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1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akzk

which are analytic in the open unit disk U = {z : |z| < 1}. If f and g are
analytic in U, we say that f is subordinate to g, written f ≺ g or f(z) ≺ g(z),
if there exists a Schwarz function w in U such that f(z) = g(w(z)). We denote
by S∗(η) and K(η) the subclasses of A consisting of all analytic functions
which are, respectively, starlike and convex of order η(0 ≤ η < 1) in U (see,
e.g., Srivastava and Owa [14]).

For all real numbers t, we define the multiplier transformations It
λ of

functions f ∈ A by

It
λf(z) = z +

∞∑

k=2

(
k + λ

1 + λ

)t

akzk (λ ≥ 0). (1.1)

Obviously, we have

It
λ(Is

λf(z)) = It+s
λ f(z)

for all real numbers s and t. For λ = 1 and nonpositive real number t,
the operators It

λ were studied by Uralegaddi and Somanatha [15]. Also, the
operators It

λ are closely related to the multiplier transformations studied by
Flett [3] and the differential and integral operators defined by Salagean [11].

Let

St,λ[A,B] =
{

f ∈ A :
z(It

λf(z))′

It
λf(z)

≺ 1 + Az

1 + Bz
(z ∈ U ; −1 ≤ B < A ≤ 1)

}

The class S0,0[A,B] was studied by Janowski [4] and (more recently) by
Silverman and Silvia [13]. In particular, we note that S0,0[1 − 2η,−1] =
S∗(η) and S1,0[1 − 2η,−1] = K(η).

Following Silverman and Silvia [12], for a function f ∈ St,λ[A,B], we have

∣∣∣∣
z(It

λf(z))′

It
λf(z)

− 1 − AB

1− B2

∣∣∣∣ <
A − B

1 −B2
(z ∈ U ; B 6= −1) (1.2)
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and

Re
{

z(It
λf(z))′

It
λf(z)

}
>

1− A

2
(z ∈ U ; B = −1). (1.3)

Note that

S0,0[A,−1] = S∗
(

1 −A

2

)
.

For any real number t, let Ct,λ(γ,A,B) be the class of functions f ∈ A
satisfying the condition

Re
{

z(It
λf(z))′

It
λg(z)

}
> γ (0 ≤ γ < 1 ; z ∈ U)

for some g ∈ St,λ[A,B]. We note that C0,0(γ, 1−2η,−1) and C1,0(γ, 1−2η,−1)
are the classes of close-to-convex and quasi-convex functions of order γ and
type η, respectively, studied by Silverman [12] and Noor [9].

In the present paper, we give some argument properties of analytic func-
tions belonging to A which contain the basic inclusion relationship among
the classes Ct,λ(γ,A,B). The integral preserving properties in connection
with the operator It

λ defined by (1.1) are also considered. Furthermore, we
obtain the previous results by Bernardi [1], Libera [6], Noor [8], Noor and
Alkhorasani [9], and Nunokawa et al. [10] as special cases.

2. Main Results

In proving our main results, we need the following lemmas.

Lemma 2.1 [2]. Let h be convex univalent in U with h(0) = 1 and Re
(βh(z) + γ) > 0(β, γ ∈ C). If p is analytic in U with p(0) = 1, then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z) (z ∈ U)

implies

p(z) ≺ h(z) (z ∈ U).

Lemma 2.2 [7]. Let h be convex univalent in U and ω be analytic in U
with Re ω(z) ≥ 0. If p is analytic in U and p(0) = h(0), then
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p(z) + ω(z)zp′(z) ≺ h(z) (z ∈ U)

implies

p(z) ≺ h(z) (z ∈ U).

