

Thesis for the Degree Master of Education

Inclusion Properties of Certain Classes of Analytic Functions Associated with a Multiplier Transformation

Graduate School of Education

Pukyong National University

August 2007

Inclusion Properties of Certain Classes of Analytic Functions Associated with a Multiplier Transformation (승수변환과 관련된 해석함수들의 족들에 대한 포함성질)

Advisor : Prof. Nak Eun Cho

by Kyung Jin Shin

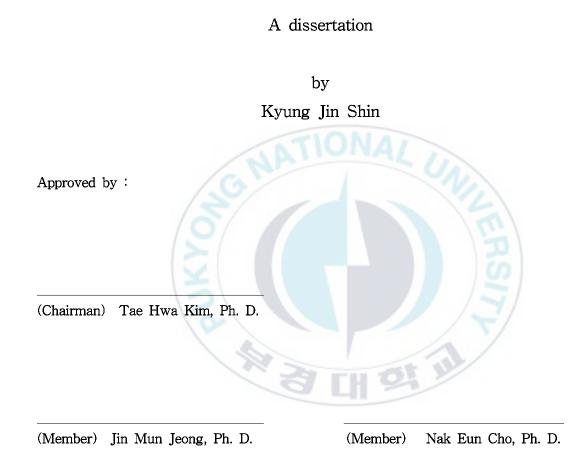
A thesis submitted in partial fulfillment of the requirement for the degree of

Master of Education

Graduate School of Education Pukyong National University

August 2007

Inclusion Properties of Certain Classes of Analytic Functions Associated with a Multiplier Transformation



August 30, 2007

CONTENTS

Abstract(Korean)	ii
1. Introduction ·····	1
2. Main Results	2
References	13
N SI CH SI II	

승수변환과 관련된 해석함수들의 족들에 대한 포함성질

신 경 진

부경대학교 교육대학원 수학교육전공

요 약

기하함수이론은 지금까지 많은 학자들에 의하여 다양하게 연구되어 왔다. 특히, Miller와 Mocanu[7]은 미분종속이른을 소개하여 해석함수들의 여러 기하학적 성질들을 조사하였다.

본 논문에서는 Flett[3]에 의하여 정의된 승수변환과 밀접한 관련이 있고 Salagean[11]과 Uralegaddi와 Somanatha[15]에 의하여 소개된 연산자들을 확장한 새로운 승수변환을 소개하며 Miller와 Mocanu[7]에 의하여 연구된 미분 종속이론을 응용하여 해 석함수들의 부분족에 대한 포함관계를 조사하였다.

또한, Nunokawa[10]의 결과를 응용하여 close-to-convex 함수들의 편각추정을 하였으 며, sector상에서 적분보존성질들을 조사하여 기존에 알려진 여러 결과들을 발전시켰다.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the open unit disk $\mathbb{U} = \{z : |z| < 1\}$. If f and g are analytic in \mathbb{U} , we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function w in \mathbb{U} such that f(z) = g(w(z)). We denote by $\mathcal{S}^*(\eta)$ and $\mathcal{K}(\eta)$ the subclasses of \mathcal{A} consisting of all analytic functions which are, respectively, starlike and convex of order $\eta(0 \le \eta < 1)$ in \mathbb{U} (see, e.g., Srivastava and Owa [14]).

For all real numbers t, we define the multiplier transformations I_{λ}^{t} of functions $f \in \mathcal{A}$ by

$$I_{\lambda}^{t}f(z) = z + \sum_{k=2}^{\infty} \left(\frac{k+\lambda}{1+\lambda}\right)^{t} a_{k} z^{k} \quad (\lambda \ge 0).$$
(1.1)

F 14

Obviously, we have

$$I^t_{\lambda}(I^s_{\lambda}f(z)) = I^{t+s}_{\lambda}f(z)$$

for all real numbers s and t. For $\lambda = 1$ and nonpositive real number t, the operators I_{λ}^{t} were studied by Uralegaddi and Somanatha [15]. Also, the operators I_{λ}^{t} are closely related to the multiplier transformations studied by Flett [3] and the differential and integral operators defined by Salagean [11].

$$\mathcal{S}_{t,\lambda}[A,B] = \left\{ f \in \mathcal{A} : \frac{z(I_{\lambda}^t f(z))'}{I_{\lambda}^t f(z)} \prec \frac{1+Az}{1+Bz} \quad (z \in \mathbb{U} \ ; \ -1 \le B < A \le 1) \right\}$$

The class $S_{0,0}[A, B]$ was studied by Janowski [4] and (more recently) by Silverman and Silvia [13]. In particular, we note that $S_{0,0}[1-2\eta, -1] = S^*(\eta)$ and $S_{1,0}[1-2\eta, -1] = \mathcal{K}(\eta)$.

