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1 Introduction

Many authors have studied optimality conditions for several kinds of op-

timization problems ([2, 3, 4, 10, 11, 12, 13, 16, 14, 15, 17]). It is well

known that constraint qualifications should be imposed on convex optimiza-

tion problems to obtain optimality conditions for solutions. Among con-

straint qualifications for convex optimization problems, the Slater constraint

qualification is frequently used.

In this thesis, we will prove optimality conditions for convex optimization

problems. In Section 2, we give definitions, examples and preliminary results

for next section. In Section 3, we give approximate optimality conditions

for ε-approximate solutions of a convex optimization problem, which hold

under appropriate stability condition. In Section 4, we establish optimality

conditions for optimal solutions of convex sublinear optimization problems,

which hold without any constraint qualification.

1



2 Preliminaries

In this section, we give definitions, examples and preliminary results. Let X

be a Banach space and X∗ the topological dual of X.

Definition 2.1 . Let g : X → R be a convex function.

(1) The subdifferential of g at a ∈ X is given by

∂g(a) := {v ∈ X∗ | g(x) >= g(a) + v(x− a) ∀x ∈ X}.

(2) The ε-subdifferential of g at a ∈ X is given by

∂εg(a) := {v ∈ X∗ | g(x) >= g(a) + v(x− a)− ε ∀x ∈ X}.

Example 2.1 . (1) Let g(x) = ‖x‖, x ∈ Rn. Then ∂g(0) = B1(0), where

B1(0) = {x ∈ Rn | ‖x‖ <= 1}.

(2) Let g(x) =
√

xT Ax, x ∈ Rn, where A is a symmetric positive semidef-

inite n × n matrix. Then ∂g(0) = {Aω | ωT Aω <= 1}.

Definition 2.2 . The conjugate function of a function g : X → R is defined

by

g∗(v) = sup{〈v, x〉 − g(x) | x ∈ X}, for any v ∈ X∗

Example 2.2 . Let g(x) = ex for any x ∈ R. Then

g∗(v) =





v log v − v if v > 0,
0 if v = 0,
+∞ if v < 0.
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Definition 2.3 . The epigraph of a function g : X → R, epi g, is defined by

epi g := {(x, r) ∈ X × R | g(x) <= r}.

Proposition 2.1 Let a ∈ X. If g : X → R is sublinear (i.e., convex and

positively homogeneous of degree one), then for all ε >= 0,

∂εg(a) = {v ∈ ∂g(0) | g(a) − 〈v, a〉 <= ε} .

Moreover, ∂εg(0) = ∂g(0).

Proof. Let ε >= 0 and v ∈ ∂g(0) and g(a) − 〈v, a〉 <= ε. Then g(x) >=

〈v, x〉 , ∀x ∈ X, and hence

g(x) − g(a) >= −g(a) + 〈v, x〉
>= −〈v, a〉 − ε + 〈v, x〉 .

So, for all x ∈ X, g(x) >= g(a) + 〈v, x− a〉 − ε. Hence v ∈ ∂εg(a).

Let v ∈ ∂εg(a). Then g(x) >= g(a)+〈v, x− a〉−ε ∀x ∈ X. Letting x = 0,

g(0) >= g(a) + 〈v,−a〉 − ε. Thus g(a) − 〈v, a〉 <= ε. Moreover, g(x + a) >=

g(a)+〈v, x〉−ε ∀x ∈ Rn. Since g(x)+g(a) >= g(x+a), g(x) >= 〈v, x〉−ε ∀x ∈

X. Let x be fixed. Then for any λ > 0, λg(x) = g(λx) >= 〈v, λx〉 − ε.

and so g(x) >= 〈v, x〉 − ε
λ
. Letting λ → +∞, g(x) >= 〈v, x〉. Thus v ∈ ∂g(0).

2

For the completeness, we give proofs of propositions 2.2, 2.3 and 2.4 and

Lemma 2.1, 2.2, which will be appeared in this section.
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Proposition 2.2 [9] If g : X → R is sublinear, then

g∗(v) =

{
0 if v ∈ ∂g(0)
+∞ if v 6∈ ∂g(0)

and hence epi g∗ = ∂g(0) × R+.