Lemma 2.3 [10]. Let p be analytic in U with p(0) = 1 and p(z) 6= 0 in
U. If there exist two points z1, z2 ∈ U such that

−π

2
α1 = arg p(z1) < arg p(z) < arg p(z2) =

π

2
α2 (2.1)

for some α1, α2(α1, α2 > 0) and for all z(|z| < |z1| = |z2|), then we have

z1p
′(z1)

p(z1)
= −i

α1 + α2

2
m and

z2p
′(z2)

p(z2)
= i

α1 + α2

2
m, (2.2)

where

m ≥ 1 − |a|
1 + |a| and a = i tan

π

4

(
α2 − α1

α1 + α2

)
. (2.3)

At first, with the help of Lemma 2.1, we obtain the following

Proposition 2.1. If f ∈ St+1,λ[A,B], then f ∈ St,λ[A,B].

Proof. Let f ∈ St+1,λ[A,B]. Then we set

p(z) =
z(It

λf(z))′

It
λf(z)

,

where p is analytic in U with p(0) = 1. By using the equation

z(It
λf(z))′ = (λ + 1)It+1

λ f(z) − λIt
λf(z), (2.4)

we get

p(z) + λ = (λ + 1)
It+1
λ f(z)
It
λf(z)

. (2.5)
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Taking logarithmic derivatives in both sides of (2.5) and multiplying by z,
we have

z(It+1
λ f(z))′

It+1
λ f(z)

= p(z) +
zp′(z)

p(z) + λ
(z ∈ U).

Applying Lemma 2.1, it follows that

p(z) ≺ 1 + Az

1 + Bz
(z ∈ U),

which means that f ∈ St,λ[A,B].

Proposition 2.2. Let F be the integral operator defined by

Fc(f) := Fc(f)(z) =
c + 1
zc

∫ z

0

tc−1f(t)dt (c ≥ 0). (2.6)

If f ∈ St,λ[A,B], then Fc(f) ∈ St,λ[A,B].

Proof. From (2.6), we have

z(It
λFc(f)(z))′ = (c + 1)It

λf(z) − cIt
λFc(f)(z). (2.7)

Let f ∈ St,λ[A,B]. Then we set

p(z) =
z(It

λFc(f)(z))′

It
λFc(f)(z)

,

where p is analytic in U with p(0) = 1. Then, by using (2.7), we get

p(z) + c = (c + 1)
It
λf(z)

It
λFc(f)(z)

. (2.8)

Taking logarithmic derivatives in both sides of (2.8) and multiplying by z,
we have

z(It
λf(z))′

It
λf(z)

= p(z) +
zp′(z)

p(z) + c
(z ∈ U).

Therefore, by Lemma 2.1, we have that Fc(f) ∈ St,λ[A,B].

Now, we derive

Theorem 2.1. Let f ∈ A and 0 < δ1, δ2 ≤ 1, 0 ≤ γ < 1. If
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−π

2
δ1 < arg

(
z(It+1

λ f(z))′

It+1
λ g(z)

− γ

)
<

π

2
δ2

for some g ∈ St+1,λ[A,B], then

−π

2
α1 < arg

(
z(It

λf(z))′

It
λg(z)

− γ

)
<

π

2
α2,

where α1 and α2(0 < α1, α2 ≤ 1) are the solutions of the equations :

δ1 =





α1 + 2
π tan−1

(
(α1+α2)(1−|a|)cos π

2 t1

2( 1+A
1+B +λ)(1+|a|)+(α1+α2)(1−|a|)sin π

2 t1

)
for B 6= −1,

α1 for B = −1,
(2.9)

and

δ2 =





α2 + 2
π

tan−1

(
(α1+α2)(1−|a|)cos π

2 t1

2( 1+A
1+B +λ)(1+|a|)+(α1+α2)(1−|a|)sin π

2 t1

)
for B 6= −1,

α2 for B = −1,
(2.10)

when a is given by (2.3) and

t1 =
2
π

sin−1

(
A − B

1− AB + λ(1 − B2)

)
. (2.11)

Proof. Let

p(z) =
1

1 − γ

(
z(It

λf(z))′

It
λg(z)

− γ

)
.

