commons

O N § D E E D

@creative

ASZAEMN-HS3-MIASA 2.0 Mz
O 2A= OHNHS] =4S M2= ASMH 50 ARSA

o 0 HE=SS SH, HE, 32, 84, &3 5 28T 2 2UsLCH

— f=Rr—T0—

Ch5d 2= 245 Mdor gLk

HEALEA. 7ot EHSME EAIGHAOE 2HLICEH

HZd. #5l= 0l A5== 2dl 5

Jd
0
it
2
o
m
1
£
I3
Iry
[

o Fgts, 0 HEEY WO S0l =2 A2, DAEEN HEE
ZTEH LHEHH MOE 2L

o REARZLE Y2 5Jfe won U227 E2 MSLA Falil

HESAEH OIE 0IEAS Ad= A2 HWEN Sotl IS BA BSLLL

0lZ1Z DIEHE A= Legal CodeyE Ol 2H 2 SIRLIC

Disclairmer B

Collection




Thesis for the Degree

Master of Education

Some Remarks on Optimality Conditions

for Convex Optimization Problems

by

Hwang Jin Lee

Graduate School of Education

Pukyong National University

August 2007



Some Remarks on Optimality Conditions
for Convex Optimization Problems

=5 HA43 A HHx

3k A&
Adivisor : Prof. Gue Myung Lee

by

Hwang Jin Lee

A thesis submitted in partial fulfillment-of the requirements

for the degree of
Master of Education

Graduate School of Education

Pukyong National University

August 2007



Some Remarks on Optimality Conditions for Convex

Optimization Problems

A dissertation
by

Hwang Jin Lee

Approved by:

(Chairman) Jin Mun Jeong, Ph. D.

(Member) Jun Young Shin, Ph. D. (Member) Gue Myung Lee, Ph. D.

August 30, 2007



CONTENTS

Abstract(Korean) ........... ... . ii

CIntroduction ... 1

P relimInaries .o 2

. Stability and Optimality Conditions ........................... 11

. Convex-Sublinear Optimization Problems ..................... 15

References . ... 23



ﬂ
i
N
e

W
i

o] %

Ho

=

]
or

e e

9_]:

ol

Okl

=]
KM
"

r
I

Jd

1]
4

il

Atai off

M= ofHEH NYFE glol YElst=E

=535 EA<

MY =ziof= A,

45t 2

X
&

Z

~H M3 (sublinear)

[=
=



1 Introduction

Many authors have studied optimality conditions for several kinds of op-
timization problems ([2, 3, 4, 10, 11, 12, 13, 16, 14, 15, 17]). It is well
known that constraint qualifications should be imposed on convex optimiza-
tion problems to obtain optimality conditions for solutions. Among con-
straint qualifications for convex optimization problems, the Slater constraint
qualification is frequently used.

In this thesis, we will prove optimality conditions for convex optimization
problems. In Section 2, we give definitions, examples and preliminary results
for next section. In-Section 3, we give approximate optimality conditions
for e-approximate solutions of a convex optimization problem, which hold
under appropriate stability condition. In Section 4, we establish optimality
conditions for optimal solutions of convex sublinear optimization problems,

which hold without any constraint qualification.



2 Preliminaries

In this section, we give definitions, examples and preliminary results. Let X

be a Banach space and X* the topological dual of X.

Definition 2.1 . Let g : X — R be a convex function.
(1) The subdifferential of g at a € X is given by

dg(a) :={ve X" | g(x) 2 g(a) +v(r—a) Yre X}
(2) The e-subdifferential of g at a € X is given by
Oeg(a) :=4v e X" | g(x) = g(a) +v(r —a)—e Vre X}

Example 2.1 . (1) Let g(x) = ||z||, # € R". Then 0g(0) = B1(0), where
Bi(0) ={z e R" | ||z £ 1}.
(2) Let g(x) = VaT Az, x € R”, where A is a symmetric positive semidef-

inite n x n matriz. Then 8g(0) = {Aw | w" Aw < 1}.

Definition 2.2 . The conjugate function of a function g : X — R is defined

by
g (v) = sup{(v,z) — g(x) | x € X}, for anyv € X*

Example 2.2 . Let g(x) = €® for any x € R. Then

vlogv — v if v >0,
g'(v) =1 0 i v=0,
+o00 if  v<O.



