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Molecular characterization of an Exonuclease gene of the Chlorella virus SS-2

Sang-Eun Jung

Department of Microbiology, The Graduate school,

Pukyong National University

Abstract

Chlorella viruses are large icosahedral, double-stranded DNA and
plaque—forming viruses that infect certain eukaryotic Chlorella—like green algae.
The genome of Chlorella virus SS-2 which had been isolated from fresh water in
Korea is predicted to contain at least 373 major open reading frames (ORFs).
However, the function of large numbers of these genes are not clearly
understood. One of the open reading frames (ORFs) encodes a protein with some
amino acids identities to other exonuclease. The Chlorella virus SS-2
exonuclease gene is 807 nucleotides long and encodes a polypeptide of 31 kDa.
Blast search revealed that the Chlorella virus SS—-2 exonuclease gene has high
amino acid identities to the ORF A166R of Paramecium bursaria Chlorella virus 1
(PBCV-1, 98 %) and two ORFs of other brown algae viruses including ORF B43
of Feldmannia irregularis virus FirrV, 28 %) and ORF 164 of Ectocarpus
siliculosus virus (EsV, 27 %). The activity of Chlorella virus SS-2 exonuclease
was investigated by using a purified recombinant protein expressed in E. coll
The purified recombinant protein exhibited exonuclease activity on various DNA
substrates when incubated at 37 C, suggesting that the Chlorella virus SS-2
exonuclease gene encodes functional proteins. Sequence alignment of Chlorella
virus SS-2 exonuclease revealed that they share several conserved motifs. One

of these, the conserved motif D91..E111XK113 (D..EXK) in the sequence of



Chlorella virus SS-2 exonuclease, has a striking similarity to the catalytic sites
of some other nucleases, including type I restriction endonuclease, A
exonuclease and MutH. The predicted secondary structures of these three
residues showed high similarity to the three -catalytic residues of type 1I
restriction endonuclease.

These results indicate that exonuclease gene of the Chlorella virus SS-2 was
functional proteins and Chlorella viruses can be useful sources of protein in

addition to many genes of interest.



INTRODUCTION

Chlorella viruses are large, icosahedral, plaque-forming and double
stranded-DNA  (dsDNA) viruses (315 to 380 kbp) (Kang et al, 2005,
Swaminathan et al, 1996). The Chlorella viruses infect certain freshwater,
unicellular, Chlorella-like green algae (e.g., Chlorella strain NC64A or Chlorella
strain Pbi), which normally exist as endosymbionts in the protozoan
Paramecium bursaria. Viruses that infect Chlorella NC64A (NC64A viruses) are
serologically different from viruses that infect Chlorella Pbi (Pbi viruses).
NC64A viruses neither infect nor attach to Chlorella Pbi, and vice versa
(Nishihara et al., 1998).

Chlorella viruses are known to carry multiple DNA methyltransferases
(MTases) and DNA site—specific (restriction) endonucleases (REases). Although
the biological role of Chlorella viruses restriction—modification (RM) system is
not clearly understood, it has been suggested that these MTases and REases
of Chlorella viruses could be involved in the self-protecting processes, which
is similar mechanisms found in the bacterial RM system (Agarkova et al., 2006,
Swaminathan et al., 1996, Van et al., 1981, Xia et al, 1986, Yang et al, 2004).
Similar ORFs encoding putative exonuclease genes have been found in green
algae viruses. However, no detail information related their functions and
biological importance are currently available.

Chlorella virus SS-2 is a member of the Phycodnaviridae and is classified
as a chloroviruses (Cho et al, 2002). The genomic DNA of Chilorella virus
SS-2, isolated in Korea was partially analyzed but biological functions of
encodes numerous coding genes are largely unknown. The viral-encoded
proteins contained transcriptional and translational factor, restriction/
modification enzymes, topoisomerase, chitinase, and hyaluronan synthase

(Grabowski et al, 1995, Lavrukhin et al, 2000, Reisser et al, 1988, Van et al,



1981, Xia et al., 1986, Zhang et al, 1992). The estimated genome of SS-2 to
be 340 kbp, and over 300 kbp nucleotide sequence was analyzed except for
about 20 kbp from each end of the linear DNA genome. Among the 372 open
reading frames identified from PBCV-1, the prototype of Chlorella virus, 331
were identified from SS-2, which suggest that SS-2 is very similar to PBCV-1.
However, western blot analysis of viral proteins did not show any signal with
antisera against PBCV-1. It is known that this difference is due to the
difference in the glycosylation of the major capsid protein (Cho et al, 2002).

