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Chapter 1

Introduction and Preliminaries

Multiobjective programming problems arise when more than one objec-
tive function is to be optimized over a given feasible region. Their optimums
are the concept of solution that appears to be the natural extension of the
optimization for a single objective to one of multiple objectives. In economic
analysis [7], game [21] and system science, optimums are effective for treating
such a multiplicity of values.

Khan and Hanson [38] have used the concept of ratio invexity to char-
acterize optimality and duality results in a fractional programming. This
concept seems to be new and it introduces a modified kind of characteriza-
tion in sufficient optimality with invexity conditions. Slightly away from this
but introducing p-invex condition, Suneja and Lalitha [75] have also charac-
terized multiobjective fractional programming problem for duality results. In
the ensuring paragraph we present on account of the fractional programming
problem as depicted in Khan and Hanson [38].

Consider the nonlinear fractional programming problem:

(FP) Minimize /(@)

g9()

subject to  h(z) £0, z € X,



where X is a subset of R", f and g are real valued functions defined on X
and h is an m-dimensional vector valued functions also defined on X;. We
let A = {x € Xy, h(x) <0} be the set of all feasible solutions. Assume that
f(z) 20 for all z € A, g(x) > 0 for all x € A, and the functions f, g and h

satisfy

f(x) = fla) = Vf(a)n(x,a) 20,
ra€N = ¢ —g(x)+gla) + Vgla)y(z,a) 20,
h(z) — h(a) — Vh(a)n(z,a) = 0

with respect to n : Xo x Xg — R™.

These are called invex functions. In 1981, Hanson [30] introduced the
concept of the invex function which is a generalization of the convex function.
Many authors [8, 35, 53| have studied properties of invex functions and single
objective(i.e., scalar) optimization problems with these functions.

(P) Minimize  f(z)

subject to  h(z) <0, z € Xo.

The problem (P) is characterized as an invex problem, as was quoted in
Craven [17]. The problem (FP) as introduced above is said to be a convex-
concave problem if f is convex, ¢ is concave and h is convex. It is then

transformed into an invex functions. Most of the references like Israel and
Mond [11], Reiland [71], and Khan [37] have discussed invex problems and

their generalizations for the multiobjective case. The paper of Khan and
Hanson [38] could be thought of as a beginning of some investigation for

invex fractional programming problems.
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Symmetric duality in mathematical programming was introduced by Dorn
[20], who defined a program and its dual to be symmetric if the dual of the
dual is the original problem. The notion of symmetric duality was developed
significantly by Dantzig et al. [19], Chandra and Husain [13] and Mond and
Weir [61]. Dantzig et al. [19] formulated a pair of symmetric dual programs
and established duality results for convex/concave functions by taking non-
negative orthant as the cone. The same result was generalized to arbitrary
cones by Bazaraa and Goode [6].

Later Mond and Weir [61] presented two pairs of symmetric dual multiob-
jective programming problems for efficient solutions and obtained appropri-
ate symmetric duality results concerning pseudo-convex/pseudo-concave or
convex/concave functions with the non-negative orthant as the cone. Nanda
and Das [68] formulated a pair of symmetric dual nonlinear programming
problems for pseudo-invex funetions and arbitrary cones. Nanda [67] also
studied symmetric dual problems by assuming the functions to be invex with
non-negative orthant as the cone. Kim et al. [48] formulated a pair of multi-
objective symmetric dual programs for pseudo-invex functions and arbitrary
cones and established duality results. Mishra [54] formulated a pair of second
order multiobjective symmetric dual nonlinear programming problems under
second order pseudo-invexity assumptions on the functions involved over ar-
bitrary cones and established duality results. Mishra [55] also studied second
order symmetric duality under second order F'-convexity, F'-concavity, F-
pseudo-convexity and F-pseudo-concavity for second order Wolfe and Mond-

Weir type models, respectively.



Suneja et al. [77] formulated a pair of symmetric dual multiobjective
programs of Wolfe type over arbitrary cones in which the objective function
is optimized with respect to an arbitrary closed convex cone by assuming the
involved function to be cone-convex. Very recently Khurana [40] formulated
a pair of differentiable multiobjective symmetric dual programs of Mond-
Weir type over arbitrary cones in which the objective function is optimized
with respect to an arbitrary closed convex cone by assuming the involved
functions to be cone-pseudoinvex and strongly cone-pseudoinvex. Mishra
and K. K. Lai [56] introduced the concept of cone-second order pseudoinvex
and strongly cone-second order pseudoinvex functions and formulated a pair
of Mond-Weir type multiobjective second order symmetric dual programs

over arbitrary cones.

Let R" be the n—dimensional Euclidean space and R% its nonnegative
orthant.
We consider the following multiobjective programming problem:
(MP)  Minimize —f(2) = (fi(e), <+ , fu(x))

subject to gj(x) <0, je P, z€R"

where f; : R®* - R ;i€ K = {l,---,k}and g, : R®" = R ,j € P =
{1,--- ,m} are differentiable functions. For simplicity, we rewrite (MP) as

follows:

(MP) Minimize  f(z)

subject to z € S={x € R": g(z) < 0}.



Throughout this dissertation the following notations in R™ will be used:

r=y ifandonlyif z;=v;, 1=1,2,---,n,
r<y ifandonlyif z; vy, 1=1,2,--- n,
r <y ifandonlyif z; <y, but z#uy,

r<y ifandonlyif z; <y, 1=1,2,--- n,

r £y isthe negation of z <y,

x £y is the negation of x < y.

Now, we discuss the concepts of solutions of the problem (MP).

The problem (MP) is also called a vector optimization. For multiobjec-
tive optimization problems, there are three kinds of solutions. We call them
properly efficient, efficient and weakly efficient solution. The most fundamen-
tal solution is an efficient solution (also called a Pareto optimal solution or
noninferior solution) with respect to the domination structure of the decision

maker.

Optimization of (MP) is to find (properly, weakly) efficient solutions

defined as follows:

Definition 1.1 A point T € S is said to be an efficient solution(or Pareto
optimal solution) of (MP) if there exists no other x € S such that for some
iel={12---,k}, filr) < fi(T) and for all j € I, fi(z) < f;(T).



Definition 1.2 A feasible point T € S is said to be a properly efficient solu-
tion of (MP) if it is an efficient solution of (MP) and if there ezists a scalar
M > 0 such that for each i = 1,--- |k and © € S satisfying f;(x) < fi(T),

we have

5@ — (o)
@) — f@ ="

for some j such that f;(x) > f;(T).

[i(@)—fi ()

o may be interpreted as the marginal trade-off for
J g

The quantity

objective functions f; and f; between « and =. Geoffrion [25] considered the
concept of the proper efficiency to eliminate the unbounded trade-off between

objective functions of (MP).