Proof. From the definition of subdifferential,

v ∈ ∂g(0) ⇒ ∀x ∈ X, g(x) − g(0) >= vt(x − 0)

⇒ ∀x ∈ X, 0 >= vtx− g(x)

⇒ 0 >= g∗(v)

⇒ 0 >= g∗(v) = sup{vtx− g(x) | x ∈ Rn}

>= vt0 − g(0) = 0

⇒ g∗(v) = 0.

v /∈ ∂g(0) ⇒ ∃x0 ∈ X such that g(x0) − g(0) < vt(x0 − 0)

⇒ 0 < vtx0 − g(x0)

⇒ g∗(v) = sup{vtx − g(x) | x ∈ Rn}

>= sup{vt(λx0) − g(λx0) | λ >= 0}

= sup{λ(vtx0 − g(x0)) | λ >= 0}

= +∞

⇒ g∗(v) = +∞.

Hence

g∗(v) =

{
0 if v ∈ ∂g(0)
+∞ if v 6∈ ∂g(0)
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Thus, we have

epi g̃∗ = {(v, α) ∈ X × R | g∗(v) <= α}

= {(v, α) ∈ X × R | v ∈ ∂g(0), α >= 0}

= ∂g(0) × R+

2

Proposition 2.3 [9] If g : X → R is sublinear and if g̃(x) = g(x) −

k, for x ∈ X and k ∈ R , then

epi g̃∗ = ∂g(0) × [k, ∞).

Proof. For any v ∈ X∗,

g̃∗(v) = sup{v(x)− g̃(x) | x ∈ domg̃}

= sup{v(x)− g(x) + k | x ∈ domg}

= sup{v(x)− g(x) | x ∈ domg} + k

= g∗(v) + k.

Then for any v ∈ X∗ and α ∈ R,

(v, α) ∈ epi g̃∗ ⇐⇒ g̃∗(v) <= α

⇐⇒ g∗(v) + k <= α

⇐⇒ g∗(v) <= α − k

⇐⇒ (v, α − k) ∈ epi g∗

⇐⇒ (v, α) ∈ epi g∗ + (0, k).
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Hence by Proposition 2.2,

epi g̃∗ = epi g∗ + (0, k)

= (∂g(0) × R+) + (0, k)

= ∂g(0) × [k,∞).

2

Now we consider the following optimization problem:

(P) Minimize f(x)

subject to x ∈ S

where f : Rn → R is a convex function and S is a closed convex subset of

Rn.

Definition 2.4 Let ε >= 0. Then x̄ ∈ S is called an ε-approximate solution

of (P) if

f(x) + ε >= f(x̄), for any x ∈ S.

Example 2.3 Consider the following convex optimization problem:

(P) Minimize f(x) := −x

subject to g(x) :=
√

x2 + y2 − y <= 0.

The set of all ε-approximate solutions of (P) is {(0, y) ∈ R2 | y >= 0}.

The following lemmas are needed to prove the main results. For the

completeness, we give their proofs.
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Let X and Z be Banach spaces and the cone S ⊆ Z be closed and convex.

The (positive) polar of the cone S ⊆ Z is the cone S+ = {θ ∈ Z∗ | θ(k) ≥

0 ∀k ∈ S}.

Lemma 2.1 [1] Let h : X → R be a continuous convex function and g :

X → Z be a continuous S-convex function, that is, for any x, y ∈ Xand

any λ ∈ (0, 1), g(λx + (1 − λ)y) − λg(x) − (1 − λ)g(y) ∈ −S, respectively.

Suppose that {x ∈ X | g(x) ∈ −S} 6= ∅. Then the following statements are

equivalent:

(i) {x ∈ X | g(x) ∈ −S} ⊆ {x ∈ X | h(x) >= 0}

(ii) 0 ∈ epi h∗ + cl
⋃

λ∈S+

epi (λg)∗.

Proof. Let Q = {x ∈ X | g(x) ∈ −S}. Then Q 6= ∅. By proposition 2.3, epi δ∗Q

= cl
⋃

λ∈S+

epi (λh)∗ The proof can be found in [9]), where fc is the indicator

function of Q, that is, δQ(x) = 0, if x ∈ Q and δQ(x) = +∞, if x 6∈ Q.

