








CONTENTS

Abstract(Korean) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii

Chapter 1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Vector Equilibrium Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Solution Sets of Vector Equilibrium Problem . . . . . . . . . .11

Chapter 3 Vector Matrix Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

3.2. Characterizing Solutions of Vector Matrix Game . . . . . 21

3.3. Characterizations of Solutions of Vector Matrix Game

with Two 2 × 2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4. Vector Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 Vector Matrix Game for Vector Symmetric Dual

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

4.2. Equivalent Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 5 Examples for Vector Matrix Game . . . . . . . . . . . . . . . . . . . . 59

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

i



⨯

⨯

ii



Chapter 1

Introduction and Preliminaries

In 1994, Blum and Oettli [12] coined the terminology “Equilibrium Prob-

lem” for giving an unified formulation for optimization problem, saddle point

problem, variational inequality, Nash equilibrium in noncooperative games

and other problems related to equilibrium. Main theorems in nonlinear anal-

ysis [7, 8, 13, 14, 25, 26], for example, Brouwer fixed point theorem, Browder

fixed point theorem, Kakutani fixed point theorem, Ky Fan’s minimax in-

equality, Ky Fan’s section theorem and Knaster-Kuratowski-Mazurkiewicz

principle (KKM-Fan theorem), have supported mathematical tools for giv-

ing existence theorems for solutions of such equilibrium problems.

Most of decision making situations require a simultaneous considera-

tion of more than two objectives which are in conflict or trade-off [30, 51].

Such requirements had led to multiobjective (vector) optimization prob-

lems. Many authors have formulated and studied vector equilibrium prob-

lems [1, 2, 3, 4, 5, 6, 11, 18, 21, 24, 27, 28, 29, 31, 35, 42, 43, 44, 45, 50, 56]

which are vector versions of the equilibrium problem and which contain sev-

eral kinds of vector variational inequalities and vector optimization problems

as special cases.

Multiobjective optimization problems consist of conflicting objective func-

tions and constraint sets and are to optimize the objective functions over the

constraint sets under some concepts of solutions, for example, properly effi-

cient solutions, efficient solutions and weakly efficient solutions.
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Optimality criteria and duality theorems are very important topics in

investigating optimization problems. In 1961, Wolfe [60] formulated a dual

problem for a single objective optimization problem on the basis of the Kuhn-

Tucker necessary optimality conditions, which is now called the Wolfe dual

problem, and proved weak and strong duality theorems.

In 1981, Mond and Weir [47] gave another type dual problem for a single

objective optimization problem on the basis of the Kuhn-Tucker necessary

optimality condition, which is now called the Mond-Weir dual problem and

proved weak, strong and converse duality theorems. Until now, many authors

[9, 10, 23, 33, 34, 36, 37, 39, 40, 41, 46, 49, 57, 58, 59, 61] have formulated

Wolfe type dual problems and Mond-Weir type dual problems for several

kinds of optimization problems and have studied duality theorems.

A nonlinear programming problem and its dual are said to be symmetric

if the dual of the dual is the original problem. Symmetric duality in nonlinear

programming in which the dual of the dual is the primal was first introduced

by Dorn [22]. Dantzig et al. [19] formulated a pair of symmetric dual nonlin-

ear programs and established duality results for convex and concave functions

with non-negative orthant as the cone. Mond and Weir [48] presented two

pair of symmetric dual multiobjective programming problems for efficient

solutions and obtained symmetric duality results concerning pseudoconvex

and pseudoconcave functions. Chandra, Craven and Mond [16] formulated

a pair of symmetric dual fractional programming problems under suitable

convexity hypothesis.
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In Dantzig [20], some equivalent relations between linear programming

duality and symmetric matrix game are given. In the finite dimensional set-

ting, Chandra, Craven and Mond [15] presented analogies of results from [20]

for a certain class of nonlinear programming problems. And also Chandra,

Mond and Prasad [17] studied some equivalent relations between continu-

ous linear programs and continuous matrix games. Recently, many authors

[15, 38, 52] have studied equivalent relations between optimization problems

and its related matrix games.

In this dissertation, we consider vector matrix games with more than two

skew symmetric matrices, which is an extension of the matrix game, define

six kinds of solutions for vector matrix games and give an example which

illustrate that such six kinds of solutions may be different. Using vector

optimization techniques, we characterize solutions of vector matrix game. In

particular, we calculate six kinds of solutions for vector matrix game with two

2×2 matrices. We formulate a dual problem for a linear vector optimization

problem, give a duality result for the dual problem and establish equivalent

relations between the dual problem and the corresponding vector matrix

game. We give a numerical example for showing such equivalent relations.

Furthermore, we obtain equivalent relations between the vector symmetric

dual problems and the corresponding vector matrix game .

This dissertation is organized as follows;

In Chapter 2, we consider relations between solutions of a vector equilib-

rium problem and prove the existence theorem for the problem, and then we

apply such results to vector saddle point problems and vector matrix games.
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In Chapter 3, using vector optimization techniques, we characterize solu-

tions of vector matrix game. In particular, we calculate six kinds of solutions

for vector matrix game with two 2 × 2 matrices. Furthermore, we formulate

a dual problem for a linear vector optimization problem, give a weak duality

result for the dual problem and establish equivalent relations between the

dual problem and the corresponding vector matrix game. Moreover, we give

a numerical example for showing such equivalent relations.

In Chapter 4, we formulate vector symmetric dual problems and consider

vector matrix games corresponding to the problems. We obtain equivalent

relations between the vector matrix games and the vector symmetric dual

problems.

In Chapter 5, we give examples which shows that six kinds of solutions

of a vector matrix game may be different.

Now we give notations and preliminary results that will be used later.

The following definitions are found in [53].

Definition 1.1. A subset P ⊂ Rn is said to be a polyhedral set if there exist

ai ∈ Rn, bi ∈ R, i = 1, · · · , k such that

P = {x | aT
i x <= bi, i = 1, · · · , k},

where the symbol T denotes the transpose.
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Definition 1.2. Let C ⊂ Rn. The indicator function δC(·) of C is defined

by

δC(x) =

{
0 if x ∈ C

+∞ if x 6∈ C.

Definition 1.3. Let H ⊆ Rn be a closed and convex set. The normal cone

to H at x̄ ∈ H is defined as follows:

NH(x̄) := {v ∈ Rn : vT (x − x̄) <= 0 ∀x ∈ H}.

Definition 1.4. Let f : Rn → R ∪ {+∞} be a convex function.

(1) The epigraph of f , epif , is defined by

epif = {(x, α) ∈ Rn × R | f(x) <= α}.

(2) The subdifferential of f at a ∈ Rn is defined as a nonempty convex

set

∂f(a) = {v ∈ Rn | f(x) − f(a) >= vT (x− a) ∀x ∈ Rn}.

An important special case in the theory of subgradients is the case where

f is the indicator of a non-empty convex set C. By definition, if x ∈ C, x∗ ∈

∂δC(x) if and only if 0 >= x∗T (z − x) for every z ∈ C, i.e., x∗ is normal to C

at x. Thus if x ∈ C, ∂δC(x) is the same as the normal cone to C at x, NC(x)

defined in Definition 1.3.
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Chapter 2

Vector Equilibrium Problem

2.1. Introduction

In this section, we obtain relations between solutions of a vector equilib-

rium problem and the existence theorem for the problem, and then we apply

such results to vector saddle point problems and vector matrix games.

Now we consider the following convex vector optimization problem:

(VP) Minimize f(x) := (f1(x), · · · , fp(x))

subject to x ∈ S,

where fi : Rn → R, i = 1, · · · , p, are convex functions and the constrained

set S is a closed convex subset of Rn.

Solving (VP) means to find (properly, weakly) efficient solutions defined

as follows;

Definition 2.1.1. (1) A point x̄ ∈ S is said to be an efficient solution of

(VP) if for any x ∈ S,

(f1(x) − f1(x̄), · · · , fp(x) − fp(x̄)) 6∈ −Rp
+ \ {0},

(2) A point x̄ ∈ S is said to be a properly efficient solution of (VP) if

x̄ ∈ S is an efficient solution of (VP) and there exists a constant M > 0 such

that for each i = 1, · · · , p, we have

fi(x̄) − fi(x)

fj(x) − fj(x̄)
<= M
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for some j such that fj(x) > fj(x̄) whenever x ∈ S and fi(x) < fi(x̄).

(3) A point x̄ ∈ S is said to be a weakly efficient solution of (VP) if for

any x ∈ S,

(f1(x) − f1(x̄), · · · , fp(x) − fp(x̄)) 6∈ −intRp
+,

where intRp
+ is the interior of Rp

+.

The quantity fi(x̄)−fi(x)
fj(x)−fj(x̄)

may be interpreted as the marginal trade-off for

objective functions fi and fj between x and x̄. Geoffrion [30] considered the

concept of the proper efficiency to eliminate unbounded trade-off between

objective functions of (VP).

Lemma 2.1.1 [7]. A point x̄ is a weakly efficient solution of (VP) if and

only if there exists λi >= 0, i = 1, · · · , p, (λ1, · · · , λp) 6= 0 such that x̄ is a

solution of the following scalar optimization problem:

Minimize

p∑

i=1

λifi(x)

subject to x ∈ S.

Now we recall definition of the KKM multifunction and KKM-Fan theo-

rem [25] needed for the proofs of our existence theorems.

Definition 2.1.2. Let X be a vector space and K be a nonempty subset of

X. Then a multifunction G : K → 2X is called a KKM multifunction if for

each finite subset {x1, · · · , xn} of K, co{x1, · · · , xn} ⊂
n⋃

i=1

G(xi), where coA

is the convex hull of a subset A of X.
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Theorem 2.1.1 (KKM-Fan Theorem). Let X be a Hausdorff topological

vector space, K be a nonempty subset of X and G : K → 2X be a KKM

multifunction. If all the sets G(x) are closed in X and if one is compact,

then
⋂

x∈K

G(x) 6= ∅.

Now we formulate vector equilibrium problems:

Let K be a closed convex subset of Rn and f : (K ×K)× (K×K) → Rp.

Let Sp = {(x1, x2, · · · , xp) ∈ Rp | xi >= 0, i = 1, · · · , p and
∑p

i=1 xi = 1}.

Vector Equilibrium Problems:

(1) (scalarized equilibrium problem with respect to ξ ∈ Sp)

(SEP)ξ Find (x̄, ȳ) ∈ K × K such that

p∑

i=1

ξifi((x̄, ȳ), (z, ω)) >= 0 ∀(z, ω) ∈ K × K.

(2) (vector equilibrium problem (VEP))

(VEP) Find (x̄, ȳ) ∈ K × K such that

f((x̄, ȳ), (z, ω)) 6≤ 0 ∀(z, ω) ∈ K × K.

(3) (weak vector equilibrium problem (WVEP))

(WVEP) Find (x̄, ȳ) ∈ K × K such that

f((x̄, ȳ), (z, ω)) 6< 0 ∀(z, ω) ∈ K ×K.
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We denote the solution sets of (SEP)ξ, (VEP) and (WVEP) by sol(SEP)ξ,

sol(VEP) and sol(WVEP), respectively.

Now we formulate vector saddle point problems which are special cases

of vector equilibrium problems:

Let K be a convex subset of Rn and L := (L1, · · · , Lp) : K ×K → Rp be

a vector-valued function.

Vector Saddle Point Problems:

(1) (scalarized saddle point problem with respect to ξ ∈ Sp)

(SSP)ξ Find (x̄, ȳ) ∈ K × K such that

p∑

i=1

ξiLi(x, ȳ) <=

p∑

i=1

ξiLi(x̄, ȳ) <=

p∑

i=1

ξiLi(x̄, y) ∀(x, y) ∈ K ×K.

(2) (vector saddle point problem (VSP))

(VSP) Find (x̄, ȳ) ∈ K × K such that

L(x, ȳ) � L(x̄, ȳ) � L(x̄, y) ∀(x, y) ∈ K × K.

(3) (weak vector saddle point problem (WVSP))

(WVSP) Find (x̄, ȳ) ∈ K × K such that

L(x, ȳ) 6> L(x̄, ȳ) 6> L(x̄, y) ∀(x, y) ∈ K × K.

We denote the solution sets of the above inequality problems by sol(SSP)ξ,

sol(VSP), sol(WVSP), respectively.
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Denote the relative interior of the set Sn by
o

S n.

Throughout this paper, we will use the following conventions for vectors

in the Euclidean space Rn for vectors x := (x1, · · · , xn) and y := (y1, · · · , yn):

x <= y if and only if xi <= yi, i = 1, · · · , n;

x < y if and only if xi < yi, i = 1, · · · , n;

x ≤ y if and only if xi <= yi, and x 6= y; and

x 6≤ y is the negation of x ≤ y.

Now we define the following vector matrix game as special cases of vector

saddle point problems:

Definition 2.1.3. Let Bi, i = 1, · · · , p, be real n × n skew-symmetric

matrices.

(1) A point x̄ ∈ Sn is said to be a vector solution of vector matrix game

(B1, · · · , Bp) if (xTB1x̄, · · · , xTBpx̄) � (x̄T B1x̄, · · · , x̄TBpx̄) � (x̄TB1x, · · · , x̄TBpx)

for any x ∈ Sn.

(2) A point x̄ ∈ Sn is said to be a weakly vector solution of vector

matrix game (B1, · · · , Bp) if (xTB1x̄, · · · , xTBpx̄) ≯ (x̄TB1x̄, · · · , x̄T Bpx̄) ≯

(x̄TB1x, · · · , x̄TBpx) for any x ∈ Sn.

(3) A point (x̄, ȳ) ∈ Sn × Sn is said to be an efficient solution of vector

matrix game (B1, · · · , Bp) if (xT B1ȳ, · · · , xTBpȳ) � (x̄TB1ȳ, · · · , x̄TBpȳ) �

(x̄TB1y, · · · , x̄TBpy) for any x, y ∈ Sn.
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(4) A point (x̄, ȳ) ∈ Sn×Sn is said to be a weakly efficient solution of vec-

tor matrix game (B1, · · · , Bp) if (xTB1ȳ, · · · , xTBpȳ) ≯ (x̄TB1ȳ, · · · , x̄TBpȳ)

≯ (x̄T B1y, · · · , x̄TBpy) for any x, y ∈ Sn.

(5) A point (x̄, ȳ) ∈ Sn × Sn is said to be a scalarizing solution of vector

matrix game (B1, · · · , Bp) if there exists λ ∈
o

S p such that xT (
∑p

i=1 λiBi)ȳ <=

x̄T (
∑p

i=1 λiBi)ȳ <= x̄T (
∑p

i=1 λiBi)y for any x, y ∈ Sn.

(6) A point (x̄, ȳ) ∈ Sn × Sn is said to be a weakly scalarizing solu-

tion of vector matrix game (B1, · · · , Bp) if there exists λ ∈ S p such that

xT (
∑p

i=1 λiBi)ȳ <= x̄T (
∑p

i=1 λiBi)ȳ <= x̄T (
∑p

i=1 λiBi)y for any x, y ∈ Sn.

We denote the set of all the vector solutions, the set of all the weakly

vector solutions, the set of all the efficient solutions, the set of all the weakly

efficient solutions, the set of all the scalarizing solutions and the set of

all the weakly scalarizing solutions for vector matrix game, by sol(VMG),

sol(WVMG), sol(EVMG), sol(WEVMG), sol(SVMG) and sol(WSVMG),

respectively.

2.2. Solution Sets of Vector Equilibrium Problem

Now we give existence theorems for (SEP)ξ in compact settings.

Theorem 2.2.1. Let K be a convex and compact subset of Rn. Let f : (K×

K)×(K×K) → Rn be a continuous function. Assume that f((x, y), (x, y)) =

0 for any (x, y) ∈ K × K. Then for any ξ ∈ Sp, (SEP)ξ has a solution.

11



Proof. Let ξ ∈ Sp. Define a multifunction F : K ×K → 2K×K by for any

(z, ω) ∈ K × K,

F (z, ω) = {(x, y) ∈ K ×K |
p∑

i=1

ξifi((x, y), (z, ω)) >= 0}.

(1) We will prove that F is a KKM multifunction.

Suppose that F is not a KKM multifunction. Then there exists

{(x1, y1), (x2, y2), · · · , (xn, yn)} ⊂ K × K such that

co{(x1, y1), (x2, y2), · · · , (xn, yn)} 6⊂
n⋃

i=1

F (xi, yi).

Thus, there exist α1, α2, · · · , αn ∈ R such that αi >= 0,
n∑

i=1

αi = 1 and

n∑

i=1

αi(xi, yi) ∈ (
n⋃

i=1

F (xi, yi))
C

=

n⋂

i=1

(F (xi, yi))
C .

Since K is convex and {(x1, y1), (x2, y2), · · · , (xn, yn)} ⊂ K ×K,

n∑

i=1

αi(xi, yi) ∈ K × K.

12



Let (z0, ω0) =

n∑

i=1

αi(xi, yi). Since (z0, ω0) 6∈ F (xi, yi), i = 1, 2, · · · , n and

(z0, ω0) ∈ K × K,

p∑

j=1

ξjfj((xi, yi), (z0, ω0)) < 0, i = 1, 2, · · · , n.

So, we have

0 =

p∑

j=1

ξjfj((z0, ω0), (z0, ω0))

=

p∑

j=1

ξjfj(
n∑

i=1

αi(xi, yi), (z0, ω0))

< 0.

This is impossible. Hence F is a KKM multifunction.

(2) Let (z, ω) ∈ K × K. We will prove that F (z, ω) is compact. Let

{(xn, yn)} be a sequence in F (z, ω) converging (x0, y0). Since xn ∈ K, yn ∈ K

and K is compact, we may assume that (x0, y0) ∈ K × K. Since

p∑

i=1

ξifi((xn, yn), (z, ω)) >= 0 and fi is convex,

p∑

i=1

ξifi((x0, y0), (z, ω)) >= 0. Thus

(x0, y0) ∈ F (z, ω) and hence F (z, ω) is closed. Since F (z, ω) ⊂ K × K and

K is compact, F (z, ω) is compact.

By KKM-Fan Theorem,
⋂

(z,ω)∈K×K

F (z, ω) 6= ∅. So, there exists (x̄, ȳ) ∈
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K×K such that for any (z, ω) ∈ K×K, (x̄, ȳ) ∈ F (z, ω). Hence there exists

(x̄, ȳ) ∈ K × K such that

p∑

i=1

ξifi((x̄, ȳ), (z, ω)) >= 0 ∀(z, ω) ∈ K ×K. 2

We can give relations among the solution sets for vector equilibrium prob-

lems as follows.

Theorem 2.2.2. The following relations hold:

⋃

ξ∈
o
S p

sol(SEP)ξ ⊂ sol(VEP) ⊂ sol(WVEP) =
⋃

ξ∈Sp

sol(SEP)ξ.

Proof. We want to prove that
⋃

ξ∈
o
S p

sol(SEP)ξ ⊂ sol(VEP).

Let (x̄, ȳ) ∈
⋃

ξ∈
o
S p

sol(SEP)ξ. Then there exist ξi > 0, i = 1, · · · , p and

p∑

i=1

ξifi((x̄, ȳ), (z, ω)) >= 0, ∀(z, ω) ∈ K × K.

Assume to the contrary that (x̄, ȳ) 6∈ sol(VEP). Then there exists (z∗, ω∗) ∈

K × K such that

f((x̄, ȳ), (z∗, ω∗)) ≤ 0.

Since ξi > 0, i = 1, · · · , p, we have

p∑

i=1

ξifi((x̄, ȳ), (z∗, ω∗)) < 0.