Using (2.4) and simplifying, we have

(1 − γ)It
λg(z)p(z) + λIt

λf(z) = (λ + 1)It+1
λ f(z) − γIt

λg(z). (2.12)

Differentiating (2.12) and multiplying by z, we obtain

(1 − γ)(It
λg(z)zp′(z) + z(It

λg(z))′p(z)) + λz(It
λf(z))′ (2.13)

= (λ + 1)z(It+1
λ f(z))′ − γz(It

λg(z))′.
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Since g ∈ St+1,λ[A,B], by Proposition 2.1, we know that g ∈ St,λ[A,B].
Let

q(z) =
z(It

λg(z))′

It
λg(z)

.

Then, using (2.4) once again, we have

q(z) + λ = (λ + 1)
It+1
λ g(z)
It
λg(z)

. (2.14)

From (2.13) and (2.14), we obtain

1
1 − γ

(
z(It+1

λ f(z))′

It+1
λ g(z)

− γ

)
= p(z) +

zp′(z)
q(z) + λ

.

Then, by using (1.2) and (1.3), we have

q(z) + λ = ρei πφ
2 ,

where

{ 1−A
1−B + λ < ρ < 1+A

1+B + λ

−t1 < φ < t1 for B 6= −1,

when t1 is given by (2.11), and

{ 1−A
2

+ λ < ρ < ∞
−1 < φ < 1 for B = −1.

Here, we note that p is analytic in U with p(0) = 1 and Re p(z) > 0 in U by
applying the assumption and Lemma 2.2 with ω(z) = 1/(q(z) + λ). Hence
p(z) 6= 0 in U.

If there exist two points z1, z2 ∈ U such that the condition (2.1) is satisfied,
then (by Lemma 2.3) we obtain (2.2) under the restriction (2.3). At first, for
the case B 6= −1, we obtain
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arg
(

p(z1) +
z1p

′(z1)
q(z1) + λ

)

= −π

2
α1 + arg

(
1 − i

α1 + α2

2
m(ρei πφ

2 )−1

)

≤ −π

2
α1 − tan−1

(
(α1 + α2)m sin π

2 (1 − φ)
2ρ + (α1 + α2)m cos π

2 (1 − φ)

)

≤ −π

2
α1 − tan−1


 (α1 + α2)(1 − |a|) cos π

2 t1

2
(

1+A
1+B + λ

)
(1 + |a|) + (α1 + α2)(1 − |a|) sin π

2 t1




= −π

2
δ1,

and

arg
(

p(z2) +
z2p

′(z2)
q(z2) + λ

)

≥ π

2
α2 + tan−1


 (α1 + α2)(1 − |a|) cos π

2
t1

2
(

1+A
1+B + λ

)
(1 + |a|) + (α1 + α2)(1 − |a|) sin π

2 t1




=
π

2
δ2,

where we have used the inequality (2.3), and δ1, δ2 and t1 are given by (2.9),
(2.10) and (2.11), respectively. Similarly, for the case B = −1, we have

arg
(

p(z1) +
z1p

′(z1)
q(z1) + λ

)
≤ −π

2
α1.

and

arg
(

p(z2) +
z1p

′(z2)
q(z2) + λ

)
≥ π

2
α2.

These are contradiction to the assumption of Theorem 2.1. Therefore we
complete the proof of Theorem 2.1.

If we let δ1 = δ2 in Theorem 2.1, then we see easily the following
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Corollary 2.1. The inclusion relation, Ct+1,λ(γ,A,B) ⊂ Ct,λ(γ,A,B),
holds for any real number t.

Taking t = λ = 0 and δ1 = δ2 in Theorem 2.1, we have

Corollary 2.2. Let f ∈ A. If
∣∣∣∣arg

(
(zf ′(z))′

g′(z)
− γ

)∣∣∣∣ <
π

2
δ (0 ≤ γ < 1; 0 < δ ≤ 1)

for some g ∈ A satisfying the condition :

1 +
zg′′(z)
g′(z)

≺ 1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1),

then
∣∣∣∣arg

(
zf ′(z)
g(z)

− γ

)∣∣∣∣ <
π

2
α,

where α(0 < α ≤ 1) is the solution of the equation :

δ =





α + 2
π tan−1

(
α(1+B)(1−AB)cos(sin−1( A−B

1−AB ))
(1+A)(1−AB)+α(A−B)(1+B)

)
for B 6= −1,

α for B = −1.