Here,

(ii) ⇐⇒ 0 ∈ epi h∗ + epi δ∗Q = epi (h + δQ)∗ (see Lemma 2.3 below)

⇐⇒ (h + δQ)∗(0) <= 0

⇐⇒ (h + δQ)(x) >= 0 for anyx ∈ X

⇐⇒ h(x) >= 0 for any x ∈ Q

⇐⇒ (i).

Thus (i) ⇐⇒ (ii). 2
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Lemma 2.2 [7] Let u : X → R be a continuous linear mapping and let

g : X → Z be a continuous S-convex mapping. Suppose that the system

g(x) ∈ −S is consistent. Let α ∈ R. Then the following statements are

equivalent:

(i) {x ∈ X | g(x) ∈ −S} ⊆ {x ∈ X | u(x) ≤ α}.

(ii)

(
u

α

)
∈ cl

( ⋃

λ∈S+

epi (λg)∗
)
.

Proof. Let h(x) = α − u(x). Then by Lemma 2.1,

(i) ⇐⇒ 0 ∈ epi h∗ + cl
( ⋃

λ∈S+

epi (λg)∗
)

⇐⇒ 0 ∈ (−u,−α) + {0} × R+ + cl
( ⋃

λ∈S+

epi (λg)∗
)

⇐⇒ (u, α) ∈ {0} × R+ + cl
( ⋃

λ∈S+

epi (λg)∗
)

Since cl
( ⋃

λ∈S+

epi (λg)∗
)

is a convex cone [9] and {0}×R+ ⊂ cl
( ⋃

λ∈S+

epi (λg)∗
)
,

we have, {0} × R+ + cl
( ⋃

λ∈S+

epi (λg)∗
)

= cl
( ⋃

λ∈S+

epi (λg)∗
)
.

Thus (i) ⇐⇒ (ii). 2

The following proposition explains the relationship between the epigraph

of a conjugate function and the ε-subdifferential.
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Proposition 2.4 [6] If g : X → R∪{+∞} is a proper lower semicontinuous

convex function and if a ∈ domg, then

epi g∗ =
⋃

ε>=0

{(v, v(a) + ε− g(a)) | v ∈ ∂εg(a)} ,

Proof. Let (v, α) ∈ epi g∗. Then g∗(v) <= α and hence

v(x)− g(x) <= α ∀x ∈ X. (2.1)

In particular v(a) − g(a) <= α. Let ε0 = α − v(a) + g(a). Then α = ε0 +

v(a) − g(a), ε0 >= 0 and from (2.1), v(x) − g(x) <= ε0 + v(a) − g(a) ∀x ∈

X. So, g(x) − g(a) >= v(x − a) − ε0 ∀x ∈ X. Hence v ∈ ∂ε0g(a). Thus

(v, α) ∈
⋃

ε>=0

{(v, v(a) + ε− g(a)) : v ∈ ∂εg(a)}.

Conversely, let (v, α) ∈
⋃

ε>=0

{(v, v(a) + ε − g(a)) : v ∈ ∂εg(a)}. Then there

exists ε >= 0 such that v ∈ ∂εg(a). Thus

g(x)− g(a) >= v(x− a) − ε = v(x− a) + v(a)− g(a) − α
= v(x)− g(a) − α.

So, g(x) >= v(x) − α ∀x ∈ X. Hence sup{v(x)− g(x) : x ∈ X} <= α. Thus

g∗(v) <= α. Hence (v, α) ∈ epi g∗. So,
⋃

ε>=0

{(v, v(a) + ε − g(a)) : v ∈ ∂εg(a)} ⊂ epi g∗. 2

Proposition 2.5 [8] If the Slater condition for (P) holds, that is, there exists

x0 ∈ X such that g(x0) < 0, then
⋃

λ∈S+

epi (λg)∗ is closed.
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Lemma 2.3 [8] Let h : X → R be a continuous convex function and g :

X → R is a lower semicontinuous convex function. Then

epi (h + g)∗ = epi h∗ + epi g∗.