Recently, I sequenced the length of 310 kbp Chlorella virus SS-2 genome.
Genomic analysis showed the one ORF revealed the similarity of amino acid
with other exonuclease genes. Furthermore Chlorella virus SS-2 are conserved,
and aligned with other nucleases conserved motifs (Goldstein et al, 1998, Liu
et al, 1998, Martinez et al, 1996). In the previous studies, little is known
about the cleavage mechanism and active site for catalysis by herpesvirus
DNases.

In this study, I cloned the putative exonuclease gene from the Chlorella
virus SS-2 genome. The activity of Chlorella virus SS-2 exonuclease was
investigated by using a purified recombinant protein in the E. coli expression
system (Huang et al, 2001). The purified recombinant protein exhibited
exonuclease activity on the various DNA substrates when incubated at 37 T,
suggesting that the Chlorella virus SS-2 exonuclease gene encodes functional

proteins.



MATERIALS AND METHODS

Virus culture and purification

The Chlorella strain NC64A was kindly provided by Dr. James Van Etten in
the Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska,
USA. Chlorella strain NC64A was cultured in modified Bold's basal medium
(MBBM) as described (Van et al, 1985). Chlorella virus strains SS-2 was
previously isolated from fresh water in Korea (Cho et al, 2002). For infection,
100 ml culture of actively growing Chlorella NC64A was inoculated with virus
at a multiplicity of infection of 0.01-0.001. Cells were incubated until
completely lysed, and the lysate was centrifuged in a Sorvall GS-3 rotor at
5,000 rpm for 5 min at 4 °C. Triton X-100 was added to the supernatant
fraction to a final concentration of 0.1 %, and the mixture was stirred for 20
min at 4 °C. Virus particles were then pelleted by centrifugation in a Sorvall
T-880 rotor at 20,000 rpm for 60 min. The pellet was resuspended in 50 mM
Tris-HCl, pH 7.8, and centrifuged through a 10-40 % discontinuous sucrose
gradient (20,000 rpm, 20 min, 4 °C). The virus band was collected from the
30-40 % interface and then pelleted for 3 h at 27,000 rpm in a T-880 rotor.
The pellet was resuspended in 50 mM Tris-HCl, pH 7.8 (Van et al., 1985).

Isolation and analysis of viral genomic DNA

Isolated virus (400 ul) was mixed with 60 ul of 10 X TEN buffer (100 mM
Tris-HCIl, pH 7.4, 10 mM EDTA, 1 M NaCl), 60 ul of 1 % Na-sarcosyl, 0.6 ul
of 60 % (w/w) CsCl, and a trace amount of ethidium bromide. The mixture was

heated at 75 °C for 15 min and then loaded onto a pre—-formed 40-60 % (w/w)



CsCl gradient. The mixture was centrifuged in a Sorvall TH-641 rotor at
35,000 rpm for 18 h at 25 °C (Van et al, 1983), the DNA band was collected,
and the ethidium bromide was removed by butanol extraction. The DNA was
precipitated with ethanol, dried, and resuspended in 1 X TE buffer (10 mM
Tris-HCI, pH 8.0, 1 mM EDTA).

PCR and cloning of the Chlorella virus SS—-2 exonuclease gene

Based on DNA sequence analysis of the Chlorella virus SS-2, two primer
that amplify the Chlorella virus SS-2 exonuclease were designed (Table 1).
These primers were designed to create an insert with a BamHI and Xhol
restriction sites. The PCR amplifications were performed in 50 nl containing 25
ng of template DNA, 10 mM of each dNTP, 20 pmol each of the primers, 2
units of Tag DNA polymerase (Koma Bietech, Seoul, Korea), 1 pl of 25 mM
MgClg, and 10x reaction buffer. Thermal cycling was performed using an MJ
Mini Personal Thermal Cycler (Bio—Rad, Hercules, CA, USA) with 35 cycles of
denaturation at 94 °C for 30 sec, annealing at 53 °C for 30 sec, and extension
at 72 °C for 1 min followed by a final extension at 72 °C for 7 min. The PCR
product was electrophoresed on 1 % agarose gel, and the ethidium bromide
—-stained DNA was purified from the gel using a Gel Extraction kit (Bio—Rad).
Gel-purified PCR product was ligated into the pGEM-T easy vector (Promega,
Madison, WI, USA) and transferred into E. coli XL-1 blue strain. Plasmid DNAs
were prepared from selected transformants, and their Insert sizes were
analyzed by EcoRI digestion. Plasmid with expected size Inserts was
sequenced, digested with BamHI and Xhol and cloned into the same sites of
pET28a vector after digestion with the same enzymes, resulting pET28a-Exo
(Fig.1). This expression vector was used for the expression of exonuclease

protein of Chlorella virus SS-2.