Definition 2.3 . The epigraph of a function g : X — R, epi g, is defined by
epi g :=={(z,7r) e X xR | g(x) <r}.

Proposition 2.1 Let a € X. If g : X — R is sublinear (i.e., convexr and

positively homogeneous of degree one), then for all € = 0,

Oeg(a) = {v € 99(0) | g(a) — (v,a) < €}
Moreover, 0.g(0) = dg(0).

Proof. Let € 2 0 -and v € dg(0) and g(a) —(v,a) < €. Then g(z) =

(v,z), Vx € X, and hence

+(v,z)
— e+ (v,).

So, for all z € X, g¢g(x) = g(a) + (v, —a) — €. Hence v € O.g(a).

Let v € deg(a). Then g(z).= g(a)+(v,x —a)—e Vr € X. Letting z =0,
g9(0) = g(a) + (v, —a) =e€. Thus g(a) — (v,a) < e. Moreover, g(x + a) =
g(a)+ (v, z)—e Vo € R™. Since g(x)+g(a)=g(z+a), g(x) = (v,x)—€ Vo €
X. Let z be fixed. Then for any A > 0, Ag(z) = g(Ax) = (v, \x) — €.

and so g(z) = (v,x) — §. Letting A — +o0, g(z) = (v,x). Thus v € 9g(0).
O

For the completeness, we give proofs of propositions 2.2, 2.3 and 2.4 and

Lemma 2.1, 2.2, which will be appeared in this section.



Proposition 2.2 [9] If g : X — R is sublinear, then

g (v) =

0 if v e dg(0)
+oo if v & dg(0)

and hence epi g* = 0g(0) x R,.

Proof. From the definition of subdifferential,

Hence

v € dg(0)

v ¢ 9g(0)

L

= Vre X, g(z)—g(0) = v'(z —0)
= VzeX, 0=v'z—g(x)
= 0=g"(v)
= 0 =g (v) =sup{v'a — g(z) | » € R"}
= v'0-g(0) =0
= giv)=0.
Jzo € X suchthat g(zo) — g(0) < v'(zo —0)
0'< v'zo — g(x0)
g"(v) = sup{v'z — g(z) | = € R"}
= sup{v'(\z0) — g(Azg) | A = 0}
= sup{A(v'zo — g(z0)) | A 2 0}
= +00
g"(v) = o0

7 (v) = { 0 if v e dg(0)

+oo if v ¢ 0g(0)



Thus, we have

epigt = {(v,a) e X xR | g"(v) L a}
= {(v,a) e X xR | vedg(0), a=0}

= 09(0) x Ry

Proposition 2.3 [9] If g : X — R s sublinear and if g(z) = g(z) —
k, for x € X and k € R, then

epi g* = 0g(0) X [k, 00).
Proof. For any v € X*,

g9'(v) = sup{v(z) — g(x) | * € domg}
= sup{v(z) —g(z) + k | x € domg}
= sup{u(z) — g(x) | x € domg} + k

= g'(v) +k
Then for any v € X* and o € R,

(v,a) € epi g*

(v,a—k) € epi g*

[ A

(v,) € epi g" + (0, k).



Hence by Proposition 2.2,

epig° = epig*+(0,k)
= (09(0) x R4+) + (0, k)

= 9g(0) x [k, o).

Now we consider the following optimization problem:

(P) Minimize f(x)

subject to x €.

where f : R — R is a convex function and S is a closed convex subset of

R™.

Definition 2.4 Let € 2 0. Then T € S is called an e-approximate solution
of (P) if
f(x) +e€ = f(z), for any x € S.

Example 2.3 Consider the following convew optimization problem:
(P) Minimize  f(z) = —x
subject to  g(x) == /22 + 12—y < 0.
The set of all e-approzimate solutions of (P) is {(0,y) € R* | y = 0}.

The following lemmas are needed to prove the main results. For the

completeness, we give their proofs.