14



This is a contradiction. Thus (x̄, ȳ) ∈ sol(VEP).

It is clear that sol(VEP) ⊂ sol(WVEP).

Now we will prove that sol(WVEP) =
⋃

ξ∈Sp
sol(SEP)ξ. Let (x̄, ȳ) ∈

sol(WVEP). Then (x̄, ȳ) ∈ K ×K and

f((x̄, ȳ), (z, ω)) 6< 0 ∀(z, ω) ∈ K × K.

Since f((x̄, ȳ), (x̄, ȳ)) = 0, (x̄, ȳ) is a weakly efficient solution of the following

vector optimization problem (WVP):

(WVP) Minimize (f1((x̄, ȳ), (z, ω)), · · · , fp((x̄, ȳ), (z, ω)))

subject to (z, ω) ∈ K × K.

Since K is a convex and compact subset of Rn, by Lemma 2.1.1, there exists

ξ ∈ Sp such that (x̄, ȳ) ∈ K × K is an optimal solution of the following

optimization problem (SEP)ξ:

(SEP)ξ Minimize

p∑

i=1

ξifi((x̄, ȳ), (z, ω))

subject to (z, ω) ∈ K × K.

Thus (x̄, ȳ) ∈ sol(SEP)ξ.

Let (x̄, ȳ) ∈
⋃

ξ∈Sp
sol(SEP)ξ. Then there exists ξi >= 0,

∑p
i=1 ξi = 1 and

p∑

i=1

ξifi((x̄, ȳ), (z, ω)) >= 0, ∀(z, ω) ∈ K × K.
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Assume to the contrary that (x̄, ȳ) 6∈ sol(WVEP). Then there exists (z∗, ω∗) ∈

K × K such that

f((x̄, ȳ), (z∗, ω∗)) < 0.

Since ξi >= 0,
∑p

i=1 ξi = 1, we have

p∑

i=1

ξifi((x̄, ȳ), (z∗, ω∗)) < 0.

This is a contradiction. Thus (x̄, ȳ) ∈ sol(WVEP). 2

From Theorems 2.2.1 and 2.2.2, we can obtain the following existence

theorems for (VEP) and (WVEP):

Theorem 2.2.3. Let K be a convex and compact subset of Rn. Let f :

(K × K) × (K × K) → Rn be a continuous function. Assume that for

any (x, y) ∈ K × K, f((x, y), (x, y)) = 0. Then (VEP) and (WVEP) have

solutions.

Now we give relations among the solution sets of vector saddle point

problems and vector equilibrium problems and establish existence theorems

of the problems.

Theorem 2.2.4. The following are true:

(1) sol(SEP)ξ = sol(SSP)ξ for ξ ∈ Sp.

(2) sol(VEP) ⊂ sol(VSP).

(3) sol(WVEP) ⊂ sol(WVSP).

(4) (VSP) and (WVSP) have solutions.
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Proof. (1) Let ξ ∈ Sp. Let (x̄, ȳ) ∈ sol(SEP)ξ. Then
∑p

i=1 ξi

[
Li(x̄, ω) −

Li(z, ȳ)
]

>= 0 ∀(z, ω) ∈ K × K. Letting z = x̄,
∑p

i=1 ξiLi(x̄, ω) >=

∑p
i=1 ξiLi(x̄, ȳ) ∀ω ∈ K. Letting ω = ȳ,

∑p
i=1 ξiLi(x̄, ȳ) >=

∑p
i=1 ξiLi(z, ȳ) ∀z ∈

K. Thus (x̄, ȳ) ∈ sol(SSP)ξ. Hence sol(SEP)ξ ⊂ sol(SSP)ξ.

Let (x̄, ȳ) ∈ sol(SSP)ξ. Then
∑p

i=1 ξi

[
Li(x̄, y) − Li(x, ȳ)

]
>= 0 ∀(x, y) ∈

K × K, i.e.,
∑p

i=1 ξifi((x̄, ȳ), (x, y)) >= 0 ∀(x, y) ∈ K × K. Thus (x̄, ȳ) ∈

sol(SEP)ξ. Hence sol(SSP)ξ ⊂ sol(SEP)ξ.

(2) Let (x̄, ȳ) ∈ sol(VEP). Then f((x̄, ȳ), (z, ω)) = L(x̄, ω) − L(z, ȳ) 6≤

0 ∀(z, ω) ∈ K × K. Letting z = x̄, L(x̄, ω) − L(x̄, ȳ) 6≤ 0 ∀ω ∈ K.

Letting ω = ȳ, L(x̄, ȳ) − L(x, ȳ) 6≤ 0 ∀x ∈ K. Thus L(x̄, y) 6≤ L(x̄, ȳ) 6≤

L(x, ȳ) ∀(x, y) ∈ K × K. Therefore (x̄, ȳ) ∈ sol(VSP).

(3) We can prove the inclusion by method similar to one in (2).

(4) From Theorem 2.2.3, it is clear. 2

We give relations among the solution sets of vector equilibrium problems

and vector saddle point problems and establish existence theorems of the

problems.

Let L : K × K → Rp be a function and let K be a convex and compact

subset of Rn. Then the following holds:

(1)
⋃

ξ∈Sp

sol(SSP)ξ ⊂ sol(VSP) ⊂ sol(WVSP).
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(2) (VSP) and (WVSP) have solutions.

From Theorem 2.2.4, we can easily get the following theorem.

Theorem 2.2.5. Let Bi, i = 1, · · · , p, be n × n skew symmetric matrices.

Then the following holds:

(1) sol(SVMG) ⊂ sol(EVMG) ⊂ sol(WEVMG).

(2) (EVMG) and (WEVMG) have solutions.
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Chapter 3

Vector Matrix Game

3.1. Introduction

A vector matrix game, which is a vector version of the usual matrix game,

consists of skew symmetric matrices and vector ordering.

A matrix game is defined by B of m × n real matrix together with the

Cartesian product Sn×Sm of all n-dimensional probability vectors Sn and all

m-dimensional probability vectors Sm, that is, Sn := {x = (x1, · · · , xn)
T ∈

Rn : xi >= 0,
∑n

i=1 xi = 1}.

A point (x̄, ȳ) in Sn × Sm is an equilibrium point of matrix game B if

xTBȳ <= x̄TBȳ <= x̄TBy for all x ∈ Sn and all y ∈ Sm. When (x̄, ȳ) ∈ Sn×Sm

is the equilibrium point, v := x̄TBȳ is called the value of the game.

If n = m and B is skew symmetric, then (x̄, ȳ) ∈ Sn×Sn is an equilibrium

point of matrix game B if and only if Bx̄ <= 0 and Bȳ <= 0. In this case,

x̄ ∈ Sn is called a solution of matrix game B if Bx̄ <= 0.

Consider the following linear programming problem (LP) together with

its dual (LD) as follows:

(LP) Minimize cT x, subject to Ax >= b, x >= 0,

(LD) Maximize bTy, subject to ATy <= c, y >= 0,

where c ∈ Rn, x ∈ Rn, b ∈ Rm, y ∈ Rm and A = [aij] is a m× n real matrix.
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Now consider the matrix game associated with the following (n + m +

1) × (n + m + 1) skew symmetric matrix B:

B =




0 AT −c

−A 0 b

cT −bT 0


 .

The following results due to Dantzig [20] are well known: Theorem 3.1.1

and 3.1.2 give complete equivalence between linear programming duality and

the matrix game B.

Theorem 3.1.1. Let x̄ and ȳ be optimal solutions to (LP) and (LD) respec-

tively. Let z∗ = 1/(1+
∑

j x̄j +
∑

i ȳi), x∗ = z∗x̄, y∗ = z∗ȳ. Then (x∗, y∗, z∗)

is a solution of the matrix game B.

Theorem 3.1.2. Let (x∗, y∗, z∗) be a solution of the matrix game B with

z∗ > 0. Let x̄j = x∗
j/z

∗, ȳi = y∗
i /z

∗. Then x̄ and ȳ are optimal solutions to

(LP) and (LD) respectively.

Many authors [15, 17, 52] have extended Theorems 3.1.1 and 3.1.2 to

several kinds of (scalar) optimization problems.

In this section, we characterize solutions of vector matrix game, which

was defined Definition 2.1.3. In particular, we calculate six kinds of solutions

for vector matrix game with two 2 × 2 matrices. Furthermore, we formulate

a dual problem for a linear vector optimization problem, give a weak duality

result for the dual problem and establish equivalent relations between the
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dual problem and the corresponding vector matrix game. Moreover, we give

a numerical example for showing such equivalent relations.

3.2. Characterizing Solutions of Vector Matrix Game

Consider a linear vector optimization problem:

(LVP) Minimize (cT
1 x, · · · , cT

p x)

subject to x ∈ X,

where X = {x ∈ Rn | Ax >= b, x >= 0}, ci ∈ Rn, i = 1, · · · , p, b ∈ Rm and

A = [aij] is a m × n real matrix.

Definition 3.2.1. A point x̄ ∈ X is said to be an efficient solution for (LVP)

if there exists no other feasible point x ∈ X such that (cT
1 x, · · · , cT

p x) ≤

(cT
1 x̄, · · · , cT

p x̄).

Now we give well-known propositions which are needed in proving the

following lemmas.

Proposition 3.2.1 [32]. Every efficient solution of (LVP) is properly effi-

cient.

By Proposition 3.2.1 and results in [30], we have the following proposition.

Proposition 3.2.2 [7]. A point x̄ ∈ X is an efficient solution of (LVP) if

and only if there exists λ ∈
o

S p such that x̄ is a solution of the following
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scalar optimization problem:

Minimize

p∑

i=1

λic
T
i x

subject to x ∈ X.

Proposition 3.2.3 [7]. A point x̄ ∈ X is a weakly efficient solution of (LVP)

if and only if there exists λ ∈ S p such that x̄ is a solution of the following

scalar optimization problem:

Minimize

p∑

i=1

λic
T
i x

subject to x ∈ X.

Using Propositions 3.2.2 and 3.2.3, we can give the following lemmas

involving characterizations of vector solution and weakly vector solution of

vector matrix game.

Lemma 3.2.1. Let Bi, i = 1, · · · , p be n × n skew symmetric matrices.

Then ȳ ∈ Sn is a vector solution of vector matrix game (B1, · · · , Bp) if and

only if there exists ξ ∈
o

S p such that (
∑p

i=1 ξiBi)ȳ <= 0.

Proof. A point ȳ ∈ Sn is a vector solution of vector matrix game

(B1, · · · , Bp).

⇐⇒ (yTB1ȳ, · · · , yTBpȳ) 6≥ 0,∀y ∈ Sn.
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⇐⇒ A point ȳ ∈ Sn is an efficient solution of the following linear vector

optimization problem:

Maximize (yTB1ȳ, · · · , yTBpȳ)

subject to y ∈ Sn.

⇐⇒ (by Proposition 3.2.2) there exists ξ ∈
o

S p such that ȳ is optimal

for the following linear scalar optimization:

Maximize yT (

p∑

i=1

ξiBi)ȳ

subject to y ∈ Sn.

⇐⇒ there exists ξ ∈
o

S p such that ∀y ∈ Sn, yT (
∑p

i=1 ξiBi)ȳ <= 0.

⇐⇒ there exists ξ ∈
o

S p such that (
∑p

i=1 ξiBi)ȳ <= 0. 2

Using Proposition 3.2.3 and following the proof of Lemma 3.2.1, we can

obtain the following lemma.

Lemma 3.2.2. Let Bi, i = 1, · · · , p be a n × n skew symmetric matrices.

Then ȳ ∈ Sn is a weakly vector solution of vector matrix game (B1, · · · , Bp)

if and only if there exists ξ ∈ S p such that (
∑p

i=1 ξiBi)ȳ <= 0.

Using the skew-symmetry of the matrices Bi’s, we can easily obtain the

following lemmas showing characterizations of a scalarizing solution and a

weakly scalarizing solution of the vector matrix game.
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Lemma 3.2.3. Let Bi, i = 1, · · · , p be n × n skew symmetric matri-

ces. Then (x̄, ȳ) ∈ Sn × Sn is a scalarizing solution of vector matrix game

(B1, · · · , Bp) if and only if there exists ξ ∈
o

S p such that (
∑p

i=1 ξiBi)ȳ <= 0

and (
∑p

i=1 ξiBi)x̄ <= 0.

Proof. (⇒) Let (x̄, ȳ) ∈ Sn ×Sn be a scalarizing solution of vector matrix

game (B1, · · · , Bp). Then there exists ξ ∈
o

S p such that

xT (

p∑

i=1

ξiBi)ȳ <= x̄T (

p∑

i=1

ξiBi)ȳ <= x̄T (

p∑

i=1

ξiBi)y, (3.1)

for any x, y ∈ Sn. Replaying x by ȳ and y by x̄ in (3.1), ȳT (
∑p

i=1 ξiBi)ȳ <=

x̄T (
∑p

i=1 ξiBi)ȳ <= x̄T (
∑p

i=1 ξiBi)x̄. Since
∑p

i=1 ξiBi is skew symmetric,

x̄T (
∑p

i=1 ξiBi)x̄ = ȳT (
∑p

i=1 ξiBi)ȳ = 0. Therefore x̄T (
∑p

i=1 ξiBi)ȳ = 0. From

(3.1), xT (
∑p

i=1 ξiBi)ȳ <= 0 for any x ∈ Sn and x̄T (
∑p

i=1 ξiBi)y >= 0 for

any y ∈ Sn. Thus for any z ∈ Rn
+ \ {0}, zT (

∑p
i=1 ξiBi)ȳ <= 0 and hence

−(
∑p

i=1 ξiBi)ȳ ∈ Rn
+. From (3.1), 0 <= x̄T (

∑p
i=1 ξiBi)y = yT (

∑p
i=1 ξiBi)x̄ =

−yT (
∑p

i=1 ξiBi)x̄ = yT (
∑p

i=1 ξiBi)(−x̄) for any y ∈ Sn. Thus (
∑p

i=1 ξiBi)(−x̄) ∈

Rn
+. Consequently, there exists ξ ∈

o

S p such that (
∑p

i=1 ξiBi)ȳ <= 0 and

(
∑p

i=1 ξiBi)x̄ <= 0.

(⇐) Suppose that there exists ξ ∈
o

S p such that (
∑p

i=1 ξiBi)x̄ <= 0 and

(
∑p

i=1 ξiBi)ȳ <= 0. Then for any y ∈ Sn, x̄T (
∑p

i=1 ξiBi)y = yT (
∑p

i=1 ξiBi)x̄ =
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−yT (
∑p

i=1 ξiBi)x̄ >= 0. Hence for any y ∈ Sn,

x̄T (

p∑

i=1

ξiBi)y >= 0. (3.2)

Clearly, for any x ∈ Sn,

xT (

p∑

i=1

ξiBi)ȳ <= 0. (3.3)

From (3.2) and (3.3), x̄T (
∑p

i=1 ξiBi)ȳ = 0. Therefore it follows from (3.2) and

(3.3), xT (
∑p

i=1 ξiBi)ȳ <= x̄T (
∑p

i=1 ξiBi)ȳ <= x̄T (
∑p

i=1 ξiBi)y for any x, y ∈

Sn. Thus (x̄, ȳ) is a scalarizing solution of the vector matrix game Bi, i =

1, · · · , p. 2

Lemma 3.2.4. Let Bi, i = 1, · · · , p be n × n skew symmetric matrices.

Then (x̄, ȳ) ∈ Sn ×Sn is a weakly scalarizing solution of vector matrix game

(B1, · · · , Bp) if and only if there exists ξ ∈ Sp such that (
∑p

i=1 ξiBi)ȳ <= 0,

and (
∑p

i=1 ξiBi)x̄ <= 0.

To characterize efficient solution and weakly efficient solution of vector

matrix game, we consider the normal cone to a convex set.

Lemma 3.2.5 [54]. Let h : Rn → R be a differentiable convex function,

and let H ⊆ Rn be a convex set. Then x̄ ∈ H is a solution to

inf
x∈H

h(x̄)

if and only if

0 ∈ ∇h(x̄) + NH(x̄),
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where ∇h(x̄) is the gradient of h at x̄.

Proposition 3.2.4 [53]. Let H = H1∩H2, where Hi, i = 1, 2 are polyhedral

sets. If H1 ∩
o

H2 6= ∅, where
o

H2 is the relative interior of H2, then for any

x ∈ H,

NH(x) = NH1(x) + NH2(x).

Lemma 3.2.6. Let H = {x ∈ Rn : Ax = b} where A : Rn → Rm is a linear

operator and b is a vector in Rm. At any x ∈ H, we have NH(x) = {ATy :

y ∈ Rm}.

Using Propositions 3.2.2 and 3.2.3 and Lemma 3.2.5, we can give the

following lemmas involving characterizations of an efficient solution and a

weakly efficient solution of vector matrix game.

Lemma 3.2.7. Let Bi, i = 1, · · · , p be n×n skew symmetric matrices. Then

(x̄, ȳ) ∈ Sn ×Sn is an efficient solution of vector matrix game (B1, · · · , Bp) if

and only if there exist λ ∈
o

S p and µ ∈
o

S p such that (
∑p

i=1 λiBi)ȳ ∈ NSn(x̄)

and (
∑p

i=1 µiBi)x̄ ∈ NSn(ȳ).

Proof. A point (x̄, ȳ) ∈ Sn × Sn is an efficient solution of vector matrix

game Bi, i = 1, · · · , p.

⇐⇒ ((−B1ȳ)T x, · · · , (−Bpȳ)T x) � ((−B1ȳ)T x̄, · · · , (−Bpȳ)T x̄) for any

x ∈ Sn and ((BT
1 x̄)T y, · · · , (BT

p x̄)T y) � ((BT
1 x̄)T ȳ, · · · , (BT

p x̄)T ȳ) for any

y ∈ Sn.
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⇐⇒ (by Proposition 3.2.2) there exists λ ∈
o

S p such that
∑p

i=1 λi(−Biȳ)T x >=

∑p
i=1 λi(−Biȳ)T x̄ for any x ∈ Sn and there exists µ ∈

o

S p such that

∑p
i=1 µi(B

T
i x̄)T y >=

∑p
i=1 µi(B

T
i x̄)T ȳ for any y ∈ Sn

⇐⇒ (by Lemma 3.2.5) there exists λ ∈
o

S p such that (
∑p

i=1 λiBi)ȳ ∈

NSn(x̄) and there exists µ ∈
o

S p such that (−
∑p

i=1 µiB
T
i )x̄ ∈ NSn(ȳ).

⇐⇒ there exists λ ∈
o

S p such that (
∑p

i=1 λiBi)ȳ ∈ NSn(x̄) and there

exists µ ∈
o

S p such that (
∑p

i=1 µiBi)x̄ ∈ NSn(ȳ). 2

Lemma 3.2.8. Let Bi, i = 1, · · · , p be an n × n skew symmetric ma-

trix. Then (x̄, ȳ) ∈ Sn × Sn is a weakly efficient solution of vector matrix

game (B1, · · · , Bp) if and only if there exist λ ∈ S p and µ ∈ S p such that

(
∑p

i=1 λiBi)ȳ ∈ NSn(x̄) and (
∑p

i=1 µiBi)x̄ ∈ NSn(ȳ).

3.3. Characterizations of Solutions of Vector Matrix Game

with Two 2 × 2 Matrices

In this section we characterize vector matrix game with two 2×2 matrices.

Let

B1 =

(
0 a

−a 0

)
and B2 =

(
0 b

−b 0

)
.

Then we calculate the set of all the vector solutions, the set of all the weakly

vector solutions, the set of all the efficient solutions, the set of all the weakly
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efficient solutions, the set of all the scalarizing solutions and the set of all the

weakly scalarizing solutions for vector matrix game with B1 and B2 matrices.