Definition 1.3 A point T € S is said to be a weakly efficient solution of
(MP) if there does not exist any feasible x such that f;(x) < f;(T).

We shall use the concepts of efficient and weakly efficient solutions.

The purpose of this dissertation is to establish duality theorems for multi-
objective programming problems under various generalized convexity condi-
tions involving differentiable or nondifferentiable functions. The weak, strong
and converse or strictly converse duality hold between primal problems and

dual problems.

This dissertation is organized as follows:



In Chapter 2, we consider the following multiobjective programming prob-

lem:

N fz) _ (fi(=) fu(@)
(MFP) Minimize o) (g(:v) , " 5(2) )

subject to hj(x) £0, jeP, v € X

where 5 = (%,--- ,f?k) :R®” > RF and h:= (hy, -+, hp) - R® — R™.
Using separated variables, we formulate generalized second order multiob-
jective fractional dual programs for (MFP). For these programs, we proved
the weak, strong and strictly converse duality theorems under suitable gen-
eralized convexity assumptions on the basis of the efficiency of solutions. We
established a Wolfe type dual as well as a Mond-Weir type dual program-
ming problems as special cases. For each dual we derive weak, strong, and
converse duality theorems under second order invexity assumption.

In Chapter 3, we consider the following multiobjective programming prob-

lem:
(MCP) Minimize  f(z)

subject to —g(x) € C;5, €y,

where f and g are twice differentiable functions from R” — R! and R® — R™,
respectively, C is a closed convex cone in R"”, and (3 is the polar cone of
Cs.

We construct a higher order dual of (MCP) and establish weak, strong
and converse duality theorems for an efficient solution of (MICP) by using
higher order generalized invexity conditions. As special cases of our duality

relations, we give some known duality results.
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In addition, we consider the following nonlinear programming problem:

(FCP) Minimize f(z)

subject to  g(x) € C3, z € C,

where f: R" — R and g : R® — R™ are twice differentiable functions.

We construct a Fritz John higher order dual of (FCP) using Fritz John
necessary optimality conditions [51] instead of Karush-Kuhn-Tucker [51], and
establish weak, strong and converse duality theorems under suitable higher
order generalized invexity assumptions. Thus, the requirement of a constraint
qualification can be eliminated.

In Chapter 4, we formulate Mond-Weir and Wolfe type non-differentiable
second order multiobjective symmetric dual problems with cone constraints
over arbitrary closed convex cones. Subsequently, weak, strong and con-
verse duality theorems are established under the assumptions of second order
pseudo-invex functions. And we introduced some special cases of our duality

results.

In Chapter 5, we formulate a pair of generalized second order symmetric
programs in multiobjective nonlinear programming. For these programs, we
establish weak, strong and converse duality theorems under suitable convex-
ity assumptions on the basis of the efficiency of solutions. These results are
the extension of second order symmetric duality relations due to Kim et al.

[47]. And we present some special cases of our duality results.



Chapter 2

Generalized Second Order Duality for

Multiobjective Fractional Programs

2.1 Introduction

In 1961, Wolfe [81] considered a dual program as convex program with
nonlinear constraints and apart from others proved weak and direct duality
theorems under suitable assumptions. Afterward, a number of dual problems
distinct from the Wolfe dual problem are proposed for the nonlinear programs
by Mond and Weir [62]. Duality relations for single objective fractional
programming problems with a (generalized) convexity condition, were given
by many authors [8, 18, 34, 39, 53, 64, 72, 73].

Wolfe’s dual problem [81] is not useful for the fractional problem. Various
examples showing the unsuitability of the Wolfe dual for fractional programs
have been given by Mangasarian [51] and Schaible [72, 73|. Later on, Bector
[8] introduced slightly different fractional programming. Mond and Weir [62]

consider the fractional programming problem as follows;

(FP) Minimize /@)

g9()

subject to  h(z) £0, z € X,

where X is a subset of R", f and g are real-valued functions defined on X,

h be an m-dimensional vector valued function also defined on X,. Under the

9



assumptions that f is convex and nonnegative, g is concave and positive and
h is convex, a number of duality results can be obtained.

As a generalization of differentiable convex function, Hanson [30] intro-
duced the weak convex function, where it is shown that the Kuhn-Tucker
conditions are sufficient for optimality of nonlinear programming problems

under the condition of a weak convex function. A weak convex function was

called an invex function by Craven [17]. Most of the references like Israel
and Mond [11], Reiland [71], and Khan [37] have discussed invex problems
and their generalizations for the multiobjective case. Afterwards, the second
order invexity was introduced by Egudo and Hanson [24] called binvexity by
Bector and Bector [9].

Many authors [8, 35, 53, 43, 9, 44, 41| have studied properties of invex
functions and nonlinear programming problems with these functions. Khan
and Hanson [38] extended the nonlinear fractional programming problem
with invex functions, that is, the ratio invexity. They gave sufficient condi-
tions for optimality and established duality results by assuming that f and
—g are invex with respect to a scale function n(z,u) and h is invex with

respect to Mn x,u). Reddy and Mukherjee |70] applied a generalized ratio
g9(z)

invexity to single objective fractional programming problems. Very recently
Liang et al. [50] establish sufficient conditions and duality theorems for an
efficient solution of multiobjective fractional programming problems under
(F, o, p, d)-convexity assumptions.

In this chapter, using separated variables, we formulate generalized second

order multiobjective fractional programs. For these programs, we proved the

10



weak, strong, and strictly converse duality theorems under suitable general-
ized convexity assumptions on the basis of efficiency of solutions. And we
introduced Mond-Weir and Wolfe type second order multiobjective fractional
programs, as special cases. We obtained the weak, strong, and converse du-
ality theorems for Mond-Weir and Wolfe type second order multiobjective

fractional programs under second order invexity assumptions.

2.2 Notations and Preliminaries

Let f be a twice differentiable function from R" into R¥ and M =

{1,2,--- ;m}, I C M, and M \'I = J. Nete that [ or J can be empty. We

rearrange y as y = (yr, y)-

Next definition is introduced by Beetor and Bector [9], and Egudo and
Hanson [24].

Definition 2.1 A twice differentiable function f : R" — R* is said to be
second order invexr with respect to n if for all v = 1,--- |k, there exist a

vector valued function n defined on R™ x R™ — R" such that,

file) = filw) 2 e, )" fiw) + nla, ) V2 fi(wp — 5V i

where p € R™, V denotes the gradient vetor and V? is the n x n Hessian

matriz of second order partial derivatives.

We recall the following definitions defined by Aghezzaf [1].

