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1 Introduction and Preliminaries

While studying duality under generalized convexity, Mond and Weir [15]

proposed a number of different duals for various nonlinear programming prob-

lems with nonnegative variable and proved various duality theorems under

appropriate pseudo-convexity and quasi-convexity assumptions. The notion

of symmetric duality was developed significantly by Dantzig et al. [4], Chan-

dra and Husain [3] and Mond and Weir [16]. Dantzig et al. [4] established

symmetric duality results for convex/concave functions with non-negative or-

thant as the cone. Later Mond and Weir [16] , Weir and Mond [20] as well as

Gulati [5] et al. generalized single objective symmetric duality to multiobjec-

tive case motivated by Hanson [6] and Hanson and Mond [7]. Nanda and Das

[18] formulated a pair of symmetric dual nonlinear programming problems

for pseudo-invex functions and arbitrary cones. Nanda [17] also studied sym-

metric dual problems assuming the functions to be invex with non-negative

orthant as the cone. Kim et al. [10] formulated a pair of multiobjective sym-

metric dual programs for pseudo-invex functions and arbitrary cones and

established duality results. Mishra [11] formulated a pair of multiobjective

second order symmetric dual nonlinear programming problems under second

order pseudo-invexity assumptions on the functions involved over arbitrary

cones and established duality results. The model given by Mishra [12] unifies

the Wolfe and Mond-Weir type second order vector symmetric dual models.

Furthermore, several second order duality and self-duality theorems was also

established for the pair of dual models. Recently Khurana [8] introduced

cone-pseudo-invex and strongly cone-pseudo-invex functions and established
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duality theorems for a pair of Mond-Weir type multiobjective symmetric dual

over arbitrary cones. Suneja and Aggarwal and Davar [19] formulated a fair

of symmetric dual programs over arbitrary cones and establish weak, strong,

converse and self duality theorems by using cone-convexity and the objective

function was optimized with respect to an arbitrary closed convex cone by

assuming the function involved th be cone-convex. Kim and Song [9] also

presented two pairs of nonlinear multiobjective mixed integer programs for

the polars of arbitrary cones, and established the weak, strong and converse

duality theorems by using the concept of efficiency.

In this dissertation, we formulated four dual problems related with Wolfe

and Mond-Weir of integrated programming with a cone constraint and es-

tablished dual relations about under the general invexity assumptions. By

using a necessary optimality condition about solutions, we demonstrated the

strong duality. Furthermore we delivered existing known results as specific

cases from these duality results .

Let Rn be the n-dimensional Euclidean space and let Rn
+ be its non-

negative orthant. We denote the interior of Rn
+ by int Rn

+.

The following convention for inequalities will be used in this paper :

If x, u ∈ Rn, then

x <= u ⇐⇒ u − x ∈ Rn
+ ;

x ≤ u ⇐⇒ u − x ∈ Rn
+ \ {0} ;

x < u ⇐⇒ u − x ∈ int Rn
+ ;

x � u is the negation of x ≤ u .
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For x, u ∈ R, x <= u and x < u have the usual meaning.

Definition 1.1 A nonempty set C in Rn is said to be a cone with vertex

zero, if x ∈ C implies that λx ∈ C for all λ >= 0. If, in addition, C is convex,

then C is called a convex cone.

Consider the following multiobjective programming problem :

(MP) Minimize f(x)

subject to g(x) ∈ C∗
2 , x ∈ C1,

where f : S → Rk, g : S → Rm and C1 ⊆ S, S ⊆ Rn is open. C∗
2 is a polar

cone of C2 ⊆ Rm.

Definition 1.2 A feasible point x is a weakly efficient solution of (MP), if

there exists no other x ∈ X such that f(x) − f(x) > 0.

Definition 1.3 The polar cone C∗ of C is defined by

C∗ = {z ∈ Rn | xT z <= 0 for all x ∈ C}.

Definition 1.4 [2] Let S ⊆ Rn be open and f : S → R.

(i)f is said to be pseudo-invex with respect to η on S, where η is a function

from S × S to Rn, if for all x, u ∈ S,

ηT (x, u)∇f(u) >= 0 ⇒ f(x) >= f(u).