(1) A point x̄ ∈ S2 is a vector solution of vector matrix game (B1, B2) if

(
(x1, x2)

(
0 a

−a 0

)(
x̄1

x̄2

)
, (x1, x2)

(
0 b

−b 0

)(
x̄1

x̄2

))

�

(
(x̄1, x̄2)

(
0 a

−a 0

)(
x̄1

x̄2

)
, (x̄1, x̄2)

(
0 b

−b 0

)(
x̄1

x̄2

))

�

(
(x̄1, x̄2)

(
0 a

−a 0

)(
x1

x2

)
, (x̄1, x̄2)

(
0 b

−b 0

)(
x1

x2

))

⇐⇒ (−ax2x̄1 + ax1x̄2, −bx2x̄1 + bx1x̄2)

� (0, 0) � (−ax̄2x1 + ax̄1x2, −bx̄2x1 + bx̄1x2)

⇐⇒ (ax̄1x2 − ax1x̄2, bx̄1x2 − bx1x̄2) � (0, 0)

⇐⇒ (x̄1x2 − x1x̄2)(a, b) � (0, 0)

Thus the vector solution set of vector matrix game (B1, B2) is as follows;

(i) if a > 0, b > 0; the solution set is {(1, 0)}.

(ii) if a = 0, b > 0; the solution set is {(1, 0)}.

(iii) if a > 0, b = 0; the solution set is {(1, 0)}.

(iv) if a < 0, b < 0; the solution set is {(0, 1)}.

(v) if a = 0, b < 0; the solution set is {(0, 1)}.
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(vi) if a < 0, b = 0; the solution set is {(0, 1)}.

(vii) if a > 0, b < 0; the solution set is {(x, y) : (x, y) ∈ S2}.

(viii) if a < 0, b > 0; the solution set is {(x, y) : (x, y) ∈ S2}.

(ix) if a = 0, b = 0; the solution set is {(x, y) : (x, y) ∈ S2}.

(2) A point x̄ ∈ S2 is a weakly vector solution of vector matrix game

(B1, B2) if

(
(x1, x2)

(
0 a

−a 0

)(
x̄1

x̄2

)
, (x1, x2)

(
0 b

−b 0

)(
x̄1

x̄2

))

6>
(

(x̄1, x̄2)

(
0 a

−a 0

)(
x̄1

x̄2

)
, (x̄1, x̄2)

(
0 b

−b 0

)(
x̄1

x̄2

))

6>
(

(x̄1, x̄2)

(
0 a

−a 0

)(
x1

x2

)
, (x̄1, x̄2)

(
0 b

−b 0

)(
x1

x2

))

⇐⇒ (−ax2x̄1 + ax1x̄2, −bx2x̄1 + bx1x̄2)

6> (0, 0) 6> (−ax̄2x1 + ax̄1x2, −bx̄2x1 + bx̄1x2)

⇐⇒ (ax̄1x2 − ax1x̄2, bx̄1x2 − bx1x̄2) 6< (0, 0)

⇐⇒ (x̄1x2 − x1x̄2)(a, b) 6< (0, 0)

Thus the weakly vector solution set of vector matrix game (B1, B2) is as

follows;

(i) if a > 0, b > 0; the solution set is {(1, 0)}.
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(ii) if a = 0, b > 0; the solution set is {(x, y) : (x, y) ∈ S2}.

(iii) if a > 0, b = 0; the solution set is {(x, y) : (x, y) ∈ S2}.

(iv) if a < 0, b < 0; the solution set is {(0, 1)}.

(v) if a = 0, b < 0; the solution set is {(x, y) : (x, y) ∈ S2}.

(vi) if a < 0, b = 0; the solution set is {(x, y) : (x, y) ∈ S2}.

(vii) if a > 0, b < 0; the solution set is {(x, y) : (x, y) ∈ S2}.

(viii) if a < 0, b > 0; the solution set is {(x, y) : (x, y) ∈ S2}.

(ix) if a = 0, b = 0; the solution set is {(x, y) : (x, y) ∈ S2}.

(3) A point (x̄, ȳ) ∈ S2×S2 is a scalarizing solution of vector matrix game

(B1, B2) if there exists λ1 > 0, λ2 > 0, λ1 + λ2 = 1 such that

(x1, x2)

(
λ1

(
0 a

−a 0

)
+ λ2

(
0 b

−b 0

))(
ȳ1

ȳ2

)

<= (x̄1, x̄2)

(
λ1

(
0 a

−a 0

)
+ λ2

(
0 b

−b 0

))(
ȳ1

ȳ2

)

<= (x̄1, x̄2)

(
λ1

(
0 a

−a 0

)
+ λ2

(
0 b

−b 0

))(
y1

y2

)

⇐⇒ −(λ1a + λ2b)x2ȳ1 + (λ1a + λ2b)x1ȳ2 <= −(λ1a + λ2b)x̄2ȳ1 +

(λ1a + λ2b)x̄1ȳ2 <= −(λ1a + λ2b)x̄2y1 + (λ1a + λ2b)x̄1y2
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⇐⇒
{

−(λ1a + λ2b)(x2ȳ1 − x1ȳ2 − x̄2ȳ1 + x̄1ȳ2) <= 0

−(λ1a + λ2b)(x̄2ȳ1 − x̄1ȳ2 − x̄2y1 + x̄1y2) <= 0

⇐⇒
{

−(λ1a + λ2b) ((x2 − x̄2)ȳ1 − (x1 − x̄1)ȳ2) <= 0

−(λ1a + λ2b) ((y2 − ȳ2)x̄1 − (y1 − ȳ1)x̄2) <= 0

Thus the scalarizing solution set of vector matrix game (B1, B2) is as follows;

(i) if a > 0, b > 0; the solution set is {(1, 0, 1, 0)}.

(ii) if a = 0, b > 0; the solution set is {(1, 0, 1, 0)}.

(iii) if a > 0, b = 0; the solution set is {(1, 0, 1, 0)}.

(iv) if a < 0, b < 0; the solution set is {(0, 1, 0, 1)}.

(v) if a = 0, b < 0; the solution set is {(0, 1, 0, 1)}.

(vi) if a < 0, b = 0; the solution set is {(0, 1, 0, 1)}.

(vii) if a > 0, b < 0; the solution set is {(1, 0, 1, 0), (0, 1, 0, 1)}.

(viii) if a < 0, b > 0; the solution set is {(1, 0, 1, 0), (0, 1, 0, 1)}.

(ix) if a = 0, b = 0; the solution set is S2 × S2.

(4) A point (x̄, ȳ) ∈ S2 × S2 is a weakly scalarizing solution of vector

matrix game (B1, B2) if there exist λ1 >= 0, λ2 >= 0, λ1 + λ2 = 1 such that
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(x1, x2)

(
λ1

(
0 a

−a 0

)
+ λ2

(
0 b

−b 0

))(
ȳ1

ȳ2

)

<= (x̄1, x̄2)

(
λ1

(
0 a

−a 0

)
+ λ2

(
0 b

−b 0

))(
ȳ1

ȳ2

)

<= (x̄1, x̄2)

(
λ1

(
0 a

−a 0

)
+ λ2

(
0 b

−b 0

))(
y1

y2

)

⇐⇒ −(λ1a + λ2b)x2ȳ1 + (λ1a + λ2b)x1ȳ2

<= −(λ1a + λ2b)x̄2ȳ1 + (λ1a + λ2b)x̄1ȳ2

<= −(λ1a + λ2b)x̄2y1 + (λ1a + λ2b)x̄1y2

⇐⇒

{
−(λ1a + λ2b)(x2ȳ1 − x1ȳ2 − x̄2ȳ1 + x̄1ȳ2) <= 0

−(λ1a + λ2b)(x̄2ȳ1 − x̄1ȳ2 − x̄2y1 + x̄1y2) <= 0

⇐⇒
{

−(λ1a + λ2b) ((x2 − x̄2)ȳ1 − (x1 − x̄1)ȳ2) <= 0

−(λ1a + λ2b) ((y2 − ȳ2)x̄1 − (y1 − ȳ1)x̄2) <= 0

Thus the weakly scalarizing solution set of vector matrix game (B1, B2) is as

follows;

(I) The case of λ1 = 1, λ2 = 0:

(i) if a > 0; the solution set is {(1, 0, 1, 0)}.

(ii) if a < 0; the solution set is {(0, 1, 0, 1)}.
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(iii) if a = 0; the solution set is S2 × S2.

(II) The case of λ1 = 0, λ2 = 1:

(i) if b > 0; the solution set is {(1, 0, 1, 0)}.

(ii) if b < 0; the solution set is {(0, 1, 0, 1)}.

(iii) if b = 0; the solution set is S2 × S2.

(III) The case of λ1 > 0, λ2 > 0, λ1 +λ2 = 1: For the case, the solution sets

are same as (3).

(5) A point (x̄, ȳ) ∈ S2 ×S2 is an efficient solution of vector matrix game

(B1, B2) if

(
(x1, x2)

(
0 a

−a 0

)(
ȳ1

ȳ2

)
, (x1, x2)

(
0 b

−b 0

)(
ȳ1

ȳ2

))

�

(
(x̄1, x̄2)

(
0 a

−a 0

)(
ȳ1

ȳ2

)
, (x̄1, x̄2)

(
0 b

−b 0

)(
ȳ1

ȳ2

))

�

(
(x̄1, x̄2)

(
0 a

−a 0

)(
y1

y2

)
, (x̄1, x̄2)

(
0 b

−b 0

)(
y1

y2

))

⇐⇒ (−ax2ȳ1 + ax1ȳ2, −bx2ȳ1 + bx1ȳ2)

� (−ax̄2ȳ1 + ax̄1ȳ2, −bx̄2ȳ1 + bx̄1ȳ2)

� (−ax̄2y1 + ax̄1y2, −bx̄2y1 + bx̄1y2)
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⇐⇒
{

(−aȳ1(x̄2 − x2) + aȳ2(x̄1 − x1), −bȳ1(x̄2 − x2) + bȳ2(x̄1 − x1)) � (0, 0)

(−ax̄2(y1 − ȳ1) + ax̄1(y2 − ȳ2), −bx̄2(y1 − ȳ1) + bx̄1(y2 − ȳ2)) � (0, 0)

⇐⇒
{

(a, b)((x2 − x̄2)ȳ1 − (x1 − x̄1)ȳ2) � (0, 0)

(a, b)((y2 − ȳ2)x̄1 − (y2 − ȳ2)x̄2) � (0, 0)

Thus the efficient solution set of vector matrix game (B1, B2) is as follows;

(i) if a > 0, b > 0; the solution set is {(1, 0, 1, 0)}.

(ii) if a = 0, b > 0; the solution set is {(1, 0, 1, 0)}.

(iii) if a > 0, b = 0; the solution set is {(1, 0, 1, 0)}.

(iv) if a < 0, b < 0; the solution set is {(0, 1, 0, 1)}.

(v) if a = 0, b < 0; the solution set is {(0, 1, 0, 1)}.

(vi) if a < 0, b = 0; the solution set is {(0, 1, 0, 1)}.

(vii) if a > 0, b < 0; the solution set is S2 × S2.

(viii) if a < 0, b > 0; the solution set is S2 × S2.

(ix) if a = 0, b = 0; the solution set is S2 × S2.

(6) A point (x̄, ȳ) ∈ S2 ×S2 is a weakly efficient solution of vector matrix

game (B1, B2) if
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(
(x1, x2)

(
0 a

−a 0

)(
ȳ1

ȳ2

)
, (x1, x2)

(
0 b

−b 0

)(
ȳ1

ȳ2

))

6>
(

(x̄1, x̄2)

(
0 a

−a 0

)(
ȳ1

ȳ2

)
, (x̄1, x̄2)

(
0 b

−b 0

)(
ȳ1

ȳ2

))

6>
(

(x̄1, x̄2)

(
0 a

−a 0

)(
y1

y2

)
, (x̄1, x̄2)

(
0 b

−b 0

)(
y1

y2

))

⇐⇒ (−ax2ȳ1 + ax1ȳ2, −bx2ȳ1 + bx1ȳ2) 6> (−ax̄2ȳ1 + ax̄1ȳ2, −bx̄2ȳ1 + bx̄1ȳ2)

6> (−ax̄2y1 + ax̄1y2, −bx̄2y1 + bx̄1y2)

⇐⇒

{
(−aȳ1(x̄2 − x2) + aȳ2(x̄1 − x1), −bȳ1(x̄2 − x2) + bȳ2(x̄1 − x1)) 6< (0, 0)

(−ax̄2(y1 − ȳ1) + ax̄1(y2 − ȳ2), −bx̄2(y1 − ȳ1) + bx̄1(y2 − ȳ2)) 6< (0, 0)

⇐⇒
{

(a, b)((x2 − x̄2)ȳ1 − (x1 − x̄1)ȳ2) 6< (0, 0)

(a, b)((y2 − ȳ2)x̄1 − (y1 − ȳ1)x̄2) 6< (0, 0)

Thus the weakly efficient solution set of vector matrix game (B1, B2) is as

follows;

(i) if a > 0, b > 0; the solution set is {(1, 0, 1, 0)}.

(ii) if a = 0, b > 0; the solution set is S2 × S2.

(iii) if a > 0, b = 0; the solution set is S2 × S2.

(iv) if a < 0, b < 0; the solution set is {(0, 1, 0, 1)}.
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(v) if a = 0, b < 0; the solution set is S2 × S2.

(vi) if a < 0, b = 0; the solution set is S2 × S2.

(vii) if a > 0, b < 0; the solution set is S2 × S2.

(viii) if a < 0, b > 0; the solution set is S2 × S2.

(ix) if a = 0, b = 0; the solution set is S2 × S2. 2

3.4. Vector Duality

We formulate a dual problem for the linear vector optimization prob-

lem (LVP) in Section 3.2, and prove equivalent relations between the dual

problem and the corresponding vector matrix game.

The following is a dual problem for (LVP).

(LVD) Maximize (cT
1 u, · · · , cT

p u) − λT (Au − b)e

subject to

p∑

i=1

ξici − ATλ >= 0,

uT [

p∑

i=1

ξici − ATλ] <= 0,

λ ≥ 0,

ξ ∈
o

S p,

u ∈ Rp,

where e = (1, 1, · · · , 1) ∈ Rp.

36



Theorem 3.4.1 (Weak Duality). Let x and (u, λ, ξ) be feasible solutions

to (LVP) and (LVD), respectively. Then

(cT
1 x, · · · , cT

p x) � (cT
1 u, · · · , cT

p u) − λT (Au− b)e.

Proof. Suppose that there exist feasible solution x and (u, λ, ξ) such that

(cT
1 x, · · · , cT

p x) ≤ (cT
1 u, · · · , cT

p u) − λT (Au − b)e. Since ξi > 0,
∑p

i=1 ξi(c
T
i x−

cT
i u) − λT b + λT Au < 0. Since x is feasible to (LVP), so that

p∑

i=1

ξi(c
T
i x − cT

i u)− λT Ax + λTAu < 0. (3.4)

But x and (u, λ, ξ) are feasible solutions to (LVP) and (LVD), respectively,

p∑

i=1

ξic
T
i x −

( p∑

i=1

ξici − ATλ
)T

u− λT Ax

=
( p∑

i=1

ξici − ATλ
)T

x−
( p∑

i=1

ξici − ATλ
)T

u

>= 0,

which contradicts (3.4). Hence the result holds. 2

Theorem 3.4.2 (Strong Duality). Let x̄ be an efficient solution of (LVP).

Then there exist ξ̄ ∈
o

S p and λ̄ ∈ R+
m such that (x̄, λ̄, ξ̄) is a feasible solution

to (LVD) and the objective values of (LVP) and (LVD) are equal. Moreover,

(x̄, λ̄, ξ̄) is an efficient solution of (LVD).
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Proof. Let x̄ be an efficient solution of (LVP). By Kuhn-Tucker optimality

condition in [55], there exist ξ̄ ∈
o

S p and λ̄ ∈ R+
m such that

∑p
i=1 ξ̄ici − AT λ̄ >= 0,

x̄T
[∑p

i=1 ξ̄ici −AT λ̄
]

= 0,

λ̄T (Ax̄− b) = 0.

Thus (x̄, λ̄, ξ̄) is a feasible solution to (LVD) with cT x̄ = cT x̄− λ̄T (Ax̄− b)e.

By weak duality,

(cT
1 x̄, · · · , cT

p x̄) − λ̄T (Ax̄− b)e � (cT
1 u, · · · , cT

p u) − λT (Au − b)e,

for any feasible solution (u, λ, ξ) of (LVD). Hence (x̄, λ̄, ξ̄) is an efficient so-

lution of (LVD). 2

Now consider the vector matrix game associated with the following (m+

n + 1) × (m + n + 1) skew symmetric matrix Bi, i = 1, · · · , p :

Bi =




0 AT −ci

−A 0 b

cT
i −bT 0


 .

Theorem 3.4.3. Let x̄ and (x̄, λ̄, ξ̄) be feasible solutions to (LVP) and

(LVD), respectively, such that λ̄T (Ax̄ − b) = 0. Let z∗ = 1/(1 +
∑

i x̄i +

∑
j λ̄j), x

∗ = z∗x̄ and λ∗ = z∗λ̄. Then (x∗, λ∗, z∗) is a vector solution of

vector matrix game (B1, · · · , Bp).
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Proof. Let (x̄, λ̄, ξ̄) be a feasible solution to (LVD). Then the following

holds:
p∑

i=1

ξ̄ici − AT λ̄ >= 0, (3.5)

x̄T
[ p∑

i=1

ξ̄ici − AT λ̄
]

<= 0, (3.6)

Ax̄ >= b, (3.7)

λ̄T (Ax̄ − b) = 0, (3.8)

λ̄ ≥ 0, x̄ >= 0, ξ̄ ∈
o

S p. (3.9)

Since z∗ > 0 by (3.9), from (3.5) and (3.7), we get:

z∗
[
AT λ̄ −

p∑

i=1

ξ̄ici

]
<= 0, (3.10)

− z∗(Ax̄− b) <= 0. (3.11)

Now (3.6) and (3.8) give

z∗
[∑p

i=1 ξ̄ic
T
i x̄ − bT λ̄

]
= z∗

[∑p
i=1 ξ̄ic

T
i x̄ − x̄TAT λ̄

]

= z∗x̄T
[∑p

i=1 ξ̄ici − AT λ̄
]

<= 0.

(3.12)

From (3.10), (3.11) and (3.12) we have the following form of inequality

( p∑

i=1

ξ̄iBi

)



z∗x̄

z∗λ̄

z∗


 <= 0.
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By Lemma 3.2.1, (x∗, λ∗, z∗) is a vector solution of vector matrix game

(B1, · · · , Bp). 2

Theorem 3.4.4. Let (x∗, λ∗, z∗) with z∗ > 0 be a vector solution of vector

matrix game (B1, · · · , Bp). Let x̄ = x∗/z∗ and λ̄ = λ∗/z∗. Then there exists

ξ̄ ∈
o

S p such that (x̄, λ̄, ξ̄) is a feasible solution to (LVD) with Ax̄ >= b and

λ̄T (Ax̄− b) = 0. Moreover x̄ is an efficient solution of (LVP) and (x̄, λ̄, ξ̄) is

an efficient solution of (LVD).

Proof. Let (x∗, λ∗, z∗) with z∗ > 0 be a vector solution of vector matrix

game Bi, i = 1, · · · , p. Then by Lemma 3.2.1, there exists ξ̄ ∈
o

S p such that

( p∑

i=1

ξ̄iBi

)



x∗

λ∗

z∗


 <= 0.

