using specific primers, which were based on the nucleotide sequence of EST clones. As an internal control, β -actin was amplified using the appropriate primers (Table 1). The PCR conditions were as follows: 95 C for 5 min, followed by 30 cycles of 95 C for 30 s, 55 C for 30 s, and 72 C for 30 s, with a final step of 72 C for 7 min. The amplified PCR products were analyzed on an 1.5% agarose gel containing ethidium bromide (100 ng/ml).

Table 1. Primers used in RT-PCR

ABHSL4G09-RT-F	5'-CGCCTCCTCCAAGACTT-3'
ABHSL4G09-RT-R	5'-GCCAAGCTATTTAGGTGACA-3'
DGT214-RT-F	5'-GCGGAAGTCTTGGAGGAG-3'
DGT214-RT-R	5'-GTGAGCTGGCTACCCGTTAC-3'
SKN070-RT-F	5'-GATAGAACGCTGAACAAATG-3'
SKN070-RT-R	5'-ACCTAGCCGTCTGTAGTCA-3'
β-actin-RT-F	5'-GCCGCTTGACTCTTGTGTGC-3'
β-actin-RT-R	5'-CTCCTCTGGTGCAACGCGG-3'

RESULTS AND DISCUSSION

Microarray analysis

With the cDNA clones that appeared to be involved in environmental stress response, Next study was expanded the target clones and used microarray analysis to examine their expression profiles under environmental stress by heat-shock, cold-shock or hyposalinity. In order to control against general stress-responsive genes, the differentially expressed genes were compared to those showing expression changes in stress non-treated control. Scatter-plot analysis of raw microarray data revealed that ~10% of the target genes showed more than a two-fold in signal intensity (Fig. 2). As expected, stress treatment resulted in marked, each stress condition changes in the gene expression profiles. Differentially expressed genes were defined as those showing a two-fold or greater change on at least one occasion over three stress conditions. A summary of the identified genes can be seen in Table 3-8.

Differentially expressed genes in three stress conditions

96, 144 and 139 clones were identified that differentially expressed in response to treatment with heat-shock, cold-shock or hyposalinity, respectively (Table 2). In heat-shock condition, the up- and down-regulated genes included stress-related genes such as HSP70 and HSP. In cold-shock condition, stress-or immune-related genes significantly up- or down- regulated. HSP70 was one of the strongest up-regulated genes in cold-shock (above 10- fold).

The up- or down- regulated genes include genes involved in cell metabolism such as structure and energy arginine kinase (AK). glyceraldehyde phosphate dehydrogenase and elongation factor. Clones encoding arginine kinase (AK) were strongly up-regulated in hyposalinity condition and slightly down-regulated in heat-shock condition. These date indicated that temperature or salinity stress has affected the expression of energy metabolism-related genes, which must have impaired the defense system of the abalone. It is interesting to note that the clones similar to arginine kinase (AK) were regulated significantly. Since AK is one of the allergens homologous to arginine kinase in invertebrate [4, 5], and was reported as a phosphagen-ATP phosphotransferas [6]. This result is consistent with the report of Astrofsky et al. [7] showed that AK was 30h of WSSV up-regulated after injection. However, AK was down-regulated in WSSV injected shrimp in Wang et al [8]. These results can be suggested that the expression pattern of AK may fluctuate at different stress condition. Because AK plays an important role in energy metabolisms [9], it is thought that the up- or down-regulation may reflect damage of energy metabolism.

An interesting result was the expression change of genes which participated in reproduction. Representative reproduction-related clones were identified as sperm lysin which was up-regulated in hyposalinity condition. In addition, clones encoding fertilization protein and vitelline coat protein were also strongly up-regulated in hyposalinity condition. However, a number of clones encoding vitelline coat protein was down-regulated in cold-shock condition.

In vertebrates, the primary response to stress is characterized by the release of neuroendocrine messengers such as catecholamines and glucocorticoids [10, 11]. These messengers act in turn to divert energy away from non-essential processes such as growth, reproduction and certain immune functions to particular bio-energetic processes, such as increased oxygen uptake and mobilization of energy substrates, which help the animal to adapt and overcome the threat [10, 12]. In invertebrates, there is still a need for information on the effects of stress and stress induced neuroendocrine changes on immunity and resistance to disease. Although it is not clear why reproduction-related gene expression in environmental stress condition was highly changed, we speculated that abalones are fatally influenced by environmental stress.

At least two genes were identified as unknown genes among strongly up-regulated genes (heat-shock ; ABHSL-4-G09, ABHSL-2-B01: cold shock; ABLSL-5-E02, GIL076: hyposalinity; LSASL-5-B05, ABLSL-7-B09, SKN164). Due to limited sequence information of these genes still remain to be identified and their role in stress response remains to be defined.

Confirmation of microarray results

To confirm the results of microarray study, RT-PCR was performed using three representative genes (Fig. 3). The gene expression of β -actin, which was used for normalization, was equivalent under control or stress treatment. The score of ration for each gene corresponds to the RT-PCR result. Gene expression pattern of these genes strongly support the results of microarray.

In conclusion, DNA microarray hybridization methodology has proved to be a powerful tool for the determination and quantitative analysis of the expressed genes in the abalone and has uncovered a wider and more detailed understanding of the molecular basis of stress response in the abalone. This study represents the first report of the production of cDNA libraries by subtractive suppressive hybridization and utilization of microarray techniques for the study of temperature or salinity stress in the abalone. This robust and powerful technique will allow the identification of a substantial number of genes that are potentially involved in stress response. Expanding the use of DNA microarrays to non-model species that have been crucial in the study of certain physiological fucntions will be valuable for the identification the genes associated with these processes [13]. The methodology has great advantages for the screening of genes and the devolopment of experimental hypotheses in many organisms when exposed to changes in their environmental conditions.