(ii)f is said to be quasi-invex with respect to η on S, where η is a function

from S × S to Rn, if for all x, u ∈ S,

f(x) <= f(u) ⇒ ηT (x, u)∇f(u) <= 0.
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2 Duality

We propose the following multiobjective dual problem to the primal problem

(MP) :

(MD)1 Maximize f(u) + yTg(u)e − uT [∇(λTf)(u) + ∇yTg(u)]e

subject to −[∇(λTf)(u) + ∇yTg(u)] ∈ C∗
1 ,

y ∈ C2, λ ≥ 0,

(MD)2 Maximize f(u)

subject to −[∇(λTf)(u) + ∇yTg(u)] ∈ C∗
1 ,

yTg(u) − uT [∇(λTf)(u) + ∇yTg(u)] >= 0,

y ∈ C2, λ ≥ 0,

(MD)3 Maximize f(u) − uT [∇(λTf)(u) + ∇yTg(u)]e

subject to −[∇(λTf)(u) + ∇yTg(u)] ∈ C∗
1 ,

−g(u) ∈ C∗
2 , y ∈ C2, λ ≥ 0,

(MD)4 Maximize f(u) + yTg(u)e

subject to −[∇(λTf)(u) + ∇yTg(u)] ∈ C∗
1 ,

uT [∇(λTf)(u) + ∇yTg(u)] <= 0,

y ∈ C2, λ ≥ 0,

where
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(1) C1 and C2 are closed convex cones in Rn and Rm with nonempty

interiors, respectively,

(2) S ⊆ Rn is open and C1 ⊆ S,

(3) f : S → Rk and g : S → Rm are twice differentiable functions,

(4) C∗
1 and C∗

2 are polar cones of C1 and C2, respectively,

(5) λ and e = (1, · · · , 1) are vectors in Rk.

Further let ∇f(x) and ∇2f(x), respectively denote the gradient and the

Hessian matrix of f evaluated at x. The symbols ∇gi(x) and ∇2gi(x)(i =

1, 2, · · · ,m) are defined similarly.

Now we establish the duality theorems for (MP) and (MD)1 − (MD)4.

Theorem 2.1 (Weak Duality) Let x be feasible solution of (MP) and

(x, λ, y) be feasible for (MD)1. Let for all v ∈ C∗
1 , λT f + yT g + vT(·) be

pseudo-invex with respect to η. Then

f(x) 6< f(u) + yTg(u)e − uT [∇(λTf)(u) + ∇yTg(u)]e.

Proof. Assume that

f(x) < f(u) + yTg(u)e − uT [∇(λTf)(u) + ∇yTg(u)]e.

Multiplying which by λ ≥ 0,

(λT f)(x) < (λT f)(u) + yTg(u) − uT [∇(λTf)(u) + ∇yTg(u)]. (2.1)
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From the first dual constraint −[∇(λTf)(u)+∇yTg(u)] ∈ C∗
1 and there exist

v ∈ C1 such that

v = −[∇(λTf)(u) + ∇yTg(u)]. (2.2)

Multiplying (2.2) by η(x, u),

η(x, u)T [∇(λTf)(u) + ∇yTg(u) + v] = 0.

By the pseudo-invexity of λT f + yTg + vT (·), it implies that

(λT f)(x) + yTg(x) + vTx >= (λT f)(u) + yTg(u) + vTu. (2.3)

By y ∈ C2 and g(x) ∈ C∗
2 ,

yTg(x) <= 0. (2.4)

By v ∈ C∗
1 and x ∈ C1,

vTx <= 0. (2.5)

Using (2.4) and (2.5) in (2.3), we obtain

(λT f)(x) >= (λT f)(u) + yTg(u) + vTu,

i.e.,

(λT f)(u) + yTg(u) − uT [∇(λTf)(u) + ∇yTg(u)] − (λT f)(x) <= 0,

which is a contradiction to the inequality (2.1).

Therefore

f(x) � f(u) + yTg(u)e− uT [∇((λTf))(u) + ∇yTg(u)]e.

2
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Theorem 2.2 (Weak Duality) Let x be feasible solution of (MP) and

(x, λ, y) be feasible for (MD)2. Let f be pseudo-invex with respect to η for

all v ∈ C∗
1 , λT f + yTg + vT(·) be a quasi-invex with respect to same η. Then

f(x) 6< f(u).

Proof. Assume that

f(x) < f(u).

Multiplying which by λ ≥ 0,

(λT f)(x) < (λT f)(u). (2.6)

From the first dual constraint,

−[∇(λTf)(u) + ∇yTg(u)] ∈ C∗
1 .

And there exist v ∈ C∗
1 such that

v = −[∇(λTf)(u) + ∇yTg(u)]. (2.7)

Multiplying (2.7) by η(x, u)

η(x, u)T [∇(λTf)(u) + ∇yTg(u) + v] = 0.

