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1 Introduction

In this thesis, we consider the following fourth order boundary value prob-

lem in one space dimension:

2 T
Yy oy 2 ( / (y'>2daz) Y =p(@), 0<a<m.
T \Jo (1.1)

y(0) =y(m) = y"(0) = y"(m) =0,

where € > 0 is a constant and p(z) is a nonpositive or nonnegative contin-
uous function on [0,7]. The problem (1.1) arises in the study of transverse
vibrations of a hinged beam. For a derivation of (1.1), one is referred to [4,9].

Ohm et al.[5] established the existence and uniqueness results of the weak
solution of (1.1) and proved that theerror in Ly norm is suboptimal.

The main objectives of this paper are to study the finite element method
to approximate the solution of the model problem and to show numerically
the optimality of the error in Ly norm where the finite element spaces of
piecewise linear(quadratic) polynemials defined on the uniform partition of
[0, 7] are used to obtain the approximate solution of the model problem.

This thesis is organized as follows. In Section 2, we introduce the weak
formulation of the model problem. Finite element spaces of piecewise lin-
ear(quadratic) polynomials are discussed in Section 3. Section 4 is related to

numerical results and the optimality of the error in Ly norm.



2 Weak Formulation

In the study of transverse vibrations of a hinged beam, the following fourth

order boundary value problem arises:
(4) 1" 2 " N2 1"
y —ey’ - — (v)de ) y" =p(z), 0<z<m,
0

y(0) =y(m) =y"(0) = y"(m) =0,

(1.1)

where € > 0 is a constant and p(x) is a nonpositive or nonnegative continuous
function on [0,7]. Throughout this paper, we will assume that p(z) is a
nonpositive function. For the case that p(x) is a nonnegative function, a
similar result can be obtained.

Letting ¢ = —y”, we can rewrite (1.1) into the following system:

~or oot 2 ([Pa) o—plo) vsw<n
-y —¢=0, 0<z<mT, (2.1)
y(0) = y(m) = ¢(0) = ¢(m) = 0.
Let Hi denote the Sobolev space of L2(0, w) functions with first derivatives
in L2(0,7) vanishing at 0 and 7. Then the weak formulation of (2.1) can be

given as follows: find (¢,y) € H} x H} such that

@) +eo)+ 2 ([ 0P) 6.0 = 09). Voe i, -

(v'.n') = (¢,m) =0, Vne Hy,



where

(f,9) = /07r f(x)g(z)dx.

To show existence of the weak solution of (2.1), we consider the follow-
ing iterative scheme motivated by ones in [6,7]: for £ = 0,1,2,---, find
(br+1,yk+1) € Hi x H} such that

(Gt 15 9") + (Drr1,9) + E(Drr1, ) = (), Vo € Hy,
Wht1,m') — (brt1,m) =0, Vn e Hy, (2.3)
2 [T, , |2
Skr1 =&+ w - (yk—H) de =& |,
0
where w is an appropriate parameter and £y = 0. Note that for k = 0,1,2,---

there exists the unique solution (¢, yx) € Hy M Hy of the system (2.3).

Theorem 2.1[5]. Let 0 < w < min [1/2,2/(e||lyilll#1]])]. Then, the se-
quence of functions (¢r+1,yr+1) generated by the above scheme converges

monotonically to a solution (¢,4) of the weak formulation of (2:2).

Theorem 2.2 (Uniqueness)[5]. If there exist two solutions of the weak

formulation of (2.2), then they are equal.

For a given uniform partition of [0, 7], let S* be the space of piecewise
linear(quadratic) polynomials on the uniform partition such that S* ¢ H}.

3



Then the standard finite element approximation to (2.2) can be given as

follows: find (¢, yn) € S* x 8" such that

(hee) +lon ) + 2 ([ 0hPde) (6n0) = 0) oS, -

Who1') = (¢n,m) =0, VneSh
When S” is the space of piecewise linear polynomials, the existance and
uniqueness of the solution of (2.4) were proved in [8] and the error analysis
was done in [5]. To show the existence of the solution of (2.4), the iterative
scheme as in (2.3) was used. However, in the case of piecewise quadratic
polynomials, the existance and uniqueness of the solution of (2.4) are not

proved so far. And there are no known results-on the error analysis.

Theorem 2.3[5]. Let S be the space of piecewise linear polynomial on a
uniform partition of [0, x]. If 7||p||*/(e + (2/m)*)® < 1, then we obtain the

following results:
1) 1y =)'l = O(h),

(i) [I(¢ — én)ll = O(h),

where (y, ¢) is a solution of (2.2) and (yn, ) is a solution of (2.4).



3 Finite Element Spaces

In this section, we want to describe the finite element spaces which will

be used in section 4 to obtain the solution of (2.4).