Following Silverman and Silvia [12], for a function $f \in \mathcal{S}_{t,\lambda}[A, B]$, we have

$$\left|\frac{z(I_{\lambda}^{t}f(z))'}{I_{\lambda}^{t}f(z)} - \frac{1 - AB}{1 - B^{2}}\right| < \frac{A - B}{1 - B^{2}} \qquad (z \in \mathbb{U} \ ; \ B \neq -1)$$
(1.2)

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

2

and

$$\operatorname{Re}\left\{\frac{z(I_{\lambda}^{t}f(z))'}{I_{\lambda}^{t}f(z)}\right\} > \frac{1-A}{2} \qquad (z \in \mathbb{U} \ ; \ B = -1).$$
(1.3)

Note that

$$S_{0,0}[A,-1] = S^*\left(\frac{1-A}{2}\right).$$

For any real number t, let $\mathcal{C}_{t,\lambda}(\gamma, A, B)$ be the class of functions $f \in \mathcal{A}$ satisfying the condition

$$\operatorname{Re}\left\{\frac{z(I_{\lambda}^{t}f(z))'}{I_{\lambda}^{t}g(z)}\right\} > \gamma \qquad (0 \le \gamma < 1 \ ; \ z \in \mathbb{U})$$

for some $g \in S_{t,\lambda}[A, B]$. We note that $C_{0,0}(\gamma, 1-2\eta, -1)$ and $C_{1,0}(\gamma, 1-2\eta, -1)$ are the classes of close-to-convex and quasi-convex functions of order γ and type η , respectively, studied by Silverman [12] and Noor [9].

In the present paper, we give some argument properties of analytic functions belonging to \mathcal{A} which contain the basic inclusion relationship among the classes $C_{t,\lambda}(\gamma, A, B)$. The integral preserving properties in connection with the operator I_{λ}^{t} defined by (1.1) are also considered. Furthermore, we obtain the previous results by Bernardi [1], Libera [6], Noor [8], Noor and Alkhorasani [9], and Nunokawa et al. [10] as special cases.

2. Main Results

In proving our main results, we need the following lemmas.

Lemma 2.1 [2]. Let h be convex univalent in \mathbb{U} with h(0) = 1 and Re $(\beta h(z) + \gamma) > 0 (\beta, \gamma \in \mathbb{C})$. If p is analytic in \mathbb{U} with p(0) = 1, then

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z) \quad (z \in \mathbb{U})$$

implies

$$p(z) \prec h(z) \quad (z \in \mathbb{U}).$$

Lemma 2.2 [7]. Let h be convex univalent in \mathbb{U} and ω be analytic in \mathbb{U} with Re $\omega(z) \geq 0$. If p is analytic in \mathbb{U} and p(0) = h(0), then

$$p(z) + \omega(z)zp'(z) \prec h(z) \quad (z \in \mathbb{U})$$

implies

$$p(z) \prec h(z) \quad (z \in \mathbb{U}).$$

Lemma 2.3 [10]. Let p be analytic in \mathbb{U} with p(0) = 1 and $p(z) \neq 0$ in \mathbb{U} . If there exist two points $z_1, z_2 \in \mathbb{U}$ such that

$$-\frac{\pi}{2}\alpha_1 = \arg p(z_1) < \arg p(z) < \arg p(z_2) = \frac{\pi}{2}\alpha_2$$
 (2.1)

for some $\alpha_1, \alpha_2(\alpha_1, \alpha_2 > 0)$ and for all $z(|z| < |z_1| = |z_2|)$, then we have

$$\frac{z_1 p'(z_1)}{p(z_1)} = -i \frac{\alpha_1 + \alpha_2}{2} m \quad and \quad \frac{z_2 p'(z_2)}{p(z_2)} = i \frac{\alpha_1 + \alpha_2}{2} m, \qquad (2.2)$$

where

$$m \ge \frac{1-|a|}{1+|a|} \quad and \quad a = i \tan \frac{\pi}{4} \left(\frac{\alpha_2 - \alpha_1}{\alpha_1 + \alpha_2} \right). \tag{2.3}$$