11



Definition 2.2 A functional F' : R" x R" x R" — R is sublinear if for any

r,u € R",
F(x,u;ay + as) < F(z,u;a1) + F(x,u;az), for all aj,ay € R”
and
F(x,u;a) = aF (z,u;a) forall a € R,a 20, and o € R™.

Let F': R" x R" x R™ — R be a sublinear functional, the function f =
(fi, -+, fr) : R" — R* a twice differentiable at u € R", p = (p1,--- pp) € R¥

and d(-,-) a metric on R".

Definition 2.3 The function f; is said to be second order (F, p;)-convex at

u and p, if for all x € R™ we have
F(a,w Y i) + V2 (u)p) + pi(ay ) £ fi(@) — filw) + 509 F:(wp

The vector valued function f : R™ — RFis second order (F, p;)-convex at u

and p if each of its components f; is second order (F, p;)-convex at u and p.

Definition 2.4 The function f; is second order (F, p;)-quasiconvex at u and

p, if for all x € R"*, we have
file) £ Fiw) — oV hiwp = F(ew Vi) + V2 iulp) € —pud(,u).

We say that f is second order (F) p;)-quasiconvex at u and p if each of its

components f; is second order (F) p;)-quasiconvex at u and p.

12



Definition 2.5 The function f; is second order (F, p;)-pseudoconvezr at u

and p, if for all x € R"*, we have

i) < Fiw) — PV S = F(ew Vi) + V2 iulp) < —pud(a,u).

The function f is second order (F, p;)-pseudoconvex at u and p if each of its

components f; is second order (F) p;)-pseudoconvex at u and p.

Definition 2.6 The function f; is strong second order (F, p;)-pseudoconvex

at u and p, if for all v € R™ we have
1
fi(x) < filw) = 50" V2 filwp = F(a.w Vi) + V2 i(w)p) < —pid(z,u).

The class of strong second order (F,p;)-pseudoconvex functions does not
contain the class of second order (F,p;)-pseudoconvex functions, but does

contain the class of second order (F, p;)-convex.

Lemma 2.1 If f, —g are second order invex at T with respect to n and
(i) Vg(z) =0, (i) V2% is negative semidefinite and positive semidefinite,

then 5 is second order invexr at T with respect to 7j(x,T) = %n(z,f).

Proof. By differential calculus

0? (f(f)) _ 9@V f(x) — f(x)VZg(x)
Ox2 \ g(x) g(x)?

_2Vyg(x){g(2)V f(z) — f(x)Vg(z)}
g(x)’

13



and

fla) @) _ fl)—f@ f@){g(x) —g(@)}
g(z)  g(T) g(x) g(x)g(T)

Since f and —g are second order invex functions with respect to n(x,T),

above equation implies that

D (g(a) ~ 9()

> L (e, )TV @) + e, TV F@)p — spT V2 F(T)p)
g(x) 2
L i@, V(@) 4 (e 2Py~ 357 Vo)

- e 7)Y ()= ) Vo)

72 ¢(— 1
“2g@” VI Sy

— @n(x,T)TV@ + @n(az@)TW%p -

N —
Q
VamS
5]
S~—

(by assumption).

Therefore 5 is second order invex with respect to 7j(z,T) = %n(z,f).

14
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2.3 Duality Theorems

We propose the following multiobjective fractional programming problem:

f@)  (h@) A
g(x) (g(af)’ ’ g(fv))

(MFP) Minimize

subject to hj(x) £0, jeP, v € X

and its generalized second order fractional dual

(GMFD) Maximize ==+ (yfhs(u))e

f(u)
g(u)

= % {pT (V%Tﬁ H sz?hz(U))P} ¢

subject to Vy'h(u) + (VQyTh(u))p

o () oy ()
Y <. (V 4 g<x>)p "

1
ygh(uw) — 5PT (V2yJha(u))p =0,

where z € Ry € R",p € R*, X € RF, e = (1,--- ., )T € RF, L .=

( S ) R  RF and b= (hy, -+, hy) : R* — R™

’ g

@ =

Now we establish the duality theorems for (MFP) and (GMFD).

Theorem 2.1 (Weak Duality) Let = satisfy the constraints of (MFP)
and (u,y, A\, p) satisfy the constraints of (GMFD). If f and —g are second

15



order inver with respect to 1 and h is second order inver with respect to 1,

then

—
—

(z)

(:3 + (y1 hi(u))e — % {pT (V%\T% 4 sz?hf(u)) p] ..

=
—~
=
—~

Proof. Assume to the contrary that

S0 < gt O = [ (7 4 P

Then, since A > 0,

1
Since \; >0 (i=1,---,k)and y; 20 (j = 1,--- ,m), the assumptions of

invexity become

1 7o rf(w)
529 VA mp
(2.2)

Tf(iﬂ)_ rf(w) e AN TM 2TM _
Yo " gl =T (W g o g(u)p)

and

Vh(e) = () 2 ) (F5HG) + P R0p ) ~ 3TV b

(2.3)

16



Adding (2.2) and (2.3), and rearranging yield

g(x) g(u)

> yi hi(u) + yyhy(w) — yf hi(z) — y5hy(z)

)\T@ _ )\Tf(u)

— T T 2. T rf(u) o 7 f (1)
+77(x, u) (Vy h(u) + V*y* h(u)p+ VA o) + VA g(u)p)

1 u
5" (v L o)+ 9l

2 yfha(w) =97 hte) = g (VAL 2T )

=yl hi(u) — %pT (Vz% + VQyTh(U)) p.

Thus,

Tf(iﬂ)_ 7/ (u) T ualT 2Tﬂ 2. Th (u
AL e T it ! (P I e )

This contradicts (2.1). O

Next theorem is a generalization of the result of Zhang and Mond [86].

Theorem 2.2 (Weak Duality) Assume that for all feasible x for (MFP)
and all feasible (u,y, \,p) for (GMFD),

(a) y¥h;(-) is second order (F,a)-quasiconver at u and p, and assume that

one of the following conditions holds;

17



(b) L 5 (- Y+yLhi(-)e is strong second order (F, p)-pseudoconvex at u and p with
a+Ap 20,
(c) )\Tg( ) + yFThi() is second order (F,3)-pseudoconvexr at u and p with

a+p=0.
Then the following cannot hold:

Jw) S oy e — % o (vW% + V2 hi(w)p| e (2.4)

Proof. Let x be feasible for (MFP) and let (u, y, A, p) be feasible for (GMFD).