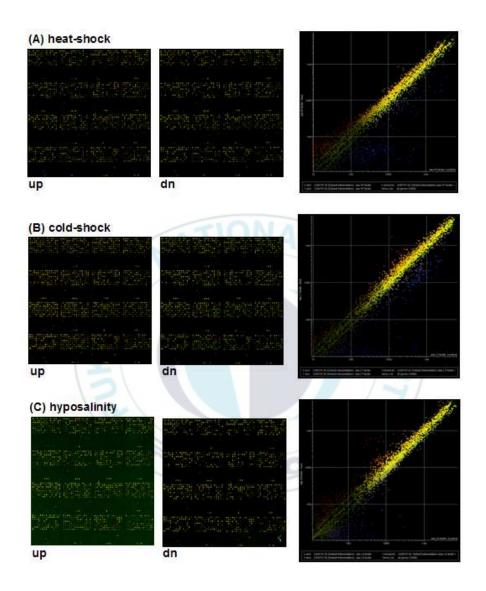


Fig. 2. Reliability of the hybridized microarrays. Technical replicates and scatter plot of signal values from replicates on a microarray.

	Stress conditions		
	Heat-shock	Cold-shock	Hyposalinity
Up-regulated	56	70	116
Down-regulated	40	74	23
Total	96	144	139
Percent of 2993 genes	3.2%	4.8%	4.6%
04	3 1	01 11	5/

Table 2. Gene expression changes of abalone exposed to three different environmental stresses

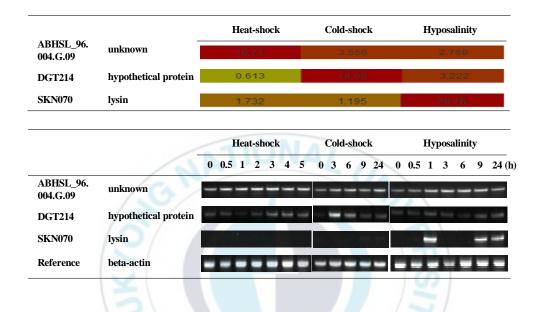


Fig. 3. Reverse transcription-RCR analysis of three representative genes identified as being differentially expressed in the microarray analysis.

Systematic		D.4.4	Fold
Name	Clone no.	Putative identification	chage
		similar to ankyrin repeat domain protein 17 isoform	h
ND_384.05.K.16	GIL-260	partial	2.32
ND_384.04.I.07	GOM-052	fertilization protein	2.063
ND_384.04.C.17	GOM-016	70 kDa heat shock protein	2.04
ND_384.04.D.08	GIL-016	Asparagine synthetase	2.484
ND_384.04.K.06	GOM-159	elongation factor 1-alpha	3.038
ND_384.09.D.23	LSASL_96.004.B.12	unknown	2.746
ND_384.08.I.10		unknown	2.039
ND_384.08.E.03		MK2 non-allergic IgE heavy chain IGHV2-5	2.154
ND_384.08.M.15	ABHSL_96.002.G.08	unknown	2.845
ND_384.08.K.03	ABHSL_96.002.F.02	unknown	2.213
ND_384.08.I.09	ABHSL_96.002.E.05	NADH dehydrogenase subunit 1	2.305
ND_384.09.G.21	LSASL_96.002.D.11	type X collagen	2.607
	GOM-065	sperm lysin	2.1
ND_384.08.H.02	LSASL_96.001.D.01	unknown	2.424
ND_384.08.K.15	ABHSL_96.002.F.08	unknown	2.308
ND_384.08.N.24	LSASL_96.001.G.12	unknown	2.708
ND_384.08.E.17	ABHSL_96.002.C.09	unknown	3.846
ND_384.08.N.22	LSASL_96.001.G.11	unknown	3.946
ND_384.03.N.13	GOF-175	unnamed protein product	2.441
ND_384.06.J.01	ABLSL_96.003.E.01	RPL18A protein	2.158
ND_384.09.C.21	LSASL_96.002.B.11	unknown	5.755
ND_384.09.N.13	LSASL_96.004.G.07	unknown	3.763
ND_384.02.L.13	SKN-067	Mcm5-prov protein	4.201
ND_384.07.C.10	ABLSL_96.006.B.05	trypsinogen 3	3.812
ND_384.07.C.18	ABLSL_96.006.B.09	unnamed protein product	3.893
ND_384.01.P.17	DGT-285	unknown	2.485
	GW 000	similar to Asparaginyl-tRNA synthetase, cytoplasmic	
ND_384.04.D.22	GIL-023	(AsparaginetRNA ligase) (AsnRS)	2.834
ND_384.09.C.13	LSASL_96.002.B.07	ribosomal protein P2, putative	2.106
ND_384.06.F.10	ABLSL_96.004.C.05	hypothetical protein 3	2.421
ND_384.06.F.23	ABLSL_96.003.C.12	unknown	2.266
ND_384.08.C.14	ABHSL_96.003.B.07	proline rich protein MP4	3.093
ND_384.07.P.10	ABHSL_96.001.H.05	OSJNBa0035I04.9	2.201
ND_384.07.L.15	ABLSL_96.007.F.08	unknown	2.455
ND_384.07.P.02	ABHSL_96.001.H.01	F1F0-type ATP synthase subunit g	2.568
ND_384.07.D.18	ABHSL_96.001.B.09	glyceraldehyde phosphate dehydrogenase	2.022
ND_384.02.B.17	SKN009	similar to CG16965-PA	2.436
ND_384.07.H.18	ABHSL_96.001.D.09	unknown	2.689
ND_384.01.M.23	DGT-084	transcriptional regulator, internal deletion	2.214
ND_384.02.H.21	SKN047	hypothetical protein	2.009
ND_384.02.F.06	SKN123	myosin regulatory light chain interacting protein	2.014
ND_384.02.D.04	SKN110	methionyl-tRNA synthetase	2.759
ND_384.02.F.03	SKN026	23S rRNA methyltransferase/RumA	2.109
ND_384.02.H.19	SKN046	caveolin-3	2.619