Let X and Z be Banach spaces and the cone S C Z be closed and convex.
The (positive) polar of the cone S C Z is the cone ST = {0 € Z* | 0(k) >
0 Vke S}

Lemma 2.1 [1] Let h : X — R be a continuous convex function and g :
X — Z be a continuous S-convexr function, that is, for any v,y € Xand
any A € (0,1), g(Az 4+ (1 — Ny) — Ag(x) — (1 — N)g(y) € =S, respectively.
Suppose that {x € X | g(x) € =S} # 0. Then the following statements are
equivalent:

(i) {zr e X [g(r)e =5y {rec X | h(z)z0}

(11) 0 € epi h*+cl |J epi (Ag)*.
Aest

Proof. Let @ = {v € X | g(z) € —=S}. Then Q # (). By proposition 2.3, epi &

=cl |J epi (Ah)* The proof can be found in [9]), where f. is the indicator
Aest

function of Q, that is, dg(z) = 0, if x € Q and dg(x) = +o0, if v & Q.

Here,
(i) <= 0 €epih"+epid,=epi(h+dq)" (see Lemma 2.3 below)
< (h+60)"(0) <0
< (h+dg)(x) =20 for anyz € X
<= h(z)=0foranyzx € Q
= (i)
Thus (i) <= (ii). O



Lemma 2.2 [7] Let u : X — R be a continuous linear mapping and let
g : X — Z be a continuous S-convexr mapping. Suppose that the system
g(x) € =S is consistent. Let a € R. Then the following statements are

equivalent:

(i)){r e X |g(x) e =5} C{r e X | u(x) <a}l.

(i) (Z) e cl< L epi ()\g)*).

xest

Proof. Let h(x) = o — u(z). Then by Lemma 2.1,

(i) <= -0€epih”+ cl( U epi ()\g)*)
Aest

= 0e (@u,~a)+ {0} BR, + cl( |J epi (Ag>*)

— (u,a) € {0} x Ry + cl( U epi ()\g)*)

Since cl< U epi ()\g)*) is a convex cone [9] and {0} xR, C cl< U epi ()\g)*),
res+ res+

we have, {0} x Ry + cl< U+ epi ()\g)*) = cl( U+ epi ()\g)*).
AeS AeS

Thus (i) <= (it). O

The following proposition explains the relationship between the epigraph

of a conjugate function and the e-subdifferential.



Proposition 2.4 [6] If g : X — RU{+00} is a proper lower semicontinuous

convez function and if a € domg, then

epi g° = | {(v.0(@) + ¢~ gla)) | v € Dgla)}.

=0
Proof. Let (v,a) € epi g*. Then g*(v) < a and hence
v(x)—g(z) La VrelX. (2.1)

In particular v(a) — g(a) < a. Let ¢¢ = a —v(a) + g(a). Then o = ¢ +
v(a) — g(a), € = 0 and-from (2.1), v(z) — g(x) < ¢ + v(a) — g(a) Vx €
X. So, g(x) —g(a) = v(z —a) — e Y € X. Hence v € J,¢(a). Thus

U{U v(a)+ e — g(a)) : v € degla)}.

0]

Conversely, let (v, a) U{ (v,v(a) + €—=g(a)) : v € Jeg(a)}. Then there

€20

exists € = 0 such that v € 9.g(a). Thus

So, g(z) 2 v(x) —a Vz € X. Hence sup{v(z) — g(x) : x € X} < a. Thus

g*(v) < a. Hence (v, ) € epi g*. So,

U{’U’U )+e—g(a)):vedgla)} Cepig. O

€0

Proposition 2.5 [8] If the Slater condition for (P) holds, that is, there ezists

xo € X such that g(xo) <0, then U epi (Ag)" is closed.
Aest

9



Lemma 2.3 [8] Let h : X — R be a continuous convex function and g :

X — R is a lower semicontinuous convex function. Then
epi (h+g)* =epi h* + epi g".

Lemma 2.4 [5] Let h; : R — R, i = 1,--- ,m be lower semicontinuous

convex functions, and € 2 0. Then for all x € R",

0.0 " hi)(@) = JO Ouhi(z) | 2 0,i=1,--- ,m, Ze = ¢}

i=1 i=1

10



3 Stability and Optimality Conditions

We consider the following optimization problem:
(P) Minimize f(z)
subject to x € S :={x eR" | g;(x) <0, i=1,---,m}

where ;R =R, ¢=1,--- ,m are convex functions.
9 9 9 9

Lete=0and T € S.