Then we have
¥ () = ()~ TR T ) . (2.5)
From (2.5) and hypothesis (a) we obtain
F (z,u; Vy hy(u) + VY hs(u)p) £ —ad(z, u). (2.6)

By the feasibility of (u,y, A, p) and the sublinearity of F', we have

) Tf(u) 2 Tf(u) T
F(z,u; VA 7 + VA (u) p+ Vythr(u) + V2yFhi(u)p)

+F (2, u; Vyshy(u) + VZyThy(u)p)

> Fe,u VAL ot gy w2y Thp) = 027)
g T g

Relation (2.7) together with (2.6) yields

F(x,u; VAT;CEZ; +V2)\TLZ§ +Vylhi(u)+ V2 hi(u)p) = ad(z,u). (2.8)

18



On the other hand, suppose contrary to the result that (2.4) holds. Since z
is feasible of (MFP) and y > 0, (2.4) implies

f(x) T M T ue_lT 2TM 2.Th (u e
mﬂnhz(:ﬂ)eﬁ g(u)+(yzhz( )e—5 {p (V2A o Y yp hu( ))P} :

(2.9)
Multiplying (2.9) by A, we get

AL it < L) [ (72 S o))
2.10
By the hypothesis (b) and (2.9), we have o
F(z,u;V [% + y,ThI(u)e] H- V2 [% + y,ThI(u)e] p) < —pd(x,u). (2.11)
Multiplying (2.11) by X, we obtain
F(z,u;V {AT% +yFhy (u)] +V? {AT% + y?hj(u)]p)
< “Mpd(z,u) £ ad(z, u), (2.12)

which contradicts (2.8). When the hypothesis (c) holds, (2.10) implies

Flz,u; V {AT% + y?h;(u)] + V2 {ATﬁ + y?hz(u)} p)

< _ﬁd($>u) - ozd(:v,u),

which contradicts (2.8). Therefore the proof is completed. O
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Corollary 2.1 Let (@, 7, \,D) be a feasible solution for (GMFD) such that

s 1 ~rf@ ]
y?hl(u)—ngvz A ﬁ+y?hl(u) p=0, (2.13)

and assume that w is feasible for (MFP). If weak duality holds between
(MFP) and (GMFD), then @ is efficient for (MFP) and (@, 7, \,D) is
efficient for (GMFD).

Proof. Suppose that @ is not efficient for (MFP), then there exists a feasible
x for (MFP) such that

(2.14)

and since

st - 57V X T o 5 — o

So (2.14) can be written as

ST (W0

/(@) + 91 hi(w)e — %ﬁTV2 [A o

1@ _ f@)

g9(x) ~ g(u)

-

Since (@,7, \,p) is feasible for (GMFD) and z is feasible for (MFP), this

inequality contradicts weak duality. Also suppose that (,%, \,p) is not ef-
ficient for (GMFD). Then there exists a feasible (u,y, A, p) for (GMFD)

such that
f(u) T ue_lT o [\r (W) | g | e
f@) ﬂe_l—T o |~ f@) | | e
> I e v [ g e
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Then from (2.13), (2.15) reduces to

)y rniwye — S X2 g, ) pe > L0

g(u) g(u) g9(u)

Since @ is feasible for (MFP), this inequality contradicts the weak duality.

Therefore @ and (%, 7, A, ) are efficient for their respective programs. O

Theorem 2.3 (Strong Duality) Let T be an efficient solution of (MFP)
at which a constraint qualification is satisfied. Then there exist § € R™, X\ €
R* and p € R™ such that (T,7,\,p = 0) is a feasible solution of (GMFD),
with

= lig s [sof@ i r, ]

yrhi(w) — -V (A it h (T) | P = 0.

2 9(a)

If Theorem 2.1 or Theorem 2.2 also holds between (MFP) and (GMFD),

then (Z,7,\,p = 0) is an efficient solution for (GMFD).

Proof. Since T be an efficient solution of (MFP), then there exist A € RF(\ >

0, A e=1)and7ye R™ that satisfy the following Kuhn-Tucker conditions
[51]:

v 1@ Gt — o,
9(T)

¥ h(T) =0,

7> 0.



Clearly (Z,7,\,p = 0) is feasible for (GMFD), and the objective values
of (MFP) and (GMFD) are equal. If the assumptions of Theorem 2.1
or Theorem 2.2 also holds, then (Z,7,\,p = 0) is an efficient solution of
(GMFD). O

We now turn our attention to the strict converse duality.

Theorem 2.4 (Strict Converse Duality) Let T be an efficient solution

for (MFP) and (u, 7, \,p) be an efficient solution for (GMFD) such that

—Thl(a)~%pTV2 D Mﬂhh( )P (2.16)

g9(a)

o f@ @)
Yo N @

| =

Assume that

(i) XL AQRE Thi(-) is strictly invex op
(i) Condition (i) of Theorem 2.2 is satisfied and XTf( )+ 5 hy(+) is strictly

second order (F, [3)-pseudoconvex with a + 3= 0.
Then T = 7w and @ is an efficient solution for (MFP).

Proof. (i) We assume T # u and exhibit a contradiction. From the fact

XTg(-) +yFhy() is strictly invex, we obtain

) e + 71 hi(T) — A Yy hi(u)

g9(u)
> (7, ) {v (ATf @ 47 )) +v? (XT@ + 7 h,(a)) p]

9(a) 9(a)

% (V 77/ 8 + V25T hy (T )) 5.
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Since T and (@, 7, A, p) are feasible for (MFP) and (GMFD), the inequality

above implies

~rf(@) v f@) g N A ~r f(u) | o\ 5
Vi > g 5 (Y s )

which contradicts (2.16).

(ii) We assume Z # @ and exhibit a contradiction. Since Z and (%, 7, A, p) are

feasible for (MFP) and (GMFD), respectively, then 7 = 0, h(Z) < 0, and

Fha (7)€ Toha () — S5V hy @ (2.17)
By the hypothesis (ii), (2.17) implies that
F(@,w; Vyyhy(@) + Vyihi(@)) < —ad(7, 0). (2.18)
By the feasibility of (7,7, A, p) and the sublinearity of F', we have

F(z,u; VATMJrV -3 M + VY by (@) + VY hi(0)D)

9(@) 9(@)"

+F(z, 7w VY hy (@) + Vg5 h(0)p)
~r f(u)

e WA G SR e LA

g(1) @ VT i@ + VY hi()p) = 0.2.19)

Relation (2.19) together with (2.18) yields

F(z,u; VATMJrV A M + VY hy (@) + V2] hi(0)D)

9(a) g(@"
> ad(Z,u) 2 —[d(T, ).
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Since XTg(-) +5Fhy(+) is strictly second order (F, 3)-pseudoconvex, it follow

that

NI @) > XTI i - e (L |

Hence by 7 = 0 and h(Z) < 0, the inequality above implies
XT f(f) > XT f(g) + y?hl(ﬂ) _ lz—ijz {XT f(g) + g?hl(ﬂ)] 7,
9(@) ) 2 )

which contradicts (2.16). Therefore the result holds. O

2.4 Special Cases

As special cases of our duality between (MFP) and (GMFD), we give a
Wolfe type duality theorem. If J =) and I = {1,2,--- ,n}, then (GMFD)
reduced to the Wolfe type dual of the problem (WMFD) :

flw)

(WMFD) Maximize
9(u)

+ (y"h(u))e
1 T 2 Tf(u) 2. T
subject to  VyTh(u) + (V2yLh(u))p

+ VAT% + (VQ/\T—) =0,

y>0, A>0 Me=1,
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wherer € R*, y e R", A€ R*, pe R*and e = (1,--- ,1)T€]Rk,£:]1§"—>]1§k

and A : R" — R™ are twice differentiable functions.