Remark 2.1. (i). Since C0,λ(γ,A,B) is a subclass of close-to-convex
functions [5], we know from Corollary 2.1 that all functions belonging to the
class Ct,λ(γ,A,B) for any nonnegative integer t are univalent.

(ii). If we put A = 1 − 2η, B = −1 and δ = 1 in Corollary 2.2, then we
see that every quasi-convex function of order γ and type η is close-to-convex
function of order γ and type η, which covers the result obtained by Noor[8].

Using the same method as in the proof of Theorem 2.1, we have

Theorem 2.2. Let f ∈ A and 0 < δ1, δ2 ≤ 1, γ > 1. If

−π

2
δ1 < arg

(
γ − z(It+1

λ f(z))′

It+1
λ g(z)

)
<

π

2
δ2

for some g ∈ St+1,λ[A,B], then
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−π

2
α1 < arg

(
γ − z(It

λf(z))′

It
λg(z)

)
<

π

2
α2.

where α1 and α2(0 < α1, α2 ≤ 1) are the solutions of the equations (2.9) and
(2.10).

Next, we prove

Theorem 2.3. Let f ∈ A and 0 < δ1, δ2 ≤ 1, 0 ≤ γ < 1. If

−π

2
δ1 < arg

(
z(It

λf(z))′

It
λg(z)

− γ

)
<

π

2
δ2

for some g ∈ St,λ[A,B], then

−π

2
α1 < arg

(
z(It

λFc(f)(z))′

It
λFc(g)(z)

− γ

)
<

π

2
α2.

where Fc is defined by (2.6), and α1 and α2(0 < α1, α2 ≤ 1) are the solutions
of the equations :

δ1 =





α1 + 2
π tan−1

(
(α1+α2)(1−|a|)cos π

2 t2

2( 1+A
1+B +c)(1+|a|)+(α1+α2)(1−|a|) sin π

2 t2

)
for B 6= −1,

α1 for B = −1,

and

δ2 =





α2 + 2
π tan−1

(
(α1+α2)(1−|a|)cos π

2 t2

2( 1+A
1+B +c)(1+|a|)+(α1+α2)(1−|a|) sin π

2 t2

)
for B 6= −1,

α2 for B = −1,

when a is given by (2.3) and t2 is t1 given by (2.11) with λ = c.

Proof. Let

p(z) =
1

1 − γ

(
z(It

λFc(f)(z))′

It
λFc(g)(z)

− γ

)
.

Since g ∈ St,λ[A,B], we have from Proposition 2.2 that Fc(g) ∈ St,λ[A,B].
Using (2.7) we have

(1 − γ)It
λFc(g)(z)p(z) + cIt

λFc(f)(z) = (c + 1)It
λf(z) − γIt

λFc(g)(z).
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Then, by a simple calculation, we get

(1 − γ)(p(z)(q(z) + c) + zp′(z)) = (c + 1)
z(It

λf(z))′

It
λFc(g)(z)

− γ(c + q(z)),

where

q(z) =
z(It

λFc(g)(z))′

It
λFc(g)(z)

.

Hence we have

1
1 − γ

(
z(It

λf(z))′

It
λg(z)

− γ

)
= p(z) +

zp′(z)
q(z) + c

.

The remaining part of the proof in Theorem 2.3 is similar to that of Theorem
2.1 and so we omit it.

Taking δ1 = δ2 in Theorem 2.3, we have

Corollary 2.3. Let f ∈ A and 0 ≤ γ < 1, 0 < δ ≤ 1. If
∣∣∣∣arg

(
z(It

λf(z))′

It
λg(z)

− γ

)∣∣∣∣ <
π

2
δ

for some g ∈ St,λ[A,B], then
∣∣∣∣arg

(
z(It

λFc(f)(z))′

It
λFc(g)(z)

− γ

)∣∣∣∣ <
π

2
α,

where Fc is defined by (2.6), and α(0 < α ≤ 1) is the solution of the equation
:

δ =





α + 2
π

tan−1

(
α cos π

2 t2

( 1+A
1+B +c)+α sin π

2 t2

)
for B 6= −1,

α for B = −1,

when t2 is t1 given by (2.11) with λ = c.