Lemma 2.4 [5] Let hi : Rn → R, i = 1, · · · ,m be lower semicontinuous

convex functions, and ε >= 0. Then for all x ∈ Rn,

∂ε(
m∑

i=1

hi)(x) =
⋃

{
m∑

i=1

∂εihi(x) | εi >= 0, i = 1, · · · ,m,
m∑

i=1

εi = ε}.
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3 Stability and Optimality Conditions

We consider the following optimization problem:

(P) Minimize f(x)

subject to x ∈ S := {x ∈ Rn | gi(x) <= 0, i = 1, · · · ,m}

where f, gi : Rn → R, i = 1, · · · ,m are convex functions.

Let ε >= 0 and x̄ ∈ S.

Theorem 3.1 Suppose that (P) is stable, that is, φ(0) is finite and there

exists r > 0 such that φ(u) − φ(0) >= −r‖u‖ for all u ∈ Rm, where φ(u) :=

inf{f(x) | gi(x) <= ui, i = 1, · · · ,m}. Then the following are equivalent:

(i) x̄ is an ε-approximate solution of (P);

(ii) there exists M > 0 such that x̄ is an ε-approximate solution of (P)′:

(P)′ Minimize f(x) + M
m∑

i=1

g+
i (x),

subject to g+
i (x) = max{0, gi(x)}, i = 1, · · · ,m;

(iii) there exist M > 0, ε0, εi >= 0, αi ∈ [0, 1], δi >= 0, i = 1, · · · ,m such

that

ε = ε0 +
m∑

i=1

εi,

0 ∈ ∂ε0f(x̄) +

m∑

i=1

∂δi(αiMgi)(x̄), and

δi <= αiMgi(x̄) + εi.
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Proof. (i) ⇒ (ii): Suppose to the contrary that (ii) does not hold. Then

for each n ∈ N, there exists xn ∈ Rn such that

f(xn) + n
m∑

i=1

g+
i (xn) < f(x̄) + n

m∑

i=1

g+
i (x̄) − ε. (3.1)

Notice that
∑m

i=1 g+
i (xn) = 0 if and only if xn ∈ S. If

∑m
i=1 g+

i (xn) = 0,

x̄ is not an ε-approximate solution of (P). Hence
∑m

i=1 g+
i (xn) 6= 0, i.e.,

∑m
i=1 g+

i (xn) > 0 for all n ∈ N. So, for each n ∈ N, there exists i ∈

{1, · · · ,m} such that g+
i (xn) > 0. Let ui

n = g+
i (xn), i = 1, · · · ,m and

un = (u1
n, · · · , um

n ). Then gi(xn) ≤ ui
n, i = 1, · · · ,m, un 6= 0 and

‖un‖ ≤
m∑

i=1

|ui
n| =

m∑

i=1

g+
i (xn).

Thus from (3.1), we have

φ(un) + n‖un‖ ≤ f(xn) + n
m∑

i=1

g+
i (xn) < f(x̄) − ε. (3.2)

Since (P) is stable, φ(0) is finite and there exists r > 0 such that

φ(u)− φ(0) >= −r‖u‖ ∀u ∈ Rm. (3.3)

Hence from (3.2) and (3.3), (n − r)‖un‖ + φ(0) < f(x̄) − ε for all n ∈ N.

This is impossible since un 6= 0 for all n ∈ N. Thus (ii) holds.

(ii) ⇒ (iii) : Suppose that (ii) holds. Then 0 ∈ ∂ε(f + M
∑m

i=1 g+
i )(x̄).

So, by Lemma 2.4, there exist ε0, εi >= 0, i = 1, · · · ,m such that ε =
∑m

i=0 εi
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and 0 ∈ ∂ε0f(x̄) +
∑m

i=1 ∂εi(Mg+
i )(x̄). We know from Example 3.5.2 in [5]

that,

∂εi(Mg+
i )(x̄) =

⋃
{∂δi(αiMgi)(x̄) | αi ∈ [0, 1], 0 <= δi <= αiMgi(x̄) + εi}.

Thus there exist ε0, εi >= 0, αi ∈ [0, 1], δi >= 0, i = 1, · · · ,m such that

ε = ε0 +

m∑

i=1

εi

0 ∈ ∂ε0f(x̄) +
m∑

i=1

∂δi(αiMgi)(x̄)

and δi <= αiMgi(x̄) + εi.

Thus (iii) holds.

