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p 비매듭 터널의 유도(-2,3,7)

최 미 영

부경대학교 교육대학원 수학교육전공

요 약

매듭 p 의 서로 다른 두 분해 에 대한 이원 분지 피복(-2,3,7) (1,1)- (decomposition)

공간의 정이면체 대칭성 을(dihedral symmetry of the double branched covering)

이용하여 개의 비매듭 터널 을 얻는 과정을 상세히 밝힌다4 (unknotting tunnel) .



1 Introduction

In [9] using the dihedral symmetry of a Brieskorn homology sphere Σ(2, 3, 7),

Song showed that a pretzel knot p(−2, 3, 7) admits two non-homeomorphic

(1,1)-decompositions. Based on this result, Heath-Song([3]) classified all

possible unknotting tunnels of p(−2, 3, 7), namely τ1, τ2, τ3 and τ4 as illus-

trated in figure 1.

Fig. 1

The purpose of this thesis is to explicitly show how to derive the four

unknotting tunnels from the two (1,1)-decompositions of p(−2, 3, 7) which

is not presented in [3].

This thesis is organized as follows. In section 2 we collect some basic con-

cepts and definitions for study of tunnel number one knots including the

dihedral branched covering space of a 2-bridge theta curve studied in [9]. In

section 3 the main results of this thesis are presented . Finally we prepare

section 4 as appendix which contains pictorial proofs for some claims in

section 3.
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2 Preliminaries

2.1 some basic concepts for study of tunnel number

one knots in S3

A smooth (or tamed) embedding of the circle S1 = {(u, v) ∈ R2|u2+v2 = 1}
in the 3-sphere S3 = {(x, y, z, w) ∈ R4|x2 + y2 + z2 + w2 = 1} is called a

knot and denoted by K. By taking S3 as the 1-point compactification of

the euclidian 3-space R3, namely S3 = R3 ∪ ∞, we may assume that K is

embedded in R3. Thus a knotK is depicted by a smooth simple closed curve

in R3 as shown figure 2(a). Sometimes it is more convenient to describe K

by a piecewise linear closed curve as shown in figure 2(b). But figure 2(c) is

not consider as a knot in our concern ,which is called a wild (or non-tamed)

knot.

Fig. 2

We call K an unknot or a trivial knot if K bounds an embedded 2-disk

D in S3, namely ∂D = K and D has no self-intersections. In figure 3, we

have an example of an unknot.

Let M be a closed orientable 3-manifolds. A 3-ball with g− handles

is called a handlebody (of genus g). For a handlebody H of genus g, we

recover a 3-ball by cutting H along disks Di(1 ≤ i ≤ g) properly embedded

in g− handles respectively. A set D = {Di|1 ≤ i ≤ g} such disks are called

2



Fig. 3

a system of meridian disks of H. A closed orientable surface F in M is

called a Heegaard surface if and only if M is decomposed of a union of two

handlebodiesHi(i = 1, 2) along F ; M = H1∪FH2. The decomposition ofM

by a Heegaard surface F is called a Heegaard splitting. For M = H1 ∪F H2,

a Heegaard splitting of M let Di = {Di
j |1 ≤ j ≤ g} be a system of meridian

disks of Hi for each i = 1, 2. Then a triple (F, ∂Di = {∂D1
j |1 ≤ j ≤

g}, ∂D2 = {∂D2
j |1 ≤ j ≤ g}) is called a Heegaard diagram associated with

the Heegaard splitting. Given a knot K in S3, a tunnel is an embedded arc

τ in S3 with its endpoints on K and its interior disjoint from K. A tunnel τ

is an unknotting tunnel if the complement of a regular neigbourhood W1 of

K ∪ τ is a handlebody W2 of genus 2. Hence an unknotting tunnel τ of K

induces a Heegaard decomposition S3 = (W1,K)∪(W2, ∅) of genus 2, which

is called a (2,0)-decomposition of (K, τ ). Any knot with an unknotting

tunnel is called a tunnel number one , or shortly, a tunnel-1 knot.