We can prove the following weak, strong and converse duality theorems

between (MFP) and (WMFD) under second order invex assumptions.

Theorem 2.5 (Weak Duality) Let = satisfy the constraints of (MFP)
and (u,y, A, p) satisfy the constraints of (WMFD). If f and —g are second

order inver with respect to n and h is second order inver with respect to 1,

then
f(z) , flu) by 1 |:T( R T 2 (u)) }
—= L L Ay b)) = VS h(u) " ——= e
Proof. The proof follows along the lines of Theorem 2.1. O

Theorem 2.6 (Strong Duality) Let T be an efficient solution of (MFP).
Then (Z,y,\,p = 0) is a feasible solution for (WMFD), and the objective
values of (MFP) and (WMFD) are equal. Assume that the assumption of
Theorem 2.5 hold, then (T,y,\,p = 0) is an efficient solution of (WMFD).

Proof. Since 7 is an efficient solution of (MFP), then there exist A € RF(\ >

0, M'e=1)andy € R™ that satisfy the following Kuhn-Tucker conditions
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[51]:

rf(x0) ST

yTh($0) = 07

y > 0.

Clearly (7,y, A\, p = 0) is feasible for (WMFD), and the objective values of
(MFP) and (WMFD) are equal. If the assumptions of Theorem 2.5 also
hold, (Z,y, \,p = 0) is an efficient solution of (WMFD). O

Theorem 2.7 (Converse Duality) Let f, g and h are three times differ-
entiable and let (T,y, \, p) be an efficient solution of (WMFD). Suppose that

(i) the vectors [VZ\ chéj] i VER@)]; J = 1,---,n are linearly inde-

pendent, where [szT%]j is the jth row of [VQATﬁfj ]

and [V*yTh(Z)]; is the jth row of V2L h(T)], and
(11) the n x n Hessian matriz V [V2)\T 1@ 4 2T h(zT)| p is positive or

negative definite.

Then T is satisfied the Kuhn-Tucker conditions for (MFP), that is

)\Tf(I)

VA @

+Vy'h@) =0, y'h(@) =0, y>0,

and the corresponding values of (MFP) and (WMFD) are equal. If the
assumptions of Theorem 2.5 are satisfied, then T is an efficient solution for

(MFP).
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Proof. Since (T,y, A,p) is an efficient solution for (WMFD), there exist

a € RF, 3 € R™, p € R™ and wR*, not identically zero, such that the

following Fritz John conditions are satisfied [51]:

TV {%—I—(gﬂh@))e ;( (V Ang; + V2 Th(E )) )e}

+8" [V*y"h(Z) + V (VY h(Z)) p]

+67 {V AT% +V (VQAT%> p] — 0, (2.20)

ol -h(f)e - %(pTvzh(f)p)e] + B [Vh(Z)+ V?h(Z)p] — p = 0,(2.21)
T -__ /8 2f(T) f(iﬂ) -/ (@) e
e (p Va@” ) }+5 { g@ "V g(f)} o 22

aT: (v Ang; + V2 h(z )) ]

+47 {V AT;CEQ + V2 h(F )} =13 (2.23)
{VyTh(f) + (V2" h(z))p + VAT% + (VzAT%) p] 3=0,
(2.24)
ply =0, (2.25)
wf'A =0, (2.26)
y =0, (2.27)
(a, 3, p,w) >0, (2.28)
(a, B, pyw) # 0. (2.29)
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Since Vz)\T% + V2yTh(xg) is nonsingular, (2.26) gives

B = (a’e)p. (2.30)

It follows that
a#0 (ie a>0). (2.31)
For if o = 0, (2.33) gives 8 = 0, which along with (2.24) and (2.25) implies
p = 0 and w = 0, respectively. Therefore, we see that a = 0 implies § =

0,p = 0,w = 0 which contradicts (2.32). Hence (2.34) holds. Substituting
(2.33) in (2.23) gives

T Tf(ifo) 2f($0) ir AT
(o’ e) (V)\ B +V g(zo)p%—Vy h(zo) + Vy" h( o)p)

1 2 f($0) 2 _
+§(OZT€)pTV (V )\Tm SIS\ yTh(QL’O)) p= 0’

which in view of (2.27) gives

Lo op 1 ( 2y7 [ (T) ST, [
—(a’e)p' V[ VN —=——+ V' h(T) | p=0. 2.32
J(a"e) 2 @) (2.32)
Using the hypothesis that 8%i (Vz)\T% + szTh(T)) - is positive or
negative definite,
p=0 and B = (a’e)p=0. (2.33)

From (2.24), (2.33) and (2.36) and taking (2.34) into account gives

y"h(T) = 0. (2.34)
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From (2.23), we have

1@ o
VAT S+ VuTh(@) =0 (2.35)

Substituting (2.36) in (2.24) and taking (2.31) and (2.34) into account gives
h(z) < 0. (2.36)

Conditions (2.38), (2.34), (2.39) and (2.30) are the Kuhn-Tucker conditions
for (MFP). The corresponding values of (MFP) and (WMFD) are equal
because yTh(Z) = 0 and p = 0. If f and —g are second order invex with

respect to 1 and h is second order invex with respect to 7, then by Theorem

2.5, T is an efficient solution for (MFP). O

fI=0and J={1,2,--- ,m}, then (GMFD) is reduced to the Mond-
Weir type dual (MMFD):

(MMFD) Maximize ———= — % {pT (Vz)\Ty + szTh(u))p] e

subject to  VyTh(u) + (szTh(U))P
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where p € R".

And its parametric dual program:

S f(z)
(MFP), Minimize )\Tm

subject to  h(x) <0,

S ORIy ) S,
(MMFD), Maximize A\ o) 2 {p (V32X o) + V=y h( ))p}

subject to - Vy"h(u) + (Vy h(u))p

7.f(u) oyrf@)
i\ g(u) \ (V A g(:v))p

y =0,

a0, B4

We can obtain weak, strong, converse duality theorems between (MFP) and

(MMFD), or (MFP) and (MMFD).