(iii) ⇒ (i) : Suppose that (iii) holds. Then there exist v0 ∈ ∂ε0f(x̄), vi ∈

∂δi(αiMgi)(x̄), i = 1, · · · ,m such that

0 = v0 +
m∑

i=1

vi

ε = ε0 +
m∑

i=1

εi

and 0 <= δi <= αiMgi(x̄) + εi, i = 1, · · · ,m.

Then for any x ∈ Rn,

f(x) − f(x̄) >= 〈v0, x − x̄〉 − ε0,
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(αiMgi)(x)− (αiMgi)(x̄) >= 〈vi, x− x̄〉 − δi

>= 〈vi, x− x̄〉 − αiMgi(x̄) − εi.

Hence we have, for any x ∈ Rn,

f(x)+
m∑

i=1

(αiMgi)(x)−f(x̄)−
m∑

i=1

(αiMgi)(x̄) >= −ε0−
m∑

i=1

αiMgi(x̄)−
m∑

i=1

εi.

So, for any x ∈ Rn,

f(x) +
m∑

i=1

αiMgi(x) − f(x̄) >= −ε.

Hence for any x ∈ S, f(x) >= f(x̄)− ε. Thus x̄ is an ε-approximate solution

of (P).
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4 Convex-Sublinear Optimization Problems

Let X,Z be Banach spaces and S a closed convex cone in Z, which does

not necessarily have nonempty interior. Let f : X → R be a continuous

convex function and g : X → Z a continuous S-sublinear function, where

g is S-sublinear, that is, (i) ∀x ∈ X ∀λ >= 0, g(λx) = λg(x), (ii) ∀x, y ∈

X, g(x) + g(y) − g(x + y) ∈ −S.

We consider the following optimization problem:

(P) Minimize f(x)

subject to g(x) ∈ −S.

The asymptotic Lagrange conditions for (P) have been studied in ([1, 6])

when g is S-convex. Here we will present the asymptotic Lagrange conditions

for (P).

And we will give an example which illustrates our asymptotic results and

we know from this example that shows the condition containing

“0 ∈ ∂f(a) + cl
⋃

λ∈S+

∂(λg)(a)”

may not be an asymptotic Lagrange condition for (P) even if g is S-sublinear.

Theorem 4.1 Let a ∈ X be such that g(a) ∈ −S. Then the following

statements are equivalent:

(i) a is an optimal solution of (P).
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(ii) there exists u ∈ ∂f(a) such that

−
(

u

u(a)

)
∈ cl

( ⋃

λ∈S+

epi (λg)∗
)
.

(iii) there exist u ∈ ∂f(a), λα ∈ S+, εα >= 0 and vα ∈ ∂εα(λαg)(a) such

that

−u = lim
α→∞

vα,

u(a) = 0,
lim

α→∞
εα = 0.

(iv) there exists u ∈ ∂f(a) such that

−u ∈ cl
( ⋃

λ∈S+

∂(λg)(0)
)

u(a) = 0.

(v) there exists u ∈ ∂f(a) such that

−u ∈ cl
( ⋃

λ∈S+

⋃
ε≥0

∂ε(λg)(a)
)

u(a) = 0.

Proof. (i) ⇐⇒ (ii): (i) ⇐⇒ 0 ∈ ∂f(a) + NA(a), where A = {x ∈

X | g(x) ∈ −S}. By Lemma 2.2,

u ∈ NA(a) ⇐⇒ −
(

u

u(a)

)
∈ cl

( ⋃

λ∈S+

epi (λg)∗
)
.

Hence it is true that (i) ⇐⇒ (ii).
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(ii) ⇐⇒ (iii):

(ii) ⇐⇒ By Proposition 2.4, there exists u ∈ ∂f(a) such that

−
(

u
u(a)

)
∈ cl

( ⋃

λ∈S+

⋃

ε>=0

{(
v

v(a) + ε − (λg)(a)

)
| v ∈ ∂ε(λg)(a)

})

⇐⇒ there exists u ∈ ∂f(a), λα ∈ S+, εα >= 0, vn ∈ ∂εα(λαg)(a) such that

−
(

u
u(a)

)
= lim

α→∞

(
vα

vα(a) + εα − (λαg)(a)

)

⇐⇒ there exists u ∈ ∂f(a), λα ∈ S+, εα >= 0 and vα ∈ ∂εα(λαg)(a) such that

−u = lim
α→∞

vα, lim
α→∞

(λαg)(a) = 0 and lim
α→∞

εα = 0.