3.1 Piecewise Linear Polynomial Spaces

Let 0 =29 < 21 < --- < x, = 7 be a uniform partition of [0, 7] and let

S? be the linear space of functions v such that

i) ve Co,n,
i) v|[z, 2,,,) i & linear polynomial for i = 0,--- ,n — 1, and
iii) v(0) = v(mw) = 0O«
Here v|(z, »,,,) denotes the restriction of v to [z, ®i+1]. For i =0,1,--- ,n,

we define piecewise linear functions ¢; on [0, x| as follows:

L1pg— T
for xg <z <21
r1 — &0
Po(z) =
0 otherwise,
( L — Tij—1
- for Ti—1 S X S €Ty
Ti — Ti—1
_ Ti+1 — T
pi(r) = ¢ AL 2 for z; <z < x4
Ti+1 — T4
L0 otherwise,




LT — Tpn—-1
— for Tn—1 S x S I,
LTn — Tn-1

bn(z) =

0 otherwise.

The graphs of ¢; are given in Fig. 3.1.

1¢0

Fig. 3.1 Graphs of piecewise linear functions ¢;.

Theorem 3.1[1]. The set {¢; : 1 <i <n — 1} is a basis for S}



For a systematic formulation, we define linear shape functions L; and Lo

on I; = [x;,x;y1] as follows:

Ti4+1 — X
L =" =
Ti+1 — T4
r — I
Lo= ————.
Ti+1 — T4

The graphs of L; and Lo are given in Fig. 3.2.

1§ L (x) L, (x)

X, X

I I+1

Fig. 3.2 Graphs of linear shape functions L; and Ls.

Theorem 3.2[1]. Every linear function defined on [%;,@i+1] can be ex-

pressed as a linear combination of Ly(z) and Ls(z).



3.2 Piecewise Quadratic Polynomial Spaces

Let 0 =29 < 21 < --- < x, = 7 be a uniform partition of [0, 7] and let

S% be the linear space of functions v such that

i) ve Y0,

i) v|[z, ;) is @ quadratic polynomial for i = 0,--- ,n — 1, and

iii) v(0) = v(mw) = 0.

Fori=0,1,--- ,n—1land j =1,2,--- ,n—1, we define piecewise quadratic

functions ¢; and v; on [0, 7] as follows:

B 4z~ T )z ~Ti-1) for ; <z <x;1

bu(x) = /g

0 otherwise,

([ (x'—x0)(22 — g — 1) W B < o<y

Yo(z) = (@1 = 70)*

0 otherwise,

(((x —x5-1)(22 — Tj=1 — ;)

(zj —xj-1)?

for Tj—1 S X S Xy

Pi(x) = @ = 2541) (22 — ) — j41)
(Tj41 — x5)?

for Xy S X S Tj4+1

0 otherwise,



— ZTp-1)22 —xp—1 —
(T — 2p—1)(22 — Ty — 2n) for xp,—1 <z <m,

() = (#n = 2n-1)”

0 otherwise.

The graphs of ¢; and v; are given in Fig. 3.3 and Fig. 3.4, respectively.

= 1

n—1 xn
xn
______________________________________________________________ ¢n—l
} } } |
Xo X| X -1 Xy

Fig. 3.3 Graphs of piecewise quadratic functions ¢;.



= 1

n-1 n

Fig. 3.4 Graphs of piecewise quadratic functions ;.

Theorem 3.3[1]. The set {¢;,1; :0<i<n-—1, 1<j<n-—1} isa basis

for S%.
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For a systematic formulation, we define quadratic shape functions @)1, @2,

and Q% on I; = [x;,x;y1] as follows:

(@ — 2it1) (22 — @ — Tiy)

@ = (xi — mip1) (22 — ;i — Tig1)’
0y = (x —x;)(2x — x; — Tit1)
(Tiv1 — 23)(2@ip1 — 2 — Tig1)’
Qs = A(r —x;)(x — Tig1)
2

(Tiv1 — x)?

The graphs of )1, Q2, and Q% are given in Fig. 3.5.

0, (x)

Fig. 3.5 Graphs of quadratic shape functions @)1, @2, and Q%.

Theorem 3.4[1]. Every quadratic function defined on [x;,z;y1] can be ex-
pressed as a linear combination of )1, ()2, and Q) 3.

11



4 Numerical Experiments

The scheme discussed in Section 2 is tested when e = 2.0, p(x) = —4sin z
on [0,7] and w = 0.36. Using ST or S% on the uniform partition of the size
h = w/n (n=>5,10,20,40,80), the approximations to the solution (¢, yn) of

(2.4) are obtained. The iteration is stopped when

max |¢p " (25) — ¢ ()| < TOL and max [yy™ () — yy(2:)| < TOL

where TOL = 10710,

We first compute approximate solution (¢p,yn) of (2.4) where the finite
element spaces of piecewise linear(quadratic) polynomials defined on the uni-
form partition of [0,7]. The convergence of the solution (¢, ys) to the so-
lution (¢,y) = (—sin x, —sin x) is shown numerically and the errors in Lo

norm are computed to show the optimality numerically.