At first, with the help of Lemma 2.1, we obtain the following **Proposition 2.1.** If $f \in S_{t+1,\lambda}[A, B]$, then $f \in S_{t,\lambda}[A, B]$. *Proof.* Let $f \in S_{t+1,\lambda}[A, B]$. Then we set

$$p(z) = \frac{z(I_{\lambda}^t f(z))'}{I_{\lambda}^t f(z)},$$

where p is analytic in \mathbb{U} with p(0) = 1. By using the equation

$$z(I_{\lambda}^{t}f(z))' = (\lambda+1)I_{\lambda}^{t+1}f(z) - \lambda I_{\lambda}^{t}f(z), \qquad (2.4)$$

we get

$$p(z) + \lambda = (\lambda + 1) \frac{I_{\lambda}^{t+1} f(z)}{I_{\lambda}^{t} f(z)}.$$
(2.5)

Taking logarithmic derivatives in both sides of (2.5) and multiplying by z, we have

$$\frac{z(I_{\lambda}^{t+1}f(z))'}{I_{\lambda}^{t+1}f(z)} = p(z) + \frac{zp'(z)}{p(z) + \lambda} \quad (z \in \mathbb{U}).$$

Applying Lemma 2.1, it follows that

$$p(z) \prec \frac{1+Az}{1+Bz} \ (z \in \mathbb{U}),$$

which means that $f \in \mathcal{S}_{t,\lambda}[A, B]$.

Proposition 2.2. Let F be the integral operator defined by

$$F_c(f) := F_c(f)(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt \quad (c \ge 0).$$
(2.6)

If $f \in S_{t,\lambda}[A, B]$, then $F_c(f) \in S_{t,\lambda}[A, B]$.

Proof. From (2.6), we have

$$z(I_{\lambda}^{t}F_{c}(f)(z))' = (c+1)I_{\lambda}^{t}f(z) - cI_{\lambda}^{t}F_{c}(f)(z).$$
(2.7)

Let $f \in \mathcal{S}_{t,\lambda}[A, B]$. Then we set

$$p(z) = \frac{z(I_{\lambda}^t F_c(f)(z))'}{I_{\lambda}^t F_c(f)(z)},$$

where p is analytic in \mathbb{U} with p(0) = 1. Then, by using (2.7), we get

$$p(z) + c = (c+1) \frac{I_{\lambda}^{t} f(z)}{I_{\lambda}^{t} F_{c}(f)(z)}.$$
(2.8)

Taking logarithmic derivatives in both sides of (2.8) and multiplying by z, we have

$$\frac{z(I_{\lambda}^{t}f(z))'}{I_{\lambda}^{t}f(z)} = p(z) + \frac{zp'(z)}{p(z)+c} \quad (z \in \mathbb{U}).$$

Therefore, by Lemma 2.1, we have that $F_c(f) \in \mathcal{S}_{t,\lambda}[A, B]$.

Now, we derive

Theorem 2.1. Let $f \in \mathcal{A}$ and $0 < \delta_1, \delta_2 \leq 1, 0 \leq \gamma < 1$. If

$$-\frac{\pi}{2}\delta_1 < \arg\left(\frac{z(I_{\lambda}^{t+1}f(z))'}{I_{\lambda}^{t+1}g(z)} - \gamma\right) < \frac{\pi}{2}\delta_2$$

for some $g \in S_{t+1,\lambda}[A, B]$, then

$$-\frac{\pi}{2}\alpha_1 < \arg\left(\frac{z(I_{\lambda}^t f(z))'}{I_{\lambda}^t g(z)} - \gamma\right) < \frac{\pi}{2}\alpha_2,$$

where α_1 and $\alpha_2(0 < \alpha_1, \alpha_2 \le 1)$ are the solutions of the equations :