In general it is not easy problem to determine whether or not a given tunnel

τ is an unknotting tunnel of a knot K. But using handle sliding illustrated

in figure 4, if we can bring the handlebody N(K ∪ τ ) into the standardly

embedded handlebody, then we see that τ is an unknotting tunnel of K.

An arc t in a handlebody H is said to be trivial if and only if there exists

a disk D in H and an arc t′ in ∂D such that ∂t = ∂t′ and ∂D = t∪ t′. Here

the arc t′ is said to be a projection of the trivial arc t and D is said to be
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Fig. 4

a projection or spanning disk of t. A knot K in S3 is said to admits (g,b)-

decomposition if it has a decomposition (S3,K) = (H1, {t1, t2, · · · , tb}) ∪
(H2, {s1, s2, · · · , sb}) with properly embedded b− trivial strings ti, 1 ≤ i ≤ b

(resp. si, 1 ≤ i ≤ b) in a handlebody H1 of genus g (resp.H2).

In particular, a (0, b)-decomposition a knot K in S3 stands for a b−
bridge decomposition of K in the usual sens. Any knot admitting a (1,1)-

decomposition is called a genus 1, 1-bridge, or shortly, a (1,1) knot. It

is easy to see that a (1,1)-decomposition of K induces a pair of unknot-

ting tunnels of K called (1,1)-tunnels and hence all (1,1)-knots are tunnel-1

knots. Torus knots t(p, q) , 2-bridge knots b(p, q) and certain 3-branched

Montesinos’ knots M(b, p1
q1
, p2
q2
, p3
q3

) including the pretzel knot p(−2, 3, 7) are

all (1,1)-knots. But it is known that there are tunnel-1 knots which are not
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(1,1)-knots (see [9, figure 12]).

For a (1, 1)− decomposition (S3,K) = (H1, t1) ∪ (H2, s1) of K we may

Fig. 5

associate a knot diagram t1 ∪ s′1 by taking a projection s′1 of s1 as illus-

trated in figure 5(a). It is called a 1-bridge diagram induced by an (1, 1)−
decomposition of K. On the other hand, figure 5(b) shows a rather abstract

method of representing a (1, 1)-knot of K, which is called a (1, 1)− diagram

associated with (1, 1)− decomposition of K. It consists of a usual genus

one heegaard diagram on a Heegaard torus T of S3 with a pair of points

K ∩ T . It is not difficult to see that a given (1, 1)−decomposition of K

has the uniquely associated (1, 1)−diagram whereas it has infinitely many

associated 1-bridge diagrams.
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2.2 the dihedral branched covering spaces of 2-bridge

θ− curves

In this section we briefly recall some tools for study of (1,1)-knots. For more

details see [7] or [9].

A knot K in S3 is said to be strongly invertible if there is an involution

h (called a strong inversion) of the pair (S3,K) such that Fix(h) is a circle

intersecting K in two points. Considering the double covering projection

p : S3 → S3/h (∼= S3) branched over a trivial knot p(Fix(h)), we have a

θ-curve θ(K,h) ≡ p(Fix(h) ∪K) induced by the pair (K,h).

For study of tunnel-1 knots (resp. (1,1)-knots) in S3, Morimoto-Sakuma-

Yokota introduced the concept of a 3-bridge (resp. 2-bridge) decomposition

of a θ−curve through application of Birman-Hilden-Viro’s Theorem to a

(2,0)-decomposition of a tunnel-1 knot (resp. a (1,1)-decomposition of a

(1,1)-knot) as follows.

A θ-curve is said to admit a 2-bridge decomposition, if and only if (S3, θ)

is a union of (B1, t1, a1) and (B2, t2, a2) along their boundary S2 = ∂B1 =

∂B2, where (Bi, ti) (respectively ai) is a 2-strand trivial tangle (respectively

a trivial arc in (Bi, ti)) for i = 1, 2 as illustrated in Fig. 6(a), and it is

said to admit a 3-bridge decomposition, if and only if (S3, θ) is a union

of (B1, t1, a) and (B2, t2, ∅) along their boundary S3 = ∂B1 = ∂B2, where

(Bi, ti) is a 3-strand trivial tangle for i = 1, 2 and a is a trivial arc in (B1, t1)

as illustrated in Fig. 6(b).