Table 1. Oligonucleotide primers used for the of PCR amplification Chlorella

virus SS-2 exonuclease

Primer Sequence Remarks

for SS-2 forward

SS-2 ExoF GGA TCC ATG TCG GTG TAT CCT CCA ]
(BamHI site)

for SS-2 reverse

SS-2 ExoR CTC GAG TTA-GTA TAT ATCTGT GAT )
TR A (Xhol site)




Xhol (158)
1 Origin

Exonuclease

BamH]I (1005)

T7 promotor

Kan His-tag

pET-28a(+)-Exo
6176 bp

Lacl
Ori

Figure 1. The pET28a(+)-Exo expression vector. The BamH I / Xho I
fragment containing the SS-2 exonuclease gene was translationally fused to

6 histidine tag at the N-terminus of the fused recombinant protein.



Expression Chlorella virus SS-2 exonuclease in E. coli

The pET28a-Exo was transformed into E. coli cell containing a chaperone
plasmid pKJE7 (Takara, Japan) (Fig. 2). Transformants were transferred in LB
medium supplemented with 50 pg/ml kanamycin, 50 pg/ml chloramphenicol for
plasmid selection and 0.5 mg/ml L-Arabinose for induction of the chaperone
protein, and incubate at 37 C until O.D 600 = 0.8. Induction was performed by
adding isopropyl-B-D-thiogalactopyranoside (IPTG) to final concentration of 0.1
mM. Then the cells were harvested by centrifugation at 1, 2, 3, 4 and 5 hours
after induction. The conditions for the overexpression of the exonuclease

protein were optimized.



pACYC ori

pKJE7
araB (7.2 kbp) P

Figure 2. Chaperone Plasmid pKJE7. ori, replication origin of pACYC,;
Cm', chloramphenicol resistance gene; araB, araB promoter; dnaK, heat
shock protein; dnalJ, heat shock protein; grpE, heat shock protein; araC, araC

repressor gene.



Analysis of expressed protein on SDS-PAGE

The E. coli cells induced with 0.1 mM IPTG were centrifuged and the
pellet was resuspended in 1 X sample loading buffer and heated at 100 C for
3 min. The sample was incubated on ice for 2min and centrifuged 13,000 rpm
for 2 min. Thirty microliters of each sample was loaded on SDS-15 %
polyacrylamide gel, and electrophoresed under the constant current of 80 V for
1 hour and 130 V for 2 hours. The gel was stained with Coomassie brilliant
blue and then destained with destaining buffer (40 % methanol, 10 % acetic
acid)

Western blot analysis

Total proteins separated on a SDS-15 % polyacrylamide gel were
transferred onto nitrocellulose membrane at 30 mA for 16 hours in transfer
buffer (25 mM Tris, 192 mM Glycine, 20 % methanol). The nitrocellulose
membrane was then washed three times for 5 min with TTBS buffer (20 mM
Tris, pH 7.4, 0.5 M NaCl, 2.5 mM KCl, 0.05 % Tween-20) and blocked with
TTBS buffer containing 5 % skim milk for 1 hour 30 min. The membrane was
washed three times for 5 min with TTBS buffer and treated for 1 hour with
His-Tag primary antibody (Serotec, Oxford, UK) which was diluted to 1 : 1,000
~ 1 : 3,000 in TTBS containing 5 % skim milk. After three wash of 5 min, the
membrane was treated for 1 hours with alkaline phosphatase conjugated
anti-mouse IgG (sigma, USA) in TTBS containing 5 % skim milk. The
membrane was washed three times for 5 min in TTBS buffer and developed

with NBT/BCIP solution(Sigma, USA).



Purification procedures of exonuclease protein

Purification scheme of the expressed exonuclease protein is described in
Figure 3. The cell pellet was collected by centrifugation at 4,000 x g for 20
min at 4 T, resuspended in 5 ml of resuspension buffer (20 mM phosphate
buffer, 500 mM NaCl, pH 7.4), treated with 250 pl of 10 mM lysozyme and
incubated at 4 C overnight. The bacterial cells were ultra sonicated on ice for
30 sec x 6 times at 90 ~ 100 % power, centrifuged at 13,000 rpm for 20 min
and the supernatant was collected. The supernatant was further filtrated using
0.22 pm filter and applied into the 1 ml of HisTrap affinity columns which was
charged with Ni2+ ions (GE healthcare, Sweden) and prepared by washing with
5 ml of distilled water followed by 10 ml of binding buffer (20 mM Tris-HCI,
500 mM NaCl, and 5 mM imidazole, 1 mM NaNs, pH 8.0). The protein was
eluted with 20 ml of elution buffer (20 mM Tris-HCI, 500 mM NaCl, and 50
mM imidazole, 1 mM NaN3, pH 8.0) and kept at —20 T for further use.

