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1 Introduction and Preliminaries

While studying duality under generalized convexity, Mond and Weir [15]
proposed a number of different duals for various nonlinear programming prob-
lems with nonnegative variable and proved various duality theorems under
appropriate pseudo-convexity and quasi-convexity assumptions. The notion
of symmetric duality was developed significantly by Dantzig et al. [4], Chan-
dra and Husain [3] and Mond and Weir [16]. Dantzig et al. [4] established
symmetric duality results for convex/concave functions with non-negative or-
thant as the cone. Later Mond and Weir [16] , Weir and Mond [20] as well as
Gulati [5] et al. generalized single objective symmetric duality to multiobjec-
tive case motivated by Hanson [6] and Hanson and Mond [7]. Nanda and Das
[18] formulated a pair of symmetric dual nonlinear programming problems
for pseudo-invex functions and arbitrary cones. Nanda [17] also studied sym-
metric dual problems assuming the functions to be invex with non-negative
orthant as the cone. Kim et al. [10] formulated a pair of multiobjective sym-
metric dual programs-for pseudo-invex functions and arbitrary cones and
established duality results. Mishra [11] formulated a pair of multiobjective
second order symmetric dual nonlinear programming problems under second
order pseudo-invexity assumptions on the functions involved over arbitrary
cones and established duality results. The model given by Mishra [12] unifies
the Wolfe and Mond-Weir type second order vector symmetric dual models.
Furthermore, several second order duality and self-duality theorems was also
established for the pair of dual models. Recently Khurana [8] introduced

cone-pseudo-invex and strongly cone-pseudo-invex functions and established



duality theorems for a pair of Mond-Weir type multiobjective symmetric dual
over arbitrary cones. Suneja and Aggarwal and Davar [19] formulated a fair
of symmetric dual programs over arbitrary cones and establish weak, strong,
converse and self duality theorems by using cone-convexity and the objective
function was optimized with respect to an arbitrary closed convex cone by
assuming the function involved th be cone-convex. Kim and Song [9] also
presented two pairs of nonlinear multiobjective mixed integer programs for
the polars of arbitrary cones, and established the weak, strong and converse
duality theorems by using the concept of efficiency.

In this dissertation, we formulated four dual problems related with Wolfe
and Mond-Weir of integrated programming with a cone constraint and es-
tablished dual relations about under the general invexity assumptions. By
using a necessary optimality condition about solutions, we demonstrated the
strong duality. Furthermore we delivered existing known results as specific

cases from these duality results .

Let R™ be the n-dimensional Euclidean spacesand let R” be its non-
negative orthant. We denote the interior of R’ by int R”.

The following convention for inequalities will be used in this paper :
If x,u € R", then
r<u <= u—x R},
r<u < u—zeR}\{0};
r<u <= u—zcint R} ;

z £ u is the negation of z <u .



For z, u € R, z < v and x < u have the usual meaning.

Definition 1.1 A nonempty set C in R™ s said to be a cone with vertex
zero, if v € C implies that Ax € C for all A 2 0. If, in addition, C' is convex,

then C' is called a conver cone.
Consider the following multiobjective programming problem :
(MP) Minimize f(z)
subject to . g(z) € C5, =z € (Y,

where f: S — RF, g: S — R™and C; C S, S CR"isopen. C§is a polar

cone of Cy C R™.

Definition 1.2 A feasible point T is a weakly cfficient solution of (MP), if

there exists no other v € X such that f(Z) — f(x) > 0.
Definition 1.3 The polar cone C* of C s defined by
Cr={zeR" | 2720 forall xcCY.

Definition 1.4 [2] Let.S CR™ be open and.f-: S — R.
(i)f is said to be pseudo-invex with respect ton on S, wheren is a function

from S x S to R™, if for all z,u € 5,

' (2, w)Vf(u) 2 0= flz) = f(u).

(i) f is said to be quasi-invex with respect ton on S, where n is a function

from S x S to R™, if for all z,u € 5,

fle) £ f(u) = 0" (z,u)V f(u) £ 0.