$$\delta_{1} = \begin{cases} \alpha_{1} + \frac{2}{\pi} \tan^{-1} \left(\frac{(\alpha_{1} + \alpha_{2})(1 - |a|) \cos \frac{\pi}{2}t_{1}}{2\left(\frac{1 + A}{1 + B} + \lambda\right)(1 + |a|) + (\alpha_{1} + \alpha_{2})(1 - |a|) \sin \frac{\pi}{2}t_{1}} \right) & \text{for } B \neq -1, \\ \alpha_{1} & \text{for } B = -1, \\ (2.9) \end{cases}$$

and

$$\delta_{2} = \begin{cases} \alpha_{2} + \frac{2}{\pi} \tan^{-1} \left(\frac{(\alpha_{1} + \alpha_{2})(1 - |a|) \cos \frac{\pi}{2} t_{1}}{2(\frac{1 + A}{1 + B} + \lambda)(1 + |a|) + (\alpha_{1} + \alpha_{2})(1 - |a|) \sin \frac{\pi}{2} t_{1}} \right) & \text{for } B \neq -1, \\ \alpha_{2} & \text{for } B = -1, \\ (2.10) \end{cases}$$

when a is given by (2.3) and

$$t_1 = \frac{2}{\pi} \sin^{-1} \left(\frac{A - B}{1 - AB + \lambda(1 - B^2)} \right).$$
(2.11)

Proof. Let

$$p(z) = \frac{1}{1 - \gamma} \left(\frac{z(I_{\lambda}^t f(z))'}{I_{\lambda}^t g(z)} - \gamma \right).$$

Using (2.4) and simplifying, we have

$$(1-\gamma)I_{\lambda}^{t}g(z)p(z) + \lambda I_{\lambda}^{t}f(z) = (\lambda+1)I_{\lambda}^{t+1}f(z) - \gamma I_{\lambda}^{t}g(z).$$
(2.12)

Differentiating (2.12) and multiplying by z, we obtain

$$(1 - \gamma)(I_{\lambda}^{t}g(z)zp'(z) + z(I_{\lambda}^{t}g(z))'p(z)) + \lambda z(I_{\lambda}^{t}f(z))'$$

$$= (\lambda + 1)z(I_{\lambda}^{t+1}f(z))' - \gamma z(I_{\lambda}^{t}g(z))'.$$
(2.13)

Since $g \in S_{t+1,\lambda}[A, B]$, by Proposition 2.1, we know that $g \in S_{t,\lambda}[A, B]$. Let

$$q(z) = \frac{z(I_{\lambda}^{t}g(z))'}{I_{\lambda}^{t}g(z)}.$$

Then, using (2.4) once again, we have

$$q(z) + \lambda = (\lambda + 1) \frac{I_{\lambda}^{t+1}g(z)}{I_{\lambda}^{t}g(z)}.$$
(2.14)

From (2.13) and (2.14), we obtain

$$\frac{1}{1-\gamma} \left(\frac{z(I_{\lambda}^{t+1}f(z))'}{I_{\lambda}^{t+1}g(z)} - \gamma \right) = p(z) + \frac{zp'(z)}{q(z) + \lambda}$$

Then, by using (1.2) and (1.3), we have

$$q(z) + \lambda = \rho e^{i\frac{\pi\phi}{2}},$$

where

$$\begin{cases} \frac{1-A}{1-B} + \lambda < \rho < \frac{1+A}{1+B} + \lambda \\ -t_1 < \phi < t_1 \text{ for } B \neq -1, \end{cases}$$

when t_1 is given by (2.11), and

$$\begin{cases} \frac{1-A}{2} + \lambda < \rho < \infty \\ -1 < \phi < 1 \text{ for } B = -1 \end{cases}$$

Here, we note that p is analytic in \mathbb{U} with p(0) = 1 and Re p(z) > 0 in \mathbb{U} by applying the assumption and Lemma 2.2 with $\omega(z) = 1/(q(z) + \lambda)$. Hence $p(z) \neq 0$ in \mathbb{U} .

