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Chapter 1

Introduction and Preliminaries

1

Multiobjective programming problems arise when more than one objec-

tive function is to be optimized over a given feasible region. Their optimums

are the concept of solution that appears to be the natural extension of the

optimization for a single objective to one of multiple objectives. In economic

analysis [7], game [21] and system science, optimums are effective for treating

such a multiplicity of values.

Khan and Hanson [38] have used the concept of ratio invexity to char-

acterize optimality and duality results in a fractional programming. This

concept seems to be new and it introduces a modified kind of characteriza-

tion in sufficient optimality with invexity conditions. Slightly away from this

but introducing ρ-invex condition, Suneja and Lalitha [75] have also charac-

terized multiobjective fractional programming problem for duality results. In

the ensuring paragraph we present on account of the fractional programming

problem as depicted in Khan and Hanson [38].

Consider the nonlinear fractional programming problem:

(FP) Minimize
f(x)

g(x)

subject to h(x) <= 0, x ∈ X0,
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where X0 is a subset of Rn, f and g are real valued functions defined on X0

and h is an m-dimensional vector valued functions also defined on X0. We

let ∆ = {x ∈ X0, h(x) <= 0} be the set of all feasible solutions. Assume that

f(x) >= 0 for all x ∈ ∆, g(x) > 0 for all x ∈ ∆, and the functions f, g and h

satisfy

x, a ∈ ∆ ⇒





f(x) − f(a) −∇f(a)η(x, a) >= 0,

−g(x) + g(a) + ∇g(a)η(x, a) >= 0,

h(x) − h(a) −∇h(a)η(x, a) >= 0

with respect to η : X0 × X0 → Rn.

These are called invex functions. In 1981, Hanson [30] introduced the

concept of the invex function which is a generalization of the convex function.

Many authors [8, 35, 53] have studied properties of invex functions and single

objective(i.e., scalar) optimization problems with these functions.

(P) Minimize f(x)

subject to h(x) <= 0, x ∈ X0.

The problem (P) is characterized as an invex problem, as was quoted in

Craven [17]. The problem (FP) as introduced above is said to be a convex-

concave problem if f is convex, g is concave and h is convex. It is then

transformed into an invex functions. Most of the references like Israel and

Mond [11], Reiland [71], and Khan [37] have discussed invex problems and

their generalizations for the multiobjective case. The paper of Khan and

Hanson [38] could be thought of as a beginning of some investigation for

invex fractional programming problems.
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Symmetric duality in mathematical programming was introduced by Dorn

[20], who defined a program and its dual to be symmetric if the dual of the

dual is the original problem. The notion of symmetric duality was developed

significantly by Dantzig et al. [19], Chandra and Husain [13] and Mond and

Weir [61]. Dantzig et al. [19] formulated a pair of symmetric dual programs

and established duality results for convex/concave functions by taking non-

negative orthant as the cone. The same result was generalized to arbitrary

cones by Bazaraa and Goode [6].

Later Mond and Weir [61] presented two pairs of symmetric dual multiob-

jective programming problems for efficient solutions and obtained appropri-

ate symmetric duality results concerning pseudo-convex/pseudo-concave or

convex/concave functions with the non-negative orthant as the cone. Nanda

and Das [68] formulated a pair of symmetric dual nonlinear programming

problems for pseudo-invex functions and arbitrary cones. Nanda [67] also

studied symmetric dual problems by assuming the functions to be invex with

non-negative orthant as the cone. Kim et al. [48] formulated a pair of multi-

objective symmetric dual programs for pseudo-invex functions and arbitrary

cones and established duality results. Mishra [54] formulated a pair of second

order multiobjective symmetric dual nonlinear programming problems under

second order pseudo-invexity assumptions on the functions involved over ar-

bitrary cones and established duality results. Mishra [55] also studied second

order symmetric duality under second order F -convexity, F -concavity, F -

pseudo-convexity and F -pseudo-concavity for second order Wolfe and Mond-

Weir type models, respectively.
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Suneja et al. [77] formulated a pair of symmetric dual multiobjective

programs of Wolfe type over arbitrary cones in which the objective function

is optimized with respect to an arbitrary closed convex cone by assuming the

involved function to be cone-convex. Very recently Khurana [40] formulated

a pair of differentiable multiobjective symmetric dual programs of Mond-

Weir type over arbitrary cones in which the objective function is optimized

with respect to an arbitrary closed convex cone by assuming the involved

functions to be cone-pseudoinvex and strongly cone-pseudoinvex. Mishra

and K. K. Lai [56] introduced the concept of cone-second order pseudoinvex

and strongly cone-second order pseudoinvex functions and formulated a pair

of Mond-Weir type multiobjective second order symmetric dual programs

over arbitrary cones.

Let Rn be the n−dimensional Euclidean space and Rn
+ its nonnegative

orthant.

We consider the following multiobjective programming problem:

(MP) Minimize f(x) = (f1(x), · · · , fk(x))

subject to gj(x) <= 0, j ∈ P, x ∈ Rn

where fi : Rn → R , i ∈ K = {1, · · · , k} and gj : Rn → R , j ∈ P =

{1, · · · ,m} are differentiable functions. For simplicity, we rewrite (MP) as

follows:

(MP) Minimize f(x)

subject to x ∈ S = {x ∈ Rn : g(x) <= 0}.
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Throughout this dissertation the following notations in Rn will be used:

x = y if and only if xi = yi, i = 1, 2, · · · , n,

x <= y if and only if xi <= yi, i = 1, 2, · · · , n,

x ≤ y if and only if xi <= yi, but x 6= y,

x < y if and only if xi < yi, i = 1, 2, · · · , n,

x � y is the negation of x ≤ y,

x ≮ y is the negation of x < y.

Now, we discuss the concepts of solutions of the problem (MP).

The problem (MP) is also called a vector optimization. For multiobjec-

tive optimization problems, there are three kinds of solutions. We call them

properly efficient, efficient and weakly efficient solution. The most fundamen-

tal solution is an efficient solution (also called a Pareto optimal solution or

noninferior solution) with respect to the domination structure of the decision

maker.

Optimization of (MP) is to find (properly, weakly) efficient solutions

defined as follows:

Definition 1.1 A point x ∈ S is said to be an efficient solution(or Pareto

optimal solution) of (MP) if there exists no other x ∈ S such that for some

i ∈ I = {1, 2, · · · , k}, fi(x) < fi(x) and for all j ∈ I, fj(x) <= fj(x).
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Definition 1.2 A feasible point x ∈ S is said to be a properly efficient solu-

tion of (MP) if it is an efficient solution of (MP) and if there exists a scalar

M > 0 such that for each i = 1, · · · , k and x ∈ S satisfying fi(x) < fi(x),

we have

fi(x) − fi(x)

fj(x) − fj(x)
<= M,

for some j such that fj(x) > fj(x).

The quantity fi(x)−fi(x)
fj(x)−fj(x)

may be interpreted as the marginal trade-off for

objective functions fi and fj between x and x. Geoffrion [25] considered the

concept of the proper efficiency to eliminate the unbounded trade-off between

objective functions of (MP).

Definition 1.3 A point x ∈ S is said to be a weakly efficient solution of

(MP) if there does not exist any feasible x such that fi(x) < fi(x).

We shall use the concepts of efficient and weakly efficient solutions.

The purpose of this dissertation is to establish duality theorems for multi-

objective programming problems under various generalized convexity condi-

tions involving differentiable or nondifferentiable functions. The weak, strong

and converse or strictly converse duality hold between primal problems and

dual problems.

This dissertation is organized as follows:
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In Chapter 2, we consider the following multiobjectiveprogramming prob-

lem:

(MFP) Minimize
f(x)

g(x)
=

(
f1(x)

g(x)
, · · · ,

fk(x)

g(x)

)

subject to hj(x) <= 0, j ∈ P, x ∈ X

where f
g

:= (f1

g
, · · · , fk

g
) : Rn → Rk and h := (h1, · · · , hm) : Rn → Rm.

Using separated variables, we formulate generalized second order multiob-

jective fractional dual programs for (MFP). For these programs, we proved

the weak, strong and strictly converse duality theorems under suitable gen-

eralized convexity assumptions on the basis of the efficiency of solutions. We

established a Wolfe type dual as well as a Mond-Weir type dual program-

ming problems as special cases. For each dual we derive weak, strong, and

converse duality theorems under second order invexity assumption.

In Chapter 3, we consider the following multiobjectiveprogramming prob-

lem:

(MCP) Minimize f(x)

subject to −g(x) ∈ C∗
2 , x ∈ C1,

where f and g are twice differentiable functions from Rn → Rl and Rn → Rm,

respectively, C1 is a closed convex cone in Rn, and C∗
2 is the polar cone of

C2.

We construct a higher order dual of (MCP) and establish weak, strong

and converse duality theorems for an efficient solution of (MCP) by using

higher order generalized invexity conditions. As special cases of our duality

relations, we give some known duality results.
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In addition, we consider the following nonlinear programming problem:

(FCP) Minimize f(x)

subject to g(x) ∈ C∗
2 , x ∈ C1,

where f : Rn → R and g : Rn → Rm are twice differentiable functions.

We construct a Fritz John higher order dual of (FCP) using Fritz John

necessary optimality conditions [51] instead of Karush-Kuhn-Tucker [51], and

establish weak, strong and converse duality theorems under suitable higher

order generalized invexity assumptions. Thus, the requirement of a constraint

qualification can be eliminated.

In Chapter 4, we formulate Mond-Weir and Wolfe type non-differentiable

second order multiobjective symmetric dual problems with cone constraints

over arbitrary closed convex cones. Subsequently, weak, strong and con-

verse duality theorems are established under the assumptions of second order

pseudo-invex functions. And we introduced some special cases of our duality

results.

In Chapter 5, we formulate a pair of generalized second order symmetric

programs in multiobjective nonlinear programming. For these programs, we

establish weak, strong and converse duality theorems under suitable convex-

ity assumptions on the basis of the efficiency of solutions. These results are

the extension of second order symmetric duality relations due to Kim et al.

[47]. And we present some special cases of our duality results.
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Chapter 2

Generalized Second Order Duality for

Multiobjective Fractional Programs

2

2.1 Introduction

In 1961, Wolfe [81] considered a dual program as convex program with

nonlinear constraints and apart from others proved weak and direct duality

theorems under suitable assumptions. Afterward, a number of dual problems

distinct from the Wolfe dual problem are proposed for the nonlinear programs

by Mond and Weir [62]. Duality relations for single objective fractional

programming problems with a (generalized) convexity condition, were given

by many authors [8, 18, 34, 39, 53, 64, 72, 73].

Wolfe’s dual problem [81] is not useful for the fractional problem. Various

examples showing the unsuitability of the Wolfe dual for fractional programs

have been given by Mangasarian [51] and Schaible [72, 73]. Later on, Bector

[8] introduced slightly different fractional programming. Mond and Weir [62]

consider the fractional programming problem as follows;

(FP) Minimize
f(x)

g(x)

subject to h(x) <= 0, x ∈ X0,

where X0 is a subset of Rn, f and g are real-valued functions defined on X0,

h be an m-dimensional vector valued function also defined on X0. Under the
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assumptions that f is convex and nonnegative, g is concave and positive and

h is convex, a number of duality results can be obtained.

As a generalization of differentiable convex function, Hanson [30] intro-

duced the weak convex function, where it is shown that the Kuhn-Tucker

conditions are sufficient for optimality of nonlinear programming problems

under the condition of a weak convex function. A weak convex function was

called an invex function by Craven [17]. Most of the references like Israel

and Mond [11], Reiland [71], and Khan [37] have discussed invex problems

and their generalizations for the multiobjective case. Afterwards, the second

order invexity was introduced by Egudo and Hanson [24] called binvexity by

Bector and Bector [9].

Many authors [8, 35, 53, 43, 9, 44, 41] have studied properties of invex

functions and nonlinear programming problems with these functions. Khan

and Hanson [38] extended the nonlinear fractional programming problem

with invex functions, that is, the ratio invexity. They gave sufficient condi-

tions for optimality and established duality results by assuming that f and

−g are invex with respect to a scale function η(x, u) and h is invex with

respect to g(u)
g(x)

η(x, u). Reddy and Mukherjee [70] applied a generalized ratio

invexity to single objective fractional programming problems. Very recently

Liang et al. [50] establish sufficient conditions and duality theorems for an

efficient solution of multiobjective fractional programming problems under

(F,α, ρ, d)-convexity assumptions.

In this chapter, using separated variables, we formulate generalized second

order multiobjective fractional programs. For these programs, we proved the
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weak, strong, and strictly converse duality theorems under suitable general-

ized convexity assumptions on the basis of efficiency of solutions. And we

introduced Mond-Weir and Wolfe type second order multiobjective fractional

programs, as special cases. We obtained the weak, strong, and converse du-

ality theorems for Mond-Weir and Wolfe type second order multiobjective

fractional programs under second order invexity assumptions.

2.2 Notations and Preliminaries

Let f be a twice differentiable function from Rn into Rk and M =

{1, 2, · · · ,m}, I ⊂ M , and M \ I = J . Note that I or J can be empty. We

rearrange y as y = (yI, yJ).

Next definition is introduced by Bector and Bector [9], and Egudo and

Hanson [24].

Definition 2.1 A twice differentiable function f : Rn → Rk is said to be

second order invex with respect to η if for all i = 1, · · · , k, there exist a

vector valued function η defined on Rn × Rn → Rn such that,

fi(x) − fi(u) >= η(x, u)T∇fi(u) + η(x, u)T∇2fi(u)p − 1

2
pT∇2fi(u)p,

where p ∈ Rn, ∇ denotes the gradient vetor and ∇2 is the n × n Hessian

matrix of second order partial derivatives.

We recall the following definitions defined by Aghezzaf [1].

11



Definition 2.2 A functional F : Rn × Rn × Rn → R is sublinear if for any

x, u ∈ Rn,

F (x, u; a1 + a2) <= F (x, u; a1) + F (x, u; a2), for all a1, a2 ∈ Rn

and

F (x, u;αa) = αF (x, u; a) for all α ∈ R, α >= 0, and α ∈ Rn.

Let F : Rn × Rn × Rn → R be a sublinear functional, the function f =

(f1, · · · , fk) : Rn → Rk a twice differentiable at u ∈ Rn, ρ = (ρ1, · · · ρk) ∈ Rk

and d(·, ·) a metric on Rn.

Definition 2.3 The function fi is said to be second order (F, ρi)-convex at

u and p, if for all x ∈ Rn we have

F (x, u;∇fi(u) + ∇2fi(u)p) + ρid(x, u) <= fi(x) − fi(u) +
1

2
p∇2fi(u)p.

The vector valued function f : Rn → Rk is second order (F, ρi)-convex at u

and p if each of its components fi is second order (F, ρi)-convex at u and p.

Definition 2.4 The function fi is second order (F, ρi)-quasiconvex at u and

p, if for all x ∈ Rn, we have

fi(x) <= fi(u)− 1

2
pT∇2fi(u)p ⇒ F (x, u;∇fi(u) + ∇2fi(u)p) <= −ρid(x, u).

We say that f is second order (F, ρi)-quasiconvex at u and p if each of its

components fi is second order (F, ρi)-quasiconvex at u and p.
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Definition 2.5 The function fi is second order (F, ρi)-pseudoconvex at u

and p, if for all x ∈ Rn, we have

fi(x) < fi(u)− 1

2
pT∇2fi(u)p ⇒ F (x, u;∇fi(u) + ∇2fi(u)p) < −ρid(x, u).

The function f is second order (F, ρi)-pseudoconvex at u and p if each of its

components fi is second order (F, ρi)-pseudoconvex at u and p.

Definition 2.6 The function fi is strong second order (F, ρi)-pseudoconvex

at u and p, if for all x ∈ Rn we have

fi(x) ≤ fi(u)− 1

2
pT∇2fi(u)p ⇒ F (x, u;∇fi(u) + ∇2fi(u)p) ≤ −ρid(x, u).

The class of strong second order (F, ρi)-pseudoconvex functions does not

contain the class of second order (F, ρi)-pseudoconvex functions, but does

contain the class of second order (F, ρi)-convex.

Lemma 2.1 If f,−g are second order invex at x with respect to η and

(i) ∇g(x) = 0, (ii) ∇2 f(x)
g(x)

is negative semidefinite and positive semidefinite,

then f
g

is second order invex at x with respect to η(x, x) = g(x)
g(x)

η(x, x).

Proof. By differential calculus

∂2

∂xi
2

(
f(x)

g(x)

)
=

g(x)∇2f(x) − f(x)∇2g(x)

g(x)2

−2∇g(x){g(x)∇f(x)− f(x)∇g(x)}
g(x)3

13



and

f(x)

g(x)
− f(x)

g(x)
=

f(x) − f(x)

g(x)
− f(x){g(x) − g(x)}

g(x)g(x)
.