From Corollary 2.3, we have the following

Corollary 2.4 Let f ∈ Ct,λ(γ,A,B). Then Fc(f) ∈ Ct,λ(γ,A,B), where
Fc is the integral operator defined by (2.6).
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Remark 2.2. If we take t = 0 and t = 1 with λ = 0, A = 1−2η(0 ≤ η <
1) and B = −1 in Corollary 2.4, respectively, then we have the corresponding
results obtained by Noor and Alkhorasani [9]. Furthermore, taking t = λ =
γ = 0, A = 1 and B = −1 in Corollary 2.4, we obtain the classical result
by Bernardi [1], which implies the result studied by Libera [6].

Finally, we prove the following theorems below applying Lemma 2.3.

Theorem 2.4. Let f ∈ A and 0 < δ1, δ2 ≤ 1. If

−π

2
δ1 < arg

It+1
λ f(z)

z
<

π

2
δ2,

then

−π

2
α1 < arg

It
λf(z)

z
<

π

2
α2.

where α1 and α2(0 < α1, α2 ≤ 1) are the solutions of the equations :

δ1 = α1+
2
π

tan−1 (α1 + α2)(1 − |a|)
2(1 + |a|)(1 + λ)

and δ2 = α2+
2
π

tan−1 (α1 + α2)(1 − |a|)
2(1 + |a|)(1 + λ)

when a is given by (2.3).

Proof. Let

p(z) =
It
λf(z)

z
.

Using (2.4), we have

It+1
λ f(z)

z
= p(z) +

1
1 + λ

zp′(z).

Suppose that there exist two points z1, z2 ∈ U such that the condition
(2.1) holds. Then (by Lemma 2.3) we get (2.2) with the condition (2.3).
Then we have



12

arg
It+1
λ f(z1)

z1
= arg

(
p(z1) +

1
1 + λ

z1p
′(z1)

)

= arg p(z1) + arg
(

1 − i
α1 + α2

2(1 + λ)
m

)

≤ −π

2
α1 − tan−1

(
(α1 + α2)(1 − |a|)
2(1 + |a|)(1 + λ)

)

= −π

2
δ1.

and

arg
It+1
λ f(z2)

z2
= arg

(
p(z2) +

1
1 + λ

z2p
′(z2)

)

= arg p(z2) + arg
(

1 + i
α1 + α2

2(1 + λ)
m

)

≥ π

2
α2 + tan−1

(
(α1 + α2)(1 − |a|)
2(1 + |a|)(1 + λ)

)

=
π

2
δ2,

which contradict the conditions. Therefore we complete the proof of Theorem
2.4.

Remark 2.3. Letting t = 0 and λ = 0 in Theorem 2.4, we have the
corresponding result obtained by Nunokawa et al. [10].

Theorem 2.5. Let f ∈ A and 0 < δ1, δ2 ≤ 1. If

−π

2
δ1 < arg

It
λf(z)

z
<

π

2
δ2,

then

−π

2
α1 < arg

It
λF (z)

z
<

π

2
α2,

where F is defined by (2.6), and α1 and α2(0 < α1, α2 ≤ 1) are the solutions
of the equations :

δ1 = α1+
2
π

tan−1 (α1 + α2)(1 − |a|)
2(1 + |a|)(1 + c)

and δ2 = α2+
2
π

tan−1 (α1 + α2)(1 − |a|)
2(1 + |a|)(1 + c)
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when a is given by (2.3).

Proof. Letting

p(z) =
It
λF (z)

z
,

we have

It
λf(z)

z
= p(z) +

1
c + 1

zp′(z).

Therefore, applying the same method as in the proof of Theorem 2.4, we
have Theorem 2.5.
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