Theorem 3.1 Suppose that (P) is stable, that is, ¢(0) is finite and there
exists r > 0 such that ¢p(u) — ¢(0) = —r|lul| forall u € R™, where ¢p(u) :=
inf{f(z) | gi(z) Luw;, i =1,--- ,m}. Then the following are equivalent:

(i) T is an e-approzimate. solution of (P);

(ii) there exists M >0 such that T is an e-approzimate solution of (P)':
(P) Minimize  f(z) + M ng(x),
i=1

subject to g (r) = max{0, gi(z)}, i=1,--- m;

(i) there exist M > 0, €g,6; =0, «; €[0,1], §; 20, i =1,--- ,m such
that
€=¢€y+ Zei,
i=1
0e aEOf(i.> + Za(sz(azMgz)(f)a and
i=1

11



Proof. (i) = (ii): Suppose to the contrary that (ii) does not hold. Then

for each n € N, there exists x, € R" such that
flan) +nY g (xn) < f(®)+n)_gH (@) —e (3.1)
i=1 i=1

Notice that >, ¢ (z,) = 0 if and only if z, € S. If 37", g (z,) = 0,
T is not an e-approximate solution of (P). Hence Y7, g/ (z,) # 0, ie.,
S gi (@) > 0 for all n € N. So, for each n € N, there exists i €
{1,---,m} such that g (z,) > 0. Let u’ = g (z,), i = 1,--- ,m and

Up = (ul, -+ u™). Then g;(z,) <ul,i=1+,m, u,# 0 and

m m
luall <D fuili= D0 o ().
i=1 i=1

Thus from (3.1), we have
o) +itllunl| < F(2a) ) g (@i f(2) —e. (3:2)
i=1
Since (P) is stable, ¢(0) is finite and there exists r > 0 such that
¢(u) = ¢(0) = —rlul| YueR™ (3:3)

Hence from (3.2) and (3.3), (n — 7)||u,|| + ¢(0) < f(z) —e forall n e N.
This is impossible since u, # 0 for all n € N. Thus (ii) holds.
(ii) = (iil) : Suppose that (ii) holds. Then 0 € 9.(f + M >_1", g:")(Z).

So, by Lemma 2.4, there exist €y, ¢; 20, ¢ = 1,--- ,m such that e = >_." ¢

12



and 0 € 0o, f(Z) + D1t 0,(Mg;")(z). We know from Example 3.5.2 in [5]
that,

0 (Mg) (@) = | H{05.(0:iMg)(2) | i € 0,1], 0 < & < asMgi(7) + e}

Thus there exist €y, ¢; 20, «; € [0,1], 6; 20, i =1,--- ,m such that
€ =€+ Z €;
i=1

0-€ Do f(Z) + Y O, (;Mg;)(%)
i=1
and 9; < a; Mg;(z) + €;.

Thus (iii) holds.
(iii) = (i) : Suppose that (iii) holds. Then there exist vy € O, f(Z), v; €
Os,(a;Mg;)(x), i = 1,--+,m such that

0 :Uo—i-i’l}i
i=1

m

€= €9+ E €;
i=1

and 0<6; < ;Mg (Z)+¢€, t=1,--- ,m.

Then for any x € R”,

13



(iMg;)(x) = (i Mg;)(7)

%

<’Uz‘,l' — .f'> — 52

Kl

> (v, x—T)—a;Mg;(T) — €.

Hence we have, for any x € R",

m m

f(:c)—l—Z(ozngi)(:c)—f(f) Z(OzzMgZ )(Z) —eo—ZazMgza_: Zez.

=1 =1 i=1

So, for any = € R",

—i—ZOzZJ\/[gZ f(Z)= —e.

Hence for any z € S, f(z) =2 f(&) — é&. Thus Z is an e-approximate solution

of (P).

14



4 Convex-Sublinear Optimization Problems

Let X, Z be Banach spaces and S a closed convex cone in Z, which does
not necessarily have nonempty interior. Let f : X — R be a continuous
convex function and ¢ : X — Z a continuous S-sublinear function, where

g is S-sublinear, that is, (i) Vx € X VA =2 0, g(Ax) = Ag(z), (ii) Vz,y €
X, g(x)+9(y) —g(z +y) € =5.
We consider the following optimization problem:
(P) Minimize f(z)

subject to ¢g(x) € —S.