The samples were dialyzed against buffer B (20 mM potassium phosphate,
pH &8 20 % glycerol, 5 mM B-mercaptoethanol (BME)) at 4 T to remove

imidazole and concentrated by dialysis against sucrose.
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Cell culture

Medium : LB broth, Culture temperature @ 370
Resistant marker : 50 ug/ml kanamscin, 50 ngsml chloramphetnicol
Inducton agent : 0.5 mesml L- Arabinose
0.1 mM IPTG (final concentration)

Inducton Hime : 3 hours

Cell Iysis & purification

Cenfrifugation (4,000 rpm, 20 min, 4 720

g

Pellets resuspended (cell of 1 g addifion 20 ml resuspension buffer)

1

Jonication (for 30 sec at 90~ 100% power, six times)

Centrifugation (13,000 rpm, 20 min, 4 °C)

0!

nupertatant obtained
AfTinity chromatography using a His-Trap Chelating HP column

Analysis of the purified protein
(3D3-PAGE, Western Blot)

Figure 3. Purification scheme of exonuclease protein expressed in E. coli.
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Exonuclease activity assays

The substrate for exonuclease test was prepared by digestion of the
pBluescript I KS+ (Fermentas, USA) with EcoR I, Pst I and Dra I to create
dsDNA with 5'-overhanding ends, 3'-overhanging ends, blunt ends,
respectively. Also, a PCR product of 1.4 kbp was used. The standard
exonuclease reactions (20 gf) was composed with 50 mM Tris—HCI (pH 9), 10
mM MgCle, 5 mM P-mercaptoethanol, and 0.1 % BSA, 200 ng substrate
nucleotide, and exonuclease protein (10 ng) (Bronstein et al, 1996, Goldstein et
al., 1998, Sun et al, 1999, Yamada et al, 1993). Reactions were carried out at
37 T for 20 min (unless otherwise indicated) and stopping immediately by
heating at 70 C for 10 min. For the pH titration experiment, the appropriate
pH was attained in a buffer mixture of HCl and NaOH. For the divalent metal
ion experiment, MnCls, ZnCle or CaCle were used in place of 10 mM MgCls as
indicated in the figure and table legends (Bronstein et al, 1996, Mazur et al.,
2001). After the reaction was completed, the DNA mixed with ethidium bromide
and separated on a 1.5 % agarose gel.|The gel picture was taken by Gel Doc
XR System (Bio—Rad, USA) and the intensity x area of the DNA band was
analyzed by Quantity One (Version 4.6.1, Bio—Rad, USA) program. The reaction
was replicated in 3 different reaction tube and the mean values were used for

the analysis.

Database search and sequence alignment of Chlorella virus SS—-2 exonuclease

The nr database as well as genomic database at National Center for

Biotechnology Information (NCBI) were extensively searched with the BLAST

program, using independently all avaliable sequences of endonucleases and of

_12_



some representatives of alkaline exonuclease. Protein sequence alignments
were conducted using Clustal X and manually adjusted on the basis of the
BLAST results (Bujnicki et al, 2001, Liu et al., 2003). Accession numbers in
GenBank are : PBCV-1, AAC96534; Chlorella virus AR158, ABU43746;
Bartonella henselae str. Houston—1, CAF27185; EsV-1-64, AAK14487;
FirrV-1-B43, AAR26918; Acanthamoeba polyphaga mimivirus, AAV50623;
Escherichia coli, APEC O1ABJ00523; Bacteriophage VT12-Sa, BAA84296;, Phage
BP-4795, CAD88815.

Prediction of secondary structure

The secondary structure elements of Chlorella virus SS—-2 exonuclease were

predicted using SWISS MODEL WORKSPACE (http://swissmodel.expasy.org/) and

the elements of other nucleases were according to their X-ray crystal

structure (Liu et al, 2003).
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Results

Amplification of Chlorella viruses

The virus SS-2 was amplified using Chlorella host NC64A. The only known
host of Chlorella virus are the Chlorella strain NC64A exist as hereditary
endosymbionts in green isolates of the protozoa P. bursaria ( Swaminathan et al.,
1996). The Chlorella cells were completely lysed after 5 days. The life cycle of
typical Chlorella virus is 480-600 min and the burst size is 200-350 PFU per
cell (Van et al., 1985).

