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1. Introduction

Let A denote the class of functions of the form

f(z) =2+ Zakzk
k=2

which are analytic in the open unit disk U = {z : |z| < 1}. If f and g are
analytic in U, we say that f is subordinate to g, written f < g or f(2) < g(2),
if there exists a Schwarz function w in U such that f(z) = g(w(z)). We denote
by §*(n) and K(n) the subclasses of A consisting of all analytic functions
which are, respectively, starlike and convex of order (0 < n < 1) in U (see,
e.g., Srivastava and Owa [14]).

For all real numbers ¢, we define the multiplier transformations I} of
functions f € A by

0 t
ILf(2) =2 + Z (m) arpz® (A >0). (1.1)
Obviously, we have

LIRf(2) = LT f(2)

for all real numbers s and t. For A = 1 and nonpositive real number ¢,

the operators I} were studied by Uralegaddi and Somanatha [15]. Also, the

operators I} are closely related to the multiplier transformations studied by

Flett [3] and the differential and integral operators defined by Salagean [11].
Let

SialA B]:{fEA: 2(I3f(2)) < T+Az

. 1<B<A<1
Iif(z) 1+ B» (z€U; -1 B<A< )}

The class Sp,0[A, B] was studied by Janowski [4] and (more recently) by
Silverman and Silvia [13]. In particular, we note that Sy o[l — 21, —1] =
S*(n) and S1 o[l — 21, —1] = K(n).

Following Silverman and Silvia [12], for a function f € S; z[A, B], we have

AILf(z)) 1-AB| A-B
Iifiz) 1-B2| ~ 1-B2

(z€U; B+#-1) (1.2)
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nd (Lf()) _1-4
z z —
Re{ Igf(z) }> 5 (€U ; B=-1). (1.3)
Note that 1_ 4
Soold,—1] =S* (%)

For any real number ¢, let C; (7, A, B) be the class of functions f € A
satisfying the condition

S LR
i { I$g(z)

for some g € S;.A[A, B]. We note that Cy o(y,1—2n, —1) and Cy o(y,1—2n, —1)
are the classes of close-to-convex and quasi-convex functions of order v and
type n, respectively, studied by Silverman [12] and Noor [9].

In the present paper, we give some argument properties of analytic func-
tions belonging to A which contain the basic inclusion relationship among
the classes Cy (7, A, B). ~The integral preserving properties in connection
with the operator It defined by (1.1) are also considered. Furthermore, we
obtain the previous results by Bernardi [1], Libera [6], Noor [8], Noor and
Alkhorasani [9], and Nunokawa et al. [10] as special cases.

}>’y 0<~y<1;2€e0)

2. Main Results

In proving our main results, we need the following lemmas.
Lemma 2.1 [2]. Let h be conver univalent in U with £(0) =1 and Re
(Bh(z) +v) > 0(8,~ € C). If p_is analytic in U with p(0) =1, then

zp'(2) A (s
p(2) + Bo(2) 17 <h(z) (2€0)

implies

p(z) < h(z) (z€0).

Lemma 2.2 [7]. Let h be convex univalent in U and w be analytic in U
with Re w(z) > 0. If p is analytic in U and p(0) = h(0), then



p(2) +w(2)zp'(z) < h(z) (2 € U)
implies

p(z) < h(z) (z€0).

Lemma 2.3 [10]. Let p be analytic in U with p(0) =1 and p(z) # 0 in
U. If there exist two points z1,2z9 € U such that

™ ™
50 = argp(z1) < argp(z) < argp(zz) = 502 (2.1)
for some a1, as(ar, a0 > 0) and for all z(|z| < |z1] = |22|), then we have
/ /
z1p'(=1) _ ;> + og—L"wr A C¥ (22) . + a2 m, (2.2)
p(z1) 2 p(22) 2
where
1—|al . T g —
m > and a = itan — . (2.3)
1+ |al 4 \aq + as

At first, with the help of Lemma 2.1, we obtain the following
Proposition 2.1. If f € S;11.0[A4, B, then f € S A\[A, B].
Proof. Let f € Si41.[A, B]. Then we set

(I3 f(2))

p(z) = Iz

where p is analytic in U with p(0) = 1. By using the equation
A5 f(2) = N+ DI f(2) = ML f(2), (2.4)

we get
_ L f(2)
p(z) +A=(A+1) ) (2.5)
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Taking logarithmic derivatives in both sides of (2.5) and multiplying by z,

we have
ALY @)
Lf(2) p(z) + A

Applying Lemma 2.1, it follows that

(z € U).