If there exist two points $z_1, z_2 \in \mathbb{U}$ such that the condition (2.1) is satisfied, then (by Lemma 2.3) we obtain (2.2) under the restriction (2.3). At first, for the case $B \neq -1$, we obtain

$$\arg \left(p(z_1) + \frac{z_1 p'(z_1)}{q(z_1) + \lambda} \right)$$

$$= -\frac{\pi}{2} \alpha_1 + \arg \left(1 - i \frac{\alpha_1 + \alpha_2}{2} m(\rho e^{i \frac{\pi \phi}{2}})^{-1} \right)$$

$$\le -\frac{\pi}{2} \alpha_1 - \tan^{-1} \left(\frac{(\alpha_1 + \alpha_2) m \sin \frac{\pi}{2} (1 - \phi)}{2\rho + (\alpha_1 + \alpha_2) m \cos \frac{\pi}{2} (1 - \phi)} \right)$$

$$\le -\frac{\pi}{2} \alpha_1 - \tan^{-1} \left(\frac{(\alpha_1 + \alpha_2) (1 - |a|) \cos \frac{\pi}{2} t_1}{2 \left(\frac{1 + A}{1 + B} + \lambda \right) (1 + |a|) + (\alpha_1 + \alpha_2) (1 - |a|) \sin \frac{\pi}{2} t_1} \right)$$

$$= -\frac{\pi}{2} \delta_1,$$

and

$$\arg \left(p(z_2) + \frac{z_2 p'(z_2)}{q(z_2) + \lambda} \right)$$

$$\geq \frac{\pi}{2} \alpha_2 + \tan^{-1} \left(\frac{(\alpha_1 + \alpha_2)(1 - |a|) \cos \frac{\pi}{2} t_1}{2\left(\frac{1+A}{1+B} + \lambda\right)(1 + |a|) + (\alpha_1 + \alpha_2)(1 - |a|) \sin \frac{\pi}{2} t_1} \right)$$

$$= \frac{\pi}{2} \delta_2,$$

where we have used the inequality (2.3), and δ_1 , δ_2 and t_1 are given by (2.9), (2.10) and (2.11), respectively. Similarly, for the case B = -1, we have

$$\arg\left(p(z_1) + \frac{z_1 p'(z_1)}{q(z_1) + \lambda}\right) \leq -\frac{\pi}{2}\alpha_1.$$

and

$$\arg\left(p(z_2) + \frac{z_1 p'(z_2)}{q(z_2) + \lambda}\right) \geq \frac{\pi}{2}\alpha_2.$$

These are contradiction to the assumption of Theorem 2.1. Therefore we complete the proof of Theorem 2.1.

If we let $\delta_1 = \delta_2$ in Theorem 2.1, then we see easily the following

Corollary 2.1. The inclusion relation, $C_{t+1,\lambda}(\gamma, A, B) \subset C_{t,\lambda}(\gamma, A, B)$, holds for any real number t.

Taking $t = \lambda = 0$ and $\delta_1 = \delta_2$ in Theorem 2.1, we have

Corollary 2.2. Let $f \in A$. If

$$\left|\arg\left(\frac{(zf'(z))'}{g'(z)} - \gamma\right)\right| < \frac{\pi}{2}\delta \ (0 \le \gamma < 1; \ 0 < \delta \le 1)$$

for some $g \in \mathcal{A}$ satisfying the condition :

$$1 + \frac{zg''(z)}{g'(z)} \prec \frac{1+Az}{1+Bz} \ (-1 \le B < A \le 1),$$

then

$$\arg \left(\frac{zf'(z)}{g(z)} - \gamma \right) \bigg| < \frac{\pi}{2} \alpha,$$

where $\alpha(0 < \alpha \leq 1)$ is the solution of the equation :

$$\delta = \begin{cases} \alpha + \frac{2}{\pi} \tan^{-1} \left(\frac{\alpha(1+B)(1-AB)\cos\left(\sin^{-1}\left(\frac{A-B}{1-AB}\right)\right)}{(1+A)(1-AB)+\alpha(A-B)(1+B)} \right) & \text{for } B \neq -1, \\ \alpha & \text{for } B = -1. \end{cases}$$

Remark 2.1. (i). Since $C_{0,\lambda}(\gamma, A, B)$ is a subclass of close-to-convex functions [5], we know from Corollary 2.1 that all functions belonging to the class $C_{t,\lambda}(\gamma, A, B)$ for any nonnegative integer t are univalent.

(ii). If we put $A = 1 - 2\eta$, B = -1 and $\delta = 1$ in Corollary 2.2, then we see that every quasi-convex function of order γ and type η is close-to-convex function of order γ and type η , which covers the result obtained by Noor[8].