Sequence analysis of Chlorella virus SS—2 exonuclease gene

The putative exonuclease was amplified by PCR from Chlorella virus SS-2
isolated in Korea. The complete nucleotide sequence of Chlorella virus SS-2
exonuclease is shown in Figure 4. The gene contains 807 nucleotides and
encodes a protein of 268 amino acids with calculated molecular weight of
31.13 kDa. A BLAST search with the Chlorella virus SS-2 exonuclease gene
found some amino acid identities to other genes observed in algae viruses,
including ORF A166R Paramecium bursaria Chlorella virus—1 (PBCV-1, 98 %),
ORF B43 of Feldmannia Iirregularis virus (FirrV, 28 %) and ORF 64 of

Ectocarpus siliculosus virus (EsV, 27 %) (Fig. b).
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Figure 4. Nucleotide sequence of the Chlorella virus SS—-2 exonuclease open

reading frame (ORFs) and predicted amino acids.
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Figure 5. Alignment of deduced amino acid sequence of the Chlorella virus
SS-2 exonuclease, FirrV-B43 and EsV-64. The identities of amino acid are
designated by asterisks, strong similarities by colons and weaker similarities by
full point. Identical residues are shown in black boxes, and similar residues are

shaded in gray.
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Isolation of Chlorella virus SS-2 exonuclease gene

PCR amplification with Chlorella virus SS-2 exonuclease specific primers
produced the one band near 800 bp in 1 % agarose gel electrophoresis (Fig.
6). This band was further gel-purified and cloned into pGEM-T easy vector
for sequencing. Nucleotide sequence analysis of transformants confirmed that
the putative exonuclease gene from Chlorella virus SS-2 genome was

successfully amplified through PCR and cloned into pGEM-T easy vector.

Overexpression of Chlorella virus SS—-2 exonuclease gene in E. coli

In order to express the exonuclease gene in E. coli, the exonuclease gene
was subcloned into pET28-a (+) expression vector and resulted in the
pET28a-Exo plasmid which allows the expression of the recombinant protein
with N-terminal fusion His-tag (Fig. 1). The plasmid was transformed into E.
coli cells containing the chaperone plasmid pKJE7 (Fig. 2) and the expression
of the recombinant exonuclease protein was induced by addition of L-Arabinose
for induction of the chaperone protein and IPTG for the induction of the
recombinant protein.

The expression of recombinant exonuclease protein was analyzed by 15 %
SDS-PAGE (Fig. 7). The expression conditions for the recombinant exonuclease
protein was measured after designated induction time; 1, 2, 3, 4 and 5 hours
after addition of IPTG. As shown in Fig. 7, the optimum expression of
recombinant exonuclease protein was achieved at 3 hours after IPTG induction.
The optimal temperature was 37 TC. The size of expressed recombinant
exonuclease protein was approximately 40 kDa, which reflect the signal extra

amino acid in the cloning vector and the 6 histidine tag at the N-terminus.
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Exonuclease —»

500bp

Figure 6. PCR amplification of Chlorella virus SS—2 exonuclease. Lane M,

1 kbp DNA Ladder; Lane 1, Chlorella virus SS—2 exonuclease.
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Figure 7. The expressmn ,,pattern_of «pe_combmant Chlorella virus SS-2
exonuclease protein by SDS -PAGE. Lane M, Pr\teem Ladder; Lane 1, no

induction (control) ; Lane 2 b, induced dell after 1, 2, 3, 4 and
5 hour IPTG 1nduct10n at 3 ( )
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---

_19_



Purification of recombinant exonuclease protein

Despite several efforts for the isolation of the recombinant SS-2 exonuclease
in the E. coli cells including induction with different concentration of IPTG,
different culture temperature and duration of induction, the protein was
expressed as insoluble form, which was problem in the purification and enzyme
activity test. Therefore, 1 used the E. coli cell containing a chaperone plasmid
pKJE7, which are designed to enable efficient expression of multiple molecular
chaperones known to work in cooperation with the folding process (Mikhailov
et al., 2004). The addition of chaperon protein inducer (L—arabinose) increased
the expression SS-2 exonuclease (Fig. 8, lane 3). The SS-2 exonuclease protein
expressed in soluble form was purified by affinity chromatography using a
His-Trap chealating HP-column (GE healthcare, Sweden). The recombinant
SS-2 exonuclease was eluted from the column as single peak (Fig. 9, lane 4 ~
7) when the protein loaded on the followed by pre-washed with 60 mM
imidazole. The concentration of proteins was estimated by the ND-1000