In the above definition Sg is said to be a bridge decomposing sphere and

a θ-curve admitting bridge decomposition sphere Sg is denoted by (θ, Sg).

In the sequel, we assume that g = 2 or 3 otherwise it is stated explicitly.

The following lemma immediately follows from the definition of (θ, Sg).

Lemma 2.3.1 A θ-curve with a bridge decomposition (θ, Sg) induces those
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Fig. 6

of its three constituent knot Ci = θ − Int(ei) such that

(i) for g = 2, C1 has a 1-bridge decomposition and C2, C3 have 2-bridge

decompositions,

(ii) for g = 3, C1, C2 and C3 have 1, 2 and 3-bridge decomposition, respec-

tively.

Lemma 2.3.2 For each pair (θ, S) of a θ-curve and its g-bridge decompos-

ing sphere S(≡ Sg), we have a triple (K, S̃, h) of a knot K, its (g+1)-bridge

decomposing sphere S̃ and a bridge preserving strong inversion h.

Conversely a bridge preserving strong inversion of a knot with a (g+1)-

bridge decomposition induces a θ-curve with a g-bridge decomposition.

Proof. Consider the double covering projection π : S̃3 = B̃1 ∪ B̃2 →
S3 = B1 ∪ B2 branched over a 1-bridge constituent knot C1 where each B̃i

is the 3-ball covering Bi. Since C1 is a trivial knot, so is π−1(C1) in the

covering 3-sphere S̃3. Then π−1(e1), the lifting of the edge e1 = θ − C1 is a

knot in S̃3 with a bridge decomposition (S̃3, π−1(e1)) = (B̃1, π
−1(e1∩B1))∪

(B̃2, π
−1(e1 ∩B2)) where π−1(e1 ∩Bi) consists of g + 1 trivial arcs for each

7



i = 1, 2 as illustrated in Fig. 5. Moreover π−1(C1) forms the fixed circle of a

bridge preserving strong inversion for a pair (Kch ≡ π−1(e1), S̃ ≡ π−1(S)).

By tracing the above argument backwards, we have the converse. �

We call the knot K in Lemma 2.3.2 the characteristic knot of (θ, Sg)

and denote it by Kch.

In [7] they observed that if a strong inversion h is induced by an un-

knotting tunnel of K, then the set of constituent knots of θ(K,h) consists

of a pair of trivial knots and a knot with a 2-bridge decomposition. Later

on Song([9]) clarified geometric meanings behind their observations. It will

be the main subject that we recall in this section.

Denote the dihedral group Z2⊕Z2 by D2. It is well known that for any

θ-curve in S3, we have the D2 covering projection πD2 : M → S3 branched

over θ which is induced by a monodromy map from the fundamental group

of θ to D2.

If a θ-curve admits a bridge decomposing sphere Sg, then we shall see

that the branch set upstairs π−1
D2

(θ) can be realized by fixed point circles of

three (orientation preserving) involutions of M which preserve each handle-

body in a Heegaard decomposition of M with genus g. Hence restriction of

πD2 on the associated Heegaard surface Fg induces the covering projection

πD2|Fg : Fg → Sg branched over θ ∩ Sg.
Let S1

ε , S
1
σ and S1

ρ be a triple of circles in S3 = R3 ∪ {∞} each pair of

which meets orthogonally at S1
ε ∩ S1

σ ∩ S1
ρ . Then π-rotation with respect

to S1
ε , S

1
σ and S1

ρ induce involutions ε, σ and ρ of S3 respectively such that

ρ = ε ◦ σ = σ ◦ ε. Let D2 = 〈ε, σ : ε ◦ σ = σ ◦ ε〉. Then S3 has D2 symmetry

with a pair of global fixed points S1
ε ∩ S1

σ ∩ S1
ρ .