Using the same method as in the proof of Theorem 2.1, we have

Theorem 2.2. Let $f \in \mathcal{A}$ and $0 < \delta_1, \ \delta_2 \leq 1, \ \gamma > 1$. If

$$-\frac{\pi}{2}\delta_1 < \arg\left(\gamma - \frac{z(I_{\lambda}^{t+1}f(z))'}{I_{\lambda}^{t+1}g(z)}\right) < \frac{\pi}{2}\delta_2$$

for some $g \in S_{t+1,\lambda}[A, B]$, then

$$-\frac{\pi}{2}\alpha_1 < \arg\left(\gamma - \frac{z(I_{\lambda}^t f(z))'}{I_{\lambda}^t g(z)}\right) < \frac{\pi}{2}\alpha_2.$$

where α_1 and $\alpha_2(0 < \alpha_1, \alpha_2 \le 1)$ are the solutions of the equations (2.9) and (2.10).

Next, we prove

Theorem 2.3. Let $f \in \mathcal{A}$ and $0 < \delta_1, \ \delta_2 \leq 1, \ 0 \leq \gamma < 1$. If

$$-\frac{\pi}{2}\delta_1 < \arg\left(\frac{z(I_{\lambda}^t f(z))'}{I_{\lambda}^t g(z)} - \gamma\right) < \frac{\pi}{2}\delta_2$$

for some $g \in S_{t,\lambda}[A, B]$, then

$$-\frac{\pi}{2}\alpha_1 < \arg\left(\frac{z(I_{\lambda}^t F_c(f)(z))'}{I_{\lambda}^t F_c(g)(z)} - \gamma\right) < \frac{\pi}{2}\alpha_2$$

where F_c is defined by (2.6), and α_1 and $\alpha_2(0 < \alpha_1, \alpha_2 \leq 1)$ are the solutions of the equations :

$$\delta_1 = \begin{cases} \alpha_1 + \frac{2}{\pi} \tan^{-1} \left(\frac{(\alpha_1 + \alpha_2)(1 - |a|) \cos \frac{\pi}{2} t_2}{2\left(\frac{1 + A}{1 + B} + c\right)(1 + |a|) + (\alpha_1 + \alpha_2)(1 - |a|) \sin \frac{\pi}{2} t_2} \right) & \text{for } B \neq -1, \\ \alpha_1 & \text{for } B = -1, \end{cases}$$

ana

$$\delta_2 = \begin{cases} \alpha_2 + \frac{2}{\pi} \tan^{-1} \left(\frac{(\alpha_1 + \alpha_2)(1 - |a|) \cos \frac{\pi}{2} t_2}{2\left(\frac{1 + A}{1 + B} + c\right)(1 + |a|) + (\alpha_1 + \alpha_2)(1 - |a|) \sin \frac{\pi}{2} t_2} \right) & \text{for } B \neq -1, \\ \alpha_2 & \text{for } B = -1, \end{cases}$$

when a is given by (2.3) and t_2 is t_1 given by (2.11) with $\lambda = c$.

Proof. Let

$$p(z) = \frac{1}{1 - \gamma} \left(\frac{z (I_{\lambda}^t F_c(f)(z))'}{I_{\lambda}^t F_c(g)(z)} - \gamma \right).$$

Since $g \in \mathcal{S}_{t,\lambda}[A, B]$, we have from Proposition 2.2 that $F_c(g) \in \mathcal{S}_{t,\lambda}[A, B]$. Using (2.7) we have

$$(1-\gamma)I_{\lambda}^{t}F_{c}(g)(z)p(z) + cI_{\lambda}^{t}F_{c}(f)(z) = (c+1)I_{\lambda}^{t}f(z) - \gamma I_{\lambda}^{t}F_{c}(g)(z)$$

Then, by a simple calculation, we get

$$(1-\gamma)(p(z)(q(z)+c)+zp'(z)) = (c+1)\frac{z(I_{\lambda}^{t}f(z))'}{I_{\lambda}^{t}F_{c}(g)(z)} - \gamma(c+q(z)),$$

where

$$q(z) = \frac{z(I_{\lambda}^t F_c(g)(z))'}{I_{\lambda}^t F_c(g)(z)}$$

Hence we have

$$\frac{1}{1-\gamma} \left(\frac{z(I_{\lambda}^t f(z))'}{I_{\lambda}^t g(z)} - \gamma \right) = p(z) + \frac{zp'(z)}{q(z)+c}$$

The remaining part of the proof in Theorem 2.3 is similar to that of Theorem 2.1 and so we omit it.