Spectrophotometer (NanoDrop Technologies, USA).
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43kDa

34dDa

Figure 8. Expression of the Chlorella virus SS-2 exonuclease protein in
soluble form by SDS-PAGE. Lane M, Protein ‘Laddrer; Lane 1, no induction

(control); Lane 2, after 3 hours of IPTG induction at 37 C; Lane 3, soluble

part of #2. ‘ ( ’)
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M12 3 4561

Figure 9. SDS-PAGE pattern of Chlorella virus SS-2 exonuclease protein by
affinity chromatography. Lane M, Protein Ladder, Lane 1, no induction (control);
Lane 2, after 3 hours of IPTG induction at 37 C; Lane 3 : soluble part of #2,

Lane 4~7, purified part of #2.
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SDS-PAGE Westem blot

Figure 10. SDS-PAGE(A) and western blot(B) analysis of the purified
\Z"’%M Protein Ladder; Lane 1, no

Chlorella virus SS-2 exonucle protein.
induction (control); Lane 2, after 3 hours induction at 37 C; Lane 3,

soluble part of #2; Lane 4, purified part
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Exonuclease activity assays.

Several experiments were performed to begin enzymatic characterization of
the recombinant exonuclease protein. The Chlorella virus SS-2 exonuclease
protein was examined its activity using various DNA samples to confirm the
presence of this activity in the recombinant protein (Fig. 11). Purified
His-tagged SS-2 exonuclease was found to exhibit an exonuclease activity on
various DNA sample. The recombinant protein showed exonuclease activity to
the DNA with 3'-recessed (5'-overhang) end (Fig. 11, lane 1 and 2),
3'-protruding (3'-overhang) end (Fig. 11, lane 3 and 4), blunt end (Fig. 11, lane
5 and 6) and PCR product of 1.4 kbp (Fig. 11, lane 7 and 8). These results
showed that SS-2 exonuclease has its activity on various substrate.

In addition to its well-characterized exonucleolytic properties, a weaker
endonuclease activity has been described for some preparations of alkaline
exonuclease derived from HSV-1-infected cells (Bronstein et al, 1996).
Endonuclease activity of the SS-2 exonuclease protein was carried out by
plasmid degradation assays with supercoiled = covalently closed circular
pBluescript II KS+ as a substrate. In the case of the supercoiled template,
endonuclease activity can be analyzed by the quantification of the remaining
uncut circular DNA, since nicking of a single nucleotide within the plasmid
resulted in the creation of relaxed and linearized molecules; these
slower—-migrating forms were quickly degraded by the exonuclease activity of
Chlorella virus SS-2 exonuclease. After 20 min incubation with the SS-2
exonuclease, the amount of both of the supercoiled DNA substrate and
contaminated nicked DNA in the preparation decreased (Fig. 11, lane 11 and
12). The results indicated that Chlorella virus SS-2 exonuclease also has an
associated endonuclease activity in addition to exonuclease activity. An analysis

of reaction requirements was performed to establish optimal conditions for
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Chlorella virus SS-2 exonuclease activities. There was corelation between the
concentration of the enzyme and substrate degradation (Fig. 12A). The 200 ng of
substrate nucleotide was invisible after 40 min incubation with 10 ng of
exonuclease at 37 T (Fig. 12B). The SS-2 exonuclease showed stable activity in
wide range of temperature between 10 T and 50 T (Fig. 13A). This result is
unexpected because it i1s known that the host Chlorella cell usually does not
grow very well at the temperature of over 25 . Also, the SS-2 exonuclease
showed higher activity in the pH range of 6.5-7.5 (Fig. 13B) and 0-1 % BSA
with the highest activity at 0.1 % BSA (Fig 13C).