Now, we consider a handlebody Hg of genus g standardly embedded in

S3 so that the D2-action of S3 can be restricted on Hg. Here we assume that

one of involutions in D2, say ε, is always taken as the standard involution
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Fig. 7

of Hg so that S1
ε ∩ Hg may consist of (g + 1)-arcs.

Then we have a set Mg of (g+1)-meridian discs of Hg with the following

action of a non-trivial involution I ∈ D2 on each meridian disc D ∈ Mg:

(1) if Fix(I) ∩D = ∅, then I(D) is another meridian disc E ∈ Mg;

(2) if Fix(I) ∩D is a single point (and hence a global fixed point of D2),

then I(D) = D and I preserves the orientation of D;

(3) if Fix(I)∩D is an arc, then I(D) = D and I reverses the orientation

of D.

We call Mg a system of D2-equivariant meridian discs of Hg. Let M∗
g

be a system of D2-equivariant meridian discs of H∗
g = S3 − Int(Hg). Since

a non-trivial involution I ∈ D2, I 6= ε, has the action of type (1) on each

meridian disc in Mg or M∗
g which does not contain any global fixed point

of D2, we have:

9



Case g = 2. Each global fixed point of D2 should lie on each handlebody

H2 and H∗
2 , respectively. For a meridian disc Df in M2 (respectively Df∗

in M∗
2) containing a global fixed point f (respectively f∗), two involutions

which have the action of type (2) on Df and Df∗ must be the same. We

take such an involution as σ. Then σ transposes the two meridian discs of

M2 − {Df} and those of M∗
2 − {Df∗} as illustrated in Fig. 7.

Case g = 3. Both global fixed points f1, f2 of D2 should lie on one of

the two handlebodies, say H3. And, two involutions which have the action

of type (2) on Df1 and Df2 must be the same. We take such an involution as

σ. Then S1
σ forms a core of H3 transversely meeting the meridian discs Df1

and Df2 , and σ transposes the two meridian discs of M3 − {Df1,Df2}. On

the other hand, σ acts freely on H∗
3 and pairwise transposes two meridian

discs of M∗
3 as illustrated in Fig. 7.

Since an orientation-preserving involution of S3 is conjugate to an or-

thogonal transformation, we see that a D2-symmetry ofHg with its standard

involution in D2 is uniquely determined.

If we can choose a gluing homeomorphism ψ of the two handlebodies

Hg and H∗
g so that it may be compatible with ε and σ, i.e., ε◦ψ = ψ ◦ ε and

σ ◦ ψ = ψ ◦ σ, then we have a 3-manifold with a Heegaard decomposition

Mg = Hg∪ψH∗
g on which the dihedral group D2 acts so that it may preserve

each handlebody. We call such a Heegaard decomposition of a 3-manifold

D2-symmetric.

Further we assume that the gluing homeomorphism ψ is chosen so that

M may be a Z2-homology 3-sphere, which is necessary for M to be the

double branched covering of a knot K in S3 or the D2-branched covering

of a θ-curve in S3. Then by classification of a D2 action on a Z2-homology

3-sphere, it is guaranteed that the fixed point sets of all three involutions

of M form three circles intersecting in exactly two points.

10



If we denote the fixed point set of each involution I ∈ {ε, σ, ρ} of M

by Fix(I) and the union of them by Fix(I), then we have the D2-covering

projection πD2 : M → M/D2(∼= S3) branched over a θ-curve πD2(Fix(I))

with a bridge decomposing sphere πD2(Fg) where Fg is a Heegaard surface

associated with the Heegaard decomposition of M . And, for each I ∈
{ε, σ, ρ} we have the double covering projection πI : M → M/I branched

over a knot KI = πI(Fix(I)) in M/I whose Heegaard decomposition of

genus g∗, M/I = Hg/I ∪ψ̃ H∗
g/I, naturally induces a (g∗, b)-decomposition

of KI in M/I where ψ̃ = πI ◦ ψ ◦ (πI)
−1.

Details of such decomposition of KI is given in the following proposition

which can be easily read off given the D2-action on the handlebodies.