Since f and −g are second order invex functions with respect to η(x, x),

above equation implies that

f(x)

g(x)
− f(x)

g(x)
=

f(x) − f(x)

g(x)
− f(x)

g(x)g(x)
(g(x) − g(x))

>=
1

g(x)
{η(x, x)T∇f(x) + η(x, x)T∇2f(x)p − 1

2
pT∇2f(x)p}

− f(x)

g(x)g(x)
{η(x, x)T∇g(x) + η(x, x)T∇2g(x)p − 1

2
pT∇2g(x)p}

=
1

g(x)
η(x, x)T∇f(x) − f(x)

g(x)g(x)
η(x, x)T∇g(x)

+
1

g(x)
η(x, x)T∇2f(x)p − f(x)

g(x)g(x)
η(x, x)T∇2g(x)p

−1

2

1

g(x)
pT∇2f(x)p − 1

2

f(x)

g(x)g(x)
pT∇2g(x)p

=
g(x)

g(x)
η(x, x)T∇f(x)

g(x)
+

g(x)

g(x)
η(x, x)T∇2f(x)

g(x)
p − 1

2
pT∇2f(x)

g(x)
p

(by assumption).

Therefore f
g

is second order invex with respect to η(x, x) = g(x)
g(x)

η(x, x). 2
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2.3 Duality Theorems

We propose the following multiobjective fractional programming problem:

(MFP) Minimize
f(x)

g(x)
=

(
f1(x)

g(x)
, · · · ,

fk(x)

g(x)

)

subject to hj(x) <= 0, j ∈ P, x ∈ X

and its generalized second order fractional dual

(GMFD) Maximize
f(u)

g(u)
+ (yT

I hI(u))e

− 1

2

[
pT

(
∇2λT f(u)

g(u)
+ ∇2yT

I hI(u)

)
p

]
e

subject to ∇yTh(u) +
(
∇2yTh(u)

)
p

+ ∇λT f(u)

g(u)
+

(
∇2λT f(x)

g(x)

)
p = 0,

yT
J hJ(u) − 1

2
pT

(
∇2yT

J hJ(u)
)
p >= 0,

y >= 0,

λ > 0, λT e = 1,

where x ∈ Rn, y ∈ Rm, p ∈ Rn, λ ∈ Rk, e = (1, · · · , 1)T ∈ Rk, f
g

:=

(f1

g
, · · · , fk

g
) : Rn → Rk and h := (h1, · · · , hm) : Rn → Rm.

Now we establish the duality theorems for (MFP) and (GMFD).

Theorem 2.1 (Weak Duality) Let x satisfy the constraints of (MFP)

and (u, y, λ, p) satisfy the constraints of (GMFD). If f and −g are second
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order invex with respect to η and h is second order invex with respect to η,

then

f(x)

g(x)
� f(u)

g(u)
+ (yT

I hI(u))e − 1

2

[
pT

(
∇2λT f(u)

g(u)
+ ∇2yT

I hI(u)

)
p

]
e.

Proof. Assume to the contrary that

f(x)

g(x)
≤ f(u)

g(u)
+ (yT

I hI(u))e − 1

2

[
pT

(
∇2λT f(u)

g(u)
+ ∇2yT

I hI(u)
)
p

]
e.

Then, since λ > 0,

λT f(x)

g(x)
< λT f(u)

g(u)
+ yT

I hI (u)− 1

2

[
pT

(
∇2λT f(u)

g(u)
+ ∇2yT

I hI (u)
)
p

]
. (2.1)

Since λi > 0 (i = 1, · · · , k) and yj >= 0 (j = 1, · · · ,m), the assumptions of

invexity become

λT f(x)

g(x)
− λT f(u)

g(u)
>= η(x, u)T

(
∇λT f(u)

g(u)
+ ∇2λT f(u)

g(u)
p

)
− 1

2
pT∇2λT f(u)

g(u)
p

(2.2)

and

yTh(x) − yTh(u) >= η(x, u)T

(
∇yTh(u) + ∇2yTh(u)p

)
− 1

2
pT∇2yTh(u)p.

(2.3)
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Adding (2.2) and (2.3), and rearranging yield

λT f(x)

g(x)
− λT f(u)

g(u)

>= yT
I hI(u) + yT

J hJ (u)− yT
I hI(x) − yT

J hJ (x)

+η(x, u)T

(
∇yTh(u) + ∇2yTh(u)p + ∇λT f(u)

g(u)
+ ∇2λT f(u)

g(u)
p

)

−1

2
pT

(
∇2λT f(u)

g(u)
+ ∇2yT

I hI (u) + ∇2yT
J hJ(u)p

)

>= yT
I hI(u) − yTh(x) − 1

2
pT

(
∇2λT f(u)

g(u)
+ ∇2yTh(u)

)
p

>= yT
I hI(u) − 1

2
pT

(
∇2f(u)

g(u)
+ ∇2yTh(u)

)
p.

Thus,

λT f(x)

g(x)
− λT f(u)

g(u)
>= yT

I hI(u) − 1

2
pT

(
∇2λT f(u)

g(u)
+ ∇2yT

I hI(u)

)
p.

This contradicts (2.1). 2

Next theorem is a generalization of the result of Zhang and Mond [86].

Theorem 2.2 (Weak Duality) Assume that for all feasible x for (MFP)

and all feasible (u, y, λ, p) for (GMFD),

(a) yT
J hJ(·) is second order (F,α)-quasiconvex at u and p, and assume that

one of the following conditions holds;

17



(b) f
g
(·)+yT

I hI(·)e is strong second order (F, ρ)-pseudoconvex at u and p with

α + λρ >= 0,

(c) λT f
g
(·) + yT

I hI(·) is second order (F, β)-pseudoconvex at u and p with

α + β >= 0.

Then the following cannot hold:

f(x)

g(x)
≤ f(u)

g(u)
+ (yT

I hI(u))e − 1

2

[
pT

(
∇2λT f(u)

g(u)
+ ∇2yT

I hI(u)
)
p

]
e. (2.4)

Proof. Let x be feasible for (MFP) and let (u, y, λ, p) be feasible for (GMFD).

Then we have

yT
J hJ (x) <= yT

J hJ (u)− 1

2

(
∇2yT

J hJ (u)
)
p. (2.5)

From (2.5) and hypothesis (a) we obtain

F
(
x, u;∇yT

J hJ (u) + ∇2yT
J hJ(u)p

)
<= −αd(x, u). (2.6)

By the feasibility of (u, y, λ, p) and the sublinearity of F , we have

F (x, u;∇λT f(u)

g(u)
+ ∇2λT f(u)

g(u)
p + ∇yT

I hI(u) + ∇2yT
I hI(u)p)

+F (x, u;∇yT
J hJ(u) + ∇2yT

J hJ(u)p)

>= F (x, u;∇λT f(u)

g(u)
+ ∇2λT f(u)

g(u)
p + ∇yTh(u) + ∇2yTh(u)p) = 0.(2.7)

Relation (2.7) together with (2.6) yields

F (x, u;∇λT f(u)

g(u)
+∇2λT f(u)

g(u)
p+∇yT

I hI(u)+∇2yT
I hI(u)p) >= αd(x, u). (2.8)
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On the other hand, suppose contrary to the result that (2.4) holds. Since x

is feasible of (MFP) and y >= 0, (2.4) implies

f(x)

g(x)
+yT

I hI(x)e ≤ f(u)

g(u)
+(yT

I hI(u))e− 1

2

[
pT

(
∇2λT f(u)

g(u)
+ ∇2yT

I hI(u)
)
p

]
e.

(2.9)

Multiplying (2.9) by λ, we get

λT f(x)

g(x)
+yT

I hI(x) < λT f(u)

g(u)
+(yT

I hI(u))−1

2

[
pT

(
∇2λT f(u)

g(u)
+ ∇2yT

I hI(u)
)
p

]
.

(2.10)

By the hypothesis (b) and (2.9), we have

F (x, u;∇
[
f(u)

g(u)
+ yT

I hI(u)e

]
+∇2

[
f(u)

g(u)
+ yT

I hI(u)e

]
p) ≤ −ρd(x, u). (2.11)

Multiplying (2.11) by λ, we obtain

F (x, u;∇
[
λT f(u)

g(u)
+ yT

I hI (u)

]
+ ∇2

[
λT f(u)

g(u)
+ yT

I hI(u)

]
p)

< −λρd(x, u) <= αd(x, u), (2.12)

which contradicts (2.8). When the hypothesis (c) holds, (2.10) implies

F (x, u;∇
[
λT f(u)

g(u)
+ yT

I hI(u)

]
+ ∇2

[
λT f(u)

g(u)
+ yT

I hI(u)

]
p)

< −βd(x, u) <= αd(x, u),

which contradicts (2.8). Therefore the proof is completed. 2
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Corollary 2.1 Let (u, y, λ, p) be a feasible solution for (GMFD) such that

yT
I hI(u) − 1

2
pT∇2

[
λ

T f(u)

g(u)
+ yT

I hI(u)

]
p = 0, (2.13)

and assume that u is feasible for (MFP). If weak duality holds between

(MFP) and (GMFD), then u is efficient for (MFP) and (u, y, λ, p) is

efficient for (GMFD).

Proof. Suppose that u is not efficient for (MFP), then there exists a feasible

x for (MFP) such that

f(x)

g(x)
≤ f(u)

g(u)
(2.14)

and since

yT
I hI(u) − 1

2
pT∇2

[
λ

T f(u)

g(u)
+ yT

I hI(u)

]
p = 0.

So (2.14) can be written as

f(x)

g(x)
≤ f(u)

g(u)
+ yT

I hI(u)e− 1

2
pT∇2

[
λ

T f(u)

g(u)
+ yT

I hI(u)

]
pe.

Since (u, y, λ, p) is feasible for (GMFD) and x is feasible for (MFP), this

inequality contradicts weak duality. Also suppose that (u, y, λ, p) is not ef-

ficient for (GMFD). Then there exists a feasible (u, y, λ, p) for (GMFD)

such that

f(u)

g(u)
+ yT

I hI(u)e− 1

2
pT∇2

[
λT f(u)

g(u)
+ yT

I hI(u)

]
pe

≥ f(u)

g(u)
+ yT

I hI(u)e− 1

2
pT∇2

[
λ

T f(u)

g(u)
+ yT

I hI(u)

]
pe. (2.15)
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Then from (2.13), (2.15) reduces to

f(u)

g(u)
+ yT

I hI (u)e− 1

2
pT∇2

[
λT f(u)

g(u)
+ yT

I hI(u)

]
pe ≥ f(u)

g(u)
.

Since u is feasible for (MFP), this inequality contradicts the weak duality.

Therefore u and (u, y, λ, p) are efficient for their respective programs. 2

Theorem 2.3 (Strong Duality) Let x be an efficient solution of (MFP)

at which a constraint qualification is satisfied. Then there exist y ∈ Rm, λ ∈

Rk and p ∈ Rn such that (x, y, λ, p = 0) is a feasible solution of (GMFD),

with

yT
I hI(u) − 1

2
pT∇2

[
λ

T f(u)

g(u)
+ yT

I hI(u)

]
p = 0.

If Theorem 2.1 or Theorem 2.2 also holds between (MFP) and (GMFD),

then (x, y, λ, p = 0) is an efficient solution for (GMFD).

Proof. Since x be an efficient solution of (MFP), then there exist λ ∈ Rk(λ >

0, λ
T
e = 1) and y ∈ Rm that satisfy the following Kuhn-Tucker conditions

[51]:

∇λ
T f(x)

g(x)
+ ∇yTh(x) = 0,

yTh(x) = 0,

y ≥ 0.
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Clearly (x, y, λ, p = 0) is feasible for (GMFD), and the objective values

of (MFP) and (GMFD) are equal. If the assumptions of Theorem 2.1

or Theorem 2.2 also holds, then (x, y, λ, p = 0) is an efficient solution of

(GMFD). 2

We now turn our attention to the strict converse duality.

Theorem 2.4 (Strict Converse Duality) Let x be an efficient solution

for (MFP) and (u, y, λ, p) be an efficient solution for (GMFD) such that

λ
T f(x)

g(x)
= λ

T f(u)

g(u)
+ yT

I hI(u) − 1

2
pT∇2

[
λ

T f(u)

g(u)
+ yT

I hI(u)

]
p. (2.16)

Assume that

(i) λ
T f

g
(·) + yT

I hI(·) is strictly invex or

(ii) Condition (i) of Theorem 2.2 is satisfied and λ
T f

g
(·) + yT

I hI(·) is strictly

second order (F, β)-pseudoconvex with α + β >= 0.

Then x = u and u is an efficient solution for (MFP).

Proof. (i) We assume x 6= u and exhibit a contradiction. From the fact

λ
T f

g
(·) + yT

I hI(·) is strictly invex, we obtain

λ
T f(x)

g(x)
+ yT

I hI(x) − λ
T f(u)

g(u)
− yT

I hI(u)

> η(x, u)

[
∇

(
λ

T f(u)

g(u)
+ yT

I h(u)

)
+ ∇2

(
λ

T f(u)

g(u)
+ yT

I hI(u)

)
p

]

−1

2
pT

(
∇2λ

T f(u)

g(u)
+ ∇2yT

I hI(u)

)
p.
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Since x and (u, y, λ, p) are feasible for (MFP) and (GMFD), the inequality

above implies

λ
T f(x)

g(x)
> λ

T f(u)

g(u)
+ yT

I hI(u) − 1

2
pT∇2

(
λ

T f(u)

g(u)
+ yT

I hI(u)

)
p,

which contradicts (2.16).

(ii) We assume x 6= u and exhibit a contradiction. Since x and (u, y, λ, p) are

feasible for (MFP) and (GMFD), respectively, then y >= 0, h(x) <= 0, and

yT
J hJ (x) <= yT

J hJ (u) − 1

2
pT∇2yT

J hJ (u)p. (2.17)

By the hypothesis (ii), (2.17) implies that

F (x, u;∇yT
J hJ (u) + ∇2yT

J hJ(u)) <= −αd(x, u). (2.18)

By the feasibility of (u, y, λ, p) and the sublinearity of F , we have

F (x, u;∇λ
T f(u)

g(u)
+ ∇2λ

T f(u)

g(u)
p + ∇yT

I hI(u) + ∇2yT
I hI(u)p)

+F (x, u;∇yT
J hJ(u) + ∇2yT

J hJ(u)p)

>= F (x, u;∇λ
T f(u)

g(u)
+ ∇2λ

T f(u)

g(u)
p + ∇yThI(u) + ∇2yT hI(u)p) = 0.(2.19)

Relation (2.19) together with (2.18) yields

F (x, u;∇λ
T f(u)

g(u)
+ ∇2λ

T f(u)

g(u)
p + ∇yT

I hI(u) + ∇2yT
I hI(u)p)

>= αd(x, u) >= −βd(x, u).
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Since λ
T f

g
(·) + yT

I hI(·) is strictly second order (F, β)-pseudoconvex, it follow

that

λ
T f(x)

g(x)
+ yT

I hI(x) > λ
T f(u)

g(u)
+ yT

I hI (u) − 1

2
pT∇2

[
λ

T f(u)

g(u)
+ yT

I hI(u)

]
p.

Hence by y >= 0 and h(x) <= 0, the inequality above implies

λ
T f(x)

g(x)
> λ

T f(u)

g(u)
+ yT

I hI(u) − 1

2
pT∇2

[
λ

T f(u)

g(u)
+ yT

I hI(u)

]
p,

which contradicts (2.16). Therefore the result holds. 2

2.4 Special Cases

As special cases of our duality between (MFP) and (GMFD), we give a

Wolfe type duality theorem. If J = ∅ and I = {1, 2, · · · , n}, then (GMFD)

reduced to the Wolfe type dual of the problem (WMFD) :

(WMFD) Maximize
f(u)

g(u)
+ (yTh(u))e

− 1

2

[
pT

(
∇2λT f(u)

g(u)
+ ∇2yTh(u)

)
p

]

subject to ∇yTh(u) + (∇2yTh(u))p

+ ∇λT f(x)

g(x)
+

(
∇2λT f(x)

g(x)

)
= 0,

y ≥ 0, λ > 0, λT e = 1,

24



where x ∈ Rn, y ∈ Rm, λ ∈ Rk, p ∈ Rn and e = (1, · · · , 1)T ∈ Rk, f
g
:Rn → Rk

and h : Rn → Rm are twice differentiable functions.

We can prove the following weak, strong and converse duality theorems

between (MFP) and (WMFD) under second order invex assumptions.

Theorem 2.5 (Weak Duality) Let x satisfy the constraints of (MFP)

and (u, y, λ, p) satisfy the constraints of (WMFD). If f and −g are second

order invex with respect to η and h is second order invex with respect to η,

then

f(x)

g(x)
�

f(u)

g(u)
+ [yTh(u)]e− 1

2

[
pT

(
∇2yTh(u) + ∇2f(u)

g(u)

)
p

]
e.

Proof. The proof follows along the lines of Theorem 2.1. 2

Theorem 2.6 (Strong Duality) Let x be an efficient solution of (MFP).