Thus we get:

ATλ∗ −
p∑

i=1

ξ̄iciz
∗ <= 0, (3.13)

− Ax∗ + bz∗ <= 0, (3.14)

p∑

i=1

ξ̄ic
T
i x∗ − bTλ∗ <= 0, (3.15)

x∗ >= 0, λ∗ ≥ 0, z∗ > 0. (3.16)
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Dividing (3.13), (3.14) and (3.15) by z∗ > 0, we have

AT λ̄ −
p∑

i=1

ξ̄ici <= 0, (3.17)

− Ax̄ + b <= 0, (3.18)

p∑

i=1

ξ̄ic
T
i x̄ − bT λ̄ <= 0. (3.19)

From (3.16),

x̄ >= 0, λ̄ ≥ 0. (3.20)

From (3.17) and (3.20),

λ̄T Ax̄−
p∑

i=1

ξ̄ic
T
i x̄ <= 0. (3.21)

From (3.19) and (3.21), λ̄T (Ax̄ − b) <= 0. Using (3.18) and (3.20), we obtain

λ̄T (Ax̄− b) >= 0. It implies that

λ̄T (Ax̄− b) = 0. (3.22)

From (3.19) and (3.22), we receive x̄T
[∑p

i=1 ξ̄ici−AT λ̄
]

<= 0. Using (3.21), we

obtain x̄T
[∑p

i=1 ξ̄ici − AT λ̄
]

= 0. Therefore (x̄, λ̄, ξ̄) is a feasible solution to

(LVD), with cT x̄ = cT x̄−λ̄T (Ax̄−b)e. Since (x̄, λ̄, ξ̄) is feasible for (LVD), by

weak duality, (cT
1 x, · · · , cT

p x) � (cT
1 x̄, · · · , cT

p x̄) and (cT
1 x̄, · · · , cT

p x̄)− λ̄T (Ax̄−

b)e � (cT
1 u, · · · , cT

p u)−λT (Au−b)e, for any feasible solution (u, λ, ξ) of (LVD).
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Therefore x̄ is an efficient solution of (LVP) and (x̄, λ̄, ξ̄) is an efficient solution

of (LVD). 2

Now we give an example verifying Theorems 3.4.3 and 3.4.4.

Example 3.4.1. Let c1 = 1, c2 = −1, A = [−1] and b = −1 for x ∈ R+.

Consider the following linear vector optimization problem:

(LVP) Minimize (cT
1 x, cT

2 x)

subject to Ax >= b,

x >= 0.

Then x̄ = 0 is an efficient solution of (LVP). Now we solve the Kuhn-Tucker

system with respect to x̄ = 0 as follows:





∑2
i=1 ξici −ATλ >= 0

λ(A · 0 − b) = 0, λ ≥ 0, (ξ1, ξ2) ∈
o

S 2

⇐⇒ λ = 0, ξ1 − ξ2 >= 0, (ξ1, ξ2) ∈
o

S 2

Therefore (x̄, λ̄, ξ̄) = (0, 0, 1
2
, 1

2
) is a feasible solution for (LVD):

(LVD) Maximize (x,−x)− λ(−x + 1)e

subject to ξ1 − ξ2 + λ >= 0,

x[ξ1 − ξ2 + λ] <= 0,

λ >= 0,

ξ = (ξ1, ξ2) ∈
o

S 2.
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Consider the matrix game associated with the following skew symmetric ma-

trix Bi, i = 1, 2.

B1 =




0 −1 −1

1 0 −1

1 1 0


 , B2 =




0 −1 1

1 0 −1

−1 1 0


 .

We can easily check that x̄ = 0 is a feasible solution for (LVP) and

(0, 0, 1
2
, 1

2
) is feasible for (LVD) and λ̄T (Ax̄ − b) = 0. Let z∗ = 1. Then

x∗ = 0, λ∗ = 0. By Theorem 3.4.3, (0, 0, 1) is a vector solution of vector

matrix game (B1, B2).

We know that (0, 0, 1) solves the vector matrix game (B1, B2). Let x̄ =

x∗

z∗ = 0, λ̄ = λ∗

z∗ = 0. By Theorem 3.4.4, there exists ξ̄ ∈
o

S 2 such that (x̄, λ̄, ξ̄)

is a feasible solution for (LVD). Since the weak duality holds between (LVP)

and (LVD), by Theorem 3.4.4, x̄ = 0 is an efficient solution for (LVP) and

(0, 0, 1
2
, 1

2
) is an efficient solution for (LVD). 2
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Chapter 4

Vector Matrix Game for

Vector Symmetric Dual Problem

4.1. Introduction

A nonlinear programming problem and its dual are said to be symmetric

if the dual of the dual is the original problem. Symmetric duality in non-

linear programming in which the dual of the dual is the primal was first

introduced by Dorn [22]. Dantzig et al. [19] formulated a pair of symmet-

ric dual nonlinear programs and established duality results for convex and

concave functions with non-negative orthant as the cone. Mond and Weir

[47] presented two pair of symmetric dual multiobjective programming prob-

lems for efficient solutions and obtained symmetric duality results concerning

pseudoconvex and pseudoconcave functions. Chandra et al. [16] formulated

a pair of symmetric dual fractional programming problems under suitable

convexity hypothesis. Recently, Kim and Noh [38] established equivalent re-

lations between certain matrix game and symmetric dual problems. In this

section, we formulate vector symmetric dual problems and consider vector

matrix game corresponding to the problems.

4.2. Equivalent Relations

Now we consider the nonlinear vector symmetric programming problem

(VSP) together with its dual (VSD) as follows:
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(VSP) Minimize
(
f1(x, y)− yT∇y(λ

Tf)(x, y), · · · , fp(x, y)− yT∇y(λ
T f)(x, y)

)

subject to −∇y(λ
T f)(x, y) >= 0,

x >= 0, λ > 0,

(VSD) Maximize
(
f1(u, v)− uT∇u(λ

T f)(u, v), · · · , fp(u, v)− uT∇u(λ
T f)(u, v)

)

subject to −∇u(λ
Tf)(u, v) <= 0,

v >= 0, λ > 0,

where f := (f1, · · · , fp) : Rn × Rm → Rp, λ ∈ Rp.

The following Theorems 4.2.1 and 4.2.2 are well known, but for the com-

pleteness, we give proofs for the theorems.

Theorem 4.2.1 (Weak Duality) [47]. Let (x, y, λ) be feasible for (VSP)

and (u, v, λ) be feasible for (VSD). If fi(·, y) (1 ≤ i ≤ p) are convex for fixed

y and fi(x, ·) (1 ≤ i ≤ p) are concave for fixed x, then the following cannot

hold:(
f1(x, y)− yT∇y(λ

T f)(x, y), · · · , fp(x, y)− yT∇y(λ
T f)(x, y)

)

≤
(
f1(u, v)− uT∇u(λ

T f)(u, v), · · · , fp(u, v)− uT∇u(λ
T f)(u, v)

)
. (4.1)

Proof. Suppose contrary to the result that (4.1) holds,

(
f1(x, y)− yT∇y(λ

T f)(x, y), · · · , fp(x, y)− yT∇y(λ
T f)(x, y)

)

≤
(
f1(u, v)− uT∇u(λ

T f)(u, v), · · · , fp(u, v)− uT∇u(λ
T f)(u, v)

)
.
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Then since λ > 0, we have

p∑

i=1

λifi(x, y)− yT∇y(λ
T f)(x, y) <

p∑

i=1

λifi(u, v)− uT∇u(λ
T f)(u, v). (4.2)

By the convexity of fi(·, v) (1 ≤ i ≤ p), we have

fi(x, v)− fi(u, v) >= (x− u)T∇xfi(u, v).

It follows from λ > 0 that

p∑

i=1

λifi(x, v)−
p∑

i=1

λifi(u, v) >= (x − u)T∇x(λ
T f)(u, v). (4.3)

By the concavity of fi(x, ·) (1 ≤ i ≤ p), we have

fi(x, y)− fi(x, v) >= (y − v)T∇yfi(x, y).

It follows from λ > 0 that

p∑

i=1

λifi(x, y) −
p∑

i=1

λifi(x, v) >= (y − v)T∇y(λ
T f)(x, y). (4.4)

From (4.3) and (4.4), we have

[ p∑

i=1

λifi(x, y)− yT∇y(λ
T f)(x, y)

]
−
[ p∑

i=1

λifi(u, v)− uT∇x(λ
T f)(u, v)

]

>= xT∇x(λ
T f)(u, v)− vT∇y(λ

T f)(x, y)

>= 0,
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which contradicts (4.2). 2

Theorem 4.2.2 (Strong Duality) [47]. Let (x̄, ȳ, λ̄) be an efficient solution

of (VSP). Suppose that ∇yy(λ̄
T f)(x̄, ȳ) is positive definite and ∇yf1(x̄, ȳ), · · · ,

∇yfp(x̄, ȳ) are linearly independent, then (x̄, ȳ, λ̄) is an efficient solution of

(VSD).

Proof. Since (x̄, ȳ, λ̄) is an efficient solution of (VSP), by the Fritz John

optimality condition in [45], there exist α ∈ Rp, β ∈ Rm, γ ∈ Rn and ω ∈ Rp

such that

αT∇xf(x̄, ȳ) + (β − (αT e)ȳ)T∇yx(λ̄
T f)(x̄, ȳ) − γ = 0, (4.5)

(α − (αT e)λ̄)T∇yf(x̄, ȳ) + (β − (αT e)ȳ)T∇yy(λ̄
T f)(x̄, ȳ) = 0, (4.6)

(β − (αT e)ȳ)T∇yf(x̄, ȳ) − ωT = 0, (4.7)

βT∇y(λ̄
T f)(x̄, ȳ) = 0, (4.8)

γT x̄ = 0, (4.9)

ωT λ̄ = 0, (4.10)

(α, β, γ, ω) >= 0, (4.11)

(α, β, γ, ω) 6= 0. (4.12)

Multiplying (4.6) by (β − (αT e)ȳ),

(α−(αT e)λ̄)T∇yf(x̄, ȳ)(β−(αTe)ȳ)+(β−(αTe)ȳ)T∇yy(λ̄
T f)(x̄, ȳ)(β−(αTe)ȳ) = 0.
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By (4.7) and (4.10),

αTω + (β − (αT e)ȳ)T∇yy(λ̄
T f)(x̄, ȳ)(β − (αTe)ȳ) = 0.

Since α ≥ 0, ω ≥ 0 and hence

(β − (αT e)ȳ)T∇yy(λ̄
T f)(x̄, ȳ)(β − (αT e)ȳ) <= 0.

Since ∇yy(λ̄
T f)(x̄, ȳ) is positive definite, then

β = (αT e)ȳ. (4.13)

By (4.7), ω = 0. From (4.6), (α − (αT e)λ̄)T∇yf(x̄, ȳ) = 0. Since

{∇yf1(x̄, ȳ), · · · ,∇yfp(x̄, ȳ)} is linearly independent,

α = (αT e)λ̄. (4.14)

If α = 0, then (4.13) implies β = 0 and by (4.5) γ = 0, ω = 0, which

contradicts (4.12). Hence α 6= 0, since α > 0. From (4.5), (4.13) and (4.14),

(αT e)∇x(λ̄
T f)(x̄, ȳ) = γ >= 0. (4.15)

Since ∇x(λ̄
T f)(x̄, ȳ) >= 0, from (4.9) and (4.15), x̄∇x(λ̄

T f)(x̄, ȳ) = 0, and

from (4.8) and (4.13), ((αT e)ȳ)T∇y(λ̄
T f)(x̄, ȳ) = 0. Since α > 0, ȳT∇y(λ̄

T f)(x̄, ȳ) =

0. Thus (x̄, ȳ, λ̄) is feasible for (VSD). Clearly, (x̄, ȳ, λ̄) is efficient for (VSD),

otherwise there exists (ū, v̄, λ̄) which is feasible for (VSD) such that

f(ū, v̄) − ūT∇x(λ̄
T f)(ū, v̄)e ≥ f(x̄, ȳ) − x̄T∇x(λ̄

T f)(x̄, ȳ)e.
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Since x̄T∇x(λ̄
T f)(x̄, ȳ) = ȳT∇y(λ̄

T f)(x̄, ȳ) = 0, it follows that

f(ū, v̄) − ūT∇x(λ̄
T f)(ū, v̄)e ≥ f(x̄, ȳ) − ȳT∇y(λ̄

T f)(x̄, ȳ)e,

which also contradicts weak duality. 2

Lemma 4.2.1. Let (x̄, ȳ, λ̄) be feasible for (VSP) and (VSD), and assume

that ȳT∇y(λ̄
T f)(x̄, ȳ) = x̄∇x(λ̄

T f)(x̄, ȳ) = 0. If there is weak duality be-

tween (VSP) and (VSD), then (x̄, ȳ, λ̄) is an efficient solution of (VSP) and

(VSD).

Proof. By weak duality, f(x̄, ȳ)−ȳT∇y(λ̄
T f)(x̄, ȳ)e � f(u, v)−uT∇u(λ̄

T f)(u, v)e

for any feasible (u, v, λ̄) of (VSD). Since f(x̄, ȳ)−ȳT∇y(λ̄
T f)(x̄, ȳ)e = f(x̄, ȳ)−

x̄T∇x(λ̄
T f)(x̄, ȳ)e, f(x̄, ȳ)− x̄T∇x(λ̄

T f)(x̄, ȳ)e � f(u, v)−uT∇u(λ̄
T f)(u, v)e

for any feasible (u, v, λ̄) of (VSD). Therefore, (x̄, ȳ, λ̄) is an efficient solution

of (VSD).

By weak duality, f(x, y)−yT∇y(λ̄
T f)(x, y)e � f(x̄, ȳ)−x̄T∇x(λ̄

T f)(x̄, ȳ)e

for any feasible (x, y, λ̄) of (VSP). Since f(x̄, ȳ)−x̄T∇x(λ̄
T f)(x̄, ȳ)e = f(x̄, ȳ)−

ȳT∇y(λ̄
T f)(x̄, ȳ)e, f(x, y)− yT∇y(λ̄

T f)(x, y)e � f(x̄, ȳ)− ȳT∇y(λ̄
T f)(x̄, ȳ)e

for any feasible (x, y, λ̄) of (VSP). Therefore, (x̄, ȳ, λ̄) is an efficient solution

of (VSP). 2

Consider the vector matrix game defined by the following (n + m + 1) ×

(n + m + 1) skew symmetric matrix Bi(x, y), i = 1, · · · , p related to (VSP)

and (VSD):
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Bi(x, y) =




0 −x∇yfi(x, y)T −∇xfi(x, y)

∇yfi(x, y)xT 0 ∇yfi(x, y)

∇xfi(x, y)T −∇yfi(x, y)T 0


 .

Now we give equivalent relations between vector symmetric dual problem

and vector matrix game (B1(x̄, ȳ), · · · , Bp(x̄, ȳ)).

Theorem 4.2.3. Let (x̄, ȳ, ξ̄) be feasible for (VSP) and (VSD), with

ȳT∇y(ξ̄
T f)(x̄, ȳ) = x̄T∇x(ξ̄

T f)(x̄, ȳ) = 0. Let z∗ = 1/(1+
∑

i x̄i+
∑

j ȳj), x
∗ =

z∗x̄ and y∗ = z∗ȳ. Then (x∗, y∗, z∗) is a vector solution of vector matrix game

(B1(x̄, ȳ), · · · , Bp(x̄, ȳ)).

Proof. Let (x̄, ȳ, ξ̄) be feasible for (VSP) and (VSD). Then the following

holds:

−∇y(ξ̄
T f)(x̄, ȳ) >= 0, (4.16)

−∇x(ξ̄
T f)(x̄, ȳ) <= 0, (4.17)

ȳT∇y(ξ̄
T f)(x̄, ȳ) = x̄T∇x(ξ̄

T f)(x̄, ȳ) = 0, (4.18)

x̄ >= 0, ȳ >= 0, ξ̄ ∈
o

S p. (4.19)

Multiplying (4.18) by x̄ >= 0 gives −x̄∇y(ξ̄
T f)(x̄, ȳ)T ȳ = 0 and from (4.17),

−x̄∇y(ξ̄
T f)(x̄, ȳ)T ȳ −∇x(ξ̄

T f)(x̄, ȳ) <= 0. (4.20)
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Multiplying (4.16) by x̄T x̄ >= 0, ∇y(ξ̄
T f)(x̄, ȳ)x̄T x̄ <= 0. It implies that since

∇y(ξ̄
T f)(x̄, ȳ) <= 0,

∇y(ξ̄
T f)(x̄, ȳ)x̄T x̄ + ∇y(ξ̄

T f)(x̄, ȳ) <= 0. (4.21)

From (4.18) we have

∇x(ξ̄
T f)(x̄, ȳ)T x̄ −∇y(ξ̄

T f)(x̄, ȳ)T ȳ = 0. (4.22)

But z∗ > 0 by (4.19), from (4.20), (4.21) and (4.22), we get:

− x̄∇y(ξ̄
T f)(x̄, ȳ)T y∗ −∇x(ξ̄

T f)(x̄, ȳ)z∗ <= 0, (4.23)

∇y(ξ̄
T f)(x̄, ȳ)x̄Tx∗ + ∇y(ξ̄

T f)(x̄, ȳ)z∗ <= 0, (4.24)

∇x(ξ̄
T f)(x̄, ȳ)Tx∗ −∇y(ξ̄

T f)(x̄, ȳ)T y∗ = 0, (4.25)

x∗ >= 0, y∗ >= 0, z∗ > 0. (4.26)

From (4.23), (4.24) and (4.25) we have the following inequality

( p∑

i=1

ξ̄iBi(x̄, ȳ)
)



x∗

y∗

z∗


 <= 0.

By Lemma 3.2.1, (x∗, y∗, z∗) is a vector solution of the vector matrix game

(B1(x̄, ȳ), · · · , Bp(x̄, ȳ)). 2

Theorem 4.2.4. Let (x∗, y∗, z∗) with z∗ > 0 be a vector solution of vector

matrix game (B1(x̄, ȳ), · · · , Bp(x̄, ȳ)), where x̄ = x∗/z∗ and ȳ = y∗/z∗. Then
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there exists ξ̄ ∈
o

S p such that (x̄, ȳ, ξ̄) is feasible for (VSP) and (VSD), and

ȳT∇y(ξ̄
T f)(x̄, ȳ) = x̄T∇x(ξ̄

T f)(x̄, ȳ) = 0.

Proof. Let (x∗, y∗, z∗) with z∗ > 0 be a vector solution of vector matrix

game (B1(x̄, ȳ), · · · , Bp(x̄, ȳ)). Then by Lemma 3.2.1, there exists ξ̄ ∈
o

S p

such that

( p∑

i=1

ξ̄iBi(x̄, ȳ)
)



x∗

y∗

z∗


 <= 0.