Table 3. List of up-regulated genes by heat-shock

Systematic	Classes		Fold
Name	Clone no.	Putative identification	chage
ND_384.01.J.05	DGT-243	Hypothetical protein LOC553722	2.889
ND_384.03.E.16	GOF-032	hypothetical protein cgd4_750	2.738
ND_384.09.P.21	LSASL_96.004.H.11	transcription factor Crx	2.31
ND_384.08.0.05	ABHSL_96.002.H.03	glyceraldehyde phosphate dehydrogenase	6.129
ND_384.08.N.17	ABHSL_96.004.G.09	unknown	16.71
ND_384.09.P.13	LSASL_96.004.H.07	unknown	2.034
ND_384.08.C.01	ABHSL_96.002.B.01	unknown	8.19
ND_384.08.G.16	ABHSL_96.003.D.08	hypothetical protein LOC541384	2.352
ND_384.06.N.10	ABLSL_96.004.G.05	GA21098-PA	4.534
ND_384.07.L.18	ABHSL_96.001.F.09	SJCHGC01954 protein	4.193
ND_384.08.I.07	ABHSL_96.002.E.04	unknown	2.249
ND_384.08.G.09	ABHSL_96.002.D.05	unknown	4.729
ND_384.08.K.17	ABHSL_96.002.F.09	unknown	3.957

Table 3. (Continued)

Systematic	Clana na	Putative identification	Fold
Name	Clone no.	Putauve Idenufication	chage
ND_384.05.C.23	GIL120	inhibitor of apoptosis protein 3	0.229
ND_384.05.E.17	GIL129	unknown	0.29
ND_384.05.K.14	GIL259	Hypothetical protein CBG06905	0.089
ND_384.05.E.21	GIL131	similar to signal peptide, CUB domain, EGF-like 3	0.0805
ND_384.05.G.19	GIL142	COG3025: Uncharacterized conserved protein	0.434
ND_384.05.G.08	GIL232	putative ubiquitin-conjugating enzyme	0.492
ND_384.05.K.05	GIL159	Oxidoreductase, N-terminal:Oxidoreductase, C-terminal	0.478
ND_384.04.G.20	GOM142	Arginine kinase (AK)	0.405
ND_384.04.F.20	GIL034	inhibitor of apoptosis protein 3	0.17
ND_384.04.M.10	VHP257	D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase family protein	0.235
ND_384.04.M.22	VHP263	mature-parasite-infected erythrocyte surface antigen	0.338
ND_384.04.P.04	GIL086	polyubiquitin	0.314
ND_384.09.J.24	LSASL_96.005.E.12	unknown	0.288
ND_384.09.J.20	LSASL_96.005.E.10	paramyosin protein	0.0573
ND_384.04.L.20	GIL070	polyubiquitin	0.374
ND_384.04.L.18	GIL069	Hypothetical protein CBG21335	0.116
		CPK27; ATP binding / calcium ion binding / kinase/	
ND_384.10.A.08	VHP208	protein kinase/ protein serine/threonine kinase/	0.255
		protein-tyrosine kinase	
ND_384.08.M.03	ABHSL_96.002.G.02	glyceraldehyde phosphate dehydrogenase	0.117
ND_384.08.K.05	ABHSL_96.002.F.03	glyceraldehyde phosphate dehydrogenase	0.264
ND_384.08.N.16	LSASL_96.001.G.08	similar to metalloprotease-disintegrin	0.404
ND_384.08.M.07	ABHSL_96.002.G.04	40S ribosomal protein S26	0.392
ND_384.06.D.08	ABLSL_96.004.B.04	ferritin-like protein	0.445
ND_384.09.0.23	LSASL_96.002.H.12	alginase	0.355
ND_384.07.K.24	ABLSL_96.006.F.12	unknown	0.346
ND_384.06.K.12	ABLSL_96.002.F.06	GA18441-PA	0.45
ND_384.10.D.07	VHP226	P-553	0.361
ND_384.03.C.02	GOF013	vitelline coat protein 41	0.0694
ND_384.06.J.24	ABLSL_96.004.E.12	beta-actin	0.435
ND_384.07.I.03	ABLSL_96.005.E.02	unknown	0.44
ND_384.07.J.06	ABHSL_96.001.E.03	melanoma ubiquitous mutated protein	0.447
ND_384.10.A.12	VHP210	Myc homolog	0.472
ND_384.02.H.09	SKN041	X-box binding protein 1	0.373
ND_384.02.H.16	SKN140	unknown	0.371
ND_384.02.N.15	SKN080	hypothetical protein UM01098.1	0.491
ND_384.04.C.07	GOM1	ribosomal protein L24e	0.01
ND_384.02.J.17	SKN057	inhibitor of apoptosis 2 protein	0.207
ND_384.08.C.20	ABHSL_96.003.B.10	unknown	0.0193
ND_384.09.C.18	LSASL_96.003.B.09	unknown	0.13
ND_384.08.H.19	ABHSL_96.004.D.10	unknown	0.477
ND_384.07.B.22	ABHSL_96.001.A.11	unknown	0.0201
ND_384.08.E.18	ABHSL_96.003.C.09	similar to TAF10 RNA polymerase II, TATA box binding protein (TBP)-associated factor	0.0412