Then (x, y, λ, p = 0) is a feasible solution for (WMFD), and the objective

values of (MFP) and (WMFD) are equal. Assume that the assumption of

Theorem 2.5 hold, then (x, y, λ, p = 0) is an efficient solution of (WMFD).

Proof. Since x is an efficient solution of (MFP), then there exist λ ∈ Rk(λ >

0, λT e = 1) and y ∈ Rm that satisfy the following Kuhn-Tucker conditions
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[51]:

∇λT f(x0)

g(x0)
+ ∇yTh(x0) = 0,

yTh(x0) = 0,

y ≥ 0.

Clearly (x, y, λ, p = 0) is feasible for (WMFD), and the objective values of

(MFP) and (WMFD) are equal. If the assumptions of Theorem 2.5 also

hold, (x, y, λ, p = 0) is an efficient solution of (WMFD). 2

Theorem 2.7 (Converse Duality) Let f , g and h are three times differ-

entiable and let (x, y, λ, p) be an efficient solution of (WMFD). Suppose that

(i) the vectors [∇2λ
T f(x)

g(x)
]j, [∇2yT h(x)]j, j = 1, · · · , n are linearly inde-

pendent, where [∇2λ
T f(x)

g(x)
]j is the jth row of [∇2λ

T f(x)
g(x)

]

and [∇2yTh(x)]j is the jth row of [∇2yTh(x)], and

(ii) the n × n Hessian matrix ∇
[
∇2λ

T f(x)
g(x)

+ ∇2yT h(x)
]
p is positive or

negative definite.

Then x is satisfied the Kuhn-Tucker conditions for (MFP), that is

∇λT f(x)

g(x)
+ ∇yTh(x) = 0, yT h(x) = 0, y ≥ 0,

and the corresponding values of (MFP) and (WMFD) are equal. If the

assumptions of Theorem 2.5 are satisfied, then x is an efficient solution for

(MFP).
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Proof. Since (x, y, λ, p) is an efficient solution for (WMFD), there exist

α ∈ Rk, β ∈ Rm, ρ ∈ Rm and ωRk, not identically zero, such that the

following Fritz John conditions are satisfied [51]:

αT∇
[
f(x)

g(x)
+ (yTh(x))e − 1

2

(
pT

(
∇2λT f(x)

g(x)
+ ∇2yTh(x)

)
p

)
e

]

+βT
[
∇2yTh(x) + ∇

(
∇2yTh(x)

)
p
]

+βT

[
∇2λT f(x)

g(x)
+ ∇

(
∇2λT f(x)

g(x)

)
p

]
= 0, (2.20)

αT

[
h(x)e− 1

2
(pT∇2h(x)p)e

]
+ βT

[
∇h(x) + ∇2h(x)p

]
− ρ = 0,(2.21)

αT

[
−1

2

(
pT∇2f(x)

g(x)
p

)
e

]
+ βT

[
∇f(x)

g(x)
+ ∇2f(x)

g(x)

]
− ω = 0, (2.22)

αT

[
−

(
∇2λT f(x)

g(x)
+ ∇2yTh(x)

)
pe

]

+βT

[
∇2λT f(x)

g(x)
+ ∇2yTh(x)

]
= 0, (2.23)

[
∇yTh(x) + (∇2yTh(x))p + ∇λT f(x)

g(x)
+

(
∇2λT f(x)

g(x)

)
p

]
β = 0,

(2.24)

ρTy = 0, (2.25)

ωTλ = 0, (2.26)

y ≥ 0, (2.27)

(α, β, ρ, ω) ≥ 0, (2.28)

(α, β, ρ, ω) 6= 0. (2.29)

27



Since ∇2λT f(x0)
g(x0)

+ ∇2yTh(x0) is nonsingular, (2.26) gives

β = (αTe)p. (2.30)

It follows that

α 6= 0 (i.e. α ≥ 0). (2.31)

For if α = 0, (2.33) gives β = 0, which along with (2.24) and (2.25) implies

ρ = 0 and ω = 0, respectively. Therefore, we see that α = 0 implies β =

0, ρ = 0, ω = 0 which contradicts (2.32). Hence (2.34) holds. Substituting

(2.33) in (2.23) gives

(αT e)

(
∇λT f(x0)

g(x0)
+ ∇2f(x0)

g(x0)
p + ∇yTh(x0) + ∇2yTh(x0)p

)

+
1

2
(αT e)pT∇

(
∇2λT f(x0)

g(x0)
+ ∇2yTh(x0)

)
p = 0,

which in view of (2.27) gives

1

2
(αT e)pT∇

(
∇2λT f(x)

g(x)
+ ∇2yTh(x)

)
p = 0. (2.32)

Using the hypothesis that ∂
∂xi

(
∇2λT f(x)

g(x)
+ ∇2yTh(x)

)
i=1,··· ,n

is positive or

negative definite,

p = 0 and β = (αT e)p = 0. (2.33)

From (2.24), (2.33) and (2.36) and taking (2.34) into account gives

yTh(x) = 0. (2.34)
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From (2.23), we have

∇λT f(x)

g(x)
+ ∇yTh(x) = 0. (2.35)

Substituting (2.36) in (2.24) and taking (2.31) and (2.34) into account gives

h(x) <= 0. (2.36)

Conditions (2.38), (2.34), (2.39) and (2.30) are the Kuhn-Tucker conditions

for (MFP). The corresponding values of (MFP) and (WMFD) are equal

because yTh(x) = 0 and p = 0. If f and −g are second order invex with

respect to η and h is second order invex with respect to η, then by Theorem

2.5, x is an efficient solution for (MFP). 2

If I = ∅ and J = {1, 2, · · · ,m}, then (GMFD) is reduced to the Mond-

Weir type dual (MMFD):

(MMFD) Maximize
f(u)

g(u)
− 1

2

[
pT

(
∇2λT f(u)

g(u)
+ ∇2yTh(u)

)
p

]
e

subject to ∇yTh(u) +
(
∇2yTh(u)

)
p

+ ∇λT f(u)

g(u)
+

(
∇2λT f(x)

g(x)

)
p = 0,

y ≥ 0,

λ > 0, λT e = 1,
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where p ∈ Rn.

And its parametric dual program:

(MFP)λ Minimize λT f(x)

g(x)

subject to h(x) <= 0,

(MMFD)λ Maximize λT f(u)

g(u)
− 1

2

[
pT

(
∇2λT f(u)

g(u)
+ ∇2yTh(u)

)
p

]
e

subject to ∇yTh(u) +
(
∇2yTh(u)

)
p

+ ∇λT f(u)

g(u)
+

(
∇2λT f(x)

g(x)

)
p = 0,

y ≥ 0,

λ > 0, λT e = 1.

We can obtain weak, strong, converse duality theorems between (MFP) and

(MMFD)λ or (MFP) and (MMFD).

Theorem 2.8 (Weak Duality) Let x be feasibel for (MFP)λ and (u, y, λ, p)

be feasible for (MMFD)λ. If f and −g are second order invex with respect

to η and h is second order invex with respect to η, then

λT f(x)

g(x)
>= λT f(u)

g(u)
− 1

2

[
pT

(
∇2λT f(u)

g(u)
+ ∇2yTh(u)

)
p

]
.
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Proof. Since f and −g are second order invex with respect to η and h is

second order invex with respect to η,

λT f(x)

g(x)
− λT f(u)

g(u)

>= η(x, u)T∇λT f(u)

g(u)
+ η(x, u)T∇2λT f(u)

g(u)
p − 1

2
∇2λT f(u)

g(u)
p

= η(x, u)T
(
−∇yTh(u)−∇2yTh(u)p

)
− 1

2
pT∇2λT f(u)

g(u)
p

>= −yTh(x) + yTh(u) − 1

2
pT∇2yT h(u)p − 1

2
pT∇2λT f(u)

g(u)
p

>= −yTh(x) − 1

2
pT∇2λT f(u)

g(u)
p

>= −1

2
pT∇2λT f(u)

g(u)
p.

(The last inequality follows from the constraints of (MFP)λ and (MMFD)λ.)

Therefore the result hold. 2

Theorem 2.9 (Weak Duality) Let x be feasible for (MFP) and (u, y, λ, p)

be feasible (MMFD). If f and −g are second order invex with respect to η

and h is second order invex with respect to η, then

f(x)

g(x)
�

f(u)

g(u)
− 1

2

[
pT∇2λT f(u)

g(u)

]
e.

Proof. It follows on the lines of Theorem 2.1. 2
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Theorem 2.10 (Strong Duality) If x is an efficient solution of (MFP),

then there exist y ∈ Rm and λ ∈ Rk such that (x, y, λ, p = 0) is feasible

for (MMFD), and the corresponding values of (MFP) and (MMFD) are

equal. If f and g are second order invex with respect to η and h is second order

invex with respect to η, then (x, y, λ, p) is an efficient solution of (MMFD).

Proof. It follows on the lines of Theorem 2.6. 2

Theorem 2.11 (Converse Duality) Let f , g and h are three times differ-

entiable and let (x, y, λ, p) be a solution of (MMFD)λ. Suppose that

(i) the n × n Hessian matrix ∇
[
∇2λ

T f(x)
g(x)

+ ∇2yT h(x)
]
p is positive or

negative definite,

(ii)∇yTh(x) + ∇2yTh(x)p 6= 0 and

(iii) the vectors

[∇2λ
T f(x)

g(x)
]j, [∇2yT h(x)]j, j = 1, · · · , n

are linearly independent, where [∇2λ
T f(x)

g(x)
]j is the jth row of [∇2λ

T f(x)
g(x)

] and

[∇2yT h(x)]j is the jth row of [∇2yTh(x)].

Then (x, y, λ, p = 0) is an feasible solution of (MMFD)λ, and the objective

values of (MFP)λ and (MMFD)λ are equal there. If also, f and −g are

second order invex with respect to η and h is second order invex with respect

to η then (x, y, λ, p = 0) is an efficient solution of (MMFD)λ.
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Proof. Since (x, y, λ, p) is a solution of (MMFD)λ, by the Fritz John neces-

sary conditions [51], there exist α ∈ R, β ∈ Rn, γ ∈ R, ρ ∈ Rm and ω ∈ Rk

such that

−α

[
∇λ

T f(x)

g(x)
− 1

2
pT∇

(
∇2λ

T f(x)

g(x)

)
p

]

+βT

[
∇2yTh(x) + ∇

(
∇2yT h(x)

)
p + ∇2λ

T f(x)

g(x)
+ ∇

(
∇2λ

T f(x)

g(x)

)
p

]

−γ

[
∇yTh(x) − 1

2
pT∇

(
∇2yTh(x)

)
p

]
= 0, (2.37)

βT

[
∇h(x) + ∇2h(x)p

]
− γ

[
h(x) − 1

2
pT∇2h(x)p

]
− ρ = 0, (2.38)

−α

[
f(x)

g(x)
− 1

2
pT

(
∇2f(x)

g(x)

)
p

]
+ βT

[
∇f(x)

g(x)
+ ∇2f(x)

g(x)
p

]
− ω = 0,(2.39)

−α

[
−∇2λ

T f(x)

g(x)
p

]
+ βT

[
∇2yTh(x) + ∇2λ

T f(x)

g(x)

]

−γ

[
−∇2yTh(x)p

]
= 0, (2.40)

βT

[
∇yT h(x) + ∇2yT h(x)p + ∇λ

T f(x)

g(x)
+ ∇2λ

T f(x)

g(x)
p

]
= 0, (2.41)

γ

[
yTh(x) − 1

2
pT∇2yT h(x)p

]
= 0, (2.42)

ρT y = 0, (2.43)

ωT λ = 0, (2.44)
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(α, β, γ, ρ, ω) >= 0, (2.45)

(α, β, γ, ρ, ω) 6= 0. (2.46)

Since

{[
∇2λ

T f(x)
g(x)

]

j

,
[
∇2yT h(x)

]
j
, j = 1, · · · ,m

}
are linearly independent

at (x, y, λ, p), then (2.44)gives

αp + β = 0 and γp + β = 0. (2.47)

Multiplying (2.42) by yT and then using (2.46) and (2.47), we have

βT
[
∇yT h(x) + ∇2yT h(x)p

]
= 0. (2.48)

Using constraints in (2.41), we have

(αp + β)T

[
∇2λ

T f(x)

g(x)
+ ∇

(
∇2λ

T f(x)

g(x)

)
p

]

+(γp + β)T
[
∇2yTh(x) + ∇

(
∇2yT h(x)

)
p
]

+(α − γ)
[
∇yTh(x) + (∇2yTh(x)p)

]

+
1

2
βT

[
∇

(
∇2λ

T f(x)

g(x)

)
p + ∇

(
∇2yT h(x)

)
p

]
= 0. (2.49)

Using (2.51), (2.53) gives

(α−γ)

[
∇yT h(x)+(∇2yT h(x)p)

]
+

1

2
βT

[
∇

(
∇2λ

T f(x)

g(x)

)
p+∇

(
∇2yT h(x)

)
p

]
= 0.

(2.50)
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Multiplying (2.54) by βT and using (2.52), we have

βT

[
∇

(
∇2λ

T f(x)

g(x)
+ ∇2yTh(x)

)
p

]
β = 0.

∇
[
∇2λ

T f(x)
g(x)

+ ∇2yTh(x)

]
p is positive or negative definite, it follows that

β = 0.

Using β = 0 in (2.54), we have

(α − γ)

[
∇yT h(x) + (∇2yT h(x)p)

]
= 0. (2.51)

Because of the assumption (ii), this gives

α = γ.

If α = 0 then γ = 0 and so from (2.42) and (2.43) and β = 0, it follows that

ρ = ω = 0. Therefore (α, β, γ, ρ, ω) = 0 which contradicts (2.50). Hence

α > 0 and from (2.55), γ > 0. Using γ > 0, α > 0 and β = 0, (2.51) yield

p = 0.

This gives

λ
T f(x)

g(x)
= λ

T f(x)

g(x)
− 1

2
pT∇2λ

T f(x)

g(x)
p.

Using γ > 0, β = 0 and p = 0, (2.42) gives

h(x) ≤ 0.
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Thus x is feasible for (MFP)λ and the object functions of (MFP)λ and

(MMFD)λ are equal. f and −g are second order invex with respect to η

and h is second order invex with respect to η, then by Theorem 2.9, x is an

efficient solution for (MFP)λ. 2

36



Chapter 3

Higher Order Duality in Nonlinear

Programming with Cone Constraints

3

3.1 Introduction

We consider the following nonlinear programming problem:

(P) Minimize f(x)

subject to g(x) ≥ 0,

where f : Rn → R and g : Rn → Rm are twice differentiable functions.

The first order Wolfe dual problem [81] is

(D1) Maximize f(u) − yTg(u)

subject to ∇f(u)−∇yTg(u) = 0,

y ≥ 0.

The Mangasarian second order dual [52] is

(D2) Maximize f(u) − yTg(u) − 1

2
pT∇2[f(u) − yT g(u)]p

subject to ∇[f(u)− yTg(u)] + ∇2[f(u) − yTg(u)]p = 0,

y ≥ 0.
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Several approaches to duality for (P) may be found in the literature. These

include the use of the first order dual [12, 16, 22, 23, 28, 33, 36, 78, 79] and

second order dual [24, 66] to establish duality theorems.

Higher order duality in nonlinear programming has been studied by many

researchers [52, 57, 58, 65, 85]. By introducing two differentiable functions

h : Rn × Rn → R and k : Rn × Rn → Rm, Mangasarian [52] formulated the

higher order dual

(HD1) Maximize f(u) + h(u, p) − yTg(u) − yT k(u, p)

subject to ∇ph(u, p) = ∇p(y
Tk(u, p)),

y ≥ 0,

where ∇ph(u, p) denotes the n × 1 gradient of h with respect to p and

∇p(y
Tk(u, p)) denotes the n × 1 gradient of yTk with respect to p.

Mangasarian, however, did not prove a weak duality theorem for (P) and

(HD1) and only gave a limited version of strong duality. In [63], Mond and

Weir gave the conditions for which duality holds between (P) and (HD1).

They also consider other higher order dual to (P):

(HD) Maximize f(u) + h(u, p) − pT∇ph(u, p)

subject to ∇ph(u, p) = ∇p(y
Tk(u, p)),

yTg(u) + yTk(u, p) − pT∇p(y
Tk(u, p)) ≤ 0,

y ≥ 0.
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Mond and Zhang [65] obtained duality results for various higher order

dual programming problems under higher order invexity assumptions. Later

on, under more general invexity-type assumptions, such as higher order type-

I, higher order pseudo-type-I or higher order quasi-type-I conditions, Mishra

and Rueda [57, 58] gave various duality results, which included Mangasarian

higher order duality [52] and Mond-Weir higher order duality [63] as special

cases. Chen [15] also discussed the duality theorems under the higher order

F -convexity (F -pseudoconvexity, F -quasiconvexity) for a pair of nondiffer-

entiable programs.