Thus we get:

− x̄∇y(ξ̄
T f)(x̄, ȳ)T y∗ −∇x(ξ̄

T f)(x̄, ȳ)z∗ <= 0, (4.27)

∇y(ξ̄
T f)(x̄, ȳ)x̄Tx∗ + ∇y(ξ̄

T f)(x̄, ȳ)z∗ <= 0, (4.28)

∇x(ξ̄
T f)(x̄, ȳ)Tx∗ −∇y(ξ̄

T f)(x̄, ȳ)T y∗ <= 0, (4.29)

x∗ >= 0, y∗ >= 0, z∗ > 0. (4.30)

Dividing (4.27), (4.28) and (4.29) by z∗ > 0, we have

− x̄∇y(ξ̄
T f)(x̄, ȳ)T ȳ −∇x(ξ̄

T f)(x̄, ȳ) <= 0, (4.31)

∇y(ξ̄
T f)(x̄, ȳ)x̄T x̄ + ∇y(ξ̄

T f)(x̄, ȳ) <= 0, (4.32)

∇x(ξ̄
T f)(x̄, ȳ)T x̄ −∇y(ξ̄

T f)(x̄, ȳ)T ȳ <= 0. (4.33)

From (4.30),

x̄ >= 0, ȳ >= 0. (4.34)
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By (4.32), ∇y(ξ̄
T f)(x̄, ȳ)(x̄T x̄ + 1) <= 0. It implies that since x̄T x̄ + 1 > 0,

−∇y(ξ̄
T f)(x̄, ȳ) >= 0. (4.35)

From (4.31), −x̄∇y(ξ̄
T f)(x̄, ȳ)T ȳ <= ∇x(ξ̄

T f)(x̄, ȳ). Using (4.34) and (4.35),

we obtain 0 <= −x̄∇y(ξ̄
T f)(x̄, ȳ)T ȳ <= ∇x(ξ̄

T f)(x̄, ȳ). It implies that

−∇x(ξ̄
T f)(x̄, ȳ) <= 0. From (4.33), x̄T∇x(ξ̄

T f)(x̄, ȳ) <= ȳT∇y(ξ̄
T f)(x̄, ȳ). But

since x̄ >= 0 and ∇x(ξ̄
T f)(x̄, ȳ) >= 0, x̄T∇x(ξ̄

T f)(x̄, ȳ) >= 0 and since ȳ >= 0

and ∇y(ξ̄
T f)(x̄, ȳ) <= 0, ȳT∇y(ξ̄

T f)(x̄, ȳ) <= 0. Then we have

0 <= x̄T∇x(ξ̄
T f)(x̄, ȳ) <= ȳT∇y(ξ̄

T f)(x̄, ȳ) <= 0.

Hence x̄T∇x(ξ̄
T f)(x̄, ȳ) = ȳT∇y(ξ̄

T f)(x̄, ȳ). Thus (x̄, ȳ, ξ̄) is feasible for

(VSP) and (VSD) with fi(x̄, ȳ)−ȳT∇y(ξ̄
T f)(x̄, ȳ) = fi(x̄, ȳ)−x̄T∇x(ξ̄

T f)(x̄, ȳ), i =

1, · · · , p. Since (x̄, ȳ, ξ̄) is feasible for (VSD), by weak duality,

(
f1(x, y)− yT∇y(ξ

T f)(x, y), · · · , fp(x, y)− yT∇y(ξ
T f)(x, y)

)

6≤
(
f1(x̄, ȳ) − ȳT∇y(ξ̄

T f)(x̄, ȳ), · · · , fp(x̄, ȳ) − ȳT∇y(ξ̄
T f)(x̄, ȳ)

)

and

(
f1(x̄, ȳ) − x̄T∇x(ξ̄

T f)(x̄, ȳ), · · · , fp(x̄, ȳ) − x̄T∇x(ξ̄
T f)(x̄, ȳ)

)

6≤
(
f1(u, v)− uT∇u(ξ

T f)(u, v), · · · , fp(u, v)− uT∇u(ξ
T f)(u, v)

)

for any feasible (u, v, ξ) of (VSP) and (VSD). Therefore (x̄, ȳ, ξ̄) is an efficient

solution of (VSP) and (x̄, λ̄, ξ̄) is an efficient solution of (VSD). 2

By Theorem 4.2.4 and Lemma 4.2.1, we give the following corollary.
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Corollary 4.2.1. Let (x∗, y∗, z∗) with z∗ > 0 be a vector solution of vector

matrix game (B1(x̄, ȳ), · · · , Bp(x̄, ȳ)), where x̄ = x∗/z∗. Let ȳ = y∗/z∗. If

weak duality holds, there exists ξ̄ ∈
o

S p so that (x̄, ȳ, ξ̄) is an efficient solution

of (VSP) and (VSD).

Now we give an example illustrating Theorems 4.2.3 and 4.2.4. But the

following example does not satisfy the assumption of strong duality the fact

that ∇yf1(x̄, ȳ), · · · ,∇yfp(x̄, ȳ) are linearly independent.

Example 4.2.1. Let f1(x, y) = x2 − y2 and f2(x, y) = y − x. Consider the

following vector optimization problem (VSP) together with its dual (VSD)

as follows:

(VSP) Minimize (x2 − y2 + 2λ1y
2 − λ2y, y − x + 2λ1y

2 − λ2y)

subject to 2λ1y − λ2 >= 0,

x >= 0, λ = (λ1, λ2) ∈
o

S 2

(VSD) Maximize (u2 − v2 − 2λ1u
2 + λ2u, v − u − 2λ1u

2 + λ2u)

subject to 2λ1u − λ2 >= 0,

v >= 0, λ = (λ1, λ2) ∈
o

S 2.

Now we determine the set of all vector solutions of vector matrix game

(B1(x̄, ȳ), · · · , Bp(x̄, ȳ)). Let

Bi(x, y) =




0 −x∇yfi(x, y)T −∇xfi(x, y)

∇yfi(x, y)xT 0 ∇yfi(x, y)

∇xfi(x, y)T −∇yfi(x, y)T 0


 .
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Then

B1(x, y) =




0 2xy −2x

−2xy 0 −2y

2x 2y 0


 and B2(x, y) =




0 −x 1

x 0 1

−1 −1 0


 .

Let (x, y) ∈ R2 and (x∗, y∗, z∗) ∈ S3 be a vector solution of vector matrix

game (B1(x̄, ȳ), B2(x̄, ȳ))2, if and only if there exist ξ1 > 0, ξ2 > 0, ξ1+ξ2 = 1

and (x, y) ∈ R2 such that


ξ1




0 2xy −2x

−2xy 0 −2y

2x 2y 0


+ ξ2




0 −x 1

x 0 1

−1 −1 0










x∗

y∗

z∗


 <=




0

0

0


 .

⇐⇒ there exist ξ1 > 0, ξ2 > 0, ξ1 + ξ2 = 1 such that




x(2yξ1 − ξ2)y
∗ − (2xξ1 − ξ2)z

∗

−x(2yξ1 − ξ2)x
∗ − (2yξ1 − ξ2)z

∗

(2xξ1 − ξ2)x
∗ + (2yξ1 − ξ2)y

∗


 <=




0

0

0


 .

Thus we determine the set of all the vector solutions of the vector matrix

game (B1(x̄, ȳ), B2(x̄, ȳ)).

(I) the cast that x > 0:

(a) 2xξ1 − ξ2 > 0, 2yξ1 − ξ2 > 0: (x∗, y∗, z∗) = (0, 0, 1).

(b) 2xξ1− ξ2 > 0, 2yξ1− ξ2 = 0: (x∗, y∗, z∗) = {(0, α, 1−α) | 0 <= α <= 1}.

(c) 2xξ1 − ξ2 > 0, 2yξ1 − ξ2 < 0: (x∗, y∗, z∗) = (0, 1, 0).

55



(d) 2xξ1− ξ2 = 0, 2yξ1− ξ2 > 0: (x∗, y∗, z∗) = {(α, 0, 1−α) | 0 <= α <= 1}.

(e) 2xξ1 − ξ2 = 0, 2yξ1 − ξ2 = 0: (x∗, y∗, z∗) = {(x1, x2, x3) | x1 >= 0, x2 >=

0, x3 >= 0, x1 + x2 + x3 = 1}.

(f) 2xξ1 − ξ2 = 0, 2yξ1 − ξ2 < 0: (x∗, y∗, z∗) = (0, 1, 0).

(g) 2xξ1 − ξ2 < 0, 2yξ1 − ξ2 > 0: (x∗, y∗, z∗) = (1, 0, 0).

(h) 2xξ1− ξ2 < 0, 2yξ1− ξ2 = 0: (x∗, y∗, z∗) = {(α, 1−α, 0) | 0 <= α <= 1}.

(i) 2xξ1 − ξ2 < 0, 2yξ1 − ξ2 < 0: (x∗, y∗, z∗) = (0, 1, 0).

(II) the cast that x = 0:

(a) 2yξ1 − ξ2 > 0: (x∗, y∗, z∗) = {(1 − α,α, 0) | 0 <= α <=
ξ2

2yξ1
, y > 0, ξ1 >

0, ξ2 > 0, ξ1 + ξ2 = 1}.

(b) 2yξ1 − ξ2 = 0: (x∗, y∗, z∗) = {(α, 1 − α, 0) | 0 <= α <= 1}.

(c) 2yξ1 − ξ2 < 0: (x∗, y∗, z∗) = {(α, 1 − α, 0) | 0 <= α <= 1}.

(III) the cast that x < 0:

(a) 2yξ1 − ξ2 > 0: (x∗, y∗, z∗) = {( 2yξ1−ξ2

2yξ1−2xξ1−2xyξ1+xξ2
,− 2xξ1−ξ2

2yξ1−2xξ1−2xyξ1+xξ2
,

− 2xyξ1−xξ2

2yξ1−2xξ1−2xyξ1+xξ2
) : 2yξ1 − 2xξ1 − 2xyξ1 + xξ2 > 0, 2xξ1 − ξ2 < 0}

(b) 2yξ1 − ξ2 = 0: (x∗, y∗, z∗) = {(α, 1 − α, 0) | 0 <= α <= 1}.

(c) 2yξ1 − ξ2 < 0: (x∗, y∗, z∗) = (1, 0, 0).

Let (x, y) ∈ R2 and S(x,y) the set of vector solutions of vector matrix game
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(B1(x̄, ȳ), B2(x̄, ȳ)). From (I), (II) and (III),

S(x,y) = {(α, 1 − α, 0) | 0 <= α <= 1} ∪ {(0, α, 1 − α) | 0 <= α <= 1}

∪ {(α, 0, 1 − α) | 0 <= α <= 1} ∪ {(α, β, γ) | α >= 0, β >= 0, γ >= 0, α + β + γ = 1}

∪
{(

2yξ1 − ξ2

2yξ1 − 2xξ1 − 2xyξ1 + xξ2
,− 2xξ1 − ξ2

2yξ1 − 2xξ1 − 2xyξ1 + xξ2
,

− 2xyξ1 − xξ2

2yξ1 − 2xξ1 − 2xyξ1 + xξ2

)
| x < 0, 2yξ1 − 2xξ1 − 2xyξ1 + xξ2 > 0,

2yξ1 − ξ2 > 0, 2xξ1 − ξ2 < 0} .

Let (x̄, ȳ, ξ̄) be feasible for (VSP) and (VSD) with ȳT∇y(ξ̄
T f)(x̄, ȳ) = x̄T∇x(ξ̄

T f)(x̄, ȳ) =

0. We can easily check that

{(x̄, ȳ, ξ̄) | (x̄, ȳ, ξ̄) : an efficient solution of (VSP) and (VSD),

ȳT∇y(ξ̄
T f)(x̄, ȳ) = x̄T∇x(ξ̄

T f)(x̄, ȳ) = 0}

=

{(
ξ2

2ξ1
,

ξ2

2ξ1
, ξ1, ξ2

)
| ξ1 > 0, ξ2 > 0, ξ1 + ξ2 = 1

}
.

Thus,

{(
x̄

1 + x̄ + ȳ
,

ȳ

1 + x̄ + ȳ
,

1

1 + x̄ + ȳ

)
| x̄ =

ξ2

2ξ1
, ȳ =

ξ2

2ξ1
, ξ1 > 0, ξ2 > 0, ξ1 + ξ2 = 0

}

=

{(
ξ2

2
,
ξ2

2
, ξ1

)
| ξ1 > 0, ξ2 > 0, ξ1 + ξ2 = 1

}

⊂ S(x̄,ȳ).

Therefore, Theorem 4.2.3 holds.
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Let (x, y) ∈ R2 and S(x,y) be the set of vector solutions of vector matrix

game (B1(x, y), B2(x, y)). Then

⋃

(x,y)∈R2

S(x,y) = {(α, 1 − α, 0) | 0 <= α <= 1} ∪ {(0, α, 1 − α) | 0 <= α <= 1}

∪{(α, 0, 1 − α) | 0 <= α <= 1} ∪ {(α, β, γ) | α >= 0, β >= 0, γ >= 0, α + β + γ = 1}

∪
{(

2yξ1 − ξ2

2yξ1 − 2xξ1 − 2xyξ1 + xξ2
,− 2xξ1 − ξ2

2yξ1 − 2xξ1 − 2xyξ1 + xξ2
,

− 2xyξ1 − xξ2

2yξ1 − 2xξ1 − 2xyξ1 + xξ2

)
| x < 0, 2yξ1 − 2xξ1 − 2xyξ1 + xξ2 > 0,

2yξ1 − ξ2 > 0, 2xξ1 − ξ2 < 0} .

So,

{(
x∗

z∗ ,
y∗

z∗

)
| z∗ > 0 and (x∗, y∗, z∗) ∈ S

(x∗
z∗ , y∗

z∗ )

}

=

{(
ξ2

2ξ1
,

ξ2

2ξ1

)
| ξ1 > 0, ξ2 > 0, ξ1 + ξ2 = 1

}
.

Let F be the set of all feasible solutions of (VSD). Then we can check that
{(

ξ2

2ξ1
, ξ2

2ξ1
, ξ1, ξ2

)
| ξ1 > 0, ξ2 > 0, ξ1 + ξ2 = 1

}
= F and ( ξ2

2ξ1
)∇y(ξ̄

T f)( ξ2

2ξ1
, ξ2

2ξ1
) =

( ξ2

2ξ1
)∇x(ξ̄

T f)( ξ2

2ξ1
, ξ2

2ξ1
) = 0. Therefore, Theorem 4.2.4 holds. 2
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Chapter 5

Examples for Vector Matrix Game

We recall six kinds of solutions for vector matrix game which were de-

fined in Definition 2.1.3 in Chapter 2. In this section, we intoduce examples

showing that such six kinds of solutions may be different.

Example 5.1. Let

B1 =




0 1 −1

−1 0 0

1 0 0


 and B2 =




0 1 1

−1 0 0

−1 0 0


 .

Let S3 = {(x1, x2, x3) | x1 >= 0, x2 >= 0, x3 >= 0, x1 + x2 + x3 = 1}. Then

we calculate the set of all the vector solution of vector matrix game (B1, B2).

By Lemma 3.2.1, ȳ ∈ S3 is a vector solution of vector matrix game (B1, B2)

if and only if there exist λ1 > 0, λ2 > 0, λ1 + λ2 = 1 such that


λ1




0 1 −1

−1 0 0

1 0 0


+ λ2




0 1 1

−1 0 0

−1 0 0










ȳ1

ȳ2

ȳ3


 <=




0

0

0




⇐⇒ there exist λ1 > 0, λ2 > 0, λ1 + λ2 = 1 such that




ȳ2 − (λ1 − λ2)ȳ3

−ȳ1

(λ1 − λ2)ȳ1


 <=




0

0

0




Thus
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(i) if λ1 = λ2; (ȳ1, ȳ2, ȳ3) ∈ {(y1, 0, y3) : y1 >= 0, y3 >= 0, y1 + y3 = 1},

(ȳ1, ȳ2, ȳ3) is a vector solution of vector matrix game Bi, i = 1, 2.

(ii) if λ1 > λ2; (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 >= 0, y2 + y3 = 1},

(ȳ1, ȳ2, ȳ3) is a vector solution of vector matrix game Bi, i = 1, 2.

(iii) if λ1 < λ2; (1, 0, 0) is a vector solution of vector matrix game Bi, i =

1, 2.

Therefore, the set of all the vector solution of vector matrix game (B1, B2)

is sol(VMG) = {(ȳ1, 0, ȳ3) : ȳ1 >= 0, ȳ3 >= 0, ȳ1 + ȳ3 = 1} ∪ {(0, ȳ2, ȳ3) : ȳ3 >

ȳ2 >= 0, ȳ2 + ȳ3 = 1}. 2

Example 5.2. Consider the B1, B2 and S3 described in Example 5.1. Then

we calculate the set of all the weakly vector solution of vector matrix game

(B1, B2). By Lemma 3.2.2, ȳ ∈ S3 is a weakly vector solution of vector matrix

game (B1, B2) if and only if there exist λ1 >= 0, λ2 >= 0, λ1 +λ2 = 1 such that


λ1




0 1 −1

−1 0 0

1 0 0


+ λ2




0 1 1

−1 0 0

−1 0 0










ȳ1

ȳ2

ȳ3


 <=




0

0

0




⇐⇒ there exist λ1 >= 0, λ2 >= 0, λ1 + λ2 = 1 such that




ȳ2 − (λ1 − λ2)ȳ3

−ȳ1

(λ1 − λ2)ȳ1


 <=




0

0

0




Thus
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(i) if λ1 = 0, λ2 = 1; (1, 0, 0) is a weakly vector solution of vector matrix

game (B1, B2).

(ii) if λ1 = 1, λ2 = 0; (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 >= y2 >= 0, y2 + y3 = 1},

(ȳ1, ȳ2, ȳ3) is a weakly vector solution of vector matrix game (B1, B2).

(iii) if λ1 = λ2; (ȳ1, ȳ2, ȳ3) ∈ {(y1, 0, y3) : y1 >= 0, y3 >= 0, y1 + y3 = 1},

(ȳ1, ȳ2, ȳ3) is a weakly vector solution of vector matrix game (B1, B2).

(iv) if λ1 > λ2; (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 >= 0, y2 + y3 = 1},

(ȳ1, ȳ2, ȳ3) is a weakly vector solution of vector matrix game (B1, B2).

(v) if λ1 < λ2; (1, 0, 0) is a weakly vector solution of vector matrix game

(B1, B2).

Therefore, the set of all the weakly vector solution of vector matrix game

(B1, B2) is sol(WVMG) = {(ȳ1, 0, ȳ3) : ȳ1 >= 0, ȳ3 >= 0, ȳ1 + ȳ3 = 1} ∪

{(0, ȳ2, ȳ3) : ȳ3 >= ȳ2 >= 0, ȳ2 + ȳ3 = 1}. 2

Example 5.3. Consider the B1, B2 and S3 described in Example 5.1. Then

we calculate the set of all the scalarizing solution of vector matrix game

(B1, B2). By Lemma 3.2.3, (x̄, ȳ) ∈ S3×S3 is a scalarizing solution of vector

matrix game (B1, B2) if and only if there exist λ1 > 0, λ2 > 0, λ1 + λ2 =

1 such that


λ1




0 1 −1

−1 0 0

1 0 0


+ λ2




0 1 1

−1 0 0

−1 0 0










ȳ1

ȳ2

ȳ3


 <=




0

0

0


 ,
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and


λ1




0 1 −1

−1 0 0

1 0 0


+ λ2




0 1 1

−1 0 0

−1 0 0










x̄1

x̄2

x̄3


 <=




0

0

0


 .

⇐⇒ there exist λ1 > 0, λ2 > 0, λ1 + λ2 = 1 such that




ȳ2 − (λ1 − λ2)ȳ3

−ȳ1

(λ1 − λ2)ȳ1


 <=




0

0

0


 ,

and



x̄2 − (λ1 − λ2)x̄3

−x̄1

(λ1 − λ2)x̄1


 <=




0

0

0


 .