By the quasi-invexity of λTf + yTg + vT (·), it implies that

(λT f)(x) + yTg(x) + vTx >= (λT f)(u) + yTg(u) + vTu. (2.8)

From the primal and dual constraints, we have

yTg(x) <= 0 and vTx <= 0. (2.9)
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Using (2.9) in (2.8), we get

(λT f)(x) >= (λT f)(u),

which is a contradiction to the inequality (2.6). Therefore

f(x) 6< f(u).

2

Theorem 2.3 (Weak Duality) Let x be feasible solution of (MP) and

(x, λ, y) be feasible for (MD)3. Let for all v ∈ C∗
1 , λT f + vT (·) be pseudo-

invex with respect to η and yTg be quasi-invex with respect to same η. Then

f(x) 6< f(u) − uT [∇(λTf)(u) + ∇yTg(u)]e.

Proof. Assume that

f(x) < f(u) − uT [∇(λTf)(u) + ∇yTg(u)]e.

Multiplying which by λ ≥ 0,

(λT f)(x) < (λT f)(u) − uT [∇(λTf)(u) + ∇yTg(u)]. (2.10)

From the primal and dual constraints, we get

yTg(x) <= yTg(u).

By the quasi-invexity of yTg with respect to η,

η(x, u)T∇yTg(u) <= 0.
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From the first dual constraint,

−[∇(λTf)(u) + ∇yTg(u)] ∈ C∗
1 .

And there exist v ∈ C∗
1 such that

v = −[∇(λTf)(u) + ∇yTg(u)].

So,

η(x, u)T∇yTg(u) = η(x, u)T [−v −∇(λT f)(u)]

= −η(x, u)T [∇(λTf)(u) + v]

<= 0,

i.e.,

η(x, u)T [∇(λTf)(u) + v] >= 0.

By the pseudo-invexity of λT f + vT(·) with respect to η,

(λT f)(x) + vTx − (λT f)(u) − vTu >= 0.

Since v = −[∇(λTf)(u) + ∇yTg(u)] ∈ C∗
1 and x ∈ C1,

vTx <= 0.

Hence

(λT f)(x) >= (λT f)(u) − uT [∇(λTf)(u) + ∇yTg(u)],

which is a contradiction to the inequality (2.10).

Therefore

f(x) 6< f(u) − uT [∇(λTf)(u) + ∇yTg(u)]e.

2
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Theorem 2.4 (Weak Duality) Let x be feasible solution of (MP) and

(x, λ, y) be feasible for (MD)4. Let λT f + yTg be pseudo-invex with respect

to η where η satisfies the condition (η(x, u) + u) ∈ C1.

Then

f(x) 6< f(u) + yTg(u)e.

Proof. Assume that

f(x) < f(u) + yTg(u)e.

Multiplying which by λ ≥ 0,

(λT f)(x) < (λT f)(u) + yTg(u). (2.11)

From the constraint −[∇(λTf)(u) + ∇yTg(u)] ∈ C∗
1 and (η(x, u) + u) ∈ C1,

(η(x, u) + u)T [∇(λTf)(u) + ∇yTg(u)] >= 0.

By the dual constraint, the above inequality establishes

η(x, u)T [∇(λTf)(u) + ∇yTg(u)] >= 0.

By the pseudo-invexity of λT f + yTg with respect to η,

(λT f)(x) + yTg(x) >= (λT f)(u) + yTg(u).

Since yTg(x) <= 0,

(λT f)(x) >= (λT f)(u) + yTg(u).

This is a contradiction to the inequality (2.11). Therefore

f(x) 6< f(u) + yTg(u)e.

2
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Lemma 2.1 From the [1], if x is a weakly efficient solution of (MP), then

there exist λ ≥ 0 and y ∈ C2 not both zero such that

[∇λ
T
f(x) + ∇yTg(x)]T (x − x) >= 0 for all x ∈ C1,

yT g(x) = 0.

Theorem 2.5 (Strong Duality) Let x be a weakly efficient solution for

(MP) at which constraint qualification be satisfied. Fix λ = λ in (MD)1.

Then there exist λ ≥ 0 and y ∈ C2 such that (x, λ, y) is feasible for (MD)1

and the objective values of (MP) and (MD)1 are equal. Furthermore, if the

hypothesis of Theorem 2.1 is also satisfied, then (x, λ, y) is a weakly efficient

solution for (MD)1.