In this chapter, we present Mond-Weir and Wolfe type higher order pro-

gramming problems with cone constraints and prove weak, strong and con-

verse duality theorems under generalized convexity and invexity assumptions.

These results are the extension of higher order duality relations due to Zhang

[85]. And we formulate a Fritz John higher order programming problem by

using Fritz John [51] necessary optimality condition instead of Karush-Kuhn-

Tucker one [51] and establish weak, strong, and converse duality theorems.

Thus, the requirement of a constraint qualification can be eliminated.

3.2 Notations and Preliminaries

We consider the following multiobjective programming problem:

(KP) Minimize f(x)

subject to −g(x) ∈ Q, x ∈ C,
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where f : Rn → Rk, g : Rn → Rm and C ⊂ Rn, Q is a closed convex cone

with nonempty interior in Rm.

We shall denote the feasible set of (KP) by S = {x| − g(x) ∈ Q,x ∈ C}.

Definition 3.1 The polar cone K∗ of K is defined by

K∗ = {z ∈ Rk | xT z <= 0 for all x ∈ K}.

The following definitions are due to Preda [69] and Mond and Zhang [65].

Definition 3.2 Let C ⊆ Rn be open, f : C → R be a differentiable function.

(i) f is said to be higher order invex if there exists a function η : C×C → C,

for all x, u ∈ C,

f(x) − f(u) ≥ η(x, u)T∇ph(u, p) + h(u, p) − pT∇ph(u, p).

(ii) f is said to be higher order pseudo-invex, if there exists a function η :

C × C → C, for all x, u ∈ C,

η(x, u)T∇ph(u, p) ≤ 0 ⇒ f(x) − f(u) − h(u, p) + pT∇ph(u, p) ≥ 0.

Let F : Rn × Rn × Rn → R be a sublinear functional, the function f =

(f1, · · · , fk) : Rn → Rk a twice differentiable at u ∈ Rn, ρ = (ρ1, · · · ρk) ∈ Rk

and d(·, ·) a metric on Rn.

Definition 3.3 The function f is said to be (F, ρ)-convex at u, if for all

x ∈ S,

f(x) − f(u) >= F (x, u;∇f(u)) + ρd(x, u).
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This function f is said to be strongly F -convex, F -convex or weakly F -convex

at u according to ρ > 0, ρ = 0, or ρ < 0.

Definition 3.4 The function f is (F, ρ)-quasiconvex at u for all x ∈ S,

f(x) <= f(u) ⇒ F (x, u;∇f(u)) <= −ρd(x, u).

This function f is said to be strongly F -quasiconvex, F -quasiconvex or

weakly F -quasiconvex at u according to ρ > 0, ρ = 0, or ρ < 0.

Definition 3.5 The function f is said to be second order (F, ρ)-convex at u

and p, if for all x ∈ S

f(x) − f(u) +
1

2
pT∇2f(u)p >= F (x, u;∇f(u) + ∇2f(u)p) + ρd(x, u).

This function f is said to be strongly second order F -convex, second order

F -convex, ora weakly second order F -convex at u and p, according to ρ >

0, ρ = 0 or ρ < 0.

Definition 3.6 The function f is said to be second order (F, ρ)-quasiconvex

at u and p, if for all x ∈ S

f(x) <= f(u) − 1

2
pT∇2f(u)p ⇒ F (x, u;∇f(u) + ∇2f(u)p) <= −ρd(x, u).

This function f is said to be strongly second order F -quasiconvex, sec-

ond order F -quasiconvex, or weakly second order F -quasiconvex at u and p,

according to ρ > 0, ρ = 0 or ρ < 0.
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Definition 3.7 The function f is said to be second order (F, ρ)-pseudonvex

at u and p, if for all x ∈ S

F (x, u;∇f(u) + ∇2f(u)p) >= −ρd(x, u) ⇒ f(x) >= f(u) − 1

2
pT∇2f(u)p.

This function f is said to be strongly second order F -pseudonvex, sec-

ond order F -pseudonvex, or weakly second order F -pseudonvex at u and p,

according to ρ > 0, ρ = 0 or ρ < 0.

Note that second order (F, ρ)-convexity, second order (F, ρ)-quasiconvexity

and second order (F, ρ)-pseudonvexity imply, respectively, first order (F, ρ)-

convexity, (F, ρ)-quasiconvexity and (F, ρ)-pseudonvexity since the respective

inequalities must hold for p = 0.

3.3 Mond-Weir Type Higher Order Duality

In this section, we propose the following higher order multiobjective pro-

gramming problem,

(MCP) Minimize f(x)

subject to −g(x) ∈ C∗
2 , x ∈ C1,

and the Mond-Weir higher order multiobjective dual

(MMCD) Maximize f(u) + (λT h(u, p))e − pT∇p(λ
T h(u, p))e

subject to ∇p(λ
T h(u, p)) = ∇p(y

Tk(u, p)), (3.1)

g(u) + k(u, p) − pT∇pk(u, p) ∈ C∗
2 ,

y ∈ C2, λ > 0, λT e = 1,
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where

(1) f : Rn → Rl, g : Rn → Rm are differentiable functions,

(2) C1 and C2 are closed convex cones in Rn and Rm with nonempty

interiors, respectively,

(3) C∗
1 and C∗

2 are polar cones of C1 and C2, respectively,

(4) e = (1, · · · , 1)T is vector in Rl,

(5) h : Rn×Rn → Rl and k : Rn×Rn → Rm are differentiable functions;

∇p(hj(u, p)) denotes the n × 1 gradient of hj with respect to p, and

∇p(y
Tk(u, p)) denotes the n × 1 gradient of yTk with respect to p.

Now we establish the duality theorems for (MCP) and (MMCD).

Theorem 3.1 (Weak Duality) Let x be feasible solutions of (MCP) and

(u, y, λ, p) feasible for (MMCD). Assume that

(i) η(x, u)T (∇p(λ
T h(u, p))) >= 0

⇒ λT f(x) >= λT f(u) + (λT h(u, p)) − pT∇p(λ
T h(u, p)) (3.2)

−η(x, u)T (∇p(y
Tk(u, p))) >= 0

⇒ −yTg(x) > −yTg(u) − (yTk(u, p)) + pT∇p(y
Tk(u, p)); or (3.3)

(ii) fj(x) − fj(u) − hj(u, p) + pT∇phj(u, p)

>= F (x, u;∇phj(u, p)) + ρ1jd(x, u), j = 1, · · · , l and (3.4)

−gi(x) − gi(u) + ki(u, p) − pT∇pki(u, p)

>= F (x, u;∇pki(u, p)) + ρ2id(x, u), i = 1, · · · ,m (3.5)
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(iii) λT f(x) − yT g(x)− [λT f(u) − yTg(u)]

−[λT h(u, p) − yTk(u, p)] + pT [∇p(λ
T h(u, p)) −∇p(y

Tk(u, p))]

>= F (x, u;∇p(λ
T h(u, p)) −∇p(y

Tk(u, p))) + ρd(x, u) (3.6)

such that ρ >= 0; or

(iv) F (x, u;∇p(λ
Th(u, p))) >= −ρ1d(x, u)

⇒ λT f(x) − λT f(u) − (λT h(u, p)) + pT∇p(∇pλ
T h(u, p)) >= 0 and (3.7)

−[yTg(x)− yTg(u) − yTk(u, p) + pT∇p(y
Tk(u, p))] <= 0

⇒ F (x, u;−∇p(y
Tk(u, p))) <= −ρ0d(x, u) (3.8)

such that ρ0 + ρ1 >= 0

for all feasible (x, u, y, λ, p), then

f(x) � f(u) + (λT h(u, p))e − pT∇p(λ
T h(u, p))e.

Proof. (i) Assume to the contrary that

f(x) ≤ f(u) + (λT h(u, p))e − pT∇p(λ
T h(u, p))e.

Since λi > 0 (i = 1, · · · l),

λT f(x) < λT f(u) + (λT h(u, p)) − pT∇p(λ
Th(u, p)). (3.9)

This in view of (3.2),

η(x, u)T(∇p(λ
T h(u, p))) < 0. (3.10)

From the constraints of (MCP) and (MMCD),

yTg(x) >= yTg(u) + (yTk(u, p)) − pT∇p(y
T k(u, p)). (3.11)
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By condition (3.3),

η(x, u)T(∇p(y
Tk(u, p))) > 0. (3.12)

Combining (3.10) and (3.12), we have

η(x, u)T (∇p(λ
T h(u, p)) −∇p(y

Tk(u, p))) < 0,

which contradicts (3.1). Hence

f(x) � f(u) + (λT h(u, p))e − pT∇p(λ
T h(u, p))e.

(ii) Since x and (u, y, λ, p) are feasible for (MCP) and (MMCD), respec-

tively. Subtracting (3.11) from (3.9) and rearranging yields

λT f(x) − λT f(u) − (λTh(u, p)) + pT∇p(λ
T h(u, p))

−[yTg(x)− yTg(u) − (yTk(u, p)) + pT∇p(y
Tk(u, p))] < 0

By multiplying (3.4) by λj > 0, (3.5) by yi ∈ C2, then

λT f(x) − λT f(u) − (λTh(u, p)) + pT∇p(λ
T h(u, p))

>= F (x, u;∇p(λ
T h(u, p))) +

∑l
j=1 λjρ1jd(x, u) (3.13)

−yTg(x) + yT g(u) + yT k(u, p) − pT∇p(y
Tk(u, p))

>= F (x, u;−∇p(y
Tk(u, p))) +

∑m
i=1 yiρ2id(x, u) (3.14)
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Summing (3.13) and (3.14), and using sublinearity of F (x, u; ·), we have

0 >
[
λT f(x) − λT f(u) − λT h(u, p) + pT∇p(λ

T h(u, p))
]

−
[
yTg(x) − yTg(u)9yTk(u, p) + pT∇p(y

Tk(u, p))
]

>= F (x, u;∇pλ
T h(u, p) −∇p(y

Tk(u, p))) +
( l∑

j=1

λjρ1j +
m∑

i=1

yiρ2i

)
d(x, u),

which is a contradiction since(3.1), F (x, u; 0) = 0 and
(∑l

j=1 λjρ1j+
∑m

i=1 yiρ2i

)
>=

0.

(iii) Subtracting (3.11) from (3.9), then yield

λT f(x) − yTg(x) < λTf(u) − yT g(u) + λT h(u, p) − yTk(u, p)

−pT [∇p(λ
T h(u, p)) −∇p(y

Tk(u, p))].

From the assumption (iii),

0 > λT f(x) − yT g(x)− [λT f(u) − yTg(u)]− [λT h(u, p) − yTk(u, p)]

−pT [∇p(λ
T h(u, p)) −∇p(y

Tk(u, p))]

>= F (x, u;∇p(λ
T h(u, p)) −∇p(y

Tk(u, p))) + ρd(x, u)

such that ρ >= 0.

It follows that

F (x, u;∇p(λ
T h(u, p)) −∇p(y

Tk(u, p))) < −ρd(x, u). (3.15)

Hence F (x, u; 0) = 0 and (3.15) imply that ρd(x, u) < 0, which contradicts

ρ >= 0.

(iv) From λi > 0, we have (3.9), then the assumption of (3.7) gives
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F (x, u;∇p(λ
T h(u, p))) < −ρ1d(x, u). (3.16)

And (3.11) gives

F (x, u;−∇p(y
Tk(u, p))) <= −ρ0d(x, u). (3.17)

Hence (3.16), (3.17), the sublinearity of F and ρ1 + ρ0 >= 0 then imply

F (x, u;∇p(λ
T h(u, p)) −∇p(y

Tk(u, p))) < 0,

which is a contradiction since F (x, u; 0) = 0. 2

Lemma 3.1 [45] If x̄ is an efficient solution of (MCP), then there exist

α >= 0 and y ∈ C2 not both zero such that

[∇αTf(x) + βT∇g(x)]T (x − x) >= 0, for all x ∈ C1,

βTg(x) = 0.

Equivalently, there exist α ∈ K∗, β ∈ Q∗ and β1 ∈ C∗, (λ, β, β1) 6= 0 such

that

αT∇f(x) + βT∇g(x) − βT
1 I = 0,

βTg(x) = 0,

βT
1 x = 0.

Proof. (Sufficiency) Substituting x = 0 and x = 2x, we get

(αT∇f(x) + βT∇g(x))x = 0.
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Since αT∇f(x) + βT∇g(x) ∈ C∗, let β1 = αT∇f(x) + βT∇g(x).

αT∇f(x) + βT∇g(x) − βT
1 I = 0,

βTg(x) = 0,

βT
1 x = 0.

(Necessity) Since αT∇f(x) + βT∇g(x) = β1 ∈ C∗, we get

(αT∇f(x) + βT∇g(x))x >= 0, for all x ∈ C,

and

βT
1 x = (αT∇f(x) + βT∇g(x))x = 0.

Therefore,

(αT∇f(x) + βT∇g(x))(x − x) >= 0, for all x ∈ C,

βTg(x) = 0. 2

Theorem 3.2 (Strong Duality) Let x be an efficient solution for (MCP)

and let

h(x, 0) = 0, k(x, 0) = 0, ∇ph(x, 0) = ∇f(x), ∇pk(x, 0) = ∇g(x). (3.18)

Then there exist λ >= 0 and y ∈ C2 not both zero such that (x, y, λ, p = 0) is

feasible for (MCD) and the corresponding values of (MCP) and (MCD)

are equal. If for all feasible (x, u, y, λ, p), the assumptions of Theorem 3.1

are satisfied, then (x, y, λ, p = 0) is efficient for (MCD).
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Proof. Since x is an efficient solution of (MCP), then there exist λ >= 0

and y ∈ C2 such that

[∇λTf(x) + yT∇g(x)]T (x − x) >= 0, for all x ∈ C1 (3.19)

and

yTg(x) = 0. (3.20)

Since x ∈ C1, x ∈ C1 and C1 is a closed convex cone, we have x + x ∈ C1

and thus the inequality (3.19) implies

[∇λTf(x) + yT∇g(x)]Tx >= 0 for all x ∈ C1.

By letting x = 0 and x = 2x in (3.19), we obtain

[∇λTf(x) + yT∇g(x)] = 0.

And (3.20) implies yTg(x) >= 0, then

−g(x) ∈ C∗
2 .

Clearly (x, y, λ, p = 0) is feasible for (MCD) and corresponding values of

(MCP) and (MCD) are equal. If the assumptions of Theorem 3.1 are

satisfied, then (x, y, λ, p = 0) must be efficient solution for (MCD). 2

Theorem 3.3 (Converse Duality) Let (x, y, λ, p) be an efficient solution

of (MMCD). Let the condition of (3.18) be satisfied. Assume that

(i) the matrix

∇p

[
∇λ

T
f(x) + ∇(λ

T
h(x, p)) + ∇yTg(x) + ∇(yT k(x, p))

]
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is positive or negative definite and

(ii) the vectors

{
∇2

pλihi(x, p)
}

i=1,··· ,l and
{
∇2

pkj(x, p)
}

j=1,··· ,m

are linearly independent.

If the conditions of Theorem 3.1 hold, then x is an efficient solution for

(MCP).

Proof. Since (x, y, λ, p) is an efficient solution for (MMCD), by lemma

3.1, there exist α ∈ Rl, β ∈ C1, γ ∈ C2, δ ∈ C∗
2 and ξ ∈ Rl such that

−∇f(x)α − (αTe)[∇(λ
T
h(x, p)) −∇(∇p(λ

T
h(x, p)))p]

−[∇(∇p(λ
T
h(x, p))) + ∇(∇p(y

T k(x, p)))]β

−γT [∇g(x) + ∇k(x, p) − pT∇(∇pk(x, p))] = 0, (3.21)

−β∇pk(x, p) − δ = 0, (3.22)

((αT e)p − β)T∇2
p(λ

T
h(x, p)) + (γT p − βTy)T∇2

pk(x, p) = 0, (3.23)

−(αT e)[h(x, p) − pT∇ph(x, p)] − βT [∇ph(x, p)] − ξ = 0, (3.24)

βT [∇p(λ
T
h(x, p)) + ∇p(y

Tk(x, p))] = 0, (3.25)

γT [g(x) + k(x, p) − pT∇pk(x, p)] = 0, (3.26)

δTy = 0, (3.27)

ξT λ = 0, (3.28)

(α, β, γ, δ, ξ) ≤ 0, (3.29)

(α, β, γ, δ, ξ) 6= 0. (3.30)
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{∇2
pλ

T
i hi(x, p)}i=1,··· ,l and {∇2

pkj(x, p)}j=1,··· ,m are linearly independent, then

(3.23) gives

(αT e)p − β = 0 and γp − βy = 0. (3.31)

Multiplying (3.22) by yT and using (3.27)

−βT∇p(y
T k(x, p)) = 0. (3.32)

Using (3.31) in (3.21), we have

−αT [∇f(x) + ∇h(ax, p)]− γT [∇g(x) + ∇k(x, p)] = 0. (3.33)

Multiplying (3.33) by p and using (3.31) gives

−(αTe)pT [∇λTf(x) + ∇(λ
T
h(x, p))] + βT [∇yT g(x) + yT k(x, p)] = 0,

that is

βT [∇λ
T
f(x) + ∇(λ

T
h(x, p)) + ∇yTg(x) + ∇yT k(x, p)] = 0. (3.34)

Differentiating (3.32) with respect to p yields

βT∇p[∇λ
T
f(x) + ∇(λ

T
h(x, p)) + ∇yT g(x) + ∇yTk(x, p)] = 0. (3.35)

Multiplying (3.35) by β, we get

βT∇p[∇λ
T
f(x) + ∇(λ

T
h(x, p)) + ∇yTg(x) + ∇(yT k(x, p))]β = 0.