Table 4. List of down-regulated genes by heat-shock

Systematic	Clone no	Dutations identification	Fold
Name	Clone no.	Putative identification	chage
ND_384.05.D.11	VHP018	inhibitor of apoptosis protein	2.616
ND 384.05.C.23	GIL120	inhibitor of apoptosis protein 3	2.184
ND 384.05.E.12	GIL222	ZK829.7	2.206
ND_384.05.E.07	GIL124	MGC52542 protein	3.086
ND_384.05.K.17	GIL165	heat shock protein 70	2.873
		PREDICTED: similar to signal peptide, CUB domain,	
ND_384.05.E.21	GIL131	EGF-like 3	6.837
ND_384.04.F.20	GIL034	inhibitor of apoptosis protein 3	5.483
ND_384.04.I.14	GOM151	unknown	2.469
ND_384.04.N.08	GIL076	unknown	4.197
ND_384.09.D.23	LSASL_96.004.B.12	unknown	3.365
ND_384.08.M.15		unknown	2.136
ND_384.09.G.21	LSASL_96.002.D.11	type X collagen	3.085
ND 204 10 4 00	VIIDOOR	CPK27; ATP binding / calcium ion binding / kinase/	2 1 4 1
ND_384.10.A.08	VHP208	protein kinase/ protein serine/threonine kinase/	3.141
		protein-tyrosine kinase	
ND_384.04.K.09	GOM065	sperm lysin	2.537
ND_384.08.M.03	ABHSL_96.002.G.02	glyceraldehyde phosphate dehydrogenase	5.259
ND_384.08.L.19	ABHSL_96.004.F.10	unknown	3.406
ND_384.08.K.05	ABHSL_96.002.F.03	glyceraldehyde phosphate dehydrogenase	2.593
ND_384.08.E.17	ABHSL_96.002.C.09	unknown	2.191
ND_384.06.I.02	ABLSL_96.002.E.01	unknown	3.201
ND_384.04.G.24	GOM144	unknown	3.702
ND_384.07.C.10	ABLSL_96.006.B.05	trypsinogen 3	3.758
ND_384.08.C.14	ABHSL_96.003.B.07	proline rich protein MP4	3.188
ND_384.07.P.10	ABHSL_96.001.H.05	OSJNBa0035I04.9	2.221
ND_384.07.L.15	ABLSL_96.007.F.08	unknown	2.577
		ATP-dependent RNA helicase, DEAD/DEAH box family	5 500
ND_384.07.L.04	ABHSL_96.001.F.02	protein	5.532
ND_384.07.P.02	ABHSL_96.001.H.01	F1F0-type ATP synthase subunit g	2.367
ND_384.07.I.03	ABLSL_96.005.E.02	unknown	18.95
ND_384.07.D.18	ABHSL_96.001.B.09	unknown	2.284
ND_384.04.K.18	GOM165	sperm lysin	2.113
ND_384.07.F.11	ABLSL_96.007.C.06	unknown	2.093
ND_384.02.B.18	SKN105	PREDICTED: similar to RIKEN cDNA 1200009H11	2.478
ND_384.07.P.14	ABHSL_96.001.H.07	unknown	2.134
ND_384.02.B.09	SKN005	CG34043-PA	2.323
ND_384.02.B.14	SKN103	CG34043-PA	2.933
ND_384.07.H.18	ABHSL_96.001.D.09	unknown	2.215
ND_384.01.O.04	DGT182	LOC443666 protein	2.8
ND_384.02.D.10	SKN113	hypothetical protein Chro.60269	2.03
ND_384.02.D.11	SKN018	similar to guanylate cyclase OIGC-R2	5.336
ND_384.01.D.19	DGT214	hypothetical protein	14.92

Table 5. List of up-regulated genes by cold-shock

Systematic			Fold
Name	Clone no.	Putative identification	chage
ND_384.01.E.05	DGT027	unknown	2.2
ND_384.01.E.12	DGT126	hypothetical protein PB000759.00.0	2.132
ND_384.01.D.23	DGT216	Elongator protein 3/MiaB/NifB	2.047
ND_384.01.E.01	DGT025	ZK829.7	2.063
ND_384.01.F.11	DGT222	recombination activating protein 1	2.264
ND_384.01.F.17	DGT225	unnamed protein product	2.449
ND_384.01.E.22	DGT131	putative baseplate assembly protein	2.529
ND_384.01.C.23	DGT024	hypothetical protein, conserved	2.404
ND_384.01.J.11	DGT246	unknown	2.308
ND_384.01.L.07	DGT256	unknown	2.152
ND_384.02.N.07	SKN076	unknown	2.714
ND_384.02.N.23	SKN084	ENSANGP00000011567	2.296
ND_384.02.P.01	SKN085	sperm lysin	2.924
ND_384.04.C.07	GOM016	70 kDa heat shock protein	10.41
ND_384.02.J.17	SKN057	inhibitor of apoptosis 2 protein	7.043
ND_384.02.P.23	SKN096	immediate-early protein	3.145
ND_384.08.C.13	ABHSL_96.002.B.07	proline rich protein 2 (predicted)	2.741
ND_384.04.C.04	GOM110	lysin	2.596
ND_384.08.C.20	ABHSL_96.003.B.10	heat shock protein 70	4.2
ND_384.08.N.17	ABHSL_96.004.G.09	unknown	3.556
ND_384.08.C.01	ABHSL_96.002.B.01	unknown	2.886
ND_384.07.H.04	ABHSL_96.001.D.02	unknown	3.782
ND_384.08.G.16	ABHSL_96.003.D.08	hypothetical protein LOC541384	2.922
ND_384.08.K.11	ABHSL_96.002.F.06	unknown	3.094
ND_384.07.L.18	ABHSL_96.001.F.09	SJCHGC01954 protein	2.529
ND_384.08.I.07	ABHSL_96.002.E.04	unknown	2.362
ND_384.09.0.19	LSASL_96.002.H.10	unknown	2.244
ND_384.07.B.22	ABHSL_96.001.A.11	unknown	2.064
ND_384.02.B.12	SKN102	acidic ribosomal phosphoprotein P0	2.03
ND_384.08.K.17	ABHSL_96.002.F.09	unknown	3.339

Table 5. (Continued)