2 Duality

We propose the following multiobjective dual problem to the primal problem

(MP) :

(MD); Maximize f(u)+y g(u)e —u’ [V f)(u) + Vy g(u)le
subject to  —[V(ATf)(u) + VyTg(u)] € C7,

yEOQ) )\20)

(MD), Maximize f(u)
subject to  —[V(A\Lf)(u) + Yy g(u)] € Cf,
y g(u) — u" V) (@) + Vy'g(u)] 20,

yEOQ) )\207

(MD)3. Maximize f(u) —u’ [V f)(w)e VyFg(u)e
subject to. = [V(ATf) (u)+VyLg(u)] € C7,

_g(u) €C§> y602> >\20>

(MD), Maximize f(u)+y”g(u)e
subject to  —[V(AT f)(u) + VyTg(u)] € C,
u [V f)(u) + VyTg(u)] 0,

y€C2> )\209

where



(1) €y and Cy are closed convex cones in R™ and R™ with nonempty

interiors, respectively,

(2) S CR"isopen and Cy C S,

(3) f:S—RFandg:S — R™ are twice differentiable functions,
(4) C7 and Cj are polar cones of Cy and Cs, respectively,

(5) Xand e=(1,---,1) are vectors in RF.

Further let V f(Z) and V?f(T), respectively denote the gradient and the
Hessian matrix of f evaluated at 7. The symbols Vg;(Z) and V3¢ (Z)(i =

1,2,--- ,m) are defined similarly.

Now we establish the duality theorems for (MP) and (MD); — (MD),.

Theorem 2.1 (Weak Duality) Let @ be feasible solution of (MP) and
(z, N\, y) be feasible for (MD)y. Let for all v € C7 , NI f +yTg + v7(:) be

pseudo-inver with respect to 1. Then
fz) £ fu)+y glwe =u [V AL (w) + Vi g(u)le.
Proof. Assume that
fla) < fu) +y"g(ue —u" V(N f)(u) + Vy' g(u)]e.
Multiplying which by A > 0,

(AT (@) < W)W +y"g(w) —u" [V f) () + VyTg()].  (2.1)



From the first dual constraint —[V (AT f)(u) + VyTg(u)] € Cf and there exist

v € Cy such that
v=—[Vf)(u) + Vy g(u)].
Multiplying (2.2) by (. u),
n(z, w) [V f)(w) + Vy'g(u) + 0] = 0.

By the pseudo-invexity of \T f + yZg + vT(+), it implies that

AT A (@) +yhg@) + v'z = (AT () + vy g(w) + v u.

By y € Cy and g(x) € C3,
y'g(x) 0.
By v € Cf and x € (Y,
vTr <0,
Using (2.4) and (2.5) in (2.3), we obtain
() (@) = AT )+ y glu) + 0",

ie.,

AT () +y"g(w) = u [V f) () + Vyg(uw)] = (AT f)(2) 0,

which is a contradiction to the inequality (2.1).

Therefore

flx) £ f(u) +y" glu)e — u [V((A 1)) () + Vy' g(u)le.

(2.2)

(2.3)

(2.5)



Theorem 2.2 (Weak Duality) Let x be feasible solution of (MP) and
(x,\,y) be feasible for (MD)a. Let f be pseudo-invex with respect to n for

allv € C;, NTf +yTg+ 0T (+) be a quasi-invex with respect to same n. Then

f(z) £ flu).
Proof. Assume that
f(z) < flu).
Multiplying which by A > 0,
A N() < (W) (w). (2.6)

From the first dual constraint,
—[V(NTf) () + Myt g(u)] € C7.
And there exist v € € such that
v== [V f)(u) + Vy  g(u)]: (2.7)
Multiplying (2.7) by n(x, u)
n(z, )" [VATf) () + Vy'g(u) +v] = 0.
By the quasi-invexity of AT f + yTg + vT(), it implies that
W' H)@) +y gla) +ole = (VT f)lu) +y glu) +vlu (2.8)
From the primal and dual constraints, we have

y'g(x) <0 and o'z <0, (2.9)

7



Using (2.9) in (2.8), we get

(AT (@) = (AT f)(u),

which is a contradiction to the inequality (2.6). Therefore

f@) £ f(u).

Theorem 2.3 (Weak Duality) Let x be feasible solution of (MP) and
(z, N\, y) be feasible for (MD)s. Let for all v € C; , XL f +07(+) be pseudo-

invex with respect to n and y* g be quasi-invexr with respect to same 1. Then
f(@) £ flu) = " [V () + Vy"g(u)le.
Proof. Assume that
Fla) < flu) — u" [VAT)(u) + Yy glu)le.
Multiplying which by A > 0,
AT () < N F)(u) = u [V F)(u) + Vy' g(u)]. (2.10)
From the primal and dual constraints, we get
y'g(z) <y g(u).
By the quasi-invexity of y?¢ with respect to 7,

n(z,u)"Vy"g(u) <0,

8



From the first dual constraint,

— [V ) (u) + VyTg(u)] € CF.
And there exist v € C} such that

v=—[VIN'f)(u) + Vy'g(u)].
So,

n(z,u)"VyTg(u) =nlz,u) [—v— VA" f)(u)]

ie.,

n(@, w) [V f)(w) + 0] = 0.
By the pseudo-invexity of AT f + v%(-) with respect to 7,
M A @) +ofz — AT f)(u) —vlu= 0.
Since v = —[V(AL f)(u)+ VyLg(u)] € C and x € Cr,
Tz 0.