∇λ
T
f(x) + ∇(λ

T
h(x, p)) + ∇yTg(x) + ∇(yTk(x, p)) is positive or negative

definite,

β = 0. (3.36)
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Hence (3.31) yields

(αT e)p = 0 and γp = 0.

If α = 0 and γ = 0, then (3.22) and (3.24) gives ξ = 0 and δ = 0, which

contradicts (3.28). Hence

p = 0. (3.37)

Using (3.36) and (3.37), (3.26) yields

γT [g(x) + k(x, 0) − pT∇pk(x, 0)] = 0.

From (3.18), γTg(x) = 0 implies γT g(x) >= 0. Since γ ∈ C2 then −g(x) ∈ C∗
2 .

The corresponding value of (MCP) and (MMCD) are equal because p = 0

and (3.18). If the conditions of Theorem 3.1 are satisfied, then x is an efficient

solution for (MCP). 2

3.4 Wolfe Type Higher Order Duality

In this section, we propose the following Wolfe type higher order multi-

objective dual problem to the primal problem (MCP):

(MWCD) Maximize f(u) − yTg(u)e +
(
λT h(u, p) − yTk(u, p)

)
e

−pT
(
∇pλ

T h(u, p)) −∇py
Tk(u, p)

)
e

subject to ∇p(λ
T h(u, p)) = ∇p(y

Tk(u, p)), (3.38)

y ∈ C2, λ >= 0,
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Now we establish the duality theorems for (MCP) and (MWCD).

Theorem 3.4 ( Weak Duality) Let x be feasible solutions of (MCP) and

(u, y, λ, p) feasible for (MWCD) and λ > 0(λT e = 1). Assume that

(i) λT f(x) − λT f(u)

>= η(x, u)T∇p(λ
T h(u, p)) + λT h(u, p) − pT∇p(λ

T h(u, p)) (3.39)

yTg(x) − yTg(u)

<= η(x, u)T∇p(y
Tk(u, p)) + yTk(u, p) − pT∇p(∇py

Tk(u, p)); or (3.40)

(ii) η(x, u)T(∇p(λ
Th(u, p) − yT k(u, p)) >= 0

⇒ λT f(x) − yTg(x)

>= λT f(u) − yTg(u) + (λT h(u, p) − yT k(u, p))

−pT
[
∇p(λ

T h(u, p)) −∇p(y
Tk(u, p))

]
; or (3.41)

(iii) λT f(x) − yTg(x) −
(
λT f(u) − yTg(u)

)
−

(
λT h(u, p) − yTk(u, p)

)

+pT
[
∇p(λ

T h(u, p)) −∇p(y
Tk(u, p))

]

>= F (x, u;∇p(λ
T h(u, p)) −∇p(y

Tk(u, p))) (3.42)

such that ρ >= 0,

then

f(x) � f(u) − yT g(u)e +
(
λT h(u, p) − yTk(u, p)

)
e

−pT
(
∇pλ

T h(u, p) −∇py
Tk(u, p)

)
e.
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Proof. (i) Assume to the contrary that

f(x) ≤ f(u) − yT g(u)e +
(
λT h(u, p) − yTk(u, p)

)
e

−pT
(
∇pλ

T h(u, p)) −∇py
Tk(u, p)

)
e.

Since λi > 0 (i = 1, · · · l),

λT f(x) < λT f(u) − yTg(u) +
(
λT h(u, p) − yT k(u, p)

)

−pT
(
∇pλ

T h(u, p)) −∇py
Tk(u, p)

)
. (3.43)

By the conditions (3.39) and (3.40),

λT f(x) − yTg(x) − λT f(u) + yTg(u)

>= η(x, u)T
(
∇p(λ

T h(u, p)) −∇p(y
Tk(u, p))

)

+λT h(u, p) − yTk(u, p) − pT (∇p(λ
T h(u, p)) −∇p(y

Tk(u, p)).

From the constraints of (MCP) and (MWCD),

λT f(x) >= λT f(u) − yTg(u) + λT h(u, p) − yTk(u, p)

−pT
(
∇p(λ

T h(u, p)) −∇p(y
Tk(u, p))

)
,

which contradicts (3.43).

(ii) From (3.43), and the constraints of (MCP) and (MWCD),

λT f(x) − yTg(x) < λT f(u) − yTg(u) + λT h(u, p) − yTk(u, p)

−pT
(
∇p(λ

Th(u, p)) −∇p(y
Tk(u, p))

)
. (3.44)
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From (3.41), we obtain

η(x, u)T
(
∇p(λ

T h(u, p)) −∇yTk(u, p)
)

< 0,

which contradicts (3.43). Hence the result hold. (iii) By (3.44)

0 > λT f(x) − yTg(x) − λT f(u) + yTg(u) −
(
λT h(u, p) − yTk(u, p)

)

+pT
(
∇p(λ

T h(u, p)) −∇p(y
Tk(u, p))

)
.

>= F
(
x, u;∇p(λ

T h(u, p)) −∇p(y
Tk(u, p))

)
+ ρd(x, u)

such that ρ >= 0. It follows that

F
(
x, u;∇p(λ

T h(u, p)) −∇p(y
Tk(u, p))

)
< −ρd(x, u). (3.45)

Hence F (x, u; 0) = 0 and (3.45) imply that ρd(x, u) < 0, which contradicts

ρ >= 0.

Theorem 3.5 (Strong Duality) Let x be an efficient solution for (MCP)

and (3.18) is satisfied.

Then there exist λ >= 0 and y ∈ C2 not both zero such that (x, y, λ, p =

0) is feasible for (MWCD) and the corresponding values of (MCP) and

(MWCD) are equal. If for all feasible (x, u, y, λ, p), the assumptions of

Theorem 3.4 are satisfied, then (x, y, λ, p = 0) is efficient for (MWCD).

Proof. It follows on the lines of Theorem 3.2. 2

55



Theorem 3.6 (Converse Duality) Let (x, y, λ, p) be an efficient solution

of (MWCD) and let the condition of (3.18) be satisfied. Assume that

(i) the matrix

∇p

[
∇λ

T
f(x) + ∇(λ

T
h(x, p)) −∇yTg(x) −∇(yT k(x, p))

]

is positive or negative definite and

(ii) the vectors

{
∇2

pλihi(x, p)
}

i=1,··· ,l and
{
∇2

pkj(x, p)
}

j=1,··· ,m

are linearly independent.

If the conditions of Theorem 3.4 hold, then x is and efficient solution for

(MCP).

Proof. Since (x, y, λ, p) is an efficient solution for (MWCD), by lemma 3.1,

there exist α ∈ Rl, β ∈ Rn, γ ∈ C∗
2 and δ ∈ Rl such that

−∇f(x)α + (αT e)∇yTg(x) − (αT e)∇
(
λ

T
h(x, p) − yT k(x, p)

)

+((αTe)p + β)T
[
∇

(
∇pλ

T
h(x, p) −∇py

Tk(x, p)
)]

= 0, (3.46)

(αTe)(g(x) + k(x, p)) − ((αT e)p + β)T∇pk(x, p) − γ = 0, (3.47)

((αTe)p + β)T
(
∇2

p(λ
T
h(x, p)) −∇2

p(y
Tk(x, p))

)
= 0, (3.48)

−(αTe)h(x, p) + ((αT e)p + β)T∇ph(x, p) − δ = 0, (3.49)

βT
(
∇p(λ

T
h(x, p)) −∇p(y

Tk(x, p))
)

= 0, (3.50)
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γT y = 0, (3.51)

δTλ = 0, (3.52)

(α, β, γ, δ) ≥ 0, (3.53)

(α, β, γ, δ) 6= 0. (3.54)

{
∇2

pλihi(x, p)
}

i=1,··· ,l and
{
∇2

pkj(x, p)
}

j=1,··· ,m are linearly independent, then

(3.48) gives

(αT e)p + β = 0. (3.55)

Multiplying (3.47) by yT and using (3.51) and (3.55)

(αT e)yTg(x) + yTk(x, p) = 0. (3.56)

Using (3.55) in (3.46), we have

−∇f(x)α + (αTe)∇yT g(x) − (αT e)
(
∇(λ

T
h(x, p)) −∇(yT k(x, p))

)
= 0.

(3.57)

Multiplying (3.57) by p and using (3.55),

−(αTe)pT [∇λ
T
f(x)+(αT e)p∇yg(x)−(αTe)pT

(
∇λ

T
h(x, p) −∇yT k(x, p)

)
= 0,

that is

βT [∇λ
T
f(x) + ∇(λ

T
h(x, p)) −∇yTg(x) −∇yT k(x, p)] = 0. (3.58)

Differentiating (3.58) with respect to p yields

βT∇p[∇λ
T
f(x) + ∇(λ

T
h(x, p)) −∇yT g(x) −∇yTk(x, p)] = 0. (3.59)

57



Multiplying (3.59) by β, we obtain

βT∇p[∇λ
T
f(x) + ∇(λ

T
h(x, p)) −∇yTg(x) −∇yTk(x, p)]β = 0.

∇p[∇λ
T
f(x) +∇(λ

T
h(x, p))−∇yTg(x)−∇yT k(x, p)] is positive or negative

definite,

β = 0. (3.60)

Hence (3.55) yields

(αTe)p = 0.

If α = 0, then from (3.47) and (4.49), we get γ = 0 and δ = 0, which

contradict (3.54). Hence

p = 0. (3.61)

Using (3.61), (3.56) yields

(αT e)
(
yT g(x) + yTk(x, 0)

)
= 0.

From (3.18), yT g(x) = 0 implies yT g(x) >= 0. Since y ∈ C2 then −g(x) ∈ C∗
2 .

Since p = 0 and (3.18), the corresponding value of (MCP) and (MWCD)

are equal. If the conditions of Theorem 3.4 are satisfied, then x is an efficient

solution of (MCP). 2

Remark 3.1 If C1 = Rn and C2 = Rm
+ ,

(i) h(u, p) = pT∇pf(u), k(u, p) = pT∇g(u), then our higher order dual

programs become first order dual programs [81], and

(ii) h(u, p) = pT∇pf(u) + 1
2
pT∇2f(u)p, k(u, p) = pT∇g(u) + 1

2
pT∇2g(u)p,

then we obtain second order dual programs in [52].

58



3.5 Fritz John Higher Order Duality with Cone

Constraints

In this section, we consider the Fritz John higher order programming prob-

lem and establish weak, strong and converse duality theorems using Fritz

John [51] necessary optimality conditions instead of Karush Kuhn-Tucker

[51].

We propose the following nonlinear programming problem,

(FCP) Minimize f(x)

subject to g(x) ∈ C∗
2 , x ∈ C1,

and its Fritz John higher order dual

(FCD) Maximize f(u) + h(u, p) − pT∇ph(u, p)

subject to γ∇ph(u, p) + ∇p(y
Tk(u, p)) = 0, (3.62)

−(g(u) + k(u, p) − pT∇pk(u, p)) ∈ C∗
2 ,

y ∈ C2, γ ∈ R, (γ, y) 6= 0,

where

(1) f : Rn → R and g : Rn → Rmare differentiable functions,

(2) C1 and C2 are closed convex cones in Rn and Rm with nonempty

interiors, respectively,

(3) C∗
1 and C∗

2 are polar cones of C1 and C2, respectively,

(4) h : Rn × Rn → R and k : Rn × Rn → R are differentiable functions;
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∇p(hj(u, p)) denotes the n × 1 gradient of hj with respect to p, and

∇p(y
Tk(u, p)) denotes the n × 1 gradient of yTk with respect to p,

respectively.

Now we establish the duality theorems for (FCP) and (FCD).

Theorem 3.7 (Weak Duality) Let x be feasible solutions of (FCP) and

(u, y, λ, p) feasible for (FCD). Assume that f be an higher order pseudo-

invex and yTg be an strictly higher order quasi-invex with respect to same η

for all feasible (γ, x, u, y, λ, p), then

f(x) ≥ f(u) + yTg(u) +
(
λT h(u, p) + yTk(u, p)

)

−pT
(
∇pλ

T h(u, p)) + ∇py
Tk(u, p)

)
.

Proof. Suppose that

f(x) < f(u) + h(u, p) − pT∇ph(u, p). (3.63)

This in view of higher order pseudo-invexity of f(·) yields

η(x, u)T∇ph(u, p) < 0.

Thus

η(x, u)Tγ∇ph(u, p) <= 0. (3.64)

From the constraints of (FCP) and (FCD),

yTg(x) <= yTg(u) + yTk(u, p) − pT∇p(y
T k(u, p)).
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By strictly higher order quasi-invex of yTg assumption,

η(x, u)T∇p(y
Tk(u, p)) < 0. (3.65)

Combining (3.64) and (3.65), we have

η(x, u)T [γ∇ph(u, p) + ∇p(y
Tk(u, p))] < 0

which contradicts (3.62). Hence

f(x) ≥ f(u) + h(u, p) − pT∇ph(u, p).

That is

inf(FCP) ≥ sup(FCD).

2

Theorem 3.8 (Strong Duality) If x is an optimal solution for (FCP)

and let

h(x, 0) = 0, k(x, 0) = 0, ∇ph(x, 0) = ∇f(x), ∇pk(x, 0) = ∇g(x). (3.66)

Then there exist γ ∈ R+ and y ∈ C2 such that (γ, x, y, p = 0) is feasible for

(FCD) and the corresponding values of (FCP) and (FCD) are equal. If

the assumptions of Theorem 3.7 is satisfied, then (γ, x, y, p = 0) is optimal

solution for (FCD).

Proof. Since x is an optimal solution for (FCP), by lemma 3.1, there exist

γ ∈ R+ and y ∈ C2 with (γ, y) 6= 0 such that

yT g(x) = 0
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and

[γ∇f(x) + ∇yTg(x)]T (x − x) >= 0 for all x ∈ C1. (3.67)

Since x ∈ C1 and C1 is a closed convex cone, we have x + x ∈ C1 and thus

the inequality (3.67) implies

[γ∇f(x) + yTg(x)]Tx >= 0. (3.68)

By letting x = 0 and x = 2x in (3.68), we obtain

[γ∇f(x) + yTg(x)] = 0.

By (3.66),

γ∇ph(x, p) + ∇p(y
Tk(x, p)) = 0.

From yTg(x) = 0 implies yTg(x) <= 0,

g(x) ∈ C∗
2

Thus, (γ, x, y, p = 0) is feasible for (FCD), and corresponding values of

(FCP) and (FCD) are equal. If assumptions of Theorem 3.7 are satisfied,

then (γ, x, y, p = 0) must be an optimal solution for (FCD). 2

Theorem 3.9 (Converse Duality) Let (x, y, λ, p) be an optimal solution

of (FCD). Let the condition of (3.66) is satisfied. Assume that

(i) the matrix

γ∇p(∇h(x, p) + ∇yTk(x, p)) −∇2
p(γh(x, p) + yTk(x, p))
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is positive or negative definite and

(ii) the vectors

{∇2
pλ

T

i hi(x, p)}i=1,··· ,l and {∇2
py

Tkj(x, p)}i=1,··· ,m

are linearly independent.

If the conditions of Theorem 3.7 hold, then x is an optimal solution for

(FCP).