Theorem 2.8 (Weak Duality) Let x be feasibel for (MFP), and (u,y, A\, p)
be feasible for (MMFD),. If f and —g are second order invex with respect
ton and h is second order invexr with respect to m, then

1@ | ) 1 ()

g9() g(w) 2P (VA erV y h(u))p| -

30



Proof. Since f and —g are second order invex with respect to n and h is

second order invex with respect to 7,

> 7z, u)TVAT ;8 ﬁ(z,u)TVQAT%p - %Vz)\T%P
=7z, w)" (=Vy"h(u) — Vy"h(u)p) — %pTVQAT%p
> —y"h(z) +y"h(u) = %PTV@T}L(“)Z) = %p TVQAT%ZD
2 ~y"h(z) = 5P 2 TLZ;

et

(The last inequality follows from the constraints of (MEFP), and (MMFD),.)
Therefore the result hold. O

Theorem 2.9 (Weak Duality) Let z be feasible for (MFP) and (u,y, A, p)
be feasible (MMEFD). If f and —g are second order invex with respect to n

and h 1s second order invex with respect to 1, then

£ o 2{2’”9@0]

Proof. 1t follows on the lines of Theorem 2.1. O
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Theorem 2.10 (Strong Duality) If T is an efficient solution of (MFP),
then there evist y € R™ and A\ € R* such that (Z,y,\,p = 0) is feasible
for (MMFD), and the corresponding values of (MFP) and (MMFD) are
equal. If f and g are second order invex with respect ton and h is second order

invex with respect to 7, then (T,y, A\, p) is an efficient solution of (MMFD).

Proof. 1t follows on the lines of Theorem 2.6. O

Theorem 2.11 (Converse Duality) Let f, g and h are three times differ-

entiable and let (Z,7, \,p) be a solution of (MMFD),. Suppose that

(i) the n x n Hessian matriz V. [szT% + V2L h(z)| p is positive or
negative definite,
(ii)VyLh(z) + V2yL h(zZ)p # 0 and
(i) the vectors
v D) St =1

9(T)

are linearly independent, where [szT%] j 1s the jth row of [szT%] and
(V2T h(z)]; is the jth row of [V*yT h(T)].

Then (Z,7,\,p = 0) is an feasible solution of (MMFD),, and the objective
values of (MFP)y and (MMFD), are equal there. If also, f and —g are
second order invexr with respect to n and h is second order invex with respect

to ) then (Z,7, \,p = 0) is an efficient solution of (MMFD),.
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Proof. Since (T, 7, \, p) is a solution of (MMFD),, by the Fritz John neces-

sary conditions [51], there exist « € R, 3 € R", vy € R, p € R™ and w € RF
such that

(i)

+47 {szTh(f) +V (Vg h(@)p+V AT% v (V AT%)ﬂ

< {VgTh(f) £ %]_)TV(V2§Th(T))Z_9] =0, (2.37)

g7 {Vh(f) e Al £ {h@) | %ﬁTvz h@p] 108 Y
- B(—fi %_T( ﬁﬁfi) ] 6 { % +V2%ﬁ] Cw = (2.:39)

_ ~r f(7) T2 T s f(T)
o[ v e e e
—y {—szTh(f)]_)} =0, (2.40)
T | o=T} (= 2T ﬂ 7 [(T)
3 {Vy WT@) + VG h(T)P + VA e + V2 g(aj)p] =0, (241
I
3 |i i) - 57T @] =0, (2.42)
'y =0, (2.43)
w'X =0, (2.44)
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(a, B, 7, psw) 2 0, (2.45)

(a, 3,7, p,w) # 0. (2.46)

Since {{szT@] , [szTh(f)L.,j =1,--- ,m} are linearly independent
J
at (Z,7,\, D), then (2.44)gives
ap+ =0 and ~p+(=0. (2.47)
Multiplying (2.42) by 7 and then using (2.46) and (2.47), we have

BEIVY h(T) + V5" h(z)p] = 0. (2.48)

Using constraints in (2.41), we have

e

+(vp + B) [V R(E) = V (V27" h(T))D)]

+(o =) [VT h(T) + (V5 h(T)D)]

A es(ern)] s e

Using (2.51), (2.53) gives

(=) |V b+ (P hm)| +557 |7 (VA L v (w5 Jo| <o

(2.50)
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Multiplying (2.54) by 87 and using (2.52), we have

s {v (VzXT% + szTh(f))T?] s =0.

\Y szT% + szTh(T)}]_) is positive or negative definite, it follows that

B =0.

Using # = 0 in (2.54), we have
(@ =) | VT (@) + (VT h(@)D)| = 0. (2.51)

Because of the assumption (ii), this gives
a = 9.

If @ =0 then v = 0 and so from (2.42) and (2.43) and 3 = 0, it follows that
p = w = 0. Therefore («, 3,7, p,w) = 0 which contradicts (2.50). Hence
a > 0 and from (2.55), v > 0. Using vy >0, « >0and §=0, (2.51) yield

7=0

This gives
@) f@) g [T
AT R R e

Using v > 0,5 =0 and p = 0, (2.42) gives

h(z) < 0.
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Thus T is feasible for (MFP), and the object functions of (MFP), and
(MMFD), are equal. f and —g are second order invex with respect to 7

and h is second order invex with respect to 7, then by Theorem 2.9, 7 is an

efficient solution for (MFP),. O

36



Chapter 3

Higher Order Duality in Nonlinear

Programming with Cone Constraints

3.1 Introduction

We consider the following nonlinear programming problem:

(P) Minimize FeE)

stibject to g (z) > 0,

where f : R” — R and g : R® — R™ are twice differentiable functions.

The first order Wolfe dual proeblen [81] is

(D1) Maximize  f(u) — y g(u)
subject to V. f(u) — Vylg(u) =0,

y > 0.

The Mangasarian second order dual [52] is

(D2) Maximize  f(u) ~ y"glw) ~ 3p V71 () ~ 3 glw)lp

subject to  V[f(u) =y g(u)] + V?[f(u) — y"g(u)]p =0,
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Several approaches to duality for (P) may be found in the literature. These
include the use of the first order dual [12, 16, 22, 23, 28, 33, 36, 78, 79] and
second order dual [24, 66] to establish duality theorems.

Higher order duality in nonlinear programming has been studied by many
researchers [52, 57, 58, 65, 85]. By introducing two differentiable functions
h:R"xR"— R and k : R" x R" — R™, Mangasarian [52] formulated the

higher order dual

(HD1) Maximize f(u) + h(u,p) — yFg(u) — y" k(u,p)
subject o Vyh(ik p) = Vy(u Tk (u, ),

1> O

where V,h(u,p) denotes the n x 1 gradient of h with respect to p and

V,(yTk(u, p)) denotes the n x 1 gradient of 4k with respect to p.