Proposition 2.3.3 Let M be a Z2-homology 3-sphere admitting a D2-

symmetric Heegaard decomposition of genus g. Then we have:

Case g = 2.

(i) Kε is a knot in S3 with a 3-bridge decomposition and with a bridge

preserving strong inversion hε such that Fix(hε) = πε(Fix(σ) ∪ Fix(ρ)).

(ii) Kσ (respectively Kρ) is a (1,1)-knot in a lens space M/σ (respectively

M/ρ). And πσ(Fix(ε) ∪ Fix(ρ)) (respectively πρ(Fix(ε) ∪ Fix(σ))) form the

fixed point set of the standard involution of the lens spaceM/σ (respectively

M/ρ) intersecting each unknotted string once in the (1,1)-decomposition of

Kσ (respectively Kρ).

Case g = 3.

(i) Kε is a knot in S3 with a 4-bridge decomposition and with a bridge

preserving strong inversion hε such that Fix(hε) = πε(Fix(σ) ∪ Fix(ρ)).

(ii) Kσ admits a (2,0)-decomposition in M/σ;

(M/σ,Kσ) = (H3/σ,Kσ) ∪ψσ (H∗
3/σ, ∅).

Further, πσ(Fix(ε) ∪ Fix(ρ)) form the fixed point set of the standard invo-

lution of M/σ intersecting Kσ twice.

11



(iii) Kρ admits a (1,2)-decomposition in a lens space M/ρ. And πρ(Fix(ε)∪
Fix(σ)) form the fixed point set of the standard involution of the lens space

M/ρ intersecting each of two unknotted strings once on one side of a solid

torus of the (1,2)-decomposition of Kρ.

Remark. All lens spaces (including S3) in Proposition 2.3.3 must be of

odd type, i.e., L(p, q), p ≡ 1 (mod 2) because they are the double branched

coverings of constituent knots of the θ-curve with 2-bridge decompositions.

Conversely we have:

Theorem 2.3.4([9, Theorem 4]) Let (K,Sg+1, h) be a triple of knot

K with a (g + 1)-bridge decomposing sphere Sg+1 and a bridge-preserving

strong inversion h. Then the double branched covering space of (S3,K)

admits a D2-symmetric Heegaard decomposition of genus g.

Proof. Taking a gluing homeomorphism ψ of the two handlebodies Hg

and H∗
g provided by the (g + 1)-bridge decomposition of K through the

method in [?], we have the double covering projection π : M = Hg ∪ψH∗
g →

S3 branched over K. Thus we have a set Mg (respectively M∗
g) of (g + 1)-

meridian discs of Hg (respectively H∗
g ) such that they may doubly cover

the spanning discs of (g + 1)-trivial arcs in the bridge decomposition of K.

And, we have an involution ε of M with π−1(K), the lifting of K as the fixed

circle. Since h is a bridge-preserving strong inversion of K, there are a pair

of involutions h̃1, h̃2 of M such that h ◦ π = π ◦ h̃i (i = 1, 2), π−1(Fix(h)) =

Fix(h̃1) ∪ Fix(h̃2) and π−1(K ∩ Fix(h)) = Fix(h̃1) ∩ Fix(h̃2).

In the case of g = 3, both points of π−1(K ∩ Fix(h)) lie on one side of

the two handlebodies, say H3. Then one of the two circles, say Fix(h̃1), in

π−1(Fix(h)) transversely meets a pair of meridian discs in M3 which are de-

termined by the two spanning discs of the trivial arcs containing K∩Fix(h).

12



Thus, Fix(h̃1) forms a core of H3 and h̃1 is equivalent to σ. In the case of

g = 2, π−1(K ∩Fix(h)) consists of a pair of points {p, p∗} such that p ∈ H2

and p∗ ∈ H∗
2 , respectively. Then, one of the two circles, say Fix(h̃1), in

π−1(Fix(h)) transversely meets a meridian disc in M2 (respectively M∗
2)

which is determined by the spanning disc of the trivial arc containing p (re-

spectively p∗) in the given bridge decomposition of K. Thus h̃1 is equivalent

to σ. �

By Lemma 2.3.2 and Theorem 2.3.4, we have:

Corollary 2.3.5 Let (θ, Sg) be a θ-curve with a bridge decomposing sphere

Sg. Then the D2-branched covering of (θ, Sg) admits a D2-symmetric Hee-

gaard decomposition of genus g such that the associated Heegaard surface

covers Sg.