The results shown in Fig. 14 reveal that the recombinant SS-2 exonuclease
prefer Ca®" and Mn”®' than other cationes with the highest activity at 25 mM
Ca®" and Mn?'. In contrast, the SS-2 exonuclease showed inhibition by Na® and
Mg?* over 5 mM. Although, the SS-2 exonuclease showed some activity in
different concentration of Zn2+, its activity was lower compared to the reaction

in other cationes.
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Figure 11. Nuclease activity test using various DNA templates. Lane M, Lane
1, 3, 5, 7, 9 control; Lane 2, 4, 6, 8, 10: activity of SS-2 exonuclease (37 T,
20 min, SS-2 exonuclease 10 ng); Lane 1~2 , EcoR I digested pBluescript I
KS+, sticky end; Lane 3~4, Pst I digested pBluescript I KS+, sticky end;
Lane 5~6, Dra I digested pBluescript II KS+, blunt end; Lane 7~8, PCR

product; Lane 9~10, circular pBluescript II KS+.
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Fig. 12 Degradation of substrate DNA by recombinant SS-2 exonuclease. The

mixture containing 200 ng of substrate in final volume of 20 pl was incubated at

37 T with different concentration of recombinant enzyme (A) or for different

period with 10 ng recombinant enzyme (B).
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Multiple sequence alignment and secondary structure prediction of the

conserved D...EXK region of Chlorella virus SS-2 exonuclease

The critical amino acid residues of Chlorella virus SS-2 exonuclease were
predicted by sequence alignment with other nucleases. Sequence alignment of
Chlorella virus SS-2 exonuclease gene revealed similarity to other
phage-related nucleases found in various organisms including Paramecium
bursaria Chlorella virus 1, Bartonella henselae, Acanthamoeba polyphaga
mimivirus, Equid herpesvirus 1, Human herpesvirus 1, Suid herpesvirus. It has
been proposed that phage and viral exonucleases could be derived from a
common ancestral enzyme. The alignment revealed that these enzymes share
several conserved region (Fig. 15). Comparison of these conserved regions
with those of other nucleases and with defined crystal structures revealed that
a conserved motif, D91..E111XK113 in the SS-2 exonuclease, has a striking
similarity to the catalytic sites of various nuclease (Fig. 15) (Bujnicki et al,
2001, Rychlewski et al, 2001, Knizewski et al, 2007). SS-2 exonuclease
proteins possess a predicted conserved core aaaBBBafBa secondary structure
pattern (Knizewski et al, 2007). The secondary structures of this motif were
predicted and indicated that D91 was located in a loop and E111 and K113
were located in a B-sheet. The predicted secondary structure involving these
three residues were shown to resemble three catalytic residues of the type 1I
restriction endonuclease, A exonuclease and MutH (Liu et al., 2003). Based on
these similarities, it seems possible that D91, E111 and K113 of Chlorella virus

SS-2 exonuclease are involved in catalysis.
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color.
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Figure 16. Predicted image of the Chlorella virus SS-2 exonuclease.
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Discussion

This 1is, our knowledge, the first study reporting the expression and
functional characterization of exonuclease encoded by an algal virus. The
Chlorella virus SS-2 exonuclease was identified and characterized. In the blast
search of the 300 kbp genome sequence of SS-2, I found an ORF encoding a
polypeptide with significant similarity to known exonucleases (Fig. 4). Sequence
analysis of the cloned gene showed that the SS-2 belong to Yqal viral
recombinase family. This protein family has been found in many different
bacterial species but is of viral origin (Vellani et al., 2003). The exonuclease of
the Chlorella virus SS-2 showed 98 % amino acid identity to the exonuclease of
Paramecium bursaria Chlorella virus 1 (PBCV-1). Also, SS-2 exonuclease
showed 41 %, 28 % and 26 % amino acid sequence homology to the exonuclease
of Ostreococcus tauri, Bartonella tribocorum and Bartonella henselae str.
Houston—1, respectively.

The properties of the recombinant exonuclease of Chlorella virus SS—2 was
analyzed after purification of the protein from E. coli. The SS-2 exonuclease
degraded circular dsDNA of pBluescript II KS+, linear dsDNA with 3'-recessed
(5'-overhang) end, 3'-protruding (3'-overhang) end, blunt end and PCR product
of 1.4 kbp. The 5'—3' dsDNA exonuclease activity has been reported from
exonuclease T (Hoheisel. 1993) and Baculovirus alkaline nuclease (Mikhailov et
al., 2003), which are active only on 5'-protruding dsDNA substrate. In contrast,
the A exonuclease (Reda) degraded 3'-protruding dsDNA from the 5' ends of
dsDNA, producing 3' overhangs (Little. 1967, Mikhailov et al, 2003) as SS-2
exonuclease. These results showed that SS-2 exonuclease has its activity on
various double stranded (ds) DNA substrates. The SS-2 exonuclease is of
interest in that it has activity on dsDNA with blunt ends, which has not been

reported from any exonuclease yet. In addition to its exonuclease activity, the

_35_



expressed recombinant protein showed endonuclease activity, which has been
observed from the exonucleases encoded by viruses belong to the
Herpesviridae family (Bujnicki et al., 2001).