1+ Az
1+ Bz

p(z) < (z € ),

which means that f € S \[A4, B].

Proposition 2.2. Let I be the integral operator defined by

c+1
ZC

/ Celfmdt (e > 0). (2.6)
0

If f € SealA, B], then F.(f) € Si.alA, B].
Proof. From (2.6), we have

AL F()2)) = (c+#NIf(2) —el Fo(f)(2)- (2.7)

Let f € S;a[A, B]. Then we set

LR (D)
2%) QLB O

where p is analytic in U with p(0) = 1. Then, by using (2.7), we get
I{f(2)
LE(f)(2)

Taking logarithmic derivatives in both sides of (2.8) and multiplying by z,

we have . ) )
ALY _ L )
1) P+
Therefore, by Lemma 2.1, we have that F.(f) € S;.a[A, B].

p(z) +c=(c+1) (2.8)

(z € U).

Now, we derive

Theorem 2.1. Let fe Aand 0< 61,020 <1,0<~v < 1. If



T (I f(2)) m
——01 < arg (A— —’y) < =09
2 Ig(2)

for some g € S;41 1A, B, then

2(I5f(2)" ™
I$g(z) 7) =

where a1 and (0 < a1,y < 1) are the solutions of the equations :

—_— <

2 1 (a14a2)(1—|al)cos Lty .
=g O hE (2(ii—§+x)<1+|a|>+<a1+a2><1—|a|>smgtl) Jor B#—1,
a1 for B=—1,
(2.9)

and
2 1 (a14az)(1—]al)cos Tty B 1

5 =4 Tt (2(H—§+A)<1+|a|)+<a1+a2)<1—|a|)sin %n) for B# -1,
Q2 for B=—1,
(2.10)

when a is given by (2.3) and

A 2 L1 4 -5 (2.11)
{ =3 QB I '

Proof.  Let

p(2)

4! <Z(I§f(2))' & )
T\ ILigly )
Using (2.4) and simplifying, we have

(1= NIRg(2)p(2) + AL f(2) = (A + 1)1 f(2) = vI3g(2).- (2.12)

Differentiating (2.12) and multiplying by z, we obtain

(1= N(Iag(2)2p' () + 2(I139(2)) p(2)) + A=(I3 f(2)) (2.13)
= A+ DI f(2) —v2(I3g(2))"-
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Since g € Si41.1[A, B], by Proposition 2.1, we know that g € S; 1[4, B].
Let

L ALLg)Y

Then, using (2.4) once again, we have

t+1 >
g(z) + A = (AH)%TE(]E))' (2.14)

From (2.13) and (2.14), we obtain

1 (dﬁ“ﬂ@Y_y):p@) ' (2)

=7\ II"g(2) q(z) +A

Then, by using (1.2) and (1.3), we have

q(2)F A= pe'
where

—A A
{}_—34—)\ L Y%
—t1 < ¢ < t1 for B # —1,

when t; is given by (2.11), and

1-A
T+)‘ < p < 0
-1 < ¢ < 1 for B=-1.

Here, we note that p is analytic in U with p(0) = 1 and Re p(z) > 0 in U by
applying the assumption and Lemma 2.2 with w(z) = 1/(¢q(z) + A). Hence
p(z) # 0in U.