Since vα ∈ ∂εα(λαg)(a), we have

(λαg)(x) − (λαg)(a) >= vα(x − a) − εα ∀x ∈ X. (4.1)

Taking x = 2a in (4.1), it follows from (4.1) and the sublinearity of λαg that

(λαg)(a) >= vα(a) − εα. (4.2)

Letting α → ∞, 0 = lim
α→∞

(λαg)(a) >= lim
α→∞

vα(a) = −u(a) and hence u(a) >=

0. Taking x = 0 in (4.1), we get

−(λαg)(a) >= −vα(a)− εα.

Letting α → ∞, 0 = − lim
α→∞

(λαg)(a) >= u(a). Thus u(a) = 0. Hence it is

true that (ii) ⇒ (iii).
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Now we prove that (iii) ⇒ (ii). Suppose that (iii) holds. Then (4.2) holds.

Since (λαg)(a) <= 0, we get

0 >= lim
α→∞

(λαg)(a)

>= lim
α→∞

vα(a)− lim
α→∞

εα

= −u(a)

= 0.

Thus lim
α→∞

(λαg)(a) = 0. Hence it is true that (iii) ⇒ (ii).

(ii) ⇐⇒ (iv) :

cl
( ⋃

λ∈S+

epi (λg)∗
)

= cl
( ⋃

λ∈S+

[α(λg)(0) × R+]
)

= cl
( ⋃

λ∈S+

(λg)(0)
)
× R+. (4.3)

Thus it is clear that (iv) ⇒ (ii).

Suppose that (ii) holds. Then, it follows from (4.3) that

−u ∈ cl
( ⋃

λ∈S+

α(λg)(0)
)

and u(a) <= 0.

So, there exist λα ∈ S+ and vα ∈ ∂(λαg)(0) such that

−u = lim
α→∞

vα.

Since vα ∈ ∂(λαg)(0), we have

(λαg)(x) − (λαg)(0) >= vα(x) ∀x ∈ X.
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Letting x = a in the above inequality,

0 >= (λαg)(a) >= vα(a).

Letting α → ∞, we get

u(a) >= 0.

Thus u(a) = 0. So it is true that (ii)⇒ (iii).

(iv) ⇐⇒ (v) : Notice that

∂ε(λg)(a) = {v ∈ ∂(λg)(0) | (λg)(a) − v(a) <= ε}

⊂ ∂(λg)(0).

So, it is clear that (v) ⇒ (iv).

Suppose that (iv) holds. Then there exist λα ∈ S+ and vα ∈ ∂(λαg)(0)

such that

−u = lim
α→∞

vα, u(a) = 0.

Since vα ∈ ∂(λαg)(0), we get

0 >= (λαg)(a) >= vα(a).

Thus, 0 >= lim
α→∞

(λαg)(a) >= lim
α→∞

vα(a) = −u(a) = 0. Hence lim
α→∞

(λαg)(a) = 0

and lim
α→∞

vα(a) = 0. Let εα := (λαg)(a)− vα(a). Then εα >= 0 and lim
α

εα = 0.

Since ∂εα(λαg)(a) = {v ∈ ∂(λαg)(0) | (λαg)(a)− v(a) <= ε},

vα ∈ ∂εα(λαg)(a).
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Since −u = lim
α→∞

vα, we have

−u ∈ cl
⋃

λ∈S+

⋃

ε>=0

(λg)(a).

Thus (iv) holds. 2

Now we give an example which illustrates results of Theorem 4.1 and

we show that the set “cl
( ⋃

λ∈S+

∂(λg)(0)
)
” in (iv) can not be replaced by

“cl
( ⋃

λ∈S+

∂(λg)(a)
)
”.

Example 4.1 For the problem (P), let f(x, y) = x, g(x, y) = (x2 + y2)
1
2 − y

and S = R+. Let a = (0, 1). Then a is an optimal solution of (P) and

∂f(a) = {(1, 0)}. Let u = (1, 0). Then uTa = 0,

⋃

λ∈R+

epi (λg)∗ = {(0, 0, α) | α >= 0} ∪ {(x, y, α) | x ∈ R, y < 0, α >= 0}

and

cl
⋃

λ∈R+

epi (λg)∗ = {(x, y) | x ∈ R, y <= 0} × R+.