In spite of such similarity to alkaline exonuclease, the SS—-2 exonuclease
showed a little difference in biochemical properties. The alkaline exonuclease
showed a high optimum pH, an absolute requirement for Mg2+ for activity and
sensitivity to high salt concentrations (Hoffmann et al., 1978). In contrast, SS-2
exonuclease was active in a broad pH range from 6.5 to 7.5 with maximum
activity at pH 6.5 (Fig. 13B). The SS-2 exonuclease was active between 15 °C
and 45 °C with a maximum activity at 37°C. Considering that the optimum
temperature for host grow is 25°C, the wide temperature range and optimum
temperature of 37°C is unusual. Despite possessing the biochemical properties
of other exonucleases, the SS-2 exonuclease was different in that it prefers
Mg? to Ca** and Mn?" as exonuclease Il of Hemophilus influenzae (Clements
et al, 1978). The exonuclease of Arabidopsis thaliana (Plchova et al, 2003)
and Bacteriophage terminases (Ponchon et al, 2006) are known to perper Mn*'
as SS-2 exonuclease. Maximum exonuclease activity of SS-2 exonuclease was
observed with 25 mM Ca® and Mn”". Therefore, we may substitute Mn®" and
Ca® for Mg®. The exonuclease activity was enhanced with low salt
concentrations as E. colil Endo IV exonuclease (Kerins et al., 2003) and E. coli
exonuclease X (Viswanathan et al, 1999). The biochemical properties are
similar to those of the Trexl 3'—5' exonuclease which prefers Mg? and Mn?",
inhibited by Na® and 7Zn®", and has optimum pH of 7.5-8.0. (Mazur et al,
2001D).

Database search for the conserved domain in the SS-2 exonuclease revealed
even higher similarity to the PD-(D/E)XK nuclease superfamily. PD-(D/E)XK
nuclease superfamily of endo- and exonuclease (ENase) group are involved in

diverse biological processes such as DNA restriction and modification, DNA
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repair, and recombination (Aravind et al, 1999; Kovall et al, 1999; Yang et al,
1999, Rychlewski et al, 2001). The SCOP Murzin et al, 1995) database
currently groups 23 families of known structure in the restriction
endonuclease-like superfamily, including 15 different restriction endonucleases
(Bujnicki., 2003), holiday junction resolvases (endonuclease I, Hjc) (Hadden et
al., 2001, Nishino et al, 2001), lambda exonuclease (Kovall et al, 1997) and
very short patch repair (Vsr) endonuclease (Tsutakawa et al, 1999). Their
function varies from repairing damaged DNA (Vsr), resolving holliday junctions
(endonuclease I, Hjc), performing additional cleavage events in DNA
recombination (lambda exonuclease), to protection of host organisms against
foreign DNA invasion (restriction endonucleases) (Kinch et al, 2005).

It has been demonstrated that SS-2 exonuclease has significant sequence
homology and similar biochemical properties to those of PD-(D/E)XK nucleases,
and SS-2 exonuclease was expected to have conserved catalytic residues. To
identify them, I compared the catalytic residues of SS-2 exonuclease with the
catalytic residues of other nucleases for which crystal structures have been
determined. I found a conserved motif, D91...E111XK113, in SS-2 exonuclease,
which is homologous to the catalytic centers of some nuclease, including type
Il restriction endonucleases, A exonuclease (Kovall et al, 1998, Kovall et al,
1999). The exonuclease family of PD-(D/E)XK ENase comprises homologous
proteins presently observed virtually exclusively in eukaryotic and prokaryotic
viruses (Bujnicki et al, 2001). Members of the PD-(D/E)XK nuclease
superfamily generally have four motifs (Bujnicki et al, 2001, Rychlewski et al,
2001, Lukasz et al, 2007). These motifs have been studied by structural and
functional experiments. The SS-2 exonuclease proteins was predicted to have
the conserved core aaaBBBaBBa secondary structure pattern. (Lukasz et al.,
2007). The secondary structures of this motif were predicted and indicated that

D91 was located in a loop and E111 and K113 were located in a B-sheet,
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similar to the location of catalytic residues of type Il restriction enzymes (Liu
et al., 2003). Although existing restriction endonuclease-like structures retain
similar active site residues within the same core fold (with aBBBaB topology)
(Figure 16), they exhibit extreme structural diversity (structure comparison
scores can be below threshold) (Kinch et al, 2005). Therefore, further
experiments are needed to confirm the roles of catalytic residues in conserved

motif.
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