Therefore, the set of all the scalarizing solution of vector matrix game (B1, B2)

is sol(SVMG) = {(x̄1, 0, x̄3, ȳ1, 0, ȳ3) : x̄1 >= 0, x̄3 >= 0, x̄1 + x̄3 = 1, ȳ1 >=

0, ȳ3 >= 0, ȳ1 + ȳ3 = 1}∪{(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 > x̄2 >= 0, x̄2 + x̄3 = 1, ȳ3 >

ȳ2 >= 0, ȳ2 + ȳ3 = 1}. 2

Example 5.4. Consider the B1, B2 and S3 described in Example 5.1. Then

we calculate the set of all the weakly scalarizing solution of vector matrix

game (B1, B2). By Lemma 3.2.4, (x̄, ȳ) ∈ S3 × S3 is a weakly scalarizing

solution of vector matrix game (B1, B2) f and only if there exist λ1 >= 0, λ2 >=
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0, λ1 + λ2 = 1 such that


λ1




0 1 −1

−1 0 0

1 0 0


+ λ2




0 1 1

−1 0 0

−1 0 0










ȳ1

ȳ2

ȳ3


 <=




0

0

0


 ,

and


λ1




0 1 −1

−1 0 0

1 0 0


+ λ2




0 1 1

−1 0 0

−1 0 0










x̄1

x̄2

x̄3


 <=




0

0

0


 ,

⇐⇒ there exist λ1 >= 0, λ2 >= 0, λ1 + λ2 = 1 such that




ȳ2 − (λ1 − λ2)ȳ3

−ȳ1

(λ1 − λ2)ȳ1


 <=




0

0

0


 ,

and



x̄2 − (λ1 − λ2)x̄3

−x̄1

(λ1 − λ2)x̄1


 <=




0

0

0


 .

Therefore, the set of all the weakly scalarizing solution of vector matrix game

(B1, B2) is sol(WSVMG) = {(x̄1, 0, x̄3, ȳ1, 0, ȳ3) : x̄1 >= 0, x̄3 >= 0, x̄1 + x̄3 =

1, ȳ1 >= 0, ȳ3 >= 0, ȳ1 + ȳ3 = 1}∪{(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 >= x̄2 >= 0, x̄2 + x̄3 =

1, ȳ3 >= ȳ2 >= 0, ȳ2 + ȳ3 = 1}. 2
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Example 5.5. Consider the B1, B2 and S3 described in Example 5.1. Then

we calculate the set of all the efficient solution of vector matrix game (B1, B2).

By Lemma 3.2.7, (x̄, ȳ) ∈ S3×S3 is an efficient solution of vector matrix game

(B1, B2) if and only if there exist λ1 > 0, λ2 > 0, λ1 + λ2 = 1, µ1 > 0, µ2 >

0, µ1 + µ2 = 1 such that

(∗)




ȳ2 − (λ1 − λ2)ȳ3

−ȳ1

(λ1 − λ2)ȳ1


 ∈ NS3




x̄1

x̄2

x̄3




and

(∗∗)




x̄2 − (µ1 − µ2)x̄3

−x̄1

(µ1 − µ2)x̄1


 ∈ NS3




ȳ1

ȳ2

ȳ3


 .

Now using the relations (∗) and (∗∗), we determine the set sol(EVMG) which

is the set of all efficient solutions of the matrix game (B1, B2).

(I) the case that (x̄1, x̄2, x̄3) ∈
o

S 3:

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 > 0, λ2 > 0, λ1+λ2 = 1, α ∈ R

such that




ȳ2 − (λ1 − λ2)ȳ3 = α

−ȳ1 = α

(λ1 − λ2)ȳ1 = α.
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⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y2 = 1
2
− λ2

2λ1
, y3 = 1

2
+ λ2

2λ1
, y2 + y3 =

1, λ1 > 0, λ2 > 0, λ1 + λ2 = 1}.

⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 >= 0, y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 > 0, µ2 > 0, µ1 + µ2 = 1,

α ∈ R and β >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α − β

−x̄1 = α

(µ1 − µ2)x̄1 = α.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 = 1
2
− µ2+β

2µ1
, x3 = 1

2
+ µ2+β

2µ1
, x2+x3 =

1, µ1 > 0, µ2 > 0, µ1 + µ2 = 1, β >= 0}.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈
o

S 3, so, in this case, there

is no efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 > 0, µ2 > 0, µ1 + µ2 = 1,

α ∈ R, β >= 0 and γ >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α − β

−x̄1 = α − γ

(µ1 − µ2)x̄1 = α.
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⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 = γ
2µ1

, x2 = 1
2
− µ2+β

2µ1
, x3 =

1
2

+ µ2+β−γ
2µ1

, x1 + x2 + x3 = 1, µ1 > 0, µ2 > 0, µ1 + µ2 = 1, β >= 0, γ >= 0}.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 < 1
2
, x3 >= 0, x1 +

x2 + x3 = 1}.

By the condition (x̄1, x̄2, x̄3) ∈
o

S 3, in this case, {(x̄1, x̄2, x̄3, 0, 0, 1) : x̄1 >

0, 0 < x̄2 < 1
2
, x̄3 > 0, x̄1 + x̄2 + x̄3 = 1} ⊂ sol(EVMG).

(II) the case that (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 > 0, x3 > 0, x2+x3 = 1}:

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 > 0, λ2 > 0, λ1 +λ2 = 1, α ∈ R

and β >= 0 such that





ȳ2 − (λ1 − λ2)ȳ3 = α − β

−ȳ1 = α

(λ1 − λ2)ȳ1 = α.

⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y2 = 1
2
− λ2+β

2λ1
, y3 = 1

2
+ λ2+β

2λ1
, y2 +y3 =

1, λ1 > 0, λ2 > 0, λ1 + λ2 = 1, β >= 0}.

⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) | y3 > y2 >= 0, y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exists µ1 > 0, µ2 > 0, µ1 + µ2 = 1,
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α ∈ R and β >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α − β

−x̄1 = α

(µ1 − µ2)x̄1 = α.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 > 0, x2 + x3 = 1}.

By the condition (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 > 0, x3 > 0, x2 + x3 = 1},

in this case, {(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 > x̄2 > 0, x̄2 + x̄3 = 1, ȳ3 > ȳ2 >

0, ȳ2 + ȳ3 = 1} ⊂ sol(EV MG).

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 > 0, x2 + x3 = 1}.

By the condition (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 > 0, x3 > 0, x2 + x3 = 1},

in this case, {(0, x̄2, x̄3, 0, 0, 1) : x̄3 > x̄2 > 0, x̄2 + x̄3 = 1} ⊂ sol(EVMG).

(III) the case that (x̄1, x̄2, x̄3) = (0, 0, 1):

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 > 0, λ2 > 0, λ1+λ2 = 1, α ∈ R,

β >= 0 and γ >= 0 such that





ȳ2 − (λ1 − λ2)ȳ3 = α − β

−ȳ1 = α − γ

(λ1 − λ2)ȳ1 = α.

⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 >= 0, 0 <= y2 < 1
2
, y3 >= 0, y1 + y2 +

y3 = 1}.
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• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 > 0, 0 < y2 < 1
2
, y3 >

0, y1 + y2 + y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and µ1 > 0, µ2 > 0, µ1 + µ2 = 1 and α ∈ R

such that




x̄2 − (µ1 − µ2)x̄3 = α

−x̄1 = α

(µ1 − µ2)x̄1 = α.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

By the condition (x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, ȳ1, ȳ2, ȳ3) :

ȳ1 > 0, 0 < ȳ2 < 1
2
, ȳ3 > 0, ȳ1 + ȳ2 + ȳ3 = 1} ⊂ sol(EVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

By the condition (x̄1, x̄2, x̄3) = {(0, 0, 1)}, in this case, {(0, 0, 1, 0, ȳ2, ȳ3) :

ȳ3 > ȳ2 > 0, ȳ2 + ȳ3 = 1} ⊂ sol(EVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = {(0, 0, 1)}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 < 1
2
, x3 >=

0, x1 + x2 + x3 = 1}.

By the condition, (x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, 0, 0, 1)} ⊂

sol(EVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, 0, y3) : y1 > 0, y3 > 0, y1 +y3 = 1}:
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(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exists µ1 > 0, µ2 > 0, µ1 + µ2 = 1,

α ∈ R and β >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α

−x̄1 = α − β

(µ1 − µ2)x̄1 = α.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 = β
2µ1

, x2 = 1
2
− µ2

2µ1
, x3 =

1
2

+ µ2−β
2µ1

, x1 + x2 + x3 = 1, µ1 > 0, µ2 > 0, µ1 + µ2 = 1, β >= 0}.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 < 1
2
, x3 >= 0, x1 +

x2 + x3 = 1}.

By the condition (x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, ȳ1, 0, ȳ3) : ȳ1 >

0, ȳ3 > 0, ȳ1 + ȳ3 = 1} ⊂ sol(EVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = (1, 0, 0):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈
o

S 3 and µ1 > 0, µ2 > 0, µ1 + µ2 = 1, α ∈ R, β >= 0

and γ >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α

−x̄1 = α − β

(µ1 − µ2)x̄1 = α − γ.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 = β−γ
2µ1

, x2 = 1
2
− µ2−γ

2µ1
, x3 =

1
2

+ µ2−β
2µ1

, x1 + x2 + x3 = 1, µ1 > 0, µ2 > 0, µ1 + µ2 = 1, β >= 0, γ >= 0}.
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⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >= 0, x3 >= 0, x1+x2+x3 =

1}.

By the condition (x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, 1, 0, 0)} ⊂

sol(EVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, 0) : y1 > y2 > 0, y1 + y2 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exists µ1 > 0, µ2 > 0, µ1 + µ2 = 1,

α ∈ R and β >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α

−x̄1 = α

(µ1 − µ2)x̄1 = α − β.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 = − β
2µ1

, x2 = 1
2
− µ2−β

2µ1
, x3 =

1
2
+ µ2

2µ1
, x1 >= 0, x2 >= 0, x3 >= 0, x1 +x2 +x3 = 1, µ1 > 0, µ2 > 0, µ1 +µ2 =

1, β >= 0}.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

By the condition (x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, ȳ1, ȳ2, 0) : ȳ1 >

ȳ2 > 0, ȳ1 + ȳ2 = 1} ⊂ sol(EVMG).

(IV) the case that (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 =

1}:

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 > 0, λ2 > 0, λ1 +λ2 = 1, α ∈ R

and β >= 0 such that
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ȳ2 − (λ1 − λ2)ȳ3 = α

−ȳ1 = α − β

(λ1 − λ2)ȳ1 = α.

⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 = β
2λ1

, y2 = 1
2
− λ2

2λ1
, y3 = 1

2
+

λ2−β
2λ1

, y1 + y2 + y3 = 1, λ1 > 0, λ2 > 0, β >= 0}.

⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 >= 0, 0 <= y2 < 1
2
, y3 >= 0, y1 + y2 +

y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 > 0, 0 < y2 < 1
2
, y3 >

0, y1 + y2 + y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 >

0, x1 + x3 = 1}, so, in this case, there is no efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 >

0, x1 + x3 = 1}, so, in this case, there is no efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 < 1
2
, x3 >=

0, x1 + x2 + x3 = 1}.
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By the condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 > 0, x1 +x3 = 1}, in

this case, {(x̄1, 0, x̄3, 0, 0, 1) : x̄1 > 0, x̄3 > 0, x̄1 + x̄3 = 1} ⊂ sol(EVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, 0, y3) : y1 > 0, y3 > 0, y1 +y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 < 1
2
, x3 >=

0, x1 + x2 + x3 = 1}.

By the condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1},

in this case, {(x̄1, 0, x̄3, ȳ1, 0, ȳ3) : x̄1 > 0, x̄3 > 0, x̄1 + x̄3 = 1, ȳ1 > 0, ȳ3 >

0, ȳ1 + ȳ3 = 1} ⊂ sol(EVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = (1, 0, 0):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >= 0, x3 >= 0, x1 +x2 +x3 =

1}.

By the condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 > 0, x1 +x3 = 1}, in

this case, {(x̄1, 0, x̄3, 1, 0, 0) : x̄1 > 0, x̄3 > 0, x̄1 + x̄3 = 1} ⊂ sol(EVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, 0) : y1 > y2 > 0, y1 + y2 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 >

0, x1 + x3 = 1}, so, in this case, there is no efficient solution.

(V) the case that (x̄1, x̄2, x̄3) = (1, 0, 0):

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 > 0, λ2 > 0, λ1+λ2 = 1, α ∈ R,
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β >= 0 and γ >= 0 such that





ȳ2 − (λ1 − λ2)ȳ3 = α

−ȳ1 = α − β

(λ1 − λ2)ȳ1 = α − γ.

⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 = β−γ
2λ1

, y2 = 1
2
− λ2−γ

2λ1
, y3 =

1
2
+ λ2−β

2λ1
, y1 >= 0, y2 >= 0, y3 >= 0, y1 +y2 +y3 = 1, λ1 > 0, λ2 > 0, λ1 +λ2 =

1, β >= 0, γ >= 0}.

⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 >= 0, y2 >= 0, y3 >= 0, y1+y2+y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ S3:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

But it does not satisfy the condition(x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case,

there is no efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y2 > 0, y3 > 0, y2 +y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 > 0, x2 + x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case,

there is no efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 < 1
2
, x3 >=

0, x1 + x2 + x3 = 1}.
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By the condition (x̄1, x̄2, x̄3) = (1, 0, 0), in this case, {(1, 0, 0, 0, 0, 1)} ⊂

sol(EVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, 0, y3) : y1 > 0, y3 > 0, y1 +y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 < 1
2
, x3 >=

0, x1 + x2 + x3 = 1}.

By the condition (x̄1, x̄2, x̄3) = (1, 0, 0), in this case, {(1, 0, 0, ȳ1, 0, ȳ3) : ȳ1 >

0, ȳ3 > 0, ȳ1 + ȳ3 = 1} ⊂ sol(EVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = (1, 0, 0):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >= 0, x3 >= 0, x1+x2+x3 =

1}.

By the condition (x̄1, x̄2, x̄3) = (1, 0, 0), in this case, {(1, 0, 0, 1, 0, 0)} ⊂

sol(EVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, 0) : y1 > 0, y2 > 0, y1 +y2 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case,

there is no efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 1, 0):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 > 0, µ2 > 0, µ1 +µ2 = 1, α ∈
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R, β >= 0 and γ >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α − β

−x̄1 = α

(µ1 − µ2)x̄1 = α − γ.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 = − γ
2µ1

, x2 = 1
2
− β+µ2−γ

2µ1
, x3 =

1
2
+ β+µ2

2µ1
, x1 >= 0, x2 >= 0, x3 >= 0, x1+x2+x3 = 1, µ1 > 0, µ2 > 0, µ1+µ2 =

1, β >= 0, γ >= 0}.

⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case,

there is no efficient solution.

(VI) the case that (x̄1, x̄2, x̄3) ∈ {(x1, x2, 0) : x1 > 0, x2 > 0, x1 + x2 =

1}:

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 > 0, λ2 > 0, λ1 +λ2 = 1, α ∈ R

and β >= 0 such that





ȳ2 − (λ1 − λ2)ȳ3 = α

−ȳ1 = α

(λ1 − λ2)ȳ1 = α − β.

⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 >= 0, y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:
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(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈ {(x1, x2, 0) : x1 > 0, x2 >

0, x1 + x2 = 1}, so, in this case, there is no efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 < 1
2
, x3 >=

0, x1 + x2 + x3 = 1}.

By the condition (x̄1, x̄2, x̄3) ∈ {(x1, x2, 0) : x1 > 0, x2 > 0, x1 + x2 = 1},

in this case, {(x̄1, x̄2, 0, 0, 0, 1) : x̄1 > x̄2 > 0, x̄1 + x̄2 = 1} ⊂ sol(EVMG).

(VII) the case that (x̄1, x̄2, x̄3) = (0, 1, 0):

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 > 0, λ2 > 0, λ1+λ2 = 1, α ∈ R,

β >= 0 and γ >= 0 such that





ȳ2 − (λ1 − λ2)ȳ3 = α − β

−ȳ1 = α

(λ1 − λ2)ȳ1 = α − γ.

⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 >= 0, y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 > 0, x2 + x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) = (0, 1, 0), in this case, there

is no efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):
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(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 < 1
2
, x3 >=

0, x1 + x2 + x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) = (0, 1, 0), in this case, there

is no efficient solution.

Therefore, the set of all efficient solutions of the vector matrix game (B1, B2)

is sol(EVMG) = {(x̄1, x̄2, x̄3, 0, 0, 1) : x̄1 > 0, 0 < x̄2 < 1
2
, x̄3 > 0, x̄1 + x̄2 +

x̄3 = 1} ∪ {(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 > x̄2 > 0, x̄2 + x̄3 = 1, ȳ3 > ȳ2 > 0, ȳ2 +

ȳ3 = 1}∪{(0, x̄2, x̄3, 0, 0, 1) : x̄3 > x̄2 > 0, x̄2+x̄3 = 1}∪{(0, 0, 1, ȳ1, ȳ2, ȳ3) :

ȳ1 > 0, 0 < ȳ2 < 1
2
, ȳ3 > 0, ȳ1 + ȳ2 + ȳ3 = 1} ∪ {(0, 0, 1, 0, ȳ2, ȳ3) : ȳ3 >

ȳ2 > 0, ȳ2 + ȳ3 = 1} ∪ {(0, 0, 1, 0, 0, 1)} ∪ {(0, 0, 1, ȳ1, 0, ȳ3) : ȳ1 > 0, ȳ3 >

0, ȳ1 + ȳ3 = 1}∪{(0, 0, 1, 1, 0, 0)}∪{(0, 0, 1, ȳ1, ȳ2, 0) : ȳ1 > ȳ2 > 0, ȳ1 + ȳ2 =

1} ∪ {(x̄1, 0, x̄3, 0, 0, 1) : x̄1 > 0, x̄3 > 0, x̄1 + x̄3 = 1} ∪ {(x̄1, 0, x̄3, ȳ1, 0, ȳ3) :

x̄1 > 0, x̄3 > 0, x̄1 + x̄3 = 1, ȳ1 > 0, ȳ3 > 0, ȳ1 + ȳ3 = 1} ∪ {(x̄1, 0, x̄3, 1, 0, 0) :

x̄1 > 0, x̄3 > 0, x̄1 + x̄3 = 1} ∪ {(1, 0, 0, ȳ1, 0, ȳ3) : ȳ1 > 0, ȳ3 > 0, ȳ1 + ȳ3 =

1} ∪ {(1, 0, 0, 1, 0, 0)} ∪ {(x̄1, x̄2, 0, 0, 0, 1) : x̄1 > x̄2 > 0, x̄1 + x̄2 = 1}. 2

Example 5.6. Consider the B1, B2 and S3 described in Example 5.1. Then

we calculate the set of all the weakly efficient solution of vector matrix game

(B1, B2). By Lemma 3.2.8, (x̄, ȳ) ∈ S3 × S3 is a weakly efficient solution

of vector matrix game (B1, B2) if and only if there exist λ1 >= 0, λ2 >=

0, λ1 + λ2 = 1, µ1 >= 0, µ2 >= 0, µ1 + µ2 = 1 such that

(∗)




ȳ2 − (λ1 − λ2)ȳ3

−ȳ1

(λ1 − λ2)ȳ1


 ∈ NS3




x̄1

x̄2

x̄3
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and

(∗∗)




x̄2 − (µ1 − µ2)x̄3

−x̄1

(µ1 − µ2)x̄1


 ∈ NS3




ȳ1

ȳ2

ȳ3


 .

Now using the relations (∗) and (∗∗), we determine the set sol(EVMG) which

is the set of all weakly efficient solutions of matrix game (B1, B2). Thus

(I) the case that (x̄1, x̄2, x̄3) ∈
o

S 3:

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 >= 0, λ2 >= 0, λ1 + λ2 = 1, α ∈ R

such that




ȳ2 − (λ1 − λ2)ȳ3 = α

−ȳ1 = α

(λ1 − λ2)ȳ1 = α.