By considering theD2-branched covering of (θ, Sg), we have a refinement

of the Morimoto–Sakuma–Yokota’s method of studying tunnel 1 knots.

Theorem 2.3.6([7, Theorem 1.2 (1) and (2)]) A knot K in S3 is a

(1,1)-knot (respectively a tunnel-1 knot), if and only if there exists a strong

inversion h of K such that

(i) θ-curve θ(K,h) admits a 2 (respectively 3)-bridge decomposing sphere

S2 (respectively S3) and

(ii) p(Fix(h)) forms a trivial constituent knot of (θ(K,h), S2) (respectively

(θ(K,h), S3)) with a 2-bridge (respectively 3-bridge) decomposition where

p is the projection S3 → S3/h.

13



3 Main Results

Theorem3.1. The Heegaard diagrams Figure8(a) and (b) represent the

vertical and horizontal Heegaard splitting of a Brieskorn homology sphere

Σ(2, 3, 7) respectively.

Fig. 8

Proof It is well known that the standard involution ε of the vertical

(resp. horizontal) Heegaard decomposition of Σ(2, 3, 7) induces a Mon-

tesinos knot p(−2, 3, 7) (resp. a torus knot t(3,7)) with a 3-bridge decom-

position (c.f. [2]). Thus we may verify the claim of the theorem by explicitly

deriving Kε from the given Heegaard diagrams.

In the given Heegaard in figure 8(a), we may recognize Fix(ε) by de-

tecting 6- fixed points of ε, namely intersection points of Fix(ε) with the

Heegaard surface as shown figure 9(a). For more details about detection

14



Fig. 9

of those fixed points of Fix(ε), see appendix. Then taking quotient of the

diagram in figure 9(a) with respect to ε, we have a 3-bridge decomposition

of Kε in figure 9(b). In figure D1 and D2 of the appendix , we explicitly

show that the knot in figure 9(b) is indeed p(−2, 3, 7). Likewise we have

Kε = t(3, 7) from figure 8(b)(c.f. E1 and E2 of the appendix).

Fig. 10
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Fig. 11

Corollary3.2. The two (1,1)-decompositions of p(−2, 3, 7) in Figure 11(a)

and (b) represent the vertical and horizontal respectively.

Proof The involutions σ of the two Heegaard diagrams of theorem 00

with dihedral symmetry give rise to the (1,1)-decompositions of p(−2, 3, 7)

by [9, Theorem 9].

Fig. 12

Let h be a strong inversion of a knot K in S3 induced by a unknotting

tunnel τ . For the quotient map πh : (S3,K) → (S3, θ(K,h)) we have an

16



arc πh(τ ) with two end points in the theta curve θ(K,h) which is called an

unknotting arc.

Theorem3.3.The vertical and horizontal (1,1)-decompositions of p(−2, 3, 7)

induce the two 2-bridge θ− curves with pairs of unknotting arcs in Figure

12(a) and (b) respectively.

Proof A sequence of figures from (a) to (d) in Figure 13 show how to

get a 2-bridge theta-curve with a pair of unknotting arcs for the vertical

(1,1)-diagram of p(−2, 3, 7). We see that 2-bridge theta-curve with a pair

of unknotting arcs in figure (d) is isotopic to that in figure(e). For more

details, see appendix 1 and 2.

Fig. 13

Likewise the horizontal (1,1)-diagram of p(−2, 3, 7) induces a 2-bridge

theta-curve with a pair of unknotting arcs as shown in figure 14(e).

17



Fig. 14

Thus we have;

Corollary3.4. The pretzel knot Σ(2, 3, 7) admits four unknotting tunnels

described in figure 1.

18



4 Appendix

In this section we exhibit application of the theorems in section 2 as well as

verification of the various unproved claims in section 3.