Hence
AN (@) = (W )w) = " [V f)(u) + Vy g (w)],
which is a contradiction to the inequality (2.10).

Therefore

f(@) £ f(u) —u" [VN f)(w) + VyTg(u)le.



Theorem 2.4 (Weak Duality) Let x be feasible solution of (MP) and
(z,\,y) be feasible for (MD)g4. Let AT f + yTg be pseudo-invex with respect

to n where n satisfies the condition (n(x,u) 4+ u) € C}.
Then

fx) £ fu) +y g(u)e.
Proof. Assume that
f(a) < f(u) +y g(ue.
Multiplying which by A= 0,
ATF)(@) < (AT f)(u) +y"g(u), (2.11)
From the constraint —[V (AT f)(u) + Vy'g(u)] € C; and (n(z,u) +u) € C4,
(n(z,w) +u) [V f)@) + Vy" g(u)] = 0.
By the dual constraint, the above inequality establishes
(@, w) [V f)(u) + Vy"g(w)} 20.
By the pseudo-invexity of AT f+ y”g with respect to 1,
W) (@) +y gla) =2 (N f)(w) +y"g(u).
Since y"g(x) < 0,

A H)(@) = (N f) () +y"g(u).

This is a contradiction to the inequality (2.11). Therefore

f(@) £ fu) +y g(u)e.

10



Lemma 2.1 From the [1], if T is a weakly efficient solution of (MP), then

there exist X > 0 and y € Cy not both zero such that
VN £(@) + Vi@ (x —F) 20 forall z€Ch,

7 g(T) = 0.

Theorem 2.5 (Strong Duality) Let T be a weakly efficient solution for
(MP) at which constraint qualification be satisfied. Fiz X = X\ in (MD);.
Then there exist A\-> 0 and 5 € Cy such that (T, \,7) is feasible for (MD),
and the objective values of (MP) and (MD)y are equal. Furthermore, if the

hypothesis of Theorem 2.1'is also satisfied, then (T, \,7) is a weakly efficient
solution for (MD);.

Proof. Since 7 is a weakly efficient solution for (MP) at which constraint
qualification be satisfied, by Lemma 2.1, there existA > 0-and 7 € C, with
(A, 7) # 0 such that

and
VN £(@) + Vi¥g@) (x —7) =0 forall ze 0. (2.12)

Since x € (1,7 € C} and (' is a closed convex cone, we have x +7 € C} and

thus the inequality (2.12) implies

VN £(@) + Vi¥g@) 2 =0 forall z e,

11



le.,
—[VX f(@) + Vi g(@)] € C;.

Hence (7, \,7) is feasible for (MD);.

Moreover, by letting z = 0 and =27 in (2.12), we obtain
VX £(7) + Vil g(@)] = 0. (2.13)
From 37 ¢(Z) = 0 and (2.13)
f@) =F@) + 7 9@)e — T VX f(T)+ V7" g(T)]e.

Thus the objective values of (MP) and (MD); are equal.
We will now show that (%, \, %) is a weakly efficient solution for (MD);,

otherwise, there exists a feasible solution (u, A, %) for (MD); such that

(K@) + g g(u)e =« VA f(u) + Vy"glw)]e]
@ +7" g@es THYA 1@+ V(@] > 0.
Since the objective values of (MP) and (MD); are equal, it follows that
() + v g(w)e —u"[VX' f(u) + VyTg(u)e] — f(z) > 0,

which contradicts weak duality. Hence the results hold. O

Theorem 2.6 (Strong Duality) Let T be a weakly efficient solution for

(MP) at which constraint qualification be satisfied. Fiz X = X in (MD)s.

12



Then there exist X\ > 0 and § € Cy such that (T, \,7) is feasible for (MD),
and the objective values of (MP) and (MD)y are equal. Furthermore, if
the hypotheses of Theorem 2.2 are also satisfied, then (T, \,7) is a weakly
efficient solution for (MD)sa.