(i) λ1 = 0, λ2 = 1: In this case, there is no weakly efficient solution.

(ii) λ1 = 1, λ2 = 0: (ȳ1, ȳ2, ȳ3) = (0, 1
2
, 1

2
).

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 1
2
, 1

2
):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 +µ2 = 1, α ∈

R and β >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α − β

−x̄1 = α

(µ1 − µ2)x̄1 = α.
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(a) µ1 = 0, µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >= 0, x3 >=

0, x1 + x2 + x3 = −β, β >= 0}. Hence (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >=

0, x2 >= 0, x3 >= 0, x1 + x2 + x3 = 0}. But it does not satisfy the condition

(x̄1, x̄2, x̄3) ∈
o

S 3, so, in this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 = 1−β
2

, x3 = 1+β
2

, x2 +

x3 = 1, β >= 0}. Hence (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2 +x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈
o

S 3, so, in this case, there

is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 = 1
2
−

µ2+β
2µ1

, x3 = 1
2
+ µ2+β

2µ1
, x2 >= 0, x3 >= 0, x2 +x3 = 1, µ1 > 0, µ2 > 0, µ1 +µ2 =

1, β >= 0}. Hence (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >= 0, x2 + x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈
o

S 3, so, in this case, there

is no weakly efficient solution.

(iii) λ1 > 0, λ2 > 0, λ1 + λ2 = 1: (ȳ1, ȳ2, ȳ2) ∈ {(0, y2, y3) : y3 > y2 >=

0, y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 +µ2 = 1, α ∈ R

and β >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α − β

−x̄1 = α

(µ1 − µ2)x̄1 = α
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(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2+x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈
o

S 3, so, in this case, there

is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >=

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈
o

S 3, so,

in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1+µ2 = 1, α ∈ R,

β >= 0 and γ >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α − β

−x̄1 = α − γ

(µ1 − µ2)x̄1 = α

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 = γ
2
, x2 = 1

2
− β

2
, x3 =

1
2

+ β−γ
2

, x1 >= 0, x2 >= 0, x3 >= 0, x1 + x2 + x3 = 1, β >= 0, γ >= 0}. Hence

(x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <<= x2 <=
1
2
, x3 >= 0, x1 +x2 +x3 = 1}.

By the condition (x̄1, x̄2, x̄3) ∈
o

S 3, in this case, {(x̄1, x̄2, x̄3, 0, 0, 1) : x̄1 >

0, 0 < x̄2 <=
1
2
, x̄3 > 0, x̄1 + x̄2 + x̄3 = 1} ⊂ sol(WEVMG).

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 =

γ
2µ1

, x2 = 1
2
− µ2+β

2µ1
, x3 = 1

2
+ µ2+β−γ

2µ1
, x1 >= 0, x2 >= 0, x3 >= 0, x1 + x2 +
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x3 = 1, µ1 > 0, µ2 > 0, µ1 + µ2 = 1, β >= 0, γ >= 0}. Hence (x̄1, x̄2, x̄3) ∈

{(x1, x2, x3) : x1 >= 0, 0 <= x2 < 1
2
, x3 >= 0, x1 + x2 + x3 = 1}. By the

condition (x̄1, x̄2, x̄3) ∈
o

S 3, in this case, {(x̄1, x̄2, x̄3, 0, 0, 1) : x̄1 > 0, 0 <

x̄2 < 1
2
, x̄3 > 0, x̄1 + x̄2 + x̄3 = 1} ⊂ sol(WEVMG).

(II) the case that (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 > 0, x3 > 0, x2+x3 = 1}:

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 >= 0, λ2 >= 0, λ1 +λ2 = 1, α ∈ R

and β >= 0 such that





ȳ2 − (λ1 − λ2)ȳ3 = α − β

−ȳ1 = α

(λ1 − λ2)ȳ1 = α.

(i) λ1 = 0, λ2 = 1: In this case, there is no weakly efficient solution.

(ii) λ1 = 1, λ2 = 0: (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y2 = 1
2
− β

2
, y3 = 1

2
+ β

2
, y2 >=

0, y3 >= 0, y2 + y3 = 1, β >= 0}. Hence (ȳ1, ȳ2, ȳ3) ∈ {(0, ȳ2, ȳ3) : ȳ3 >= ȳ2 >=

0, ȳ2 + ȳ3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 >= y2 > 0, y2 + y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 +µ2 = 1, α ∈

R, β >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α − β

−x̄1 = α

(µ1 − µ2)x̄1 = α
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(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 > 0, x2+x3 = 1}.

By the condition (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 > 0, x3 > 0, x2 + x3 = 1},

in this case, {(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 >= x̄2 > 0, x̄2 + x̄3 = 1, ȳ3 >= ȳ2 >

0, ȳ2 + ȳ3 = 1} ⊂ sol(WEVMG).

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ (0, x2, x3) : x3 > x2 >

0, x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 > 0, x3 >

0, x2 + x3 = 1}, in this case, {(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 > x̄2 > 0, x̄2 + x̄3 =

1, ȳ3 >= ȳ2 > 0, ȳ2 + ȳ3 = 1} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 + µ2 =

1, α ∈ R, β >= 0 and γ >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α − β

−x̄1 = α − γ

(µ1 − µ2)x̄1 = α

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 <=

1
2
, x3 >= 0, x1 + x2 + x3 = 1}. Hence (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >

0, x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 > 0, x3 >

0, x2 + x3 = 1}, in this case, {(0, x̄2, x̄3, 0, 0, 1) : x̄3 >= x̄2 > 0, x̄2 + x̄3 =

1} ⊂ sol(WEVMG).
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(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >=

0, 0 <= x2 < 1
2
, x3 >= 0, x1 + x2 + x3 = 1}. Hence (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) :

x3 > x2 > 0, x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) :

x2 > 0, x3 > 0, x2 + x3 = 1}, in this case, {(0, x̄2, x̄3, 0, 0, 1) : x̄3 > x̄2 >

0, x̄2 + x̄3 = 1} ⊂ sol(WEVMG).

(iii) λ1 > 0, λ2 > 0, λ1 + λ2 = 1: (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y2 = 1
2
−

λ2+β
2λ1

, y3 = 1
2

+ λ2+β
2λ1

, y2 >= 0, y3 >= 0, y2 + y3 = 1, λ1 > 0, λ2 > 0, β >= 0}.

Hence (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 >= 0, y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 > 0, x2 +x3 = 1}.

By the condition (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 > 0, x3 > 0, x2 + x3 = 1},

in this case, {(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 >= x̄2 > 0, x̄2 + x̄3 = 1, ȳ3 > ȳ2 >

0, ȳ2 + ȳ3 = 1} ⊂ sol(WEVMG).

(c) µ1 > 0, µ2 > 0: (x̄2, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 > 0, x2 +x3 = 1}.

By the condition (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 > 0, x3 > 0, x2 + x3 = 1},

in this case, {(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 > x̄2 > 0, x̄2 + x̄3 = 1, ȳ3 > ȳ2 >

0, ȳ2 + ȳ3 = 1} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.
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(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 > 0, x2 +x3 = 1}.

By the condition (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 > 0, x3 > 0, x2 +x3 = 1}, in

this case, {(0, x̄2, x̄3, 0, 0, 1) : x̄3 >= x̄2 > 0, x̄2 + x̄3 = 1} ⊂ sol(WEVMG).

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >

0, x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x2 > 0, x3 >

0, x2 + x3 = 1}, in this case, {(0, x̄2, x̄3, 0, 0, 1) : x̄3 > x̄2 > 0, x̄2 + x̄3 =

1} ⊂ sol(WEVMG).

(III) the case that (x̄1, x̄2, x̄3) = (0, 0, 1):

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 >= 0, λ2 >= 0, λ1+λ2 = 1, α ∈ R,

β >= 0 and γ >= 0 such that





ȳ2 − (λ1 − λ2)ȳ3 = α − β

−ȳ1 = α − γ

(λ1 − λ2)ȳ1 = α.

(i) λ1 = 0, λ2 = 1: In this case, there is no weakly efficient solution.

(ii) λ1 = 1, λ2 = 0: (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 >= 0, 0 <= y2 <=
1
2
, y3 >=

0, y1 + y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 > 0, 0 < y2 <=
1
2
, y3 >

0, y1 + y2 + y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 + µ2 =
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1, α ∈ R such that




x̄2 − (µ1 − µ2)x̄3 = α

−x̄1 = α

(µ1 − µ2)x̄1 = α.

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) = (0, 0, 1), so, in this case, there is no weakly efficient

solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >

x2 >= 0, x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (0, 0, 1), in this case,

{(0, 0, 1, ȳ1, ȳ2, ȳ3) : ȳ1 > 0, 0 < ȳ2 <=
1
2
, ȳ3 > 0, ȳ1 + ȳ2 + ȳ3 = 1} ⊂

sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2+x3 = 1}.

By the condition (x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, 0, ȳ2, ȳ3) : ȳ3 >

ȳ2 > 0, ȳ2 + ȳ3 = 1} ⊂ sol(WEVMG).

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >=

0, x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (0, 0, 1), in this case,

{(0, 0, 1, 0, ȳ2, ȳ3) : ȳ3 > ȳ2 > 0, ȳ2 + ȳ3 = 1} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = {(0, 0, 1)}:
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(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {((x1, x2, x3) : x1 >= 0, 0 <= x2 <=

1
2
, x3 >= 0, x1 +x2 +x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (0, 0, 1), in this

case, {(0, 0, 1, 0, 0, 1)} ⊂ sol(WEVMG).

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <=

x2 < 1
2
, x3 >= 0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (0, 0, 1),

in this case, {(0, 0, 1, 0, 0, 1)} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, 0, y3) : y1 > 0, y3 > 0, y1 +y3 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 + µ2 =

1, α ∈ R and β >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α

−x̄1 = α − β

(µ1 − µ2)x̄1 = α.

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly effficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 = β
2
, x2 = 1

2
, x3 =

1
2
− β

2
, x1 >= 0, x2 >= 0, x3 >= 0, x1 +x2 +x3 = 1, β >= 0}. Hence (x̄1, x̄2, x̄3) ∈

{(x1, x2, x3) : x1 >= 0, x2 = 1
2
, x3 >= 0, x1 + x2 + x3 = 1}. But it does

not satisfy the condition (x̄1, x̄2, x̄3) = (0, 0, 1), so, in this case, there is no

weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 =

β
2µ1

, x2 = 1
2
− µ2

2µ1
, x3 = 1

2
+ µ2−β

2µ1
, x1 >= 0, x2 >= 0, x3 >= 0, x1 + x2 + x3 =
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1, µ1 > 0, µ2 > 0, β >= 0}. Hence (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <=

x2 < 1
2
, x3 >= 0, x1 +x2 +x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (0, 0, 1), in

this case, {(0, 0, 1, ȳ1, 0, ȳ3) : ȳ1 > 0, ȳ3 > 0, ȳ1 + ȳ3 = 1} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = (1, 0, 0):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 + µ2 = 1, α ∈

R, β >= 0 and γ >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α

−x̄1 = α − β

(µ1 − µ2)x̄1 = α − γ.

(a) µ1 = 0, µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 = 1 − α, x2 + x3 =

α, x1 >= 0, x2 >= 0, x3 >= 0, x1 + x2 + x3 = 1, α ∈ R}. Hence (x̄1, x̄2, x̄3) ∈

{(x1, x2, x3) : x1 >= 0, x2 >= 0, x3 >= 0, x1 + x2 + x3 = 1}. By the condition

(x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, 1, 0, 0)} ⊂ sol(WEVMG).

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 = β−γ
2

, x2 =

1+γ
2

, x3 = 1−β
2

, x1 >= 0, x2 >= 0, x3 >= 0, x1 + x2 + x3 = 1, α ∈ R, β >= 0, γ >=

0}. Hence (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 1
2

<= x2 <= 1, x3 >= 0, x1 +

x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (0, 0, 1), so,

in this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 =

β−γ
2µ1

, x2 = 1
2
− µ2−γ

2µ1
, x3 = 1

2
+ µ2−β

2µ1
, x1 >= 0, x2 >= 0, x3 >= 0, x1 + x2 + x3 =

1, µ1 > 0, µ2 > 0, β >= 0, γ >= 0}. Hence (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >=
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0, x2 >= 0, x3 >= 0, x1 +x2 +x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (0, 0, 1),

in this case, {(0, 0, 1, 1, 0, 0)} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, 0) : y1 > y2 > 0, y1 + y2 = 1}:

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 +µ2 = 1, α ∈ R

and β >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α

−x̄1 = α

(µ1 − µ2)x̄1 = α − β.

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) = (0, 0, 1), so, in this case, there is no weakly efficient

solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 =

− β
2µ1

, x2 = 1
2
− µ2

2µ1
, x3 = 1

2
+ µ2

2µ1
, x1 >= 0, x2 >= 0, x3 >= 0, x1 + x2 + x3 =

1, µ1 > 0, µ2 > 0, β >= 0}. Hence (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >=

0, x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (0, 0, 1), in this case,

{(0, 0, 1, 1, 0, 0)} ⊂ sol(WEVMG).

(iii) λ1 > 0, λ2 > 0, λ1 + λ2 = 1: (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 >= 0, 0 <= y2 <

1
2
, y3 >= 0, y1 + y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 > 0, 0 < y2 < 1
2
, y3 >

0, y1 + y2 + y3 = 1}:
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(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: In this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) = (0, 0, 1). By the condition

(x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, ȳ1, ȳ2, ȳ3) : ȳ1 > 0, 0 < ȳ2 <

1
2
, ȳ3 > 0, ȳ1 + ȳ2 + ȳ3 = 1} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 0, 1). By the condition (x̄1, x̄2, x̄3) =

(0, 0, 1), in this case, {(0, 0, 1, 0, ȳ2, ȳ3) : ȳ3 > ȳ2 > 0, ȳ2 + ȳ3 = 1} ⊂

sol(WEVMG).

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) = (0, 0, 1). By the condition

(x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, 0, ȳ2, ȳ3) : ȳ3 > ȳ2 > 0, ȳ2+ ȳ3 =

1} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 0, 1). By the condition (x̄1, x̄2, x̄3) =

(0, 0, 1), in this case, {(0, 0, 1, 0, 0, 1)} ⊂ sol(WEVMG).

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) = (0, 0, 1). By the condition

(x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, 0, 0, 1)} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, 0, y3) : y1 > 0, y3 > 0, y1 +y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.
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(b) µ1 = 1, µ2 = 0: In this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) = (0, 0, 1). By the condition

(x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, ȳ1, 0, ȳ3) : ȳ1 > 0, ȳ3 > 0, ȳ1 +

ȳ3 = 1} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = (1, 0, 0):

(a) µ1 = 0, µ2 = 1: (x̄1, x̄2, x̄3) = (0, 0, 1). By the condition (x̄1, x̄2, x̄3) =

(0, 0, 1), in this case, {(0, 0, 1, 1, 0, 0)} ⊂ sol(WEVMG).

(b) µ1 = 1, µ2 = 0: In this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) = (0, 0, 1). By the condition

(x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, 1, 0, 0)} ⊂ sol(WEVMG).

• in the case of (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, 0) : y1 > y2 > 0, y1 + y2 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: In this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) = (0, 0, 1). By the condition

(x̄1, x̄2, x̄3) = (0, 0, 1), in this case, {(0, 0, 1, ȳ1, ȳ2, 0) : ȳ1 > ȳ2 > 0, ȳ1+ ȳ2 =

1)} ⊂ sol(WEVMG).

(IV) the case that (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 =

1}:

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 >= 0, λ2 >= 0, λ1 +λ2 = 1, α ∈ R
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and β >= 0 such that





ȳ2 − (λ1 − λ2)ȳ3 = α

−ȳ1 = α − β

(λ1 − λ2)ȳ1 = α.

(i) λ1 = 0, λ2 = 1: In this case, there is no weakly efficient solution.

(ii) λ1 = 1, λ2 = 0: (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 >= 0, y2 = 1
2
, y3 >=

0, y1 + y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 > 0, y2 = 1
2
, y3 >

0, y1 + y2 + y3 = 1}.

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 + µ2 =

1, α ∈ R such that




x̄2 − (µ1 − µ2)x̄3 = α

−x̄1 = α

(µ1 − µ2)x̄1 = α.

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, so, in

this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >=

x2 >= 0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈
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{(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, so, in this case, there is no

weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (1
2
, 1

2
, 0):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 +µ2 = 1, α ∈ R

and β >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α

−x̄1 = α

(µ1 − µ2)x̄1 = α − β.

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, so, in

this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >

x2 >= 0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈

{(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, so, in this case, there is no

weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 1
2
, 1

2
):

(∗∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 +µ2 = 1, α ∈ R

and β >= 0 such that

92







x̄2 − (µ1 − µ2)x̄3 = α − β

−x̄1 = α

(µ1 − µ2)x̄1 = α.

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : 0 <= x2 <= x3, x2 +x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 >

0, x1 + x3 = 1}, so, in this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >

x2 >= 0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈

{(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, so, in this case, there is no

weakly efficient solution.

(iii) λ1 > 0, λ2 > 0, λ1 + λ2 = 1: (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 >= 0, 0 <=

y2 < 1
2
, y3 >= 0, y1 + y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 > 0, 0 < y2 < 1
2
, y3 >

0, y1 + y2 + y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, so, in

this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >

x2 >= 0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈
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{(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, so, in this case, there is no

weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : 3 > y2 > 0, y2 + y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2+x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 >

0, x1 + x3 = 1}, so, in this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >

x2 >= 0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈

{(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, so, in this case, there is no

weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 <=

1
2
, x3 >= 0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) :

x1 > 0, x3 > 0, x1 + x3 = 1}, in this case, {(x̄1, 0, x̄3, 0, 0, 1) : x̄1 > 0, x̄3 >

0, x̄1 + x̄3 = 1} ⊂ sol(WEVMG).

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >=

0, 0 <= x2 < 1
2
, x3 >= 0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) ∈

{(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, in this case, {(x̄1, 0, x̄3, 0, 0, 1) :

x̄1 > 0, x̄3 > 0, x̄1 + x̄3 = 1} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, 0, y3) : y1 > 0, y3 > 0, y1 +y3 = 1}:
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(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 = 1
2
, x3 >=

0, x1 + x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈

{(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, so, in this case, there is no

weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >=

0, 0 <= x2 < 1
2
, x3 >= 0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) ∈

{(x1, 0, x3) : x1 > 0, x3 > 0, x1+x3 = 1}, in this case, {(x̄1, 0, x̄3, ȳ1, 0, ȳ3) :

x̄1 > 0, x̄3 > 0, x̄1 + x̄3 = 1, ȳ1 > 0, ȳ3 > 0, ȳ1 + ȳ3 = 1} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = (1, 0, 0):

(a) µ1 = 0, µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >= 0, x3 >=

0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 >

0, x3 > 0, x1 + x3 = 1}, in this case, {(x̄1, 0, x̄3, 1, 0, 0) : x̄1 > 0, x̄3 >

0, x̄1 + x̄3 = 1} ⊂ sol(WEVMG).

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >= x3 >=

0, x1 + x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈

{(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, so, in this case, there is no

weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >=

0, x2 >= 0, x3 >= 0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) ∈

{(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, in this case, {(x̄1, 0, x̄3, 1, 0, 0) :

x̄1 > 0, x̄3 > 0, x̄1 + x̄3 = 1} ⊂ sol(WEVMG).
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• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, 0) : y1 > y2 > 0, y1 + y2 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 > 0, x1 + x3 = 1}, so, in

this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) = (0, 0, 1). But it does not

satisfy the condition (x̄1, x̄2, x̄3) ∈ {(x1, 0, x3) : x1 > 0, x3 > 0, x1+x3 = 1},

so, in this case, there is no weakly efficient solution.