Systematic	CT.		Fold
Name	Clone no.	Putative identification	chage
ND_384.05.C.18	GIL213	cyclin B3	0.442
ND_384.04.P.17	VHP285	rhoptry protein homolog Bc60.2 - Babesia canis	0.411
ND_384.05.G.12	GIL234	unkown	0.395
ND_384.05.K.14	GIL259	Hypothetical protein CBG06905	0.495
ND_384.04.H.11	VHP243	V (tail component;256)	0.401
ND_384.04.M.22	VHP263	mature-parasite-infected erythrocyte surface antigen	0.364
ND_384.04.J.24	GIL060	repressor	0.284
ND_384.09.L.24	LSASL_96.005.F.12	alginase	0.444
ND_384.09.J.24	LSASL_96.005.E.12	alginase	0.438
ND_384.09.C.10	LSASL_96.003.B.05	unknown	0.292
ND_384.09.J.20	LSASL_96.005.E.10	paramyosin protein	0.387
ND_384.09.N.06	LSASL_96.005.G.03	alginate lyase	0.43
ND_384.09.B.02	LSASL_96.005.A.01	transmembrane protein	0.491
ND_384.08.L.02	LSASL_96.001.F.01	unkown	0.209
ND_384.09.N.21	LSASL_96.004.G.11	similar to AMP deaminase 3	0.379
ND_384.09.O.23	LSASL_96.002.H.12	alginase	0.438
ND_384.10.D.07	VHP226	P-553	0.281
ND_384.03.A.04	GOF002	vitelline coat protein 41	0.281
ND_384.03.C.02	GOF013	vitelline coat protein 41	0.0661
ND_384.04.L.22	GIL071	similar to bcl2-like, partial	0.282
ND_384.06.F.10	ABLSL_96.004.C.05	unknown	0.451
ND_384.07.N.02	ABHSL_96.001.G.01	glyceraldehyde phosphate dehydrogenase	0.422
ND_384.07.H.16	ABHSL_96.001.D.08	alginate lyase	0.35
ND_384.03.G.06	GOF039	vitelline coat protein 41	0.435
ND_384.03.H.05	GOF135	vitelline coat protein 41	0.388
ND_384.03.G.14	GOF043	vitelline coat protein 41	0.339
ND_384.03.N.21	GOF179	ubiquitin ligase	0.179
ND_384.03.F.09	GOF125	vitelline coat protein 41	0.26
ND_384.03.F.11	GOF126	vitelline coat protein 42	0.397
ND_384.03.D.15	GOF116	similar to contactin associated protein 1	0.241
ND_384.03.C.12	GOF018	vitelline coat protein 41	0.334
ND_384.03.E.20	GOF034	vitelline coat protein 41	0.253
ND_384.03.E.10	GOF029	vitelline coat protein 41	0.495
ND_384.03.K.16	GOF068	vitelline coat protein 41	0.24
ND_384.03.F.03	GOF122	vitelline coat protein 41	0.293
ND_384.03.G.20	GOF046	vitelline coat protein 41	0.169
ND_384.03.E.04	GOF026	vitelline coat protein 41	0.208
ND_384.03.K.04	GOF062	vitelline envelope sperm lysin receptor	0.176
ND_384.03.J.23	GOF156	vitelline coat protein 41	0.44
ND_384.03.L.09	GOF161	Hypothetical protein CBG12915	0.121
ND_384.03.M.10	GOF077	vitelline coat protein 41	0.367
ND_384.03.M.20	GOF082	vitelline coat protein 41	0.174
ND_384.03.K.02	GOF061	vitelline coat protein 41	0.395
ND_384.03.N.17	GOF177	vitelline coat protein 42	0.245
ND_384.03.I.06	GOF051	vitelline coat protein 42	0.1

Table 6. List of down-regulated gene by cold-shock

Systematic		Det de l'anne de la contra de	Fold	
Name	Clone no. Putative identification		chage	
ND_384.03.I.12	GOF054	vitelline coat protein 41	0.273	
ND_384.03.H.09	GOF137	vitelline coat protein 42	0.319	
ND_384.03.H.15	GOF140	similar to alpha 2 type IV collagen preproprotein; canstatin	0.38	
ND_384.03.E.06	GOF027	vitelline coat protein 41	0.19	
ND_384.03.G.18	GOF045	vitelline coat protein 41	0.459	
ND_384.03.J.09	GOF149	vitelline coat protein 42	0.223	
ND_384.03.N.09	GOF173	vitelline coat protein 42	0.189	
ND_384.03.N.07	GOF172	vitelline coat protein 41	0.365	
ND_384.03.H.21	GOF143	vitelline coat protein 42	0.203	
ND_384.03.A.06	GOF003	CTP SYNTHASE	0.204	
ND_384.03.B.06	GOF189	unknown	0.299	
ND_384.03.B.03	GOF098	vitelline coat protein 42	0.216	
ID 284.02 A 12 GOE006	similar to a disintegrin and metalloproteinase with			
ND_384.03.A.12	D_384.03.A.12 GOF006	thrombospondin motifs 9 preproprotein	0.283	
ND 384.03.B.05	GOF099		0.295	
-		vitelline coat protein 42 guanine nucleotide binding protein	0.275	
ND_384.03.C.10	GOF017	(G protein)	0.423	
ND 384.03.I.22	GOF059	vitelline coat protein 41	0.297	
ND 384.03.B.17	GOF105	vitelline coat protein 41	0.417	
ND_384.03.A.20	GOF010	unkown	0.432	
ND_384.03.C.18	GOF021	vitelline coat protein 41	0.468	
ND_384.03.P.19	GOF190	unkown	0.332	
ND_384.03.P.21	GOF191	ENSANGP00000000511	0.132	
ND 384.03.C.08	GOF016	vitelline coat protein 41	0.181	
ND_384.04.B.06	GIL003	similar to leucine rich repeat containing 49, partial	0.46	
ND_384.04.B.10	GIL005	TonB dependent, hydroxamate-type ferrisiderophore, outer membrane receptor	0.5	
ND_384.08.O.05	ABHSL_96.002.H.03	glyceraldehyde phosphate dehydrogenase	0.19	
ND_384.06.N.10	ABLSL_96.004.G.05	40S ribosomal protein S3	0.481	
ND_384.01.F.24	RM036	putative sugar transporter	0.322	
ND_384.08.H.19	ABHSL_96.004.D.10	unkown	0.199	

Table 6. (Continued)