Proof. Since 7 is a weakly efficient solution for (MP) at which constraint
qualification be satisfied, by Lemma 2.1, there exist A > 0 and 7 € C, with
(A, 7) # 0 such that

7' 9@ =0
and

VX £@)+ ViEg(@) (e —7) 20 forall z€Cy (2.14)

Since x € (1,7 € ('} and €} is a closed convex cone, we have x +7 € C; and

thus the inequality (2.14) implies

VN (@) + Vi g@) 2 20 for alltx e Cy,
ie.,
VX' f(@) + V7" g(@)] € C.
By letting z = 0 in (2.14), we obtain
VN @)+ VE @) T =0 forall z € Ch.
From above the inequality and 37 ¢(Z) = 0, we get
7'9(®) — VX f(@) + V7 g@)'7 2 0.

13



So (T, \,7) is feasible for (MD)y. Thus f(Z) = f(%).
We will now show that (Z, \,7) is a weakly efficient solution for (MD)s,

otherwise, there exists a feasible solution (u, ), %) for (MD)s such that
f(u) = f(@) > 0.

Since the objective values of (MP) and (MD), are equal, it follows that
fu) = f(z) >0,

which contradicts weak duality. Hence the results hold. O

Theorem 2.7 (Strong Duality) Let T be a weakly efficient solution for
(MP) at which constraint qualification_be satisfied. Fiz X = X in (MD)s.
Then there exist X\ > 0 and y € Cy such that (Z,\,7) is feasible for (MDg)
and the objective values of (MP) and (MD)s are equal.  Furthermore, if

the hypotheses of Theorem 2.3 are also satisfied, then. (T, \,7) is a weakly
efficient solution for (MD)s.

Proof. Since 7 is a weakly efficient solution for (MP) at which constraint
qualification be satisfied, by Lemma 2.1, there exist A > 0 and 7 € C, with
(X, 7) # 0 such that

and
VN £(@) + Vi¥g@) (x —7) =0 forall ze 0. (2.15)

14



Since x € (1,7 € C} and (' is a closed convex cone, we have x +7 € C} and

thus the inequality (2.15) implies

VN @)+ Vi g@) 2 =0 forall z ey,

ie.,
_T _ _ . *
—[VX f@) + V7' g[@)] € .
Since 7' g(Z) = 0, we have 37 ¢(7) < 0 and 7' g(Z) = 0. From 37 g(z) = 0

and 7 € Oy, we get —g(T) € C3. So, (T, \, ) is feasible for (MD)s.

Also, by letting £ = 0 and x=27 in (2.15), we obtain
& 45 7
(VX f(Z) + Vit g(@) = 0.
Therefore
A LY _ = o o o
f@) = f@) ~T" [VA f@)+ V7 9(@)]e.
We will now show that (Z, \,7) is a weakly efficient solution for (MD)s,

otherwise, there exists a feasible solution (u,A;y) for (MD)3 such that

T T o
[f(uw) = [VA f(u) + Vy g(u)le] = [f(@) —T"[VA f(T) + V7' g(@)]e] > 0.
Since the objective values of (MP) and (MD)3 are equal, it follows that

[f(w) = u"[VX f(u) + VyTg(u)]e] - f(z) >0,

which contradicts weak duality. Hence the results hold. O

15



Theorem 2.8 (Strong Duality) Let T be a weakly efficient solution for
(MP) at which constraint qualification be satisfied. Fiz X = X in (MD)4.
Then there exist X > 0 and § € Cy such that (T, \,7) is feasible for (MD)y4
and the objective values of (MP) and (MD)y are equal. Furthermore, if the

hypothesis of Theorem 2.4 is also satisfied, then (T, \,7) is a weakly efficient
solution for (MD)s4.

Proof. Since 7 is a weakly efficient solution for (MP) at which constraint
qualification be satisfied, by Lemma 2.1, there existA > 0 and 7 € C, with
(A, 7) # 0 such that

7'9(@) =0
and

VX £@) + Vi@ (e —8) =0 forall z €. (2.16)

And by letting x = 0 in (2.16), we obtain

VN £(7) + Vit g@)|"z =0 for all z € Oy,

ie.,
~\'f(®) + VITV(@)] € Cr.

Hence (T, \,7) is feasible for (MD)4.

Moreover, from 7% ¢(7) = 0,

f@) =f@)+7 9@e.

16



Thus the objective values of (MP) and (MD)4 are equal.
We will now show that (T, \,7) is a weakly efficient solution for (MD)yg4,

otherwise, there exists a feasible solution (u, ), %) for (MD),4 such that

[f(u) +y"g(w)e] — [f(@) + T g(T)e] > 0.