If there exist two points 21, z2 € U such that the condition (2.1) is satisfied,
then (by Lemma 2.3) we obtain (2.2) under the restriction (2.3). At first, for
the case B # —1, we obtain



arg (p(21)+ ar () )

q(z1) + X

— Zay+arg (1- i 02 (peiF)

2 2
< —qu — tan™? ( (a1 + Ozz)msing(lﬂ— ¢) )

2 2p + (a1 + ag)mcos (1 — ¢)

a1 + az)(1l — |a|)cos It
< —§a1—tan_1 (1 2)( lal) 511
2 (ﬁ—g + )‘) (1+a]) + (o1 + a2)(1 — |a|) sin 5t

T
=——0

2

arg (p(22) + )

(a1 + az2)(1 —|al) cos 5t

2 (ﬁ—g + )‘) (1 + |a|) + (oa + @2)(1 — |a])sin 5t

77 -1
> 5042 + tan

— =5
9%

where we have used the inequality (2.3), and 01, d2 and t; are given by (2.9),
(2.10) and (2.11), respectively. Similarly, for the case B'=—1, we have

le’(zl)) 3

arg (p(21) + ae) + A

s
—Q.
541
and

le/(ZQ)) 5 7

q(z2) + A 92

arg (p(22) + 5

These are contradiction to the assumption of Theorem 2.1. Therefore we
complete the proof of Theorem 2.1.

If we let 61 = d2 in Theorem 2.1, then we see easily the following



Corollary 2.1. The inclusion relation, Ciy1.2(7y, A, B) C CiaA(7, A, B),
holds for any real number t.

Taking t = A = 0 and 6; = 2 in Theorem 2.1, we have
Corollary 2.2. Let f € A. If

arg (%—7)‘<%5 0<y<1;0<6<1)

for some g € A satisfying the condition :

29" (2) 1+ Az

1 <
* g'(2) 1+ Bz

(-1<B< AL,

then

o (F0 8

where (0 < o < 1) is the solution of the equation :
2 ! a(l—l—B)(l—AB)cos(sin_l(A_;B )
s J et rtan g ( (1+A)(1—AB)+a(A—B)(11f§)) for B # —1,
o for B = —1.

Remark 2.1. (i). Since Cp x(7, A, B) is a subclass of close-to-convex
functions [5], we know from Corellary 2.1 that all functions belonging to the
class Cy. A (7, A, B) for any nonnegative integer ¢ are univalent.

(ii). If we put A=1—-2n, B==1and d = 1in Corollary 2.2, then we
see that every quasi-convex function of order « and type 7 is close-to-convex
function of order v and type n, which covers the result obtained by Noor[§].

Using the same method as in the proof of Theorem 2.1, we have

Theorem 2.2. Let fe Aand 0 <1, 60 <1, y>1. If

z<I§“f<z>>') < %

Wd < arg (
2 Ig(2)

for some g € Si412[A, B, then



9.

™ (- IEry 2

_5041 < arg Iﬁ\g(z) 2
where a and a2(0 < ag,as < 1) are the solutions of the equations (2.9) and
(2.10).
Next, we prove
Theorem 2.3. Let fe Aand0< 6y, 0o <1, 0<~y<1. If
7r 2(I% f(2)) 7r
——0 —as —0
2" = arg( Iigz) ) T 2™
for some g € S;.\[A, B], then

T
< —O3.

2(LF(f)(2) 7) "

I Fe(g)(2)
where F. is defined by (2.6), and a1 and a2(0 < aq,ae < 1) are the solutions
of the equations :

—_— <

2 —f (a1+a2)(1—|a|)cos %tg _
5= rEtm (2(1113 +c)(1+|a|>+<a1+a2><1—|a|>sin%tz) g ¥ L
a1 for B=—1,
and
2 1 (a1+a2)(1—|al)cos St .
0y = Qg + 7 tan (2(111‘; +c)(1+|a|)+(a1+a2)(1—Ial)singm) for' B # -1,
o2 for B=—1,

when a is given by (2.3) and t2 is t1 given-by (2.11) with A\ = c.
Proof.  Let

1 (2B F(N)R)
Pla) =g - ( I{F.(9)(2) 7) '