Proof. Since (x, y, λ, p) is an optimal solution for (FCD), by lemma 3.1,

there exist α ∈ R+, β ∈ Rn
+, ρ ∈ C2, δ ∈ C∗

2 and ω ∈ R+ such that

−α
[
∇f(x) + ∇h(x, p) − pT∇(∇ph(x, p))

]

+βT
[
γ∇ph(x, p) + ∇p9y

Tk(x, p)
]

−ρ
[
∇g(x) + ∇k(x, p) − pT∇(∇pk(x, p))

]
= 0, (3.69)

βT (∇pk(x, p)) − δ = 0, (3.70)

(αp + γβ)T∇2
ph(x, p) + (ρp) + βTy∇2

pk(x, p) = 0, (3.71)

βT [∇ph(x, p)]− ω = 0, (3.72)

βT
[
γ∇ph(x, p) + ∇py

T k(x, p)
]

= 0, (3.73)

−ρ
[
g(x) + k(x, p) − pn

pk(x, p)
]

= 0, (3.74)

δTy = 0, (3.75)

ωγ = 0, (3.76)

(α, β, ρ, δ, ω) 6= 0. (3.77)
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Since ∇2
ph(x, p), ∇2

pk(x, p) are linearly independent, then (3.71) gives

αp + γβ = 0 and ρp + βTy = 0. (3.78)

Multiplying (3.70) by yT and then using (3.75),

βT
[
∇p(y

Tk(x, p))
]

= 0. (3.79)

Using (3.78) in (3.69), we have

−α [∇f(x) + ∇h(x, p)]− ρT [g(x) + ∇k(x, p)] = 0. (3.80)

Multiplying (3.80) by p and using (3.78), we obtain

βT
[
γ∇f(x) + γ∇h(x, p) + ∇yTg(x) + ∇yTk(x, p)

]
= 0,

that is

βT [γ∇f(x) + γ∇h(x, p) − γ∇ph(x, p)

−∇py
Tk(x, p) + ∇yTg(x) + ∇yTk(x, p)

]
= 0. (3.81)

Differentiation (3.81) with respect to p yields

βT
[
γ∇p(∇h(x, p) + ∇yTk(x, p)) −∇2

p(γh(x, p) + yTk(x, p))
]

= 0. (3.82)

Multiplying (3.82) by β, we get

βT
[
γ∇p(∇h(x, p) + ∇yTk(x, p)) −∇2

p(γh(x, p) + yTk(x, p))
]
β = 0.

Assuming that condition (i), it follows that

β = 0. (3.83)
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Hence (3.78) yields

αp = 0 and ρp = 0.

If α = 0 and ρ = 0 then (3.70) and (3.72) give δ = 0 and ω = 0. Hence

(α, β, ρ, δ, ω) = 0, which contradicts (3.77). Hence

p = 0. (3.84)

Using (3.83) and (3.74) yield

ρ
[
g(x) + k(x, 0) − pT∇pk(x, 0)

]
= 0.

ρg(x) = 0 implies ρg(x) <= 0. Since ρ ∈ C2, then

g(x) ∈ C∗
2 .

Hence x is feasible for (FCP) and since p = 0 and h(x, 0) = 0, the objective

values of (FCP) and (FCD) are equal. If assumptions of Theorem 3,7 hold,

then x is an optimal solution of (FCP). 2

Remark 3.2 If C1 = Rn, C2 = Rm
+ , h(u, p)pT∇pf(u) + 1

2
pT∇2f(u)p and

k(u, p) = pT∇g(u) + 1
2
pT∇2g(u)p, then we get Fritz John second order dual

programs studied by Husain et al. [32].
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Chapter 4

Second Order Non-Differentiable Symmetric

Duality for Multiobjective Programming

Programs with Cone Constraints

4

4.1 Introduction

In the literature of mathematical programming there are a large number

of papers discussing duality theory for a problem involving the square root of

a positive semidefinite quadratic function,
√

xTBx. The square root of a pos-

itive semidefinite quadratic form is one of the few cases of a non-differentiable

function for which one can write down the sub or quasi differentials explic-

itly. Mond and Schechter [60] replace
√

xTBx by a somewhat more general

function, namely the support function of a compact convex set, for which the

subdifferential may be simply expressed.

Suneja et al. [74] formulated a pair of multiobjective symmetric dual

programs of Wolfe type over arbitrary cones in which the objective function

was optimized with respect to an arbitrary closed convex cone by assuming

the involved function to be cone-convex. Recently, Khurana [49] introduced

cone-pseudo-invex and strongly cone-pseudo-invex functions and established

duality theorems for a pair of Mond-Weir type multiobjective symmetric

dual over arbitrary cones. Very recently, Kim and Kim [45] studied two
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pairs of non-differentiable multiobjective symmetric dual problems with cone

constraints over arbitrary closed convex cones, which are Wolfe type and

Mond-Weir type.

In the second order case, Mishra [54] formulated a pair of multiobjective

second order symmetric dual nonlinear programming problems under second

order pseudo-invexity assumptions on the involved functions over arbitrary

cones and established duality results. Mishra and Lai [56] introduced the

concept of cone-second order pseudo-invex and strongly cone-second order

pseudo-invex functions and formulated a pair of Mond-Weir type multiob-

jective second order symmetric dual programs over arbitrary cones.

In this chapter, we formulate Mond-Weir and Wolfe type non-differentiable

multiobjective second order symmetric dual problems with cone constraints

over arbitrary closed convex cones. Subsequently, weak, strong, and con-

verse duality theorems for weakly efficient solutions are establish under the

assumptions of second order pseudo-invex functions. And we introduce some

special cases of our results.

4.2 Notations and Preliminaries

Now we will give some definitions and preliminary results needed in next

sections.

Definition 4.1 A nonempty set K in Rk is said to be a cone with vertex

zero if x ∈ K implies that λx ∈ K for all λ >= 0. If, in addition, K is convex,

then K is called a convex cone.
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Definition 4.2 A feasible point x is a weakly efficient solution of (KP ) if

there exists no other x ∈ X such that f(x) − f(x) ∈ intK.

Definition 4.3 [54] Let f : C1 ×C2 → R be a twice differentiable function.

(i) f is said to be second order pseudo-invex in the first variable at u ∈ C1

for fixed v ∈ C2 if there exists a function η1 : C1 × C1 → C1 such that

for r ∈ C1,

ηT
1 (x, u)[∇xf(u, v) + ∇xxf(u, v)r] >= 0

⇒ f(x, v)− f(u, v) +
1

2
rT∇xxf(u, v)r >= 0.

(ii) f is said to be second order pseudo-invex in the second variable at

v ∈ C2 for fixed u ∈ C1 if there exists a function η2 : C2 × C2 → C2

such that for p ∈ C2,

ηT
2 (y, v)[∇yf(u, v) + ∇yyf(u, v)p] >= 0

⇒ f(u, y)− f(u, v) +
1

2
pT∇yyf(u, v)p >= 0,

for all x, u ∈ C1 and y, v ∈ C2.

f is second order pseudo-incave at u ∈ C1 with respect to r ∈ C1, if −f is

second order pseudo-invex at u ∈ C1 with respect to r ∈ C1.
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Definition 4.4 [60] Let B be a compact convex set in Rn. The support

function s(x|B) of B is defined by

s(x|B) := max{xTy : y ∈ B}.

The support function s(x|B), being convex and everywhere finite, has a sub-

differential, that is, there exists z such that

s(y|B) ≥ s(x|B) + zT (y − x) for all y ∈ B.

Equivalently,

zT x = s(x|B).

The subdifferential of s(x|B) is given by

∂s(x|B) := {z ∈ B : zT x = s(x|B)}.

For any set S ⊂ Rn, the normal cone to S at a point x ∈ S is defined by

NS(x) := {y ∈ Rn : yT (z − x) ≤ 0 for all z ∈ S}.

It is readily verified that for a compact convex set B, y is in NB(x) if and

only if s(y|B) = xTy, or equivalently, x is in the subdifferential of s at y.
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4.3 Mond-Weir Type Symmetric Duality

We consider the following pair of second order Mond-Weir type non-

differentiable multiobjective programming problem:

(NMP) Minimize K(x, y, λ,w, p)

= f(x, y) + s(x|D) − (yTw)e − 1

2
[pT∇yy(λ

T f)(x, y)p]e

subject to −[∇y(λ
T f)(x, y)− w + ∇yy(λ

T f)(x, y)p ∈ C∗
2 , (4.1)

yT [∇y(λ
T f)(x, y) −w + ∇yy(λ

T f)(x, y)p] >= 0, (4.2)

x ∈ C1, w ∈ Ei, λ ∈ K∗, λT e = 1, e ∈ intK,

(NMD) Maximize G(u, v, λ, z, r)

= f(u, v) − s(v|E) + (uTz)e− 1

2
[rT∇xx(λ

T f)(u, v)r]e

subject to ∇x(λ
T f)(u, v) + z + ∇xx(λ

T f)(u, v)r ∈ C∗
1 , (4.3)

uT [∇x(λ
T f)(u, v) + z + ∇xx(λ

T f)(u, v)r] <= 0, (4.4)

v ∈ C2, z ∈ Di, λ ∈ K∗, λT e = 1, e ∈ intK,

where

(1) f : Rn × Rm → Rk is a three times differentiable function,

(2) C1 and C2 are closed convex cones in Rn and Rm with nonempty

interiors, respectively,

(3) C∗
1 and C∗

2 are positive polar cones of C1 and C2, respectively,

(4) K is a closed convex cone in Rk such that intK 6= ∅ and Rk
+ ⊂ K,
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(5) r, z are vectors in Rn, p,w are vectors in Rm,

(6) e = (1, · · · , 1)T is vector in Rk,

(7) Di and Ei(i = 1, · · · , k) are compact convex sets in Rn and Rm,

respectively.

Let ∇x(λ
T f)(x, y) and ∇y(λ

T f)(x, y) are gradients of (λT f)(x, y) with re-

spect to x and y. Similarly, ∇xx(λ
T f)(x, y) and ∇yy(λ

T f)(x, y) are the Hes-

sian matrices of (λT f)(x, y) with respect to x and y, respectively.

Now we establish the symmetric duality theorems for (NMP) and (NMD).

Theorem 4.1 (Weak Duality) Let (x, y, λ,w, p) and (u, v, λ, z, r) be fea-

sible solutions of (NMP) and (NMD), respectively. Assume that,

(i) (λT f)(·, y) + (·)Tz is second order pseudo-invex in the first variable for

fixed y with respect to η1,

(ii) −(λTf)(x, ·)+ (·)Tw is second order pseudo-invex in the second variable

for fixed x with respect to η2,

(iii) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2, then

G(u, v, λ, z, r)− K(x, y, λ,w, p) /∈ intK.

Proof. From (4.3) and η1(x, u) + u ∈ C1,

[η1(x, u) + u]T
[
∇x(λ

T f)(u, v) + z + ∇xx(λ
T f)(u, v)r

]
>= 0.

From (4.4), it yields

η1(x, u)T
[
∇x(λ

T f)(u, v) + z + ∇xx(λ
T f)(u, v)r

]
>= 0.
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By the second order pseudo-invexity of (λT f)(·, y) + (·)T z, we have

(λT f)(x, v) + xT z − (λT f)(u, v) − uT z +
1

2
rT∇xx(λ

T f)(u, v)r >= 0. (4.5)

From (4.1) and η2(v, y) + y ∈ C2,

−[η2(v, y) + y]T [∇y(λ
T f)(x, y)− w + ∇yy(λ

T f)(x, y)p] >= 0.

From (4.2), it yields

η2(v, y)T [∇y(λ
T f)(x, y) −w + ∇yy(λ

T f)(x, y)p] <= 0.

By the second order pseudo-invexity of −(λT f)(x, ·) + (·)T w, we obtain

(λT f)(x, v)− vTw − (λT f)(x, y) + yT w +
1

2
pT∇yy(λ

T f)(x, y)p <= 0. (4.6)

From (4.5) and (4.6), we get

(λT f)(u, v)− xTz + uTz − 1

2
rT∇xx(λ

T f)(u, v)r

<= (λT f)(x, y) + vTw − yTw − 1

2
pT∇yy(λ

T f)(x, y)p. (4.7)

Using the fact that xTz <= λT s(x|Di) and vTw <= s(v|Ei) for i = 1, · · · , k, we

get

xTz <= λT s(x|D) and vTw <= λT s(v|E).

Finally, using these, we obtain

(λT f)(x, y) + λT s(x|D) − yT w − 1

2
pT∇yy(λ

T f)(x, y)p

>= (λT f)(u, v)− λT s(v|E) + uTz − 1

2
rT∇xx(λ

T f)(u, v)r. (4.8)
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But suppose that G(u, v, λ, z, r) − K(x, y, λ,w, p) ∈ intK. Since λ ∈ K∗, it

yields

[(λTf)(u, v)− λT s(v|E) + uT z − 1

2
rT∇xx(λ

T f)(u, v)r]

−[(λTf)(x, y) + λT s(x|D) − yTw − 1

2
pT∇yy(λ

T f)(x, y)p] > 0.

which is a contradiction to the inequality (4.8). 2

In order to prove the strong duality theorem, we need the necessary op-

timality conditions for a point to be a weak minimum of (KP) in Lemma

3.1.

Theorem 4.2 (Strong Duality) Let (x, y, λ,w, p) be a K-weakly efficient

solution for (NMP). Fix λ = λ in (NMD). Assume that

(i) ∇yy(λ
T
f) is positive definite and pT [∇y(λ

T
f) − w] >= 0 or

∇yyλ
T
f is negative definite and pT [∇y(λ

T
f) − w] <= 0,

(ii) ∇yλ
T
f − w + ∇yy(λ

T
f)p 6= 0,

(iii) the set {∇yf1,∇yf2, · · · , w} is linearly independent where f = f(x, y).

Then there exists z ∈ Di(i = 1, · · · , k) such that (x, y, λ, z, r = 0) is a feasible

solution for (NMD) and objective values of (NMP) and (NMD) are equal.

Furthermore, under the assumptions of Theorem 4.1, (x, y, λ, z, r = 0) is a

K-weakly efficient solution for (NMD).
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Proof. Since (x, y, λ,w, p) is a K-weakly efficient solution for (NMP), by

Lemma 3.1, there exist α ∈ K∗, β ∈ C2, µ ∈ βR+, δ ∈ C∗
1 , and ρ ∈ K such

that

αT [∇xf + ze] + (β − µy)T∇yx(λ
T f)

+(β − µy − 1

2
(αT e)p)T∇x(∇yy(λ

T f))p − δ = 0, (4.9)

(α − µλ)T∇yf − (αT e− µ)T w + (β − µy − µp)T∇yy(λ
T
f)

+(β − µy − 1

2
(αT e)p)T∇y(∇yy(λ

T
f)p) = 0, (4.10)

−1

2
(αT e)pT∇yyfp + (β − µy)T [∇yf + ∇yyfp]− ρ = 0, (4.11)

(αT e)y − (β − µy) ∈ NEi(w), (4.12)

(β − αT ep − µy)T∇yy(λ
T
f) = 0, (4.13)

βT [∇y(λ
T
f) − w + ∇yy(λ

T
f)p] = 0, (4.14)

µyT [∇y(λ
T
f) −w + ∇yy(λ

T
f)p] = 0, (4.15)

δTx = 0, (4.16)

ρT λ = 0, (4.17)

z ∈ Di, zTx = s(x|Di), i = 1, · · · , k, (4.18)

(α, β, µ, δ, ρ) 6= 0. (4.19)

As ∇yy(λ
T
f) is positive or negative definite, (4.13) yields

β = (αT e)p + µy. (4.20)
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If α = 0, then the above equality becomes

β = µy. (4.21)

From (4.10), we obtain

µ[∇y(λ
T
f) − w + pT∇yy(λ

T
f)] = 0. (4.22)

By the assumption (ii), we have µ = 0. Also, from (4.9), (4.11) and (4.21),

we get δ = 0, ρ = 0 and β = 0, respectively. This contradicts (4.19). So,

α > 0. From (4.14) and (4.15), we obtain

(β − µy)T [∇y(λ
T
f) − w + ∇yy(λ

T
f)p] = 0.

Using (4.20), it follows that

pT [∇y(λ
T
f) −w] + pT∇yy(λ

T
f)p = 0. (4.23)

We now prove that p = 0. Otherwise, the assumption (i) implies that

pT [∇y(λ
T
f) −w] + pT∇yy(λ

T
f)p 6= 0,

which contradicts (4.23). Hence p = 0. From (4.20), we have

β = µy. (4.24)

Using (4.24) and p = 0 in (4.10), we obtain

(α − µλ)T∇yf − (αTe − µ)w = 0.
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By the assumption (iii), we get

α = µλ and αT e = µ. (4.25)

Therefore, µ > 0, it follows that

∇x(λ
T
f) + z ∈ C∗

1 .

Multiplying (4.26) by x and using equation (4.16), we get

xT [∇x(λ
T
f) + z] = 0.

Taking z := z ∈ Di(i = 1, · · · , k), we find that (x, y, λ, z, r = 0) is feasible

for (NMD). Moreover from (12), we get y ∈ NEi(w) for i = 1, · · · , k, so that

yTw = s(y|Ei)fori = 1, · · · , ki.e., (yTw)e = s(y|E).

Consequently, using (4.18),

K(x, y, λ,w, p = 0) = f(x, y) + s(x|D) − (yTw)e

= f(x, y) − s(y|E) + (zTx)e

= G(x, y, λ, z, r = 0).

Thus objective values of (NMP) and (NMD) are equal. We will now show

that (x, y, λ, z, r = 0) is a K-weakly efficient solution for (NMD), otherwise

there exists a feasible solution (u, v, λ, z, r = 0) for (NMD) such that

G(u, v, λ, z, r = 0) − G(x, y, λ, z, r = 0) ∈ intK
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Since objective values of (NMP) and (NMD) are equal.