Thus (ii) holds. Take εn = 1
n

and λn = 1
2
(n + 2

n
) + 1. Then (−1 − 1

n
,− 1

n
) ∈

∂εn(λng)(a). Thus vn → −u, εn → 0 and u(a) = 0. So, (iii) holds.

∂(λg)(0) = {(v1, v2) | v2
1 + (v2 + λ)2 <= λ2}.
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So, cl
⋃

λ∈S+

∂(λg)(0) = {(v1, v2) | v2 <= 0}. Thus (iv) holds. Let λ > 0.

∂ε(λg)(a) = {(v1, v2) ∈ ∂(λg)(0, 0) | (λg)(0, 1) − (v1, v2)
T (0, 1) <= ε}

= ∂(λg)(0, 0) ∩ {(v1, v2) | v2 >= −ε}

= {(v1, v2) | v2
1 + (v2 + λ)2 <= λ2} ∩ {(v1, v2) | v2 >= −ε}.

So,
⋃

λ∈S+

⋃
ε>=0

∂ε(λg)(a) = {(v1, v2) | v2 < 0}∪{(0, 0)} and cl
( ⋃

λ∈S+

⋃
ε>=0

∂ε(λg)(a)
)

=

{(v1, v2) | v2 <= 0}. Thus (v) holds. However, ∂(λg)(a) = {(0, 0)} ∀λ ∈ S+(=

R+) and hence −u 6∈ cl
( ⋃

λ∈S+

∂(λg)(a)
)
. Thus the set “cl

( ⋃
λ∈S+

∂(λg)(0)
)
”

in (iv) can not be replaced by “cl
( ⋃

λ∈S+

∂(λg)(a)
)
”. So, the condition con-

taining “0 ∈ ∂f(a)+ cl
( ⋃

λ∈S+

∂(λg)(a)
)
” may not be an asymptotic Lagrange

condition for (P). 2

Now we consider the following optimization problem:

(P)′ Minimize f(x)

subject to x ∈ A := {x ∈ X | g(x)− b ∈ −S},

where f : X → R and g : X → Z are a continuous sublinear function and a

continuous S-sublinear function, respectively.

Theorem 4.2 Let x̄ ∈ A. Then the following statements are equivalent:

(i) x̄ is an optimal solution of (P)′.
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(ii) there exists v ∈ ∂f(0) such that f(x̄) − v(x̄) <= 0 and

−
(

v

v(x̄)

)T

∈ cl
⋃

λ∈S+

(
∂(λ ◦ g)(0) × [λ(b),∞)

)
.

Proof. Let x̄ be an optimal solution of (P)′.

⇐⇒ f(x) >= f(x̄) ∀x ∈ A

⇐⇒ f(x) + δA(x) >= f(x̄) + δA(x̄) ∀x ∈ A

⇐⇒ 0 ∈ ∂(f + δA)(x̄) = ∂f(x̄) + ∂δA(x̄) = ∂f(x̄) + NA(x̄).

Since f is sublinear, ∂f(x̄) = {v ∈ ∂f(0) | f(x̄) − v(x̄) <= 0}. Let D = {x ∈

X | g(x) − b ∈ −S}. Then A = X ∩ D. So,

−v ∈ NA(x̄) ⇐⇒ −
(

v

v(x̄)

)T

∈ cl
( ⋃

λ∈S+

epi (λ ◦ g)∗
)

⇐⇒ −
(

v

v(x̄)

)T

∈ cl
⋃

λ∈S+

(
∂(λ ◦ g)(0) × [λ(b),∞)

)
.

2

Theorem 4.3 Suppose that
⋃

λ∈S+

[∂(λ ◦ g)(0) − C]× [λ(b),∞) is closed. Then

the following statements are equivalent:

(i) x̄ is an optimal solution of (P)′.

(ii) there exist v ∈ ∂f(0) and λ ∈ S∗ such that f(x̄) − v(x̄) <= 0, −v ∈

∂(λ ◦ g)(0) − C and λ(b) <= −v(x̄).
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