Mangasarian, however, did not prove a weak duality theorem for (P) and
(HD1) and only gave a limited version of strong duality. In [63], Mond and
Weir gave the conditions for which duality holds between (P) and (HD1).

They also consider other higher order dual to (P):
(HD) Maximize  f(u) + h(u, p) — p* V,h(u, p)
SU-bjeCt to Vph'(u7p) = Vp(ka(u>p))>

y g(u) + y k(u, p) — p"V(y" k(u, p)) <0,

y=>0.
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Mond and Zhang [65] obtained duality results for various higher order
dual programming problems under higher order invexity assumptions. Later
on, under more general invexity-type assumptions, such as higher order type-
I, higher order pseudo-type-I or higher order quasi-type-I conditions, Mishra
and Rueda [57, 58] gave various duality results, which included Mangasarian
higher order duality [52] and Mond-Weir higher order duality [63] as special
cases. Chen [15] also discussed the duality theorems under the higher order
F-convexity (F-pseudoconvexity, F-quasiconvexity) for a pair of nondiffer-
entiable programs.

In this chapter, we present Mond-Weir and Wolfe type higher order pro-
gramming problems with cone constraints and prove weak, strong and con-
verse duality theorems under generalized convexity and invexity assumptions.
These results are the extension of higher order duality relations due to Zhang
[85]. And we formulate a Fritz John higher order programming problem by
using Fritz John [51] necessary optimality condition instead of Karush-Kuhn-
Tucker one [51] and establish weak, strong, and converse duality theorems.

Thus, the requirement of a constraint qualification can be eliminated.

3.2 Notations and Preliminaries

We consider the following multiobjective programming problem:

(KP) Minimize f(z)

subject to —g(x)eqQ, zeC,
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where f : R* — R* ¢g:R"” — R™ and C C R”, Q is a closed convex cone
with nonempty interior in R™.

We shall denote the feasible set of (KP) by S = {z| —g(z) € Q,z € C}.

Definition 3.1 The polar cone K* of K s defined by

K'={zeR" | 272<0 forall z€K}.

The following definitions are due to Preda [69] and Mond and Zhang [65].

Definition 3.2 Let C' CR™ be open, [ : C — R be a differentiable function.
(i) f is said to be higher order invez if there exists a functionn : C xC — C,

for all x,u € C,

(@) = fu) = nla,w)" Vyh(up) + bu, p) — p" Vyph(u,p).

(ii) f is said to be higher order pseudo-invez, if there exists a function n :

CxC—C, forall x,u e C,
n(, u)"Vyph(u,p) < 0= f(x) = f(u) = h(u,p) + p" V,h(u,p) > 0.

Let F': R x R" x R™ — R be a sublinear functional, the function f =
(fi, -+, fr) : R" — R* a twice differentiable at u € R", p = (p1,--- pp) € R¥

and d(-,-) a metric on R".

Definition 3.3 The function f is said to be (F,p)-convex at u, if for all
r €S,
f(x) = f(u) =2 Fz,u; Vf(u) + pd(z,u).
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This function f issaid to be strongly F'-convex, F'-convex or weakly F-convex

at u according to p >0, p=0,0r p <0.

Definition 3.4 The function f is (F, p)-quasiconvex at u for all x € S,
flx) £ fu) = F(z,u; Vf(u) £ —pd(z, u).

This function f is said to be strongly F-quasiconvex, F-quasiconvex or

weakly F'-quasiconvex at u according to p > 0, p=0, or p < 0.

Definition 3.5 The function f is said to be second order (F, p)-convex at u

and p, if for all x € S

£() = )+ 5"V H(Wp 2 Ee, iAW) + V*H(0)p) + pi(z, ).

This function f is said to be strongly second order F'-convex, second order
F-convex, ora weakly second order F-convex at u and p, according to p >

0, p=0orp<0.

Definition 3.6 The function f is said to be second order (F, p)-quasiconvex

at u and p, if for all x € S

() £ f(u) = V2 () = F(o, 05V f () + V2 f0)p) £ —pd(,u).

This function f is said to be strongly second order F-quasiconvex, sec-
ond order F-quasiconvex, or weakly second order F-quasiconvex at v and p,

according to p >0, p=0or p <0.

41



Definition 3.7 The function f is said to be second order (F, p)-pseudonvex
at u and p, if for all x € S

F(a,us V. (u) + V2 () 2 (s, 0) = f(2) 2 () = 3"V Fu)p.

This function f is said to be strongly second order F-pseudonvex, sec-
ond order F-pseudonvex, or weakly second order F-pseudonvex at u and p,

according to p >0, p=0or p <0.

Note that second order (F, p)-convexity, second order (F), p)-quasiconvexity
and second order (F) p)-pseudonvexity imply, respectively, first order (F, p)-
convexity, (F, p)-quasiconvexity and (F, p)-pseudonvexity since the respective

inequalities must hold for p = 0.

3.3 Mond-Weir Type Higher Order Duality

In this section, we propose the following higher order multiobjective pro-

gramming problem,
(MCP) Minimize f(z)
subject to —g(x) € C5, €y,
and the Mond-Weir higher order multiobjective dual
(MMCD) Maximize  f(u) + (A'h(u,p))e — p" V(A h(u, p))e
subject to V(AT h(u,p)) = V(v k(u, p)), (3.1)

9(u) + k(u, p) — p" Vpk(u,p) € C3,
yeCy A>0, Me=1,
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where

(1) f:R* =Rl g:R* — R™ are differentiable functions,

(2) Cy and Cy are closed convex cones in R™ and R™ with nonempty

interiors, respectively,

(3) Cf and C3 are polar cones of Cy and Cy, respectively,

(4) e=(1,---,1)7 is vector in R,

(5) h:R"xR"™ — R!'and k : R" x R™ — R™ are differentiable functions;

V,(hj(u,p)) denotes the n x 1 gradient of h; with respect to p, and

Vo(yTk(u, p)) denotes the n x 1 gradient of y7k with respect to p.

Now we establish the duality theorems for (MCP) and (MMCD).