The asymptotic Lagrange conditions for (P) have been studied in ([1, 6])
when g is S-convex. Here we will present the asymptotic Lagrange conditions
for (P).

And we will give an example which illustrates our asymptotic results and

we know from this example that shows the condition containing

“0.cdf(a)+d | JoOg(a)

rest

may not be an asymptotic Lagrange condition for (P) even if g is S-sublinear.

Theorem 4.1 Let a € X be such that g(a) € —S. Then the following
statements are equivalent:

(i) a is an optimal solution of (P).

15



(ii) there exists u € Of(a) such that

—(u?a)) e cl< | epi ()\g)*).

xest

(iii) there exist u € Of(a), Ao € ST, €4 = 0 and vy € I, (Aag)(a) such
that

—u = lim v,

u(a) =0,
lim e, = 0.

a—00

(iv) there exists uw-€ Of(a) such that

—ue cz( U 8()\g)(0))

xest

u(a) = 0.

(v) there exists u € Jf(a) such that

—y € cl< U u 85()\g)(a))

AeSt €20
u(a) = 0.
Proof. (i) <= (ii): (i) <= 0 € 90f(a)+ Na(a), where A = {z €

X | g(z) € —=S}. By Lemma 2.2,

w € Na(a) —( “)) ed(U epi ()\g)*).

ula
xest

Hence it is true that (i) <= (ii).

16



(if) < (iii):

(i) <= By Proposition 2.4, there exists u € df(a) such that

~(utey ) =4 (U U{(otwse ey ) 12 €200 )

AES+ €20

<= there exists u € f(a), \a € ST, €4 20, v, € I, (Mag)(a) such that

_(J%):ﬁﬁ(wmwwf%mm@)

<= there exists u € df(a), A\ € ST, €, =0 and v, € J.,(Aag)(a) such that

—u'="limwv,, lim ()\ag)(a) =0 and lim ¢, =0.

oa—0Q0 o— a—00

Since v, € Ok, (Aag)(a), we have
(Aag) () = (Aag)(a) 2 vo(x —a) — e, Vo€ X. (4.1)

Taking x = 2a in (4.1), it follows from (4.1) and the sublinearity of A\,g that

(Aag)(a) Z va(a) — € (4.2)
Letting o — oo, 0 = lim (Ang)(a) = lim vs(a) = —u(a) and hence u(a) =

0. Taking x =0 in (4.1), we get

—(Aag)(a) 2 —vala) — €

Letting o — oo, 0 = — lim (Ang)(a) = u(a). Thus u(a) = 0. Hence it is

a—00

true that (ii) = (iii).

17



Now we prove that (iii) = (ii). Suppose that (iii) holds. Then (4.2) holds.
Since (Aag)(a) <0, we get

0 = lim (A\ug)(a)

a—00

> lim v,(a) — lim €,

a—0o0 a—0o0
= —u(a)

= 0.

Thus lim (Aag)(a) = 0. Hence it is true that (iii) = (ii).

(i) <= (iv):
cz( L) epi ()\g)*) - cl< L [a(Ag)(0) x ]R+])
— cl< U ()\g)(O)) » Ry (4.3)

Thus it is clear that (iv) = (ii).

Suppose that (ii) holds. Then, it follows from (4.3) that

—u € cl< U a(Ag)(O)) and u(a) <0.

res+
So, there exist A\, € ST and v, € 9(A\ag)(0) such that

—u = lim v,.

Since v, € 0(Aag)(0), we have

(Aag)() = (Xag)(0) 2 va(x) Vu € X.

18



Letting = a in the above inequality,

02 (Aag)(a) 2 va(a).
Letting o — 00, we get
u(a) = 0.

Thus u(a) = 0. So it is true that (ii)= (iii).

(iv) <= (v) : Notice that

Oe(Ag)(a) = {v e d(Ag)(0) | (Ag)(a) —v(a) = €}

C 0(A\g)(0).

So, it is clear that (v) = (iv).
Suppose that (iv) holds. Then there exist A\, € ST and v, € 9(\ag)(0)
such that

—u = lim v,, u(a)=0.
Since v, € (A09)(0), we get
0= (M\ag)(a) =2 vala).