4.1 Piecewise Linear Polynomial Spaces

In this subsection, we perform numerical experiments with S'. The plots
of y¥ and ¢F versus the iteration number k are given in Figs. 4.1(a)-(b),

respectively when n = 80.

12



80.

when n=

k
h

Fig. 4.1(a) Graph of y
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when n=80.

)

T

(

k
h

Fig. 4.1(b) Graph of ¢
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In Tables 4.1(a)-(b), we report the values of yn, ¢, y and ¢ for h = 7/n
(n = 5,10,20,40,80) and we know from Tables 4.1(a)-(b) that the values of yp,
and ¢y converge to ones of y and ¢, respectively as the grid size h converges
to 0. Computed errors in Ly norm, ||y —yn|| and ||¢ — ¢||, are given in Table
4.2 and the ratios of the computed errors in L, norm are given in Table 4.3.
From Table 4.3, the ratios of the computed errors in Ly norm converge to
4 as the grid size decreases by 1/2 of the previous size. We expect from
this fact that ||y — yn|| = O(h?) and ||¢ — ¢u]| = O(h?) which are optimal.

However, we have not proved these results analytically.

15



x h=n/5 | h=n/10 | h=n/20 | h=7/40 | h=n/80 |y(exact)
0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.3141 -0.3081 | -0.3088 | -0.3090 | -0.3090 | -0.3090
0.6283 -0.5795 | -0.5860 | -0.5874 | -0.5877 | -0.5878 | -0.5878
0.9424 -0.8066 | -0.8085 | -0.8089 | -0.8090 | -0.8090
1.2566 -0.9377 | -0.9482 | -0.9504 | -0.9509 | -0.9510 | -0.9511
1.5707 -0.9970 | -0.9993 | -0.9998 | -1.0000 | -1.0000
1.8849 -0.9377 | -0.9482 | -0.9504 | -0.9509 | -0.9510 | -0.9511
2.1991 -0.8066 | -0.8085 | -0.8089 | -0.8090 | -0.8090
2.5132 -0.5795 | -0.5860 | -0.5874 | -0.5877 | -0.5878 | -0.5878
2.8274 -0.3081 | -0.3088 | -0.3090 | -0.3090 | -0.3090
3.1415 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Number 30 29 29 29 29
of iterations
Table 4.1(a) The values of y, and y for h = w/n (n=>5,10,20,40,80).

x h=7/5 | h=n/10{ h=n/20 | h=n/40 | h=7/80 | p(exact)
0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.3141 -0.30585 | -0.3082 | -0.3088 | -0.3090 | -0.3090
0.6283 -0.5608 | -0.5812 | -0.5862 | -0.5874 | -0.5877 | -0.5878
0.9424 -0.8000" | -0.8068 | -0.8085 | -0.8089 | -0.8090
1.2566 -0.9075 | -0.9405 | -0:9484 | -0.9504 | -0.9509 | -0.9511
1.5707 -0.9889 | -0.9973 | -0.9993 | -0.9998 | -1.0000
1.8849 -0.9075 | -0.9405 | -0.9484 | -0.9504 | -0.9509 | -0.9511
2.1991 -0.8000 [*-0:8068 | -0.8085 | -0.8089 | -0.8090
2.5132 -0.5608 | -0.5812 | -0.5862 | -0.5874 | -0.5878 | -0.5977
2.8274 -0.3055 | -0.3082 | -0.3088 | -0.3090 | -0.3090
3.1415 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Number 30 29 29 29 29
of iterations

Table 4.1(b)

The values of ¢, and ¢ for h = 7 /n (n=>5,10,20,40,80).

16
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Fig. 4.2(a) Graphs of y, and y for h = 7/n (n=5,10,20,40,80).
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Fig. 4.2(b) Graphs of ¢; and ¢ for h = 7/n (n=>5,10,20,40,80).
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1y — ynll 16 — onll
h=r/5 0.06450729 0.10027529
h=r/10 | 0.02511690 0.01569763
h=r/20 | 0.00628213 0.00389806
h=n/40 | 0.00157071 0.00097287
h=r/80 | 0.00039269 0.00024311

Table 4.2 Error estimates of ||y — yn|| and ||¢ — on||
for h = w/n (n=>5,10,20,40,80).

||?J—?Jh||/”y—yh/2|| ||¢—¢h”/”¢—¢h/2||
h=m/5 2.568 6.387
h=7/10 3.998 4.027
h=m/20 3.999 4.006
h=m/40 3.999 4.001

Table 4.3 The ratios of ||y — ynl|/ly — yn/2ll and |[¢ = énl[/[|¢ — én 2|l

for h = 7/n (n=>5,10,20,40).