(V) the case that (x̄1, x̄2, x̄3) = (1, 0, 0):

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 >= 0, λ2 >= 0, λ1 + λ2 = 1, α ∈

R, β >= 0, γ >= 0 such that





ȳ2 − (λ1 − λ2)ȳ3 = α

−ȳ1 = α − β

(λ1 − λ2)ȳ1 = α − γ.

(i) λ1 = 0, λ2 = 1: (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 >= 0, y2 >= 0, y3 >= 0, y1 + y2 +

y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈
o

S 3:

(a) µ1 = 0, µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 + x2 + x3 = 0}. But it

does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there is

no weakly efficient solution.
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(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there is no weakly efficient

solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >=

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

so, in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y2 > 0, y3 > 0, y2 +y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2+x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case,

there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

so, in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 <=

1
2
, x3 >= 0, x1 +x2 +x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (1, 0, 0), in this

case, {(1, 0, 0, 0, 0, 1)} ⊂ sol(WEVMG).

(c) µ1 > 0, µ2 > 0, µ1 +µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <=

x2 < 1
2
, x3 >= 0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

in this case, {(1, 0, 0, 1, 0, 0)} ⊂ sol(WEVMG).
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• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, 0, y3) : y1 > 0, y3 > 0, y1 +y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 = 1
2
, x3 >=

0, x1 + x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) =

(1, 0, 0), so, in this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 +µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <=

x2 < 1
2
, x3 >= 0, x1 +x2 +x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (1, 0, 0), in

this case, {(1, 0, 0, ȳ1, 0, ȳ3) : y1 > 0, ȳ3 > 0, ȳ1 + ȳ3 = 1} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = (1, 0, 0):

(a) µ1 = 0, µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >= 0, x3 >=

0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (1, 0, 0), in this case,

{(1, 0, 0, 1, 0, 0)} ⊂ sol(WEVMG).

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >= x3 >= 0, x1+

x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so,

in this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1+µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >=

0, x3 >= 0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (1, 0, 0), in this

case, {(1, 0, 0, 1, 0, 0)} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, 0) : y1 > 0, y2 > 0, y1 +y2 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.
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(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there is no weakly efficient

solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >=

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

so, in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 1, 0):

(∗) ⇐⇒ (x̄1, x̄2, x̄3) ∈ S3 and there exist µ1 >= 0, µ2 >= 0, µ1 + µ2 = 1, α ∈

R, β >= 0, γ >= 0 such that





x̄2 − (µ1 − µ2)x̄3 = α − β

−x̄1 = α

(µ1 − µ2)x̄1 = α − γ

(a) µ1 = 0, µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 + x2 + x3 = −β, x1 >=

0, x2 >= 0, x3 >= 0, x1 + x2 + x3 = 1, β >= 0}. But it does not satisfy the

condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there is no weakly efficient

solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 = −γ
2
, x2 = 1

2
+

γ−β
2

, x3 = 1
2

+ β
2
, x1 >= 0, x2 >= 0, x3 >= 0, x1 + x2 + x3 = 1, β >= 0, γ >= 0}.

Hence (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2 + x3 = 1}. But it does

not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there is no

weakly efficient solution.
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(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 =

− γ
2µ1

, 2 = 1
2
− β+µ2−γ

2µ1
, x3 = 1

2
+ β+µ2

2µ1
, x1 >= 0, x2 >= 0, x3 >= 0, x1 +x2 +x3 =

1, µ1 >= 0, µ2 >= 0, β >= 0, γ >= 0}. Hence (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >

x2 >= 0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) =

(1, 0, 0), so, in this case, there is no weakly efficient solution.

(ii) λ1 = 1, λ2 = 0: (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 >= 0, y2 >= y3 >= 0, y1 +

y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 > 0, y2 >= y3 > 0, y1 +

y2 + y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there is no weakly efficient

solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >=

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

so, in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, 0) : y2 > y1 > 0, y1 + y2 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there is no weakly efficient

solution.
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(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >=

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

so, in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 1, 0):

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2+x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case,

there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >=

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

so, in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y2 > y3 > 0, y2 + y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2+x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case,

there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

so, in this case, there is no weakly efficient solution.

(iii) λ1 > 0, λ2 > 0, λ1 + λ2 = 1: (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, y3) : y1 >= 0, y2 >=

0, y3 >= 0, y1 + y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈
o

S 3:
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(a) µ1 = 0, µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 + x2 + x3 = 0}. But

it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there

is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there is no weakly efficient

solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >=

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

so, in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y2 > 0, y3 > 0, y2 +y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2+x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case,

there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

so, in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 <=

1
2
, x3 >= 0, x1 +x2 +x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (1, 0, 0), in this

case, {(1, 0, 0, 0, 0, 1)} ⊂ sol(WEVMG).
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(c) µ1 > 0, µ2 > 0, µ1 +µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <=

x2 < 1
2
, x3 >= 0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

in this case, {(1, 0, 0, 1, 0, 0)} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, 0, y3) : y1 > 0, y3 > 0, y1 +y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 = 1
2
, x3 >=

0, x1 + x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) =

(1, 0, 0), so, in this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 +µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <=

x2 < 1
2
, x3 >= 0, x1 +x2 +x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (1, 0, 0), in

this case, {(1, 0, 0, ȳ1, 0, ȳ3) : y1 > 0, ȳ3 > 0, ȳ1 + ȳ3 = 1} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) = (1, 0, 0):

(a) µ1 = 0, µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >= 0, x3 >=

0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (1, 0, 0), in this case,

{(1, 0, 0, 1, 0, 0)} ⊂ sol(WEVMG).

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >= x3 >= 0, x1+

x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so,

in this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1+µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, x2 >=

0, x3 >= 0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) = (1, 0, 0), in this

case, {(1, 0, 0, 1, 0, 0)} ⊂ sol(WEVMG).

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(y1, y2, 0) : y1 > 0, y2 > 0, y1 +y2 = 1}:
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(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficientt solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there is no weakly efficient

solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >=

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0),

so, in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 1, 0):

(a) µ1 = 0, µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 + x2 + x3 = −β, x1 >=

0, x2 >= 0, x3 >= 0, x1 + x2 + x3 = 1, β >= 0}. But it does not satisfy the

condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there is no weakly efficient

solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 = −γ
2
, x2 = 1

2
+

γ−β
2

, x3 = 1
2

+ β
2
, x1 >= 0, x2 >= 0, x3 >= 0, x1 + x2 + x3 = 1, β >= 0, γ >= 0}.

Hence (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2 + x3 = 1}. But it does

not satisfy the condition (x̄1, x̄2, x̄3) = (1, 0, 0), so, in this case, there is no

weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 =

− γ
2µ1

, x2 = 1
2
− β+µ2−γ

2µ1
, x3 = 1

2
+ β+µ2

2µ1
, x1 >= 0, x2 >= 0, x3 >= 0, x1+x2+x3 =

1, µ1 >= 0, µ2 >= 0, β >= 0, γ >= 0}. Hence (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >

x2 >= 0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) =

(1, 0, 0), so, in this case, there is no weakly efficient solution.
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(VI) the case that (x̄1, x̄2, x̄3) ∈ {(x1, x2, 0) : x1 > 0, x2 > 0, x1 + x2 =

1}:

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 >= 0, λ2 >= 0, λ1 + λ2 = 1, α ∈

R, β >= 0 such that





ȳ2 − (λ1 − λ2)ȳ3 = α

−ȳ1 = α

(λ1 − λ2)ȳ1 = α − β.

(i) λ1 = 0, λ2 = 1: In this case, there is no weakly efficient solution.

(ii) λ1 = 1, λ2 = 0: (ȳ1, ȳ2, ȳ3) = (0, 1
2
, 1

2
).

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 1
2
, 1

2
):

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) = (0, 1
2
, 1

2
). But it does not satisfy the

condition (x̄1, x̄2, x̄3) ∈ {(x1, x2, 0) : x1 > 0, x2 > 0, x1 + x2 = 1}, ao, in

this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >

x2 >= 0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈

{(x1, x2, 0) : x1 > 0, x2 > 0, x1 + x2 = 1}, so, in this case, there is no

weakly efficient solution.

(iii) λ1 > 0, λ2 > 0, λ1 + λ2 = 1: (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 >

0, y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:
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(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2+x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈ {(x1, x2, 0) : x1 > 0, x2 >

0, x1 + x2 = 1}, so, in this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >

x2 >= 0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) ∈

{(x1, x2, 0) : x1 > 0, x2 > 0, x1 + x2 = 1}, so, in this case, there is no

weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 <=

1
2
, x3 >= 0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) ∈ {(x1, x2, 0) :

x1 > 0, x2 > 0, x1 + x2 = 1}, in this case, {(x̄1, x̄2, 0, 0, 0, 1) : x̄1 >= x̄2 >

0, x̄1 + x̄2 = 1} ⊂ sol(WEVMG).

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >=

0, 0 <= x2 < 1
2
, x3 >= 0, x1 + x2 + x3 = 1}. By the condition (x̄1, x̄2, x̄3) ∈

{(x1, x2, 0) : x1 > 0, x2 > 0, x1 + x2 = 1}, in this case, {(x̄1, x̄2, 0, 0, 0, 1) :

x̄1 > x̄2 > 0, x̄1 + x̄2 = 1} ⊂ sol(WEVMG).

(VII) the case that (x̄1, x̄2, x̄3) = (0, 1, 0):

(∗) ⇐⇒ (ȳ1, ȳ2, ȳ3) ∈ S3 and there exist λ1 >= 0, λ2 >= 0, λ1 + λ2 = 1, α ∈

R, β >= 0, γ >= 0 such that
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ȳ2 − (λ1 − λ2)ȳ3 = α − β

−ȳ1 = α

(λ1 − λ2)ȳ1 = α − γ.

(i) λ1 = 0, λ2 = 1: In this case, there is no weakly efficient solution.

(ii) λ1 = 1, λ2 = 0: (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 >= y2 >= 0, y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 >= y2 > 0, y2 + y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2+x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) = (0, 1, 0), so, in this case,

there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (0, 1, 0),

so, in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 <=
1
2
, x3 >=

0, x1 + x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) =

(0, 1, 0), so, in this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 +µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <=

x2 < 1
2
, x3 >= 0, x1 + x2 + x3 = 1}. But it does not satisfy the condition
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(x̄1, x̄2, x̄3) = (0, 1, 0), so, in this case, there is no weakly efficient solution.

(iii) λ1 > 0, λ2 > 0, λ1 + λ2 = 1: (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 >=

0, y2 + y3 = 1}.

• in the case that (ȳ1, ȳ2, ȳ3) ∈ {(0, y2, y3) : y3 > y2 > 0, y2 + y3 = 1}:

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 >= x2 >= 0, x2+x3 = 1}.

But it does not satisfy the condition (x̄1, x̄2, x̄3) = (0, 1, 0), so, in this case,

there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 + µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(0, x2, x3) : x3 > x2 >

0, x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) = (0, 1, 0),

so, in this case, there is no weakly efficient solution.

• in the case that (ȳ1, ȳ2, ȳ3) = (0, 0, 1):

(a) µ1 = 0, µ2 = 1: In this case, there is no weakly efficient solution.

(b) µ1 = 1, µ2 = 0: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <= x2 <=
1
2
, x3 >=

0, x1 + x2 + x3 = 1}. But it does not satisfy the condition (x̄1, x̄2, x̄3) =

(0, 1, 0), so, in this case, there is no weakly efficient solution.

(c) µ1 > 0, µ2 > 0, µ1 +µ2 = 1: (x̄1, x̄2, x̄3) ∈ {(x1, x2, x3) : x1 >= 0, 0 <=

x2 < 1
2
, x3 >= 0, x1 + x2 + x3 = 1}. But it does not satisfy the condition

(x̄1, x̄2, x̄3) = (0, 1, 0), so, in this case, there is no weakly efficient solution.

Therefore, the set of all weakly efficient solutions of the vector matrix game

(B1, B2) is sol(WEVMG) = {(x̄1, x̄2, x̄3, 0, 0, 1) : x̄1 > 0, 0 < x̄2 <=
1
2
, x̄3 >
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0, x̄1 + x̄2 + x̄3 = 1} ∪ {(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 >= x̄2 > 0, x̄2 + x̄3 =

1, ȳ3 >= ȳ2 > 0, ȳ2 + ȳ3 = 1} ∪ {(0, x̄2, x̄3, 0, 0, 1) : x̄3 >= x̄2 > 0, x̄2 + x̄3 =

1} ∪ {(0, 0, 1, ȳ1, ȳ2, ȳ3) : ȳ1 > 0, 0 < ȳ2 <=
1
2
, ȳ3 > 0, ȳ1 + ȳ2 + ȳ3 =

1} ∪ {(0, 0, 1, 0, ȳ2, ȳ3) : ȳ3 > ȳ2 > 0, ȳ2 + ȳ3 = 1} ∪ {(0, 0, 1, 0, 0, 1)} ∪

{(0, 0, 1, ȳ1, 0, ȳ3) : ȳ1 > 0, ȳ3 > 0, ȳ1 + ȳ3 = 1} ∪ {(0, 0, 1, 1, 0, 0)} ∪

{(0, 0, 1, ȳ1, ȳ2, 0) : ȳ1 > ȳ2 > 0, ȳ1 + ȳ2 = 1} ∪ {(x̄1, 0, x̄3, 0, 0, 1) : x̄1 >

0, x̄3 > 0, x̄1 + x̄3 = 1} ∪ {(x̄1, 0, x̄3, ȳ1, 0, ȳ3) : x̄1 > 0, x̄3 > 0, x̄1 + x̄3 =

1, ȳ1 > 0, ȳ3 > 0, ȳ1 + ȳ3 = 1} ∪{(x̄1, 0, x̄3, 1, 0, 0) : x̄1 > 0, x̄3 > 0, x̄1 + x̄3 =

1} ∪ {(1, 0, 0, 0, 0, 1)} ∪ {(1, 0, 0, ȳ1, 0, ȳ3) : ȳ1 > 0, ȳ3 > 0, ȳ1 + ȳ3 =

1} ∪ {(1, 0, 0, 1, 0, 0)} ∪ {(x̄1, x̄2, 0, 0, 0, 1) : x̄1 >= x̄2 > 0, x̄1 + x̄2 = 1}.
2

In Examples, it is clear from Definition 2.1.3 that the following hold:

sol(SVMG) ⊂ sol(EVMG) ⊂ sol(WEVMG)

⋂

sol(WSVMG) ⊂ sol(WEVMG).

From the above calculation, we can check that

(i) sol(WEVMG) \ sol(EVMG) = {(x̄1, x̄2, x̄3, 0, 0, 1) : x̄1 > 0, 0 <

x̄2 <=
1
2
, x̄3 > 0, x̄1 + x̄2 + x̄3 = 1} ∪ {(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 >= x̄2 >

0, x̄2 + x̄3 = 1, ȳ3 >= ȳ2 > 0, ȳ2 + ȳ3 = 1} ∪ {(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 >= x̄2 >

0, x̄2 + x̄3 = 1, ȳ3 > ȳ2 > 0, ȳ2 + ȳ3 = 1} ∪ {(0, x̄2, x̄3, 0, 0, 1) : x̄3 >= x̄2 >

0, x̄2+ x̄3 = 1}∪{(0, 0, 1, 0, ȳ2, ȳ3) : ȳ1 > 0, 0 < ȳ2 <=
1
2
, ȳ3 > 0, ȳ1+ ȳ2+ ȳ3 =

1} ∪ {(x̄1, x̄2, 0, 0, 0, 1) : x̄1 >= x̄2 > 0, x̄1 + x̄2 = 1}.
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(ii) sol(EVMG) \ sol(SVMG) = {(x̄1, x̄2, x̄3, 0, 0, 1) : x̄1 > 0, 0 < x̄2 <

1
2
, x̄3 > 0, x̄1 + x̄2 + x̄3 = 1} ∪ {(0, 0, 1, ȳ1, ȳ2, ȳ3) : ȳ1 > 0, 0 < ȳ2 <

1
2
, ȳ3 > 0, ȳ1 + ȳ2 + ȳ3 = 1} ∪ {(0, 0, 1, ȳ1, ȳ2, 0) : ȳ1 > ȳ2 > 0, ȳ1 + ȳ2 =

1} ∪ {(x̄1, x̄2, 0, 0, 0, 1) : x̄1 > x̄2 > 0, x̄1 + x̄2 = 1}.

(iii) sol(WEVMG) \ sol(WSVMG) = {(x̄1, x̄2, x̄3, 0, 0, 1) : x̄1 > 0, 0 <

x̄2 <=
1
2
, x̄3 > 0, x̄1 + x̄2 + x̄3 = 1} ∪ {(x̄1, x̄2, x̄3, 0, 0, 1) : x̄1 > 0, 0 < x̄2 <

1
2
, x̄3 > 0, x̄1 + x̄2 + x̄3 = 1} ∪ {(0, 0, 1, ȳ1, ȳ2, ȳ3) : ȳ1 > 0, 0 < ȳ2 <=

1
2
, ȳ3 >

0, ȳ1 + ȳ2 + ȳ3 = 1}∪{(0, 0, 1, ȳ1, ȳ2, ȳ3) : ȳ1 > 0, 0 < ȳ2 < 1
2
, ȳ3 > 0, ȳ1 + ȳ2 +

ȳ3 = 1} ∪ {(0, 0, 1, ȳ1, ȳ2, 0) : ȳ1 > ȳ2 > 0, ȳ1 + ȳ2 = 1} ∪ {(x̄1, x̄2, 0, 0, 0, 1) :

x̄1 >= x̄2 > 0, x̄1 + x̄2 = 1} ∪ {(x̄1, x̄2, 0, 0, 0, 1) : x̄1 > x̄2 > 0, x̄1 + x̄2 = 1}.

(iv) sol(WSVMG) \ sol(SVMG) = {(0, x̄2, x̄3, 0, ȳ2, ȳ3) : x̄3 >= x̄2 >=

0, x̄2 + x̄3 = 1, ȳ3 >= ȳ2 >= 0, ȳ2 + ȳ3 = 1}.

(v) sol(EVMG) \ sol(WSVMG) = {(x̄1, x̄2, x̄3, 0, 0, 1) : x̄1 > 0, 0 <

x̄2 < 1
2
, x̄3 > 0, x̄1 + x̄2 + x̄3 = 1} ∪ {(0, 0, 1, ȳ1, ȳ2, ȳ3) : ȳ1 > 0, 0 < ȳ2 <

1
2
, ȳ3 > 0, ȳ1 + ȳ2 + ȳ3 = 1} ∪ {(0, 0, 1, ȳ1, ȳ2, 0) : ȳ1 > ȳ2 > 0, ȳ1 + ȳ2 =

1} ∪ {(x̄1, x̄2, 0, 0, 0, 1) : x̄1 > x̄2 > 0, x̄1 + x̄2 = 1}.

(vi) sol(WSVMG) \ sol(EVMG) = {(0, x̄2, x̄3, 0,
1
2
, 1

2
) : x̄2 >= x̄3 >= 0, x̄2 +

x̄3 = 1} ∪ {(0, 1
2
, 1

2
, 0, ȳ2, ȳ3) : ȳ3 >= ȳ2 >= 0, ȳ2 + ȳ3 = 1}. 2
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