Since g € S;.A[A, B], we have from Proposition 2.2 that F.(g) € Si A[A, BJ.
Using (2.7) we have

(1 = NIFe(9)(2)p(2) + I3 Fe(f)(2) = (e + I3 f(2) — yI Fe(g)(2).
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Then, by a simple calculation, we get

R v C) A
(L= D) + )+ /() = (e + DEPTS = et a(a)
where
LR
1) = "H R

Hence we have

U (ABAEY N )
1—7( Tg(2) ”) PE Y e

The remaining part of the proof in Theorem 2.3 is similar to that of Theorem
2.1 and so we omit it.

Taking 61 = 02 in Theorem 2.3, we have

Corollary 2.3. Let fe A and0<y<1,0<d<1. If

o (G S

for some g € S;.A[A, B], then

g

2
where F. is defined by (2.6), and a(0°< e < 1) is the solution of the equation

o+ %tan_l ((1+Aacos St ) fO’f’ B 7& _1’

1+B+c)+asin St2
o for B=—1,
when ty is t1 given by (2.11) with X\ = c.

5:

From Corollary 2.3, we have the following

Corollary 2.4 Let f € Ci A (v, A, B). Then F.(f) € Cea(7, A, B), where
F. is the integral operator defined by (2.6).
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Remark 2.2. Ifwetaket =0andt=1withA=0, A=1-2n(0<n<
1) and B = —1 in Corollary 2.4, respectively, then we have the corresponding
results obtained by Noor and Alkhorasani [9]. Furthermore, taking ¢t =\ =
v=0, A=1and B = —1 in Corollary 2.4, we obtain the classical result
by Bernardi [1], which implies the result studied by Libera [6].

Finally, we prove the following theorems below applying Lemma 2.3.

Theorem 2.4. Let f € Aand 0 <6y, 92 < 1. If

It (2
2 z 2
then
It
—gal < arg )\f(z) < g(l/g.

where a1 and (0 < a1,z < 1) are the solutions of the equations :

L@re)fa) oo LR (o +ag)(1—al)

2
51 = it 2 tan—
e (P - 2L+ Jal) 1+ N

when a is given by (2.3).

Proof.  Let

Using (2.4), we have

t+1
BTG _ )4 L)

z

Suppose that there exist two points 21,20 € U such that the condition
(2.1) holds. Then (by Lemma 2.3) we get (2.2) with the condition (2.3).
Then we have
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Ittt 1
arg M = arg (p(21) + T )\2119/(21))

Z1

= arg p(z1) + arg (1 - i%m)

< "oy —tan~! ((041 + o) (1 — |al))

2 2(1+ |a])(1 4+ X)
s
— —551.
and
I f(ze) 1 )
arg —S— - =arg (p(zQ) P (22))

= arg p(z2) + arg (1 + i%m)

T oy (a1 4 az)(1 ~ |a)
AN i ( 201+ Ja)dA+ ) )
& 75,

2

which contradict the conditions. Therefore we complete the proof of Theorem
2.4.

Remark 2.3. Letting t = 0 and A = 0 in Theorem 2.4, we have the
corresponding result obtained by Nunokawa et al. [10].

Theorem 2.5. Let f € Aand 0 < 1,00 < 1. If

IL f(2) i
z i 252’

T
——0 <
9 1 arg
then

T ILF(2) T
——ap < arg < —Qa,
2 z 2
where F is defined by (2.6), and a1 and az(0 < ag,as < 1) are the solutions

of the equations :

(o + az)(1— Ja]) 2 (o)1 a)
20T lah(I e Tt T e+ o)

2 _
01 = a1+—tan
T
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when a is given by (2.3).

Proof.  Letting

_ I{F(2)
p(Z) - P 9
we have
t
BIE _pey+ oo

Therefore, applying the same method as in the proof of Theorem 2.4, we
have Theorem 2.5.

10.
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