4.1 explanation for process from (a) to (d) in figure

13 or 14

Once we have a Heegaard decomposition or equivalently Heegaard diagram

of genus 2 with dihedral symmetry, we have a triple of knots Kε, Kσ and

Kρ , which are led to the same 2-bridge theta-curve as illustrated in figure

A1 below.

Fig. A1

Since the involution σ can be easily detected in a given Heegaard dia-

gram of genus 2 with dihedral symmetry, it is more convenient to deal with

Kσ and its strong inversion h inducing the 2-bridge theta curve θ(Kσ in the

first instance. Note that the strong inversion h of Kσ can be thought of

as the standard involution of its (1,1)-decomposing solid tori Vi (i = 1, 2)

such that Fix(h) meets a trivial string ti = Kσ ∩ Vi at single point for each

19



i = 1, 2(c.f. figure A2(a)).

Fig. A2

Thus for each solid torus Vi, we may take a pair of meridian disks

{Mi, Ni} such that

(1) Mi is disjoint from a trivial string ti,

(2) Ni meets ti at a single point Fix(h)∩ ti and

(3) Fix(h) ∩ Vi consists of a pair of arcs {Mi ∩ Fix(h), Ni ∩ Fix(h)}.
Taking quotient of Vi by the involution h, we have a 3-ball Bi and a double

covering projection π : Vi → Bi branched over a pair trivial arcs whose

spanning(projection) disks are lifted to Mi and Ni respectively. Finally we

choose a properly embedded arc τi in Vi so that

(1)∂τi = ∂ti,

(2)τi meets Mi at a single point in Fix(h),

(3)τi ∩ Ni = ∅ and

(4)τi ∪ ti is isotopic to a core of Vi. Then we can come up with a 2-bridge

theta curve in S3 with a pair of unknotting arcs

(B1, π({Fix(h)∩ V1} ∪ t1 ∪ τ1)) ∪ (B2, π({Fix(h)∩ V2} ∪ t2 ∪ τ2))

.
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In practice, the above discussion is carried out by detecting the 4 fixed

points of the standard involution h on T = ∂V1 = ∂V2,a Heegaard torus

holding the (1,1)-diagram of Kσ. Note that by our choices of meridian

disks of Vi, those 4 fixed points belong to ∂M1 ∩ ∂M2, ∂M1 ∩ ∂N2, ∂N1 ∩
∂M2 and ∂N1 ∩ ∂N2 respectively. Thus in the given (1,1)- diagram H =

(T, ({∂M1}, {∂M2}), {Kσ∩T}), inserting ∂N1 and ∂N2 we have an extended

(1,1)-diagram HE = (T, ({∂M1, ∂N1}, {∂M2, ∂N2}), {Kσ ∩ T}).
From the extended (1,1)-diagram HE we can easily detect the 4-fixed

points of the involution h. Now taking the quotient of (T,HE) with respect

to h, we have a 2-bridge diagram of π(Fix(h)) on the 2-sphere S2 = π(T )

with a marked point covered by the pair of points {Kσ ∩ T}). The 2-bridge

diagram can be converted into a 2-bridge position of π(Fix(h)) with with

respect to S2 via isotopic move of {π(∂M1) and π(∂N1) into a pair of over

arcs m and n in B1 respectively. Finally joining a pair of arcs {π(t1) and

π(τ1) to n and m through B1 respectively and {π(t2) and π(τ2) to π(∂N2

and π(∂M2) through B2 respectively, we get the desired 2-bridge theta curve

with a pair of unknotting arcs.
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4.2 derivation of (d) from (e) in figure 13

Fig. B

22



4.3 a quick method of detecting the fixed points of

the involutions ε, σ and ρ

Fig. C1

Fig. C2
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4.4 derivation of the Montesinos rational tangle de-

composition of p(−2, 3, 7) from its 3-bridge posi-
tion in figure9(b)

Fig. D1

Fig. D2
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4.5 derivation of the torus braiding of t(3, 7) from its

3-bridge position in figure10(b)

Fig. E1

Fig. E2
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