Proof. Since x is a weakly efficient solution for (MP) at which constraint

qualification be satisfied, by Lemma 2.1, there exist λ ≥ 0 and y ∈ C2 with

(λ, y) 6= 0 such that

yT g(x) = 0

and

[∇λ
T
f(x) + ∇yT g(x)]T (x − x) >= 0 for all x ∈ C1. (2.12)

Since x ∈ C1, x ∈ C1 and C1 is a closed convex cone, we have x+x ∈ C1 and

thus the inequality (2.12) implies

[∇λ
T
f(x) + ∇yT g(x)]Tx >= 0 for all x ∈ C1,
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i.e.,

−[∇λ
T
f(x) + ∇yT g(x)] ∈ C∗

1 .

Hence (x, λ, y) is feasible for (MD)1.

Moreover, by letting x = 0 and x=2x in (2.12), we obtain

[∇λ
T
f(x) + ∇yTg(x)] = 0. (2.13)

From yT g(x) = 0 and (2.13)

f(x) = f(x) + yTg(x)e − xT [∇λ
T
f(x) + ∇yT g(x)]e.

Thus the objective values of (MP) and (MD)1 are equal.

We will now show that (x, λ, y) is a weakly efficient solution for (MD)1,

otherwise, there exists a feasible solution (u, λ, y) for (MD)1 such that

[f(u) + yTg(u)e − uT [∇λ
T
f(u) + ∇yTg(u)]e]

−[f(x) + yT g(x)e− xT [∇λ
T
f(x) + ∇yTg(x)]e] > 0.

Since the objective values of (MP) and (MD)1 are equal, it follows that

[f(u) + yT g(u)e− uT [∇λ
T
f(u) + ∇yTg(u)]e]− f(x) > 0,

which contradicts weak duality. Hence the results hold. 2

Theorem 2.6 (Strong Duality) Let x be a weakly efficient solution for

(MP) at which constraint qualification be satisfied. Fix λ = λ in (MD)2.
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Then there exist λ ≥ 0 and y ∈ C2 such that (x, λ, y) is feasible for (MD)2

and the objective values of (MP) and (MD)2 are equal. Furthermore, if

the hypotheses of Theorem 2.2 are also satisfied, then (x, λ, y) is a weakly

efficient solution for (MD)2.

Proof. Since x is a weakly efficient solution for (MP) at which constraint

qualification be satisfied, by Lemma 2.1, there exist λ ≥ 0 and y ∈ C2 with

(λ, y) 6= 0 such that

yT g(x) = 0

and

[∇λ
T
f(x) + ∇yT g(x)]T (x − x) >= 0 for all x ∈ C1. (2.14)

Since x ∈ C1, x ∈ C1 and C1 is a closed convex cone, we have x+x ∈ C1 and

thus the inequality (2.14) implies

[∇λ
T
f(x) + ∇yT g(x)]Tx >= 0 for all x ∈ C1,

i.e.,

−[∇λ
T
f(x) + ∇yT g(x)] ∈ C∗

1 .

By letting x = 0 in (2.14), we obtain

−[∇λ
T
f(x) + ∇yTg(x)]Tx >= 0 for all x ∈ C1.

From above the inequality and yTg(x) = 0, we get

yTg(x) − [∇λ
T
f(x) + ∇yT g(x)]Tx >= 0.
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So (x, λ, y) is feasible for (MD)2. Thus f(x) = f(x).

We will now show that (x, λ, y) is a weakly efficient solution for (MD)2,

otherwise, there exists a feasible solution (u, λ, y) for (MD)2 such that

f(u) − f(x) > 0.

Since the objective values of (MP) and (MD)2 are equal, it follows that

f(u) − f(x) > 0,

which contradicts weak duality. Hence the results hold. 2

Theorem 2.7 (Strong Duality) Let x be a weakly efficient solution for

(MP) at which constraint qualification be satisfied. Fix λ = λ in (MD)3.

Then there exist λ ≥ 0 and y ∈ C2 such that (x, λ, y) is feasible for (MD3)

and the objective values of (MP) and (MD)3 are equal. Furthermore, if

the hypotheses of Theorem 2.3 are also satisfied, then (x, λ, y) is a weakly

efficient solution for (MD)3.