Taking $\delta_1 = \delta_2$ in Theorem 2.3, we have

Corollary 2.3. Let
$$f \in \mathcal{A}$$
 and $0 \leq \gamma < 1, 0 < \delta \leq 1$. If
 $\left| \arg \left(\frac{z(I_{\lambda}^{t}f(z))'}{I_{\lambda}^{t}g(z)} - \gamma \right) \right| < \frac{\pi}{2} \delta$

for some $g \in S_{t,\lambda}[A, B]$, then

$$\left| \arg \left(\frac{z(I_{\lambda}^{t}F_{c}(f)(z))'}{I_{\lambda}^{t}F_{c}(g)(z)} - \gamma \right) \right| < \frac{\pi}{2} \alpha$$

where F_c is defined by (2.6), and $\alpha(0 < \alpha \le 1)$ is the solution of the equation :

$$\delta = \begin{cases} \alpha + \frac{2}{\pi} \tan^{-1} \left(\frac{\alpha \cos \frac{\pi}{2} t_2}{\left(\frac{1+A}{1+B} + c\right) + \alpha \sin \frac{\pi}{2} t_2} \right) & \text{for } B \neq -1, \\ \alpha & \text{for } B = -1, \end{cases}$$

when t_2 is t_1 given by (2.11) with $\lambda = c$.

From Corollary 2.3, we have the following

Corollary 2.4 Let $f \in C_{t,\lambda}(\gamma, A, B)$. Then $F_c(f) \in C_{t,\lambda}(\gamma, A, B)$, where F_c is the integral operator defined by (2.6).

Remark 2.2. If we take t = 0 and t = 1 with $\lambda = 0$, $A = 1 - 2\eta (0 \le \eta < 1)$ and B = -1 in Corollary 2.4, respectively, then we have the corresponding results obtained by Noor and Alkhorasani [9]. Furthermore, taking $t = \lambda = \gamma = 0$, A = 1 and B = -1 in Corollary 2.4, we obtain the classical result by Bernardi [1], which implies the result studied by Libera [6].

Finally, we prove the following theorems below applying Lemma 2.3.

Theorem 2.4. Let $f \in \mathcal{A}$ and $0 < \delta_1, \ \delta_2 \leq 1$. If

$$-\frac{\pi}{2}\delta_1 < \arg \frac{I_{\lambda}^{t+1}f(z)}{z} < \frac{\pi}{2}\delta_2,$$

then

$$-\frac{\pi}{2}\alpha_1 < \arg \frac{I_{\lambda}^t f(z)}{z} < \frac{\pi}{2}\alpha_2.$$

where α_1 and $\alpha_2(0 < \alpha_1, \alpha_2 \le 1)$ are the solutions of the equations :

$$\delta_1 = \alpha_1 + \frac{2}{\pi} \tan^{-1} \frac{(\alpha_1 + \alpha_2)(1 - |a|)}{2(1 + |a|)(1 + \lambda)} \quad and \quad \delta_2 = \alpha_2 + \frac{2}{\pi} \tan^{-1} \frac{(\alpha_1 + \alpha_2)(1 - |a|)}{2(1 + |a|)(1 + \lambda)}$$

when a is given by (2.3).

Proof. Let

$$p(z) = \frac{I_{\lambda}^t f(z)}{z}.$$

Using (2.4), we have

$$\frac{I_{\lambda}^{t+1}f(z)}{z} = p(z) + \frac{1}{1+\lambda}zp'(z).$$

Suppose that there exist two points $z_1, z_2 \in \mathbb{U}$ such that the condition (2.1) holds. Then (by Lemma 2.3) we get (2.2) with the condition (2.3). Then we have