Systematic	<u>(</u>]		Fold
Name	Clone no.	Putative identification	chage
ND_384.05.K.17	GIL165	heat shock protein 70	2.024
ND_384.05.E.21	GIL131	similar to CEGP1 protein	14.77
ND_384.04.G.20	GOM142	Arginine kinase (AK)	2.304
ND_384.04.F.20	GIL034	inhibitor of apoptosis protein 3	2.668
ND_384.04.I.07	GOM052	fertilization protein	18.6
ND_384.04.I.12	GOM150	fertilization protein	15.77
ND_384.04.I.04	GOM146	Arginine kinase (AK)	3.215
ND_384.04.I.10	GOM149	Arginine kinase (AK)	2.552
ND_384.04.C.15	GOM020	Arginine kinase (AK)	2.899
ND_384.04.D.02	GIL013	zonadhesin	2.166
ND_304.04.D.02	GILOIS	PREDICTED: similar to eukaryotic translation	2.100
ND_384.04.C.12	GOM114	elongation factor 1 beta 2; eukaryotic translation	2.908
_		elongation factor 1 beta 1	
ND_384.04.I.14	GOM151	unkown	5.152
ND_384.04.C.13	GOM019	unkown	2.282
ND_384.04.E.21	GOM035	unkown	2.353
ND_384.04.M.09	GOM077	unkown	2.492
ND_384.04.M.19	GOM082	unkown	2.241
	LSASL_96.005.B.05	unkown	20.38
		CPK27; ATP binding / calcium ion binding / kinase/	
ND 384.10.A.08	VHP208	protein kinase/ protein serine/threonine kinase/	2.022
		protein-tyrosine kinase	2.022
ND_384.04.K.12	GOM162	Arginine kinase (AK)	3.451
ND_384.04.K.09	GOM065	sperm lysin	15.36
ND_384.08.M.03	ABHSL_96.002.G.02	unkown	4.245
ND_384.08.H.02	LSASL_96.001.D.01	unkown	3.285
ND_384.09.A.11	LSASL_96.002.A.06	RL44_PICJA 60S ribosomal protein L44	11.1
ND_384.08.M.07	ABHSL_96.002.G.04	unkown	3.674
ND_384.08.N.22	LSASL_96.001.G.11	unkown	2.256
ND_384.03.N.13	GOF175	vitelline coat protein 41	6.466
ND_384.06.I.02	ABLSL_96.002.E.01	unkown	3.989
ND_384.06.J.01	ABLSL_96.003.E.01	RPL18A protein	3.106
ND_384.06.F.17	ABLSL_96.003.C.09	unkown	4.918
_		unkown	3.099
ND_384.06.A.04 ND_384.09.N.21	ABLSL_96.002.A.02	AMP deaminase 3	3.347
_	LSASL_96.004.G.11		
ND_384.09.C.17 ND_384.09.H.10	LSASL_96.002.B.09 LSASL_96.005.D.05	unkown unkown	5.061 2.502
ND_384.09.J.17	LSASL_96.003.D.03		4.064
ND_384.09.J.17 ND_384.09.C.21		unkown	
—	LSASL_96.002.B.11	unkwon	2.172
ND_384.04.K.21	GOM071	CG10510-PA	2.311
ND_384.09.I.08	LSASL_96.003.E.04	unkown	8.913
ND_384.09.N.13	LSASL_96.004.G.07	unkown	7.599
ND_384.10.A.05	VHP195	hypothetical protein	2.928

Table 7. List of up-regulated genes by hyposalinity

Systematic	Clana na	Dutation identification	Fold
Name	Clone no.	Putative identification	chage
ND_384.02.D.16	SKN116	unkown	6.007
ND_384.09.P.22	LSASL_96.005.H.11	unkown	4.148
ND_384.02.L.13	SKN067	Mcm5-prov protein	8.605
ND_384.03.D.05	GOF111	Ubiquitin-activating enzyme E1 1	7.06
ND_384.08.H.11	ABHSL_96.004.D.06	Hypothetical protein F41G3.12	4.65
ND_384.09.M.08	LSASL_96.003.G.04	unkown	2.249
ND_384.03.D.01	GOF109	ArcA1 arginine deiminase	9.121
ND_384.06.C.13	ABLSL_96.001.B.07	ribosomal protein P1	4.527
ND_384.07.C.18	ABLSL_96.006.B.09	unnamed protein product	2.046
ND_384.09.H.09	LSASL_96.004.D.05	integrin beta 5	5.199
ND_384.03.A.04	GOF002	vitelline coat protein 41	2.874
ND_384.03.C.02	GOF013	vitelline coat protein 41	7.415
ND_384.04.L.22	GIL071	Mcl1b	3.028
ND_384.03.0.02	GOF085	Serine/threonine phosphatase 4 regulatory subunit 1	4.952
ND_384.03.C.17	SKN223	unkown	5.053
ND_384.06.I.05	ABLSL_96.001.E.03	unkown	2.1
ND_384.06.D.13	ABLSL_96.003.B.07	unkown	3.123
ND_384.06.M.03	ABLSL_96.001.G.02	unkown	2.113
ND_384.07.I.03	ABLSL_96.005.E.02	unkown	3.898
ND_384.06.P.16	ABLSL_96.004.H.08	unkown	2.017
ND_384.07.D.17	ABLSL_96.007.B.09	unkown	14.66
ND_384.07.G.01	ABLSL_96.005.D.01	unkown	3.985
ND_384.04.K.17	GOM065	sperm lysin	3.221
ND_384.04.K.18	GOM165	sperm lysin	8.121
ND_384.07.D.11	ABLSL_96.007.B.06	Beta-Ig-H3/fasciclin	2.092
ND_384.07.F.11	ABLSL_96.007.C.06	unkown	2.066
ND_384.02.H.08	SKN136	pannexin 5	2.159
ND_384.02.D.13	SKN019	Hypothetical protein LOC283078	3.837
ND_384.01.D.19	DGT214	similar to Poly	3.222
ND_384.02.D.18	SKN117	heat shock protein gp96	2.064
ND_384.02.D.02	SKN109	gp164	2.398
ND_384.02.D.07	SKN016	unnamed protein product	2.267
ND_384.03.0.12	GOF090	Vitellogenin precursor (VTG)	2.665
ND_384.03.F.01	GOF121	CTP SYNTHASE	2.212
ND_384.03.N.21	GOF179	ubiquitin ligase	2.156
ND_384.03.F.09	GOF125	vitelline coat protein 41	2.015
ND_384.03.H.01	GOF133	similar to kinesin family member 18A	6.288
ND_384.03.E.20	GOF034	vitelline coat protein 41	2.619
ND_384.03.F.03	GOF122	vitelline coat protein 41	2.281
ND_384.03.G.20	GOF046	vitelline coat protein 41	2.29
ND_384.03.M.18	GOF081	dihydrolipoamide dehydrogenase precursor	2.01
ND_384.03.K.04	GOF062	vitelline envelope sperm lysin receptor	2.029
ND_384.03.L.09	GOF161	Hypothetical protein CBG12915	2.304
ND_384.03.M.20	GOF082	vitelline coat protein 41	2.424
ND_384.03.N.01	GOF169	vitelline coat protein 41	2.217

Table 7. (Continued)