Thus, 0 = lim (\,g)(a) = lim v,(a) = —u(a) = 0. Hence lim (Ang)(a) =0

a—00 a—00 a—00

and lim v,(a) = 0. Let €, := (Aag)(a) —va(a). Then ¢, = 0 and lime, = 0.

a—00

Since Jq, (Aag)(a) = {v € 9(Xag)(0) | (Aag)(a) —v(a) < €},

Vo € O, (Aag)(a).

19



Since —u = lim v,, we have

a—00

—u € cl U U()\g)(a).

Aest ex0
Thus (iv) holds. O

Now we give an example which illustrates results of Theorem 4.1 and

we show that the set “cl< U 8()\g)(0))” in (iv) can not be replaced by
res+

“e( U 00g)(@)"

xest

Example 4.1 For the problem (P), let.f(z,y) = z, g(z,y) = (x> +1y*)z —y
and S = Ry. Let a = (0,1). Then a is an optimal solution of (P) and
df(a) ={(1,0)}. Let w= (1,0). Thenula =0,

L epi (Ag)* ={(0,0,a),| a 2 0}U{(z,y,0) | z€R, y' <0, a =0}

AeRL

and

c | J epi (M) ={(z,9) [z €R, y<0} xR,.

AeRt

Thus (i) holds. Take €, = = and A, = 2(n+2)+ 1. Then (-1 — 2, —1) ¢
Oe, (Ang)(a). Thus v, — —u, €, — 0 and u(a) = 0. So, (iii) holds.

0(Ag)(0) = {(v1,v2) | v} + (v2 +A)* < X*}.

20



So, el |J 0(Ag)(0) = {(v1,v2) | v2 £0}. Thus (iv) holds. Let A > 0.

AeSt

0c(Ag)(a) = {(v1,v2) € A(Ag)(0,0) | (Ag)(0,1) — (v1,v2)"(0,1) < €}
= 9(2g)(0,0) N {(vy, v2) | v2 2 —€}
= {(’Ul,’Ug) | ’U% + (’02 + )\)2 < )\2} N {(’Ul,’Ug) | Vg = —6}.

So, U U dAg)(@) = {(v1,02) | v2 < 0}U{(0,0)} and et U U dAg)(a)) =

AeST ex0 A€S+ €20

{(v1,v2) |va £0}. Thus (v) holds. However, d(\g)(a) = {(0,0)} VA € ST(=

R) and hence —u ¢ Cl( U 8()\g)(a)>. Thus the set “Cl< U 8()\g)(0)) ’

Aest xest

in (iv) can not be replaced by “cl( U 8()\g)(a)) ”. So, the condition con-
AesSt

taining ‘0 € Of(a) +cl( U 8(Ag)(a)) ”may not be an asymptotic Lagrange
AesSt

condition for (P). O
Now we consider the following optimization problem:

(P’ Minimize — f()

subject to x € A:={rx e X | g(z)—be =S},

where f: X — R and g : X — Z are a continuous sublinear function and a

continuous S-sublinear function, respectively.

Theorem 4.2 Let ¥ € A. Then the following statements are equivalent:

(i) T is an optimal solution of (P).

21



(ii) there exists v € Jf(0) such that f(Z) —v(Z) £ 0 and

_(vvaé) e |J (900 9)(0) x [\b). ) ).

AeSt

Proof. Let Z be an optimal solution of (P)’.

— flx)=f(z) VeeA

< f(x)+da(x) = f(T)+0a(x) Ve A

< 0€9(f+04)(T) =0f(Z)+00a(T) = 0f(Z) + Na(Z).
Since f is sublinear, 0f(z) ={v € 0f(0) | f(z) —v(z) £ 0}. Let D = {x €
X | g(z) —be —S}. Then A= X ND. So,

—v € Na(7) " = —(vé)f € cl( L epi (Aog)*>

AeST

= _<U(ng>)T ed | (8()\og)(0) x [)\(b),oo)).

xesSt

Theorem 4.3 Suppose that U [O(X o g)(0)—=C] x [A(b),c0) is closed. Then
res+

the following statements are equivalent:

(i) T is an optimal solution of (P).

(ii) there exist v € Of(0) and X € S* such that f(Z) —v(Z) <0, —v €
d(Aog)(0) — C and A(b) £ —v(Z).
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