19




4.2 Piecewise Quadratic Polynomial Spaces

In this subsection, we also perform numerical experiments with S%. In
Tables 4.4(a) and (b), we report the values of yn, ¢y, y and ¢ for h = w/n
(n = 5,10,20,40,80) and we know from Tables 4.4(a) and (b) that the values
of yn and ¢ converge to ones of y and ¢, respectively as the grid size h
converges to 0. Computed errors in Lo norm, ||y — y|| and ||¢ — ¢nl|, are
given in Table 4.5 and the ratios of the computed errors in Ls norm are
given in Table 4.6. From Table 4.6, the ratios of the computed errors in Lo
norm converge to 8 as the grid size decreases by 1/2 of the previous size. We
expect from this fact that ||y —yn| = O(h?) and ||¢ — én|| = O(h?) which

are optimal. However, we have not proved these results analytically.

20



x h=n/5 | h=n/10 | h=n/20 | h=7/40 | h=n/80 |y(exact)
0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.3141 -0.3090 | -0.3090 | -0.3090 | -0.3090 | -0.3090
0.6283 -0.5879 | -0.5878 | -0.5878 | -0.5878 | -0.5878 | -0.5878
0.9424 -0.8090 | -0.8090 | -0.8090 | -0.8090 | -0.8090
1.2566 -0.9512 | -0.9511 | -0.9511 | -0.9511 | -0.9511 | -0.9511
1.5707 -1.0000 | -0.9993 | -0.9998 | -1.0000 | -1.0000
1.8849 -0.9512 | -0.9511 | -0.9511 | -0.9511 | -0.9511 | -0.9511
2.1991 -0.8090 | -0.8090 | -0.8090 | -0.8090 | -0.8090
2.5132 -0.5879 | -0.5878 | -0.5878 | -0.5878 | -0.5878 | -0.5878
2.8274 -0.3090 | -0.3090 | -0.3090 | -0.3090 | -0.3090
3.1415 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Number 29 29 29 29 29
of iterations
Table 4.4(a) The values of y, and y for h = 7w/n (n=>5,10,20,40,80).

x h=7/5 | h=n/10{ h=n/20 | h=n/40 | h=7/80 | p(exact)
0.0000 0.0000 | 0.0000 | 0.0000 { 0.0000 | 0.0000 | 0.0000
0.3141 -0.3090 | -0.3090 | -0.3090 | -0.3090 | -0.3090
0.6283 -0.5877 | -0.5878 | -0.5878 | -0.5878 | -0.5878 | -0.5878
0.9424 -0.8090" | -0.8090 | -0.8090 | -0.8089 | -0.8090
1.2566 -0.9510 | -0.9511 | -0.9511 | -0.9511 | -0.9511 | -0.9511
1.5707 -1.0000 | -1.0000 | -1.0000 | -1.0000 | -1.0000
1.8849 -0.9510 | -0.9511 | -0.9511 | -0.9511| -0.9511 | -0.9511
2.1991 -0.8090 [*-0:8090 | -0.8090 | -0.8090 | -0.8090
2.5132 -0.5877 | -0.5878 | -0.5878 | -0.5878 | -0.5978 | -0.5978
2.8274 -0.3090 | -0.3090 | -0.3098 | -0.3090 | -0.3090
3.1415 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Number 29 29 29 29 29
of iterations

Table 4.4(b)

The values of ¢, and ¢ for h = 7 /n (n=>5,10,20,40,80).
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Fig. 4.3(a) Graphs of y, and y for h = 7/n (n=5,10,20,40,80).
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Fig. 4.3(b) Graphs of ¢; and ¢ for h = 7/n (n=>5,10,20,40,80).
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1y — ynll 16 — onll
h=r/5 0.00197235 0.00195229
h=n/10 | 0.00024752 0.00024697
h=n/20 | 0.00003097 | 0.00003095
h=n/40 | 0.00000387 | 0.00000387
h=nx/80 | 0.00000048 0.00000048

Table 4.5 Error estimates for ||y — yn|| and ||¢ — ¢n|
of h = 7/n (n=>5,10,20,40,80).

ly = yrll/ Ny = Yn/2|l & = dnll/llé — dnsall
h=n/5 7.968 7.904
h=r/10 7.991 7.977
h=r /20 7.997 7.994
h=m/40 7.999 7.998

Table 4.6 The ratios of ||y — ynl|/ly — yn/2ll and |[¢ — énl[/|¢ = ¢p /2|l

of h = w/n (n=>5,10,20,40).
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