Systematic	Clana na	Putative identification	Fold
Name	Clone no.	Putauve Idenufication	chage
ND_384.03.I.06	GOF051	vitelline coat protein 41	2.115
ND_384.03.N.09	GOF173	vitelline coat protein 41	2.058
ND_384.03.H.21	GOF143	vitelline coat protein 41	2.704
ND_384.02.N.07	SKN076	unkwon	3.49
ND_384.02.P.01	SKN085	sperm lysin	9.832
ND_384.04.C.09	GOM017	unkown	2.609
ND_384.04.C.07	GOM016	70 kDa heat shock protein	12.12
ND_384.02.L.16	SKN164	unkown	15.23
ND_384.02.L.19	SKN070	lysin	29.78
ND_384.04.A.09	GOM005	Arginine kinase (AK)	2.869
ND_384.04.A.12	GOM102	KARG_NORMA Arginine kinase (AK)	2.937
ND_384.04.A.18	GOM105	Arginine kinase (AK)	2.93
ND_384.04.A.10	GOM101	hypothetical protein XP_683358	3.319
ND_384.04.A.05	GOM003	Arginine kinase (AK)	2.97
ND_384.03.P.21	GOF191	ENSANGP0000000511	5.816
ND_384.03.C.08	GOF016	70 kDa heat shock protein	3.088
ND_384.06.G.13	ABLSL_96.001.D.07	agmatinase, putative	2.824
ND_384.02.P.23	SKN096	immediate-early protein	2.028
ND_384.04.A.24	GOM108	Arginine kinase (AK)	2.803
ND_384.04.C.04	GOM110	lysin	12.25
ND_384.08.C.20	ABHSL_96.003.B.10	heat shock protein 70	8.08
ND_384.08.N.17	ABHSL_96.004.G.09	unkown	2.768
ND_384.08.C.01	ABHSL_96.002.B.01	unkown	2.958
ND_384.09.C.18	LSASL_96.003.B.09	unkown	7.049
ND_384.08.K.11	ABHSL_96.002.F.06	heat shock protein 70	7.405
ND_384.09.D.18	LSASL_96.005.B.09	actin	2.564
ND_384.08.H.19	ABHSL_96.004.D.10	unkown	3.812
ND_384.07.L.18	ABHSL_96.001.F.09	SJCHGC01954 protein	3.703
ND_384.09.E.10	LSASL_96.003.C.05	unkown	3.757
ND_384.07.B.22	ABHSL_96.001.A.11	unkown	6.75
ND_384.08.E.18	ABHSL_96.003.C.09	similar to TAF10 RNA polymerase II, TATA box binding protein (TBP)-associated factor	15.6
ND_384.08.K.17	ABHSL_96.002.F.09	unkown	2.891

Table 7. (*Continued*)

Systematic Name	Clone no.	Putative identification	Fold chage
ND_384.09.N.24	LSASL_96.005.G.12	SocE	0.352
ND_384.08.E.03	ABHSL_96.002.C.02	MK2 non-allergic IgE heavy chain IGHV2-5	0.494
ND_384.07.H.12	ABHSL_96.001.D.06	unkown	0.47
ND_384.09.A.17	LSASL_96.002.A.09	hypothetical protein 3	0.404
ND_384.08.L.03	ABHSL_96.004.F.02	MHC II invariant chain	0.39
ND_384.04.D.22	GIL023	asparaginyl-tRNA synthetase	0.125
ND_384.09.K.22	LSASL_96.003.F.11	unkown	0.457
ND_384.09.C.13	LSASL_96.002.B.07	ribosomal protein P2, putative	0.421
ND_384.06.D.03	ABLSL_96.003.B.02	unkown	0.421
ND_384.06.D.15	ABLSL_96.003.B.08	hypothetical protein LOC550606	0.449
ND_384.07.H.20	ABHSL_96.001.D.10	unkown	0.416
ND_384.01.P.03	DGT278	undecaprenyl-PP-N-acetylmuramic acid-pentapeptide	0.444
		N-acetylglucosamine transferase	
ND_384.01.P.01	DGT277	similar to 5 nucleotidase, partial	0.477
ND_384.01.B.10	RM005	unkown	0.45
ND_384.01.J.11	DGT246	unkown	0.488
ND_384.01.J.17	DGT249	hypothetical protein	0.399
ND_384.01.L.07	DGT256	unkown	0.456
ND_384.09.P.21	LSASL_96.004.H.11	transcription factor Crx	0.271
ND_384.08.O.05	ABHSL_96.002.H.03	glyceraldehyde phosphate dehydrogenase	0.462
ND_384.09.P.13	LSASL_96.004.H.07	unkown	0.407
ND_384.01.F.24	RM036	putative sugar transporter	0.372
	LSASL_96.002.D.02	similar to Calcium-binding protein 2 (CaBP2)	0.449

Table 8. List of down-regulated gene by hyposalinity

REFERENCES

- Jenny MJ, Ringwood AH, Lacy ER, Lewitus AJ, Kempton JW, Gross PS, Warr GW, Chapman RW. Potential indicators of stress response identified by expressed sequence tag analysis of hemocytes and embryos from the American oyster, *Crassostrea virginica*. Mar Biotechnol (NY). 2002; 4(1): 81-93.
- Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270: 467-470.
- Clevel WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 1979; 74: 829-836.
- 4. BernsteinM, DayJH, WelshA. Double-blind food challenge in the diagnosis of food sensitivity in the adult. J Allergy Clin Immunol 1982; 70: 205-210.
- Yu CJ, Lin YF, Chiang BL, Chow LP. Proteomics and Immunological Analysis of a Novel Shrimp Allergen, Pen m2. J Immunol 2003; 170: 445-453.
- Hird FJ. The importance of arginine in evolution. Comp Biochem Physiol B 1986; 85: 285-288.
- Astrofsky KM, Roux MM, Klimpel KR, Fox JG, Dhar AK. Isolation of differentially expressed genes from white spot virus (WSV) infected Pacific blue shrimp (Penaeus stylirostris). Arch Virol 2002; 147: 1799-1812.
- 8. Wang B, Li F, Dong B, Zhang X, Zhang C, Xiang J. Discovery of the genes

in response to white spot syndrome virus (WSSV) infection in Fenneropenaeus chinensisthrough cDNA microarray. Mar Biotechnol 2006 8(5):491-500.