$$\arg \frac{I_{\lambda}^{t+1}f(z_{1})}{z_{1}} = \arg \left(p(z_{1}) + \frac{1}{1+\lambda}z_{1}p'(z_{1}) \right)$$
$$= \arg p(z_{1}) + \arg \left(1 - i\frac{\alpha_{1} + \alpha_{2}}{2(1+\lambda)}m \right)$$
$$\leq -\frac{\pi}{2}\alpha_{1} - \tan^{-1} \left(\frac{(\alpha_{1} + \alpha_{2})(1-|a|)}{2(1+|a|)(1+\lambda)} \right)$$
$$= -\frac{\pi}{2}\delta_{1}.$$

and

$$\arg \frac{I_{\lambda}^{t+1}f(z_2)}{z_2} = \arg \left(p(z_2) + \frac{1}{1+\lambda}z_2p'(z_2)\right)$$
$$= \arg p(z_2) + \arg \left(1 + i\frac{\alpha_1 + \alpha_2}{2(1+\lambda)}m\right)$$
$$\geq \frac{\pi}{2}\alpha_2 + \tan^{-1}\left(\frac{(\alpha_1 + \alpha_2)(1-|a|)}{2(1+|a|)(1+\lambda)}\right)$$
$$= \frac{\pi}{2}\delta_2,$$

which contradict the conditions. Therefore we complete the proof of Theorem 2.4.

Remark 2.3. Letting t = 0 and $\lambda = 0$ in Theorem 2.4, we have the corresponding result obtained by Nunokawa et al. [10].

Theorem 2.5. Let $f \in \mathcal{A}$ and $0 < \delta_1, \delta_2 \leq 1$. If $-\frac{\pi}{2}\delta_1 < \arg \frac{I_{\lambda}^t f(z)}{z} < \frac{\pi}{2}\delta_2,$

then

$$-\frac{\pi}{2}\alpha_1 < \arg \frac{I_{\lambda}^t F(z)}{z} < \frac{\pi}{2}\alpha_2,$$

where F is defined by (2.6), and α_1 and $\alpha_2(0 < \alpha_1, \alpha_2 \le 1)$ are the solutions of the equations :

$$\delta_1 = \alpha_1 + \frac{2}{\pi} \tan^{-1} \frac{(\alpha_1 + \alpha_2)(1 - |a|)}{2(1 + |a|)(1 + c)} \text{ and } \delta_2 = \alpha_2 + \frac{2}{\pi} \tan^{-1} \frac{(\alpha_1 + \alpha_2)(1 - |a|)}{2(1 + |a|)(1 + c)}$$

when a is given by (2.3).

Proof. Letting

$$p(z) = \frac{I_{\lambda}^t F(z)}{z},$$

we have

$$\frac{I_{\lambda}^t f(z)}{z} = p(z) + \frac{1}{c+1} z p'(z).$$

Therefore, applying the same method as in the proof of Theorem 2.4, we have Theorem 2.5.

References

- S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 35(1969), 429-446.
- P. Eenigenberg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet Differential subordination, General Inequalities, 3(1983) (Birkhauser Verlag-Basel), 339-348.
- T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38(1972), 746-765.
- W. Janowski, Some extremal problems for certain families of analytic functions, Bull. Acad. Polon. Sci. Sér. Sci. Phys. Astronom., 21(1973), 17-25.
- W. Kalplan, Close-to-convex schlicht functions, Michigan Math. J., 1(1952), 169-185.
- R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16(1965), 755-758.
- S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28(1981), 157-171.
- K. I. Noor, On quasi-convex functions and related topics, Internat. J. Math. Math. Sci., 10(1987), 241-258.
- K. I. Noor and H. A. Alkhorasani, Properties of close-to-convexity preserved by some integral operators, J. Math. Anal. Appl., 112(1985), 509-516.
- 10. M. Nunokawa, S. Owa, H. Saitoh, N. E. Cho and N. Takahashi, Some properties of analytic functions at extremal points for arguments, preprint.

- G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. Springer-Verlag, 1013(1983), 362-372.
- H. Silverman, On a class of close-to-convex schlicht functions, Proc. Amer. Math. Soc., 36(1972), 477-484.
- H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Can. J. Math., 37(1985), 48-61.
- 14. H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.
- B. A. Uralegaddi and C. Somanatha, *Certain classes of univalent func*tions, Current Topics in Analytic Function Theory (Eds. H. M. Srivastava and S. Owa), World Scientific publishing company Singapore, New Jersey, London, and Hong Kong, 371-374(1992).