Since the objective values of (MP) and (MD), are equal, it follows that

[f (u) + y" glu)e} = f(@) > 0,

which contradicts weak duality. Hence the results hold. O

3 Special Cases
We give some special cases of our dual programming.

(1) Ifk =1, then (MP) and (MD);-(MD),4 are reduced to programs studied
in S. Chandra, Abha [2].

(2) If k = 1,n(z,u) € Cy then (MP) and (MD);-(MD)4 are reduced to
programs studied in S. Nanda and L.N. Das. [18].

(3) If k=1, Ci = R} and Cy = R, then (MP) and (MD);-(MD)4 are

reduced to programs considered in B. Mond and T. Weir. [16].

Remark 3.1 If the replace u € R" by u € C1,
(i) Theorem 2.1 and 2.5 hold under the pseudo-invezity of f +yg,

(ii) Theorem 2.2 and 2.6 hold under the pseudo-invezity of y* g,

17



(iii) Theorem 2.8 and 2.7 hold under the pseudo-invexity of f,

(iv) Theorem 2.4 and 2.8 hold under the pseudo-invezity of f + y'g,

then the same conclusion of Theorem 2.1 and 2.8 also holds.

References

1]

2]

M.S Bazaraa and J.J. Goode, On symmetric duality in nonlinear pro-

gramming, Oper. Res. 21(1) (1973), 1-9.

S. Chandra, Abha, A note on pseudo-invexity and duality in nonlinear

programming, European J. Oper. Res. 122 (2000), 161-165.

S. Chandra and I. Husain, Symmetric dual non-differentiable programs,

Bull. Austral. Math. Sec. 24 (1981), 295-307.

G.B. Dantzig; E. Eisenberg and R.W. Cottle, Symmetric dual nonlinear
programs, Pacific J. Math. 15 (1965), 809-812.

T.R. Gulati, I. Husain, A. Ahmed, Multiobjective symmetric duality with
invexity, Bulletin of the Australian Mathematical society. 4 (1997), 25-36.

M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of

Mathematical and Analytical Applications 80 (1981), 545-550.

M.A. Hanson and B. Mond, Further generalization of convexity in math-
ematical programming, Journal of Information and Optimization Science

3 (1982), 25-32.

18



[8] S. Khurana, Symmetric duality in multiobjective programming involving

generalized cone-invex functions, European J. Oper. Res. 165 (2005),

592-597.

9] D.S. Kim and Y.R. Song, Minimax and symmetric duality for nonlinear
multiobjective mixed integer programming, Furopean J. Oper. Res. 128

(2001), 435-446.

[10] D.S. Kim, Y.B. Yun and W.J. Lee, Multiobjective symmetric duality
with cone constraints, European J. Oper. Res. 107 (1998), 686-691.

[11] S.K. Mishra, Multiobjective second order symmetric duality with cone

constraints, Furopean J. Oper. Res. 126 (2000), 675-682.

[12] S.K. Mishra, Second order symmetric duality in mathematical program-

ming with F-convexity, European J. Oper. Res. 127 (2000), 507-518.

[13] S.K. Mishra and K.K. Lai, Second order symmetric duality in multi-
objective programming involving generalized cone-invex functions, Euro-

pean J. Oper. Res. 178 (2007), 20-26.

[14] B. Mond and M. Schechter, Nondifferentiable symmetric duality, Bull.
Austral. Math. Soc. 53 (1996), 177-188.

[15] B. Mond and T. Weir, Generalized concavity and duality, in Generalized
Concavity in Optimization and Economics, (S.Schaible and W.T.Ziemba,

Eds.), (Academic Press, New York, 1981), 263-279.

19



[16] B. Mond and T. Weir, Symmetric duality for nonlinear multiobjective
programming, in Recent Developments in Mathematical Programming,

(S.Kumar, Ed.), (Gordon and Breach Science Publishers, 1991), 137-153.

[17] S. Nanda, Invex generalizations of some duality results, Opsearch 25(2)

(1998), 105-111.

[18] S. Nanda and L.N. Das, Pseudo-invexity and symmetric duality in non-

linear programming, Optimization 28 (1994), 267-273.

[19] S.K. Suneja, S.-Aggarwal and S. Davar, Multiobjective symmetric dual-
ity involving cones, European J. Oper. Res. 141 (2002), 471-479.

[20] T. Weir and B. Mond, Symmetric and self duality in multiple objective

programming, Asia-Pacific Journal of Operational Research. 4 (1988),
124-133.

20



	1. Introduction and Preliminaries
	2. Duality
	3. Special cases
	Remark
	References