- 9. Dumas C, Camonis J. Cloning and sequence analysis of the cDNA for arginine kinase of lobster muscle. J Biol Chem 1993; 268: 21599-21605.
- Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioural homeostasis. J Am Med Assoc 1992; 267: 12441252.
- 11. Ottaviani E, Franceschi C. The neuroendocrinology of stress from invertebrates to man. Prog Neurobiol 1996; 48: 421440.
- Wendelaar Bonga SE. The stress response in fish. Physiol Rev 1997; 77: 591-625.
- Wiseman SE, Singer TD. Application of DNA and protein microarrays in comparative physiology. Biotechnol Adv 2002; 20: 379-389.

A H PI II

SUMMARY

In chapter II, EST analysis was conducted using seven cDNA libraries made from gill, digestive gland, heptopancreas, skin, muscle, testis, and ovary. The assembly program ICAtools software was used to organize the redundant ESTs into overlapping contigs. The results showed that the 1,393 ESTs were composed of 135 clusters and 951 singletons, suggesting that the overall redundancy of the library was 22%. Of the 1,086 clones 1,278 clones (91.7%) were identified as known genes by BLAST searches and 115 clones (8.3%) did not match to any previously described genes. Based on major function of their encoded proteins, the identified clones are classified into 16 broad categories. Sequence analysis of ESTs revealed the presence of microsatellite-containing genes that may be valuable for further mapping studies.

In chpater III, to analyze expressed genes for the temperature and salinity change, suppression subtractive hybridization (SSH) method was used and constructed three cDNA libraries from abalone exposed to heat-shock, cold-shock or hyposalinity stress. Putative function could be assigned to 75.8% of the 1,536 sequenced cDNAs. Based on sequence similarities, candidate genes was identified that may be implicated in stress response or immune function. Among them, several stress- and immune-related genes were identified including HSC, HSP, major histocompatibility complex (MHC) class IIa chain, CD45 homolog, and IRF7 from three subtracted cDNA libraries. The expressions of these genes were investigated in abalone exposed to stress. They were induced in response to stress, supporting their involvement in abalone immunity.

chpater IV, to investigate the response of abalone In the to environmental stress by heat-shock, cold-shock or hyposalinity using a cDNA microarray consisting of over 2,993 different amplicons was done. Reverse transcription-RCR assays were used to verify the differential expression of candiate genes. The differentially expressed genes were previously revealed by suppression subtractive hybridization and EST surveys and were recognized to encode in components of the stress or immune system. Some of genes identified in this study were not previously recognized as a stress-associated genes. In addition, a number of genes with no known homologs were uncovered. Determination of their specific roles during stress condition may lead to a better understanding of stress response system.

Overall, this series of experiments greatly expand our knowledge of the shellfish stress response and immune system at the DNA molecular level. In addition, the accumulation of a large number of identified cDNA clones is invaluable for abalone genetics and developmental biology. The cDNA clone tagging approach will rapidly build up the resource of the abalone genes and be feasible to clone most, if not all, of the abundantly expressed genes. Among the many possibilities and applications, these identified clones will be useful for selection of tissue-specific, cell type specific, stress-specific or disease-specific markers, isolation of full-length clones and gene promoters, and analysis of the gene expression pattern and gene function.

ACKNOWLEDGEMENTS

본 학위 논문을 마무리하면서 지금까지 많은 도움과 격려를 아끼지 않 으셨던 모든 분들께 감사의 마음을 전합니다.

지금의 제가 있기까지 부족한 저를 가르쳐 주시고 이끌어 주신 공인수 교수님께 머리 숙여 감사드립니다. 그리고 바쁘신 와중에도 본 논문의 심 사를 위해서 세심하게 조언을 해주신 이형호 교수님, 김중균 교수님 그리 고 가까운 곳에서 많은 관심과 격려를 아끼지 않으셨던 이상준 연구관님 과 최태진 소장님께 감사드립니다. 아울러 학위과정 중에 지도와 격려를 아끼지 않으셨던 공재열 교수님, 홍용기 교수님, 김성구 교수님, 박남규 교수님께도 깊은 감사를 드립니다.

이 논문을 수행할 수 있도록 기회를 주시고 항상 깊은 사랑과 애착으로 연구의 길을 이끌어 주시며, 언제나 저에게 힘이 되어 주셨던 김영옥 박 사님, 남보혜 박사님, 김우진 박사님, 공희정 박사님께 깊은 감사의 마음 을 전합니다. 그리고 항상 자상한 충고와 격려를 아끼시지 않으셨던 생명 공학 연구소의 지영주 연구관님, 박희연 연구관님, 한현섭 박사님, 강정 하 박사님, 박중연 박사님, 안혜숙 박사님, 임치원 박사님, 김연계 박사 님, 박진일 박사님, 임재헌 박사님, 김호경 선생님께도 감사드립니다. 또 한 논문이 완성되기까지 많은 관심과 도움을 주셨던 김경길 센터장님을 비롯한 거제육종센터의 많은 분들께도 감사드립니다.

논문을 수행하는 동안 힘들고 궂은 일을 마다하지 않고 헌신적으로 도 와준 유전공학 연구실의 식구인 상숙이 언니, 인숙이, 윤희씨, 현국씨, 종 근씨, 승하, 현주, 경은에게도 감사의 마음을 전합니다. 이외에도 일일이 열거하지는 못했지만 도움을 주신 국립수산과학원의 많은 분들께 깊은 감사의 마음을 전합니다. 부족한 동생을 언제나 사랑으로 감싸주고, 친동 생처럼 아껴주는 가정이 언니에게도 감사의 마음을 전합니다. 그리고 힘 든 기간동안 옆에서 묵묵히 연구에만 몰두할 수 있도록 도와준 서정수 박 사님께도 감사의 마음을 전합니다. 학위과정동안 많은 도움을 준 학교 실 험실 식구들과 나의 평생지기 친구들에게도 감사의 마음을 전하며 미래 에 보다 좋은 일들만이 생기기를 바랍니다.

끝으로 이 영광이 있기까지 변함없는 믿음과 사랑으로 가장 큰 버팀목 이 되어준 가족과 일가친척들에게 감사를 드립니다. 지금의 제가 있기까 지 많은 분들의 도움이 있었지만 존경하는 아버지, 어머니의 은혜가 가장 큰 것 같습니다. 항상 건강하시길 바랍니다. 작지만 소중한 저의 노력이 담긴 이 논문을 부모님께 바칩니다.

4