G(u, v, λ, z, r = 0) − K(x, y, λ,w, p = 0) ∈ intK,

which contradits weak duality theorem. Hence the result hold. 2

Theorem 4.3 (Converse Duality) Let (u, v, λ, z, r) be a K-weakly efficient

solution for (NMD). Fix λ = λ in (NMP). Assume that

(i) ∇yy(λ
T
f) is positive definite and pT [∇y(λ

T
f) − w] >= 0 or

∇yyλ
T
f is negative definite and pT [∇y(λ

T
f) − w] <= 0,

(ii) ∇yλ
T
f − w + ∇yy(λ

T
f)p 6= 0,

(iii) the set {∇yf1,∇yf2, · · · , w} is linearly independent where f = f(x, y).

Then there exists w ∈ Ei(i = 1, · · · , k) such that (u, v, λ,w, p = 0) is a fea-

sible solution for (NMP) and objective values of (NMP) and (NMD) are

equal. Furthermore, under the assumptions of Theorem 4.1, (u, v, λ,w, p = 0)

is a weakly efficient solution for (NMP).

Proof. It follows on the lines of Theorem 4.2. 2
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4.4 Wolfe Type Symmetric Duality

We consider the following pair of second order Wolfe type non-differentiable

multiobjective programming problem:

(NWP) Minimize K(x, y, λ,w, p)

= f(x, y) + s(x|D) − (yT∇y(λ
T f)(x, y))e

−(yT∇yy(λ
T f)(x, y)p)e− 1

2
[pT∇yy(λ

T f)(x, y)p]e

subject to −[∇y(λ
T f)(x, y) − w + ∇yy(λ

T f)(x, y)p ∈ C∗
2 ,(4.26)

x ∈ C1, w ∈ Ei, λ ∈ K∗, λT e = 1, e ∈ intK,

(NWD) Maximize G(u, v, λ, z, r)

= f(u, v)− s(v|E)− (uT∇x(λ
T f)(u, v))e

−(uT∇xx(λ
T f)(u, v)r)e− 1

2
[rT∇xx(λ

T f)(u, v)r]e

subject to ∇x(λ
T f)(u, v) + z + ∇xx(λ

T f)(u, v)r ∈ C∗
1 , (4.27)

v ∈ C2, z ∈ Di, λ ∈ K∗, λT e = 1, e ∈ intK,

where

(1) f : Rn × Rm → Rk is a three times differentiable function,

(2) C1 and C2 are closed convex cones in Rn and Rm with nonempty

interiors, respectively,

(3) C∗
1 and C∗

2 are positive polar cones of C1 and C2, respectively,
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(4) K is a closed convex cone in Rk such that intK 6= ∅ and Rk
+ ⊂ K,

(5) r, z are vectors in Rn, p,w are vectors in Rm,

(6) e = (1, · · · , 1)T is vector in Rk,

(7) Di and Ei(i = 1, · · · , k) are compact convex sets in Rn and Rm,

respectively.

Let ∇x(λ
T f)(x, y) and ∇y(λ

T f)(x, y) are gradients of (λT f)(x, y) with

respect to x and y. Similarly, ∇xx(λ
T f)(x, y) and ∇yy(λ

T f)(x, y) are the

Hessian matrices of (λT f)(x, y) with respect to x and y, respectively.

Now we establish the symmetric duality theorems for (NWP) and (NWD).

Theorem 4.4 (Weak Duality) Let (x, y, λ,w, p) and (u, v, λ, z, r) be fea-

sible solutions of (NWP) and (NWD), respectively. Assume that,

(i) (λT f)(·, y) + (·)T z is second order invex in the first variable for fixed y

with

respect to η1,

(ii) −(λTf)(x, ·)+(·)T w is second order invex in the second variable for fixed

x with respect to η2,

(iii) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2.

Then

G(u, v, λ, z, r)− K(x, y, λ,w, p) /∈ intK.
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Proof. Since (λT f)(·, y) + (·)T z is second order invex with respect to η1 for

fixed y

(λT f)(x, v) + xTz − (λT f)(u, v)− uTz

>= η1(x, u)T [∇x(λ
T f)(u, v) + z + ∇xx(λ

T f)(u, v)r]− 1

2
rT∇xx(λ

T f)(u, v)r

From (4.27) and η1(x, u) + u ∈ C1,

[η1(x, u) + u]T [∇x(λ
T f)(u, v) + z + ∇xx(λTf)(u, v)r] >= 0.

Hence

(λT f)(x, v) + xTz − (λT f)(u, v)− uTz +
1

2
rT∇xx(λ

T f)(u, v)r

>= −uT [∇x(λ
T f)(u, v) + z + ∇xx(λ

T f)(u, v)r]. (4.28)

Since −(λT f)(x, ·) + (·)Tw is second order invex with respect to η2 for fixed

x,

−(λT f)(x, v) + vTw + (λT f)(x, y)− yTw

>= −η2(v, y)T [∇y(λ
T f)(x, y) −w + ∇yy(λ

T f)(x, y)p] +
1

2
pT∇yy(λ

T f)(x, y)p

From (4.26) and η2(v, y) + y ∈ C2,

−[η2 + y]T [∇y(λ
T f)(x, y) − w + ∇yy(λ

T f)(x, y)p] >= 0.
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So,

−(λT f)(x, v) + vTw + (λT f)(x, y) − yT w − 1

2
pT∇yy(λ

T f)(x, y)p

>= yT [∇y(λ
T f)(x, y)− w + ∇yy(λ

T f)(x, y)p] (4.29)

Therefore, by (4.28) and (4.29),

(λT f)(x, y) + xTz − yT [∇y(λ
T f)(x, y)

+∇yy(λ
T f)(x, y)p] − 1

2
pT∇yy(λ

T f)(x, y)p

>= (λT f)(u, v)− vTw − uT [∇x(λ
T f)(u, v)

+∇xx(λ
T f)(u, v)r]− 1

2
rT∇xx(λ

T f)(u, v)r

Using the fact that xT z <= s(x|Di) and vTw <= s(x|Ei) for i = 1, · · · , k, we

get

xT z <= λT s(x|D)andvTw <= λT s(v|E).

Hence,

(λT f)(x, y) + λT s(x|D) − yT [∇y(λ
T f)(x, y)

+∇yy(λ
T f)(x, y)p] − 1

2
pT∇yy(λ

T f)(x, y)p

>= (λT f)(u, v)− λT s(v|E)− uT [∇x(λ
T f)(u, v)

+∇xx(λ
T f)(u, v)r]− 1

2
rT∇xx(λ

T f)(u, v)r (4.30)
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But suppose that G(u, v, λ, z, r) − K(x, y, λ,w, p) ∈ intK. Since λ ∈ K∗, it

yields

[
(λT f)(u, v)− λT s(v|E)− uT [∇x(λ

T f)(u, v) + ∇xx(λ
T f)(u, v)r]

−1

2
rT∇xx(λ

T f)(u, v)r

]

−
[
(λT f)(x, y) − λT s(x|D) − yT [∇y(λ

T f)(x, y) + ∇yy(λ
T f)(x, y)p]

−1

2
pT∇yy(λ

T f)(x, y)p

]
> 0

which is a contradiction to the inequality (4.30). 2

In order to prove the strong duality theorem, we now obtain necessary

optimality conditions for a point to be a weak minimum of (KP) in Lemma

3.1.

Theorem 4.5 (Strong Duality) Let (x, y, λ,w, p) be a K-weakly efficient

solution for (NWP ). Fix λ = λ in (NWD). Assume that

(i) ∇yy(λ
T
f) is positive definite and pT [∇y(λ

T
f) − w] >= 0 or

∇yyλ
T
f is negative definite and pT [∇y(λ

T
f) − w] <= 0,

(ii) ∇yλ
T
f − w + ∇yy(λ

T
f)p 6= 0,

(iii) the set {∇yf1,∇yf2, · · · , w} is linearly independent where f = f(x, y).

Then there exists z ∈ Di(i = 1, · · · , k) such that (x, y, λ, z, r = 0) is a feasible

solution for (NWD) and objective values of (NWP) and (NWD) are equal.
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Furthermore, under the assumptions of Theorem 4.4, (x, y, λ, z, r = 0) is a

K-weakly efficient solution for (NWD).

Proof. Since (x, y, λ,w, p) is a K-weakly efficient solution for (NWP ),

by Lemma 1, there exist α ∈ K∗, β ∈ C2, µ ∈ βR+, δ ∈ C∗
1 , and ρ ∈ K such

that

αT [∇xf + ze] + (β − (αT e)y)T∇yx(λ
T
f)

+(β − (αTe)y − 1

2
(αT e)p)T∇x(∇yy(λ

T f))p − δ = 0, (4.31)

(β − (αT e)y − (αT e)p)T∇yy(λ
T
f)

+(β − (αTe)y − (αT e)p)T∇y(∇yy(λ
T
f)p) = 0, (4.32)

(αT e)

[
−yT∇yf − yT (∇yyf)p − 1

2
pT∇yyfp

]
+ βT [∇yf + ∇yyfp] − ρ = 0,

(4.33)

β ∈ NEi(w), (4.34)

(β − αT ey − (αT e)p)T∇yy(λ
T
f) = 0, (4.35)

βT [∇y(λ
T
f) − w + ∇yy(λ

T
f)p] = 0, (4.36)

µyT [∇y(λ
T
f) − w + ∇yy(λ

T
f)p] = 0, (4.37)

δTx = 0, (4.38)

ρT λ = 0, (4.39)

z ∈ Di, zT x = s(x|Di), i = 1, · · · , k, (4.40)

(α, β, µ, δ, ρ) 6= 0. (4.41)
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By the assumption (i) and (4.35) yields

β = (αT e)(y + p). (4.42)

If α = 0, then (4.41),(4.31) and (4.33) give β = 0, δ = 0 and ρ = 0. This

contradicts (4.40). Therefore α > 0. Using (4.41) in (4.32)

1

2
(αT e)pT∇y(∇yy(λT f))p = 0,

which using the assumption (ii) implies

p = 0.

Then (4.41) implies β = (αTe)y. So y ∈ C2. Using (4.42) in (4.31)

αT (∇xf + ze) = δ ∈ C∗
1 . (4.43)

Taking z := z ∈ Di(i = 1, · · · , k), we find that (x, y, λ, z, r = 0) is feasible

for (NWD). Multiplying (4.43) by x and using (4.37), we get

xT
[
∇x(λ

T
f) − w

]
= 0. (4.44)

Consequently, using (4.44), (4.45) and (4.46),

K(x, y, λ,w, p = 0) = f(x, y) + s(x|D) − (yT∇y((λ
T
f))(x, y))e

= f(x, y) − (zT x)e− (yTw)e

= f(x, y) − s(y|E) − xT∇x((λ
T
f))(x, y)e

= G(x, y, λ, z, r = 0).
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Thus objective values of (NWP) and (NWD) are equal. We will now show

that (x, y, λ, z, r = 0) is a K-weakly efficient solution for (NWD), otherwise

there exists a feasible solution (u, v, λ, z, r = 0) for (NWD) such that

G(u, v, λ, z, r = 0) − G(x, y, λ, z, r = 0) ∈ intK

Since objective values of (NWP) and (NWD) are equal.

G(u, v, λ, z, r = 0) − K(x, y, λ,w, p = 0) ∈ intK

which contradits weak duality theorem. Hence the result hold. 2

Theorem 4.6 (Converse Duality) Let (u, v, λ, z, r) be a K-weakly efficient

solution for (NWD). Fix λ = λ in (NWP). Assume that

(i) ∇yy(λ
T
f) is positive definite and pT [∇y(λ

T
f) − w] >= 0 or

∇yyλ
T
f is negative definite and pT [∇y(λ

T
f) − w] <= 0,

(ii) ∇yλ
T
f − w + ∇yy(λ

T
f)p 6= 0,

(iii) the set {∇yf1,∇yf2, · · · , w} is linearly independent where f = f(x, y).

Then there exists w ∈ Ei(i = 1, · · · , k) such that (u, v, λ,w, p = 0) is a feasi-

ble solution for (NWP) and objective values of (NWP) and (NWD) are

equal. Furthermore, under the assumptions of Theorem 4.4, (u, v, λ,w, p = 0)

is a weakly efficient solution for (NWP).

Proof. It follows on the lines of Theorem 4.5. 2
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4.5 Special Cases

We give some special cases of our symmetric duality.

First of all, if C1 = Rn
+ and C2 = Rm

+ , then our results reduce to the

following programming problems.

(1) If k = 1, , then (NWP) and (NWD) become the pair of Mond-Weir

symmetric dual programs considered in X.M. Yang et al. [83] for the same

B and D.

(2) If k = 1, then (NMP) and (NMD) are redued to the second order

symmetric dual programs in Hou and Yang [31].

(3) Let D ∈ Rn ×Rn and E ∈ Rm × Rm are positive semidifinite symmetric

matrices. If s(x|B) = (xTDx)
1
2 where B = {Dz|zT Dz <= 1} and s(y|C) =

(yTEy)
1
2 where C = {Ew|wT ew <= 1}, C1 = Rn

+ and C2 = Rm
+ , then (NMP)

and (NMD) become nondifferentiable second order symmetric duality in

multiobjective programming in Ahmad and Husain [5].

(4) Let D ∈ Rn ×Rn and E ∈ Rm × Rm are positive semidifinite symmetric

matrices. If s(x|B) = (xTDx)
1
2 where B = {Dz|zT Dz <= 1} and s(y|C) =

(yTEy)
1
2 where C = {Ew|wT ew <= 1}, C1 = Rn

+ and C2 = Rm
+ , then (NWP)

and (NWD) is reduced to nondifferentiable second order symmetric duality

in multiobjective programming. In addition, if k = 1, then we get second
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order symmetric dual programs on nondifferentiable studied by Ahmad and

Husain [4].

Next, if D = {0} and E = {0}, then our programs become a pair or

symmetric differentiable dual programs.

(1) If D = {0}, E = {0}, C1 = Rn
+ and C2 = Rm

+ , then (NWP) and (NWD)

become the pair of Mond-Weir symmetric dual programs considered in X.M.

Yang et al. [84].

(2) If B = {0} and D = {0}, then (NMP) and (NMD) reduced to the

second order symmetric dual programs in Mishra and Lai [56].

(3) If B = {0}, D = {0} and we remove the second order terms in (NMP)

and (NMD), we get the problems (P) and (D) given by Khurana [49].

(4) B = {0}, D = {0}, C1 = Rn
+ and C2 = Rm

+ in (NMP) and (NMD),

then our results reduce to the results obtained by Suneja et al. [76].

(5) If k = 1, B = {0}, D = {0}, C1 = Rn
+ and C2 = Rm

+ , then (NMP)

and (NMD) and (NWP) and (NWP) are reduced to the second order

symmetric dual programs in Mishra [55].

(6) If B = {0} and D = {0}, then (NWP) and (NWD) are reduced to the

(P) and (D) in Mishra [54], and remove the second order terms, we get the

first order multiobjective symmetric duality with arbitrary cones [48].
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(7) If k = 1, B = {0}, D = {0}, C1 = Rn
+ and C2 = Rm

+ in (NMP) and

(NMD), then we get second order symmetric dual programs which studied

by Bector and Chandra [10].

(8) If B = {0}, D = {0}, C1 = Rn
+, C2 = Rm

+ and k = 1, then we get the

first order symmetric dual programs which studied by Chandra et al. [14].

(9) If k = 1, C1 = Rn and C2 = Rm
+ , then (NWP) and (NWD) become

the pair of Wolfe type second order symmetric duality in nondifferentiable

programs in Gulati and Gupta [29].

(10) If k = 1,B = {0}, D = {0}, C1 = Rn
+ and C2 = Rm

+ , then (NMP)

and (NMD) reduce to a pair of primal problem and dual problem programs

studied in Yang [82].

In particular, if p = r = 0, then our models and results can be reduced

to first order models in Gulati et al. [27], Suneja et al. [74], Khurana [40]

and Mond and Schechter [60].
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Chapter 5

Generalized Second Order Symmetric

Duality for Multiobjective Programs

5

5.1 Introduction and Preliminaries

Symmetric duality in nonlinear programming was introduced by Dorn [20].

Subsequently, Dantzig, Eisenberg and Cottle [19] formulated a pair of the

symmetric dual programs in which the dual of the dual equals the primal,

and established the weak and strong duality for these problems concerning

convex and concave functions. At the same time, Mond [59] presented a

slightly different pair of symmetric dual nonlinear programs and obtained

more generalized duality results than that of Dantzig, Eisenberg and Cottle

[19].

On the other hand, Mond and Weir [63] gave a different pair of sym-

metric dual nonlinear programming problems in which pseudo-convexity and

pseudo-concavity assumptions were reduced to the convexity and concavity

ones, and obtained the weak and strong duality for these problems.

Weir and Mond [80] formulated a pair of the symmetric and self dual

nonlinear programs for multiobjective nonlinear programming. Mond and

Weir [61] proved symmetric duality theorems for multiobjective nonlinear

programs under the assumptions of pseudo-convexity and pseudo-concavity.