Proof. Since x is a weakly efficient solution for (MP) at which constraint

qualification be satisfied, by Lemma 2.1, there exist λ ≥ 0 and y ∈ C2 with

(λ, y) 6= 0 such that

yT g(x) = 0

and

[∇λ
T
f(x) + ∇yT g(x)]T (x − x) >= 0 for all x ∈ C1. (2.15)
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Since x ∈ C1, x ∈ C1 and C1 is a closed convex cone, we have x+x ∈ C1 and

thus the inequality (2.15) implies

[∇λ
T
f(x) + ∇yT g(x)]Tx >= 0 for all x ∈ C1,

i.e.,

−[∇λ
T
f(x) + ∇yT g(x)] ∈ C∗

1 .

Since yT g(x) = 0, we have yT g(x) <= 0 and yT g(x) >= 0. From yT g(x) >= 0

and y ∈ C2, we get −g(x) ∈ C∗
2 . So, (x, λ, y) is feasible for (MD)3.

Also, by letting x = 0 and x=2x in (2.15), we obtain

[∇λ
T
f(x) + ∇yT g(x)] = 0.

Therefore

f(x) = f(x) − xT [∇λ
T
f(x) + ∇yTg(x)]e.

We will now show that (x, λ, y) is a weakly efficient solution for (MD)3,

otherwise, there exists a feasible solution (u, λ, y) for (MD)3 such that

[f(u) − uT [∇λ
T
f(u) + ∇yTg(u)]e]− [f(x) − xT [∇λ

T
f(x) + ∇yTg(x)]e] > 0.

Since the objective values of (MP) and (MD)3 are equal, it follows that

[f(u) − uT [∇λ
T
f(u) + ∇yTg(u)]e]− f(x) > 0,

which contradicts weak duality. Hence the results hold. 2
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Theorem 2.8 (Strong Duality) Let x be a weakly efficient solution for

(MP) at which constraint qualification be satisfied. Fix λ = λ in (MD)4.

Then there exist λ ≥ 0 and y ∈ C2 such that (x, λ, y) is feasible for (MD)4

and the objective values of (MP) and (MD)4 are equal. Furthermore, if the

hypothesis of Theorem 2.4 is also satisfied, then (x, λ, y) is a weakly efficient

solution for (MD)4.

Proof. Since x is a weakly efficient solution for (MP) at which constraint

qualification be satisfied, by Lemma 2.1, there existλ ≥ 0 and y ∈ C2 with

(λ, y) 6= 0 such that

yT g(x) = 0

and

[∇λ
T
f(x) + ∇yT g(x)]T (x − x) >= 0 for all x ∈ C1. (2.16)

And by letting x = 0 in (2.16), we obtain

[∇λ
T
f(x) + ∇yT g(x)]Tx <= 0 for all x ∈ C1,

i.e.,

−[λ
T
f(x) + ∇yT∇g(x)] ∈ C∗

1 .

Hence (x, λ, y) is feasible for (MD)4.

Moreover, from yT g(x) = 0,

f(x) = f(x) + yTg(x)e.
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Thus the objective values of (MP) and (MD)4 are equal.

We will now show that (x, λ, y) is a weakly efficient solution for (MD)4,

otherwise, there exists a feasible solution (u, λ, y) for (MD)4 such that

[f(u) + yTg(u)e]− [f(x) + yTg(x)e] > 0.

Since the objective values of (MP) and (MD)4 are equal, it follows that

[f(u) + yT g(u)e]− f(x) > 0,

which contradicts weak duality. Hence the results hold. 2

3 Special Cases

We give some special cases of our dual programming.

(1) If k = 1, then (MP) and (MD)1-(MD)4 are reduced to programs studied

in S. Chandra, Abha [2].

(2) If k = 1, η(x, u) ∈ C1 then (MP) and (MD)1-(MD)4 are reduced to

programs studied in S. Nanda and L.N. Das. [18].

(3) If k = 1, C1 = Rn
+ and C2 = Rm

+ , then (MP) and (MD)1-(MD)4 are

reduced to programs considered in B. Mond and T. Weir. [16].

Remark 3.1 If the replace u ∈ Rn by u ∈ C1,

(i) Theorem 2.1 and 2.5 hold under the pseudo-invexity of f + yTg,

(ii) Theorem 2.2 and 2.6 hold under the pseudo-invexity of yTg,
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(iii) Theorem 2.3 and 2.7 hold under the pseudo-invexity of f,

(iv) Theorem 2.4 and 2.8 hold under the pseudo-invexity of f + ytg,

then the same conclusion of Theorem 2.1 and 2.8 also holds.
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