Very recently, the concept of symmetric duality for multiobjective variational

89



problems has been extended to the class of multiobjective variational prob-

lems by Ahmad [2]. In 1997, Kim et al. [47] suggested another second order

symmetric and self dual programs in multiobjective nonlinear programming

and proved the weak, strong, and converse duality theorems under convexity

and concavity conditions.

Recently, many authors [29, 3, 5, 75, 26] have studied second order sym-

metric duality and nondifferentiable second order symmetric duality. And

Kim et al. [42], suggested multiobjective generalized nondifferentiable second

order symmetric dual programs and established weak, strong and converse

duality under the assumption of F -convexity.

In this chapter, we formulate a pair of generalized second order symmetric

programs in multiobjective nonlinear programming. For these programs, we

establish weak, strong, and converse duality theorems for efficient solutions

under suitable convexity assumptions. These results are the extension of

second order symmetric duality relations due to Kim et al. [47]. And we

present some special cases of our duality results.

Definition 5.1 A differentiable function f =
(
f1, · · · , fk

)
: Rn → Rk is said

to be convex(strictly convex) if for all x, u ∈ Rn,

fi(x) − fi(u) >= (>)(x − u)T∇fi(u), for each i = 1, · · · , k,

where in the case of strict convexity, x 6= u.
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5.2 Generalized Second Order Symmetric Duality

Let f be a twice differentiable function from Rn × Rm into Rk and N =

{1, 2, · · · , n}, M = {1, 2, · · · ,m}, A ⊂ N , I ⊂ M , N \ A = B and M \

I = J . Note that A,B, I or J can be empty. We rearrange x, y as x =

(xA, xB) and y = (yI , yJ), respectively. ∇xf(x, y) denotes k × n matrix of

first partial derivatives. If λ ∈ Rk, then λT f is a scalar valued function.

Let ∇x(λ
T f)(x, y) and ∇y(λ

T f)(x, y) denote gradient(column) vectors with

respect to x and y, respectively. Subsequently, let ∇xx(λ
T f) and ∇yy(λ

Tf)

denote respectively the n×n and m×m matrices of second partial derivatives.

We consider the following pair of generalized multiobjective symmetric

dual nonlinear programs.

(GMSP) Minimize f(x, y) − (yI
T∇yI

(λT f)(x, y))e

− (yI
T∇yyI

(λT f)(x, y)p)e

subject to ∇y(λ
T f)(x, y) + ∇yy(λ

Tf)(x, y)p <= 0,

yT
J ∇yJ

(λTf)(x, y) + yT
J ∇yyJ

(λT f)(x, y)p >= 0,

x >= 0, λ > 0, λT e = 1,
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(GMSD) Maximize f(u, v)− (uA
T∇xA

(λT f)(u, v))e

− (uA
T∇xxA

(λT f)(u, v)p)e

subject to ∇x(λ
T f)(u, v) + ∇xx(λ

T f)(u, v)p <= 0,

uT
B∇xB

(λT f)(u, v) + uT
B∇xxB

(λT f)(u, v)p >= 0,

v >= 0, λ > 0, λT e = 1,

where f : Rn ×Rm → Rk, λ ∈ Rk and e = (1, · · · , 1)T ∈ Rk. ∇xA
(λT f)(x, y),

∇xB
(λT f)(x, y), ∇yI

(λT f) and ∇yJ
(λT f) are gradient vectors with respect

to xA, xB, yI and yJ , respectively. ∇xxf(x, y) and ∇yyf(x, y) are respectively

the n × n and m × m symmetric Hessian matrices.

Now we establish the symmetric duality theorems for (GMSP) and

(GMSD).

Theorem 5.1 (Weak Duality) Let (x, y, λ, p) be feasible for (GMSP)

with
(
∇xx(λ

T f)(u, v) 0
0 −∇yy(λ

T f)(x, y)

)(
x − u
v − y

)
<= 0.

Assume that f(·, y) is convex for fixed y, and −f(x, ·) is convex for fixed x.

Then

f(x, y) − (yI
T∇yI

(λT f)(x, y))e− (yI
T∇yyI

(λT f)(x, y)p)e

� f(u, v) − (uT
A∇xA

(λT f)(u, v))e− (uA
T∇xxA

(λT f)(u, v)r)e.

Proof. Assume to the contrary that,

f(x, y)− (yI
T∇yI

(λT f)(x, y))e− (yI
T∇yyI

(λT f)(x, y)p)e

≤ f(u, v) − (uT
A∇xA

(λT f)(u, v))e− (uA
T∇xxA

(λT f)(u, v)r)e.
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Then, since λ > 0,

(λT f)(x, y) − yI
T∇yI

(λT f)(x, y) − yI
T∇yyI

(λT f)(x, y)p

< (λT f)(u, v)− uT
A∇xA

(λT f)(u, v)− uA
T∇xxA

(λT f)(u, v)p. (5.1)

From the assumptions of convexity of f(·, y) and −f(x, ·),

(λT f)(x, y)− yT
I ∇yI

(λT f)(x, y)− yT
I ∇yyI

(λTf)(x, y)p − (λT f)(u, v)

>= −(uA
T∇xA

(λT f)(u, v))− uA
T∇xxA

(λT f)(u, v)p − (uB
T∇xB

(λT f)(u, v))

−uB
T∇xxB

(λT f)(u, v)p + yT
J ∇yJ

(λT f)(x, y) + yT
J ∇yyJ

(λTf)(x, y)p

>= −(uA
T∇xA

(λT f)(u, v))− uA
T∇xxA

(λT f)(u, v)p

(by the constraints of (GMSP) and (GMSD)).

This contradicts (5.1), thus the result holds. 2

In order to prove the strong duality theorem, we need the following Fritz

John necessary optimality theorem.

Proposition 5.1 (Fritz John Optimality Conditions) If (x̄, ȳ, λ̄, p̄) is

a weakly efficient solution of (GSP), then there exists (α, β, γ, ρ, ω) in Rk ×

Rm × R × Rn × Rk such that

K ≡αT
[
f − (ȳT

I ∇yI
(λ̄T f))e − (ȳT

I ∇yyI
(λ̄T f)p̄)e

]
+ βT

[
∇y(λ̄

T f) + ∇yy(λ̄
T f)p̄

]

− γ
[
ȳT

J ∇yJ
(λ̄T f) + ȳT

J ∇yyJ
(λ̄T f)p̄

]
− ρTx − ωT λ̄
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satisfies

∇xK = 0,

∇yI
K = 0,

∇yJ
K = 0,

∇pK = 0,

∇λK = 0,

βT
[
∇y(λ̄

T f) + ∇yy(λ̄
T f)p̄

]
= 0,

γ
[
ȳT

J ∇yJ
(λ̄T f) + ȳT

J ∇yyJ
(λ̄T f)p̄

]
= 0,

ρT x̄ = 0,

ωT λ̄ = 0,

(α, β, γ, ρ, ω) >= 0,

(α, β, γ, ρ, ω)) 6= 0.

Theorem 5.2 (Strong Duality) Let f be a three times differentiable func-

tion from Rn×Rm to Rk. Let
(
x̄, ȳ, λ̄, p̄

)
be an efficient solution of (GMSP):

fix λ = λ̄ and p = p̄ in (GMSD). Assume that the assumption of the Theo-

rem 5.1 hold. Suppose that

(i) ∇yy

(
λ̄T f

)
(x̄, ȳ) is non-singular,

(ii) ∇yJ
(λ̄T f)(x̄, ȳ) + ∇yyJ

(λ̄T f)(x̄, ȳ)p̄ 6= 0 and

(iii) the set {∇yJ
fi(x̄, ȳ)}i=1,··· ,k is linearly independent.

Then
(
x̄, ȳ, λ̄, p̄ = 0

)
is an efficient solution of (GMSD) and the objective

values of (GMSP) and (GMSD) are equal.
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Proof. Since
(
x̄, ȳ, λ̄, p̄

)
is an efficient solution of (GMSP), it follows from

proposition 2.1 that there exist α ∈ Rk, β ∈ Rm, γ ∈ R, ρ ∈ Rn and ω ∈ Rk

such that the following Fritz John conditions are satisfied at
(
x̄, ȳ, λ̄, p̄

)
:

∇x

(
αTf

)
−

(
∇yIx

(
λ̄T f

)
∇yJx

(
λ̄T f

))((
αT e

)
ȳI − βI

γȳJ − βJ

)

−∇x

{
∇yy(λ̄

T f)p̄

(
(αTe)ȳI − βI

γȳJ − βJ

)}
− ρ = 0, (5.2)

−
(
∇yIyI

(λ̄T f) ∇yJ yI
(λ̄T f)

)(
(αT e)ȳI − βI + (αTe)p̄I

γȳJ − βJ + (αT e)p̄J

)

−∇yI

{ (
∇yyI

(λ̄T f)p̄ ∇yyJ
(λ̄T f)p̄

)(
(αTe)ȳI − βI

γȳJ − βJ

)}
= 0,

(5.3)

(α − γλ̄)T∇yJ
f −

(
∇yIyJ

(λ̄Tf) ∇yJ yJ
(λ̄T f)

)(
(αTe)ȳI − βI + γp̄I

γȳJ − βJ + γp̄J

)

−∇yJ

{(
∇yyI

(λ̄T f)p̄ ∇yyJ
(λ̄T f)p̄

) (
(αT e)ȳI − βI

γȳJ − βJ

)}
= 0,

(5.4)

∇yy(λ̄
T f)

(
βI − (αTe)ȳI

βJ − γȳJ

)
= 0, (5.5)

(
∇yI

f ∇yJ
f
)(

βI − (αT e)ȳI

βJ − γȳJ

)

−
(
∇yyI

fp̄ ∇yyJ
fp̄

)(
(αT e)ȳI − βI

γȳJ − βJ − ω

)
= 0, (5.6)
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βT (∇y(λ̄
T f) + ∇yy(λ̄

T f)p̄) = 0, (5.7)

γ(ȳT
J ∇yJ

(λ̄T f) + ȳT
J ∇yyJ

(λ̄T f)p̄) = 0, (5.8)

ρT x̄ = 0, (5.9)

ωT λ̄ = 0, (5.10)

(α, β, γ, ρ, ω) >= 0, (5.11)

(α, β, γ, ρ, ω) 6= 0. (5.12)

Since ∇yy(λ̄
T f) is non-singular, (5.5) yields

βI = (αTe)ȳI and βJ = γȳJ . (5.13)

From (5.3) and (5.13), we have

(αT e)∇yy(λ̄
T f)p̄) = 0. (5.14)

Suppose that α = 0. From (5.4),

γ(∇yJ
(λ̄T f) + ∇yyJ

(λ̄T f)p̄) = 0.

Since ∇yJ
(λ̄Tf) + ∇yyJ

(λ̄T f)p̄ 6= 0, γ = 0. From (5.13) and (5.6), we have

β = 0 and ω = 0. From (5.2), we haveρ = 0. This is a contradiction to (5.12).

Hence α 6= 0. Since ∇yy(λ̄
T f)p̄ is non-singular, we get from (5.14),

p̄ = 0. (5.15)

Using (5.2),(5.13) and (5.15), we get

∇x(ᾱ
T f)(x̄, ȳ) >= 0. (5.16)
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From (5.4),(5.12) and (5.14), we have (α − γλ̄)T∇yJ
f = 0.,

Since {∇yJ
fi(x̄, ȳ)}i=1,··· ,k is linearly independent,

α = γλ̄. (5.17)

If γ = 0 in (5.17), α = 0. From (5.13), β = 0. In (5.6) and (5.2), ω = 0 and

ρ = 0. This is contradiction to (5.12). Hence ρ > 0 and α > 0. Substituting

(5.17) in (5.16), we have

γ∇x(λ̄
T f)(x̄, ȳ) >= 0.

Since γ > 0,

∇x(λ̄
T f)(x̄, ȳ) >= 0. (5.18)

Using p̄ = 0, and (5.18),

∇x(λ̄T f) + ∇xx(λ̄Tf)p̄ >= 0 (5.19)

and

x̄B
T∇xB

(λ̄T f) + x̄B
T∇xxB

(λ̄T f)p̄ = 0. (5.20)

Now multiplying (5.6) by λ and using (5.7),(5.8) and (5.10) gives

ȳT
I ∇yI

(λ̄T f)(x̄, ȳ) + ȳT
I ∇yyI

(λ̄T f)(x̄, ȳ)p̄ = 0. (5.21)

Hence from (5.19) and (5.20), (x̄, ȳ, λ̄, p̄ = 0) is feasible solution of (GMSD)

and the objective values of (GMSP) and (GMSD) are equal there. 2

By the similar method of Theorem 5.2, we can prove the following con-

verse duality theorem.
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Theorem 5.3 (Converse Duality) Let f be a three times differentiable

function from Rn × Rm to Rk. Let
(
ū, v̄, λ̄, p̄

)
be an efficient solution of

(GMSD): fix λ = λ̄ and p = p̄ in (GMSP). Assume that the assumptions

of Theorem 5.1 hold. Suppose that

(i) ∇xx

(
λ̄T f

)
(ū, v̄) is non-singular,

(ii) ∇xB
(λ̄T f)(ū, v̄) + ∇xxB

(λ̄T f)(ū, v̄)r̄ 6= 0 and

(iii) the set {∇xB
fi(ū, v̄)}i=1,··· ,k is linearly independent.

Then (ū, v̄, λ̄, p̄ = 0) is an efficient solution of (GMSD) and the objective

values of (GMSD) and (GMSP) are equal.

5.3 Special Cases

If I = M and A = N , then our pair of programs ((GMSP) and (GMSD)

are reduced to the following (WSP) and (WSD).

(WSP) Minimize f(x, y) − (yT∇y(λ
T f)(x, y))e− (yT∇yy(λ

T f)(x, y)p)e

subject to ∇y(λ
T f)(x, y) + ∇yy(λ

T f)(x, y)p <= 0,

x >= 0, λ > 0, λT e = 1,

(WSD) Maximize f(u, v)− (uT∇x(λ
T f)(u, v))e− (uT∇xx(λ

T f)(u, v)p)e

subject to ∇x(λ
T f)(u, v) + ∇xx(λ

T f)(u, v)p <= 0,

v >= 0, λ > 0, λT e = 1,

98



where f : Rn × Rm → Rk, λ ∈ Rk and e = (1, · · · , 1)T ∈ Rk. In Kim

et al. [47] proved the following duality theorems under suitable convexity

assumptions.

Theorem 5.4 (Weak Duality) Let (x, y, λ, p) be feasible for (WSP), and

(u, v, λ, p) be feasible for (WSD) with

(
∇xx(λ

T f)(u, v) 0
0 −∇yy(λ

T f)(x, y)

)(
x − u
v − y

)
<= 0.

Assume that f(·, y) is convex for fixed y, and −f(x, ·) is convex for fixed x.

Then

f(x, y)− (yT∇y(λ
Tf)(x, y))e− (yT∇yy(λ

T f)(x, y)p)e

� f(u, v)− (uT∇x(λ
T f)(u, v))e− (uT∇xx(λ

T f)(u, v)r)e.

Theorem 5.5 (Strong Duality) Let
(
x̄, ȳ, λ̄, p̄

)
be an efficient solution of

(WSP): fix λ = λ̄ and p = p̄ in (WSD). Let ∇yy(λ̄
T f)(x̄, ȳ) be positive defi-

nite, and the set {∇yfi(x̄, ȳ)}i=1,··· ,k be linearly independent. Assume that the

assumptions of the Theorem 5.4 hold. Then the objective values of (WSP)

and (WSD) are equal, and
(
x̄, ȳ, λ̄, p̄

)
is an efficient solution of (WSD).

Theorem 5.6 (Converse Duality) Let
(
ū, v̄, λ̄, p̄

)
be an efficient solution

of (WSD): fix λ = λ̄ and p = p̄ in (WSD). Let ∇xx(λ̄
T f)(ū, v̄) be negative

definite, and the set {∇xfi(ū, v̄)}i=1,··· ,k be linearly independent. Assume that

the assumptions of Theorem 5.4 hold. Then the objective valued of (WSP)

and (WSD) are equal, and
(
ū, v̄, λ̄, p̄

)
is an efficient solution of (WSP).
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If I = ∅ and A = ∅, then our pair of programs (GMSP) and (GMSD) are

reduced to the following (MSP) and (MSD).

(MSP) Minimize f(x, y)

subject to ∇y(λ
T f)(x, y) + ∇yy(λ

T f)(x, y)p <= 0,

yT∇y(λ
T f)(x, y) + yT∇yy(λ

T f)(x, y)p >= 0,

x >= 0, λ > 0, λT e = 1,

((MSD) Maximize f(u, v)

subject to ∇x(λ
T f)(u, v) + ∇xx(λ

T f)(u, v)p <= 0,

uT∇x(λ
T f)(u, v) + uT∇xx(λ

Tf)(u, v)p >= 0,

v >= 0, λ > 0, λT e = 1,

where f : Rn × Rm → Rk, λ ∈ Rk and e = (1, · · · , 1)T ∈ Rk. We can obtain

weak, strong, converse duality theorems between (MSP) and (MSD).
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