Theorem 3.1 (Weak Duality) Let = be feasible solutions of (MCP) and

(u,y, \,p) feasible for (MMCD). Assume that
(@) n(z, u)" (VoA h(u, p))) 20
= M f(z) 2 A f(u) + AT h(u,p)) = p" V(AT h(u, p))

—n(z,u)" (Vp(y"k(u,p))) 2 0

= —y"g(z) > —y"g(u) — (y"k(u,p)) + p" Vo (y"k(u, p)); or

(it) fi(w) = fi(w) = D (u, p) + p"Vph;(u, p)
%F($>u;vphj(u>p))+p1jd($>u)> ] = 17 >l and
—gi(x) — gi(u) + ki(u, p) — "V ,ki(u, p)

%F($>u;vpki(u>p))+p2id($>u)> 2217 , M
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(111) AT f(z) —y"g(z) = [N f(u) — y"g(u)]

—[ATh(u, p) =y k(u, p)] + p" V(AT h(u, p)) — Vo (y"k(u,p))]

= F(w,u; V(A h(u, p)) — Vp(y"k(u,p)) + pd(z, )
such that p = 0; or

(iv) F(z,u; V(A h(u,p))) 2 —prd(z, u)

(3.6)

= M f(x) = AT f(u) — (NTh(u, p)) + p"V (VAT h(u,p)) = 0 and (3.7)

—[y"g(x) — yTg(u) — y"k(u,p) + p" Vp(y k(u, p))] £ 0
= F(z,u; —Vp(y"k(u, p))) < —pod(z;u)

such that po+ p1 = 0
for all feasible (x,u,y, A\, p), then
fl@) & f(u) + (AT h(u, p)le=p' V,(\ h(u,p))e.
Proof. (i) Assume to the contrary that
fl@) < flu) + (A h(u,p))e = p' V(A h(u, p))e.

Since \; >0 (i =1,---1),

N f(a) < AT f(u) + (A h(u, p) = p" V(X h(u, p)).

This in view of (3.2),
n(z,u)" (Vy(A h(u, p))) < 0.

From the constraints of (MCP) and (MMCD),

y (@) =y g(u) + (¥ k(u,p)) — p" Vu(y" k(u, p)).
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By condition (3.3),

(@, )" (Vyly k(u, p))) > 0. (3.12)

Combining (3.10) and (3.12), we have
(@, u)" (VoA h(u,p)) = Vp(y"k(u, p))) <0,
which contradicts (3.1). Hence
fla) £ f(u) + (ATh(u, p))e = p"V,(ATh(u, p))e.

(ii) Since x and (u,y, A, p) are feasible for (MCP) and (MMCD), respec-

tively. Subtracting (3.11) from (3.9) and rearranging yields

N f () = A () = (AT h(usp)) + p* V(A h(u, p))

—[v"g(z) — yTg(u) — @ *(u,p) + p"V, (¥ k(u,p))] < 0
By multiplying (3.4) by X; > 0, (3.5) by y; € C5, then

NCf(x) = AT f(u) = (ATh(u, p) + p" V(A h(u, p))

= P, u; V(A h(u,p)) + S, Apuyd(a,u) - (3.13)

—yTg(x) +y"g(u) + y"k(u, p) — p" Vy(y"k(u, p))

> P, u; =V, (5 k(u, p)) + S0 yopaid(, u) (3.14)
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Summing (3.13) and (3.14), and using sublinearity of F(x,u;-), we have
0 > [N fx) = AT fu) = N h(u, p) + p" V(AT h(u, p))]

— [y g(x) — y"g(w)9y" k(u, p) + p" Vo (y k(u, p))]

! m
= F(x,u; VoA h(u,p) = Vy(yk(u,p) + (O Niprj + Y yipai)d(z,w),
j=1 i=1

which is a contradiction since(3.1), F'(z,u;0) = 0 and (Zgzl Niprj+d iy yi,ogi) >

0.
(iii) Subtracting (3.11) from (3.9), then yield

N f(2) =y g(x) < A fu) = y"gu) + N (u, p) — y" k(u, p)
—p" V(AT (u,p)) — Vp(y"k(u, p))]-
From the assumption (iii),
0 > ATf(2) —y"g(x) — (N f(w) = y"g(w)] =[N h(u,p) — y"k(u,p)]
—p" V(A h(u, ) — Vyly" k(u, p))]
= F(x,u; V(N h(u, p)) = V,(y"k(u, p))) + pd(z, u)

such that p = 0.
It follows that

F(,u; V(A h(u, p) = Vyp(y"k(u, p))) < —pd(z,u). (3.15)

Hence F'(x,u;0) = 0 and (3.15) imply that pd(x,u) < 0, which contradicts
p=0.

(iv) From A; > 0, we have (3.9), then the assumption of (3.7) gives
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F(2,u; V(A h(u,p))) < —prd(z,u). (3.16)
And (3.11) gives
F(z,u; =V,(y" k(u,p))) < —pod(z,u). (3.17)
Hence (3.16), (3.17), the sublinearity of F' and p; + pp = 0 then imply
F(,u; V(A h(u, p) = Vyp(y" k(u,p))) <0,
which is a contradiction since F'(z,u;0) = 0. O

Lemma 3.1 [45] If © is an efficient solution of (MCP), then there exist

a =0 andy € Cy not both zero such that

[VoT f(z) + BTV g(Z)] (z w@) =0,  for all z € C),
3Tg(z) =0.

Equivalently, there exist « € K*, § € Q* and #; € C*, (N, 5,51) # 0 such
that
o'V f(@) + BTVg(T) - BT =0,

Proof. (Sufficiency) Substituting x = 0 and z = 27, we get

(@"V f(@) + BTVg(@)T = 0.
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Since o'V f(T) + 8TVy(T) € C*, let 1 = o'V f(T) + 51 Vy(T).
o'V (@) +B"Vg(@) -6 1=0,

37g(T) =0,

(Necessity) Since oTV f(T) + TVg(Z) = 31 € C*, we get

('Vf(@)+ B'Vg(@)r =20, forall zeC,

and
iz = (" W (@) + 5"Ng(3))T = 0.

Therefore,
(aTVf(z) +'3IVg(T) ) —x) B0, #for all 1€ C,

ATg(T) = 0. O
Theorem 3.2 (Strong Duality) Let T be an efficient solution for (MCP)
and let

h(z,0) = 0, K(z,0) =0, V,h(z,0) = VI(z), V,h(z,0) = Vg(z). (3.13)

Then there exist A 2 0 and y € Cy not both zero such that (Z,y, \,p = 0) is
feasible for (MCD) and the corresponding values of (MCP) and (MCD)
are equal. If for all feasible (T,u,y,\,p), the assumptions of Theorem 3.1
are satisfied, then (T,y,\,p = 0) is efficient for (MCD).
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Proof. Since T is an efficient solution of (MCP), then there exist A =0
and y € C5 such that

(VAT f(@) + y" V@) (x —F) 20, forall zeC (3.19)

and

vy g(T) = 0. (3.20)

Since x € ('}, T € C} and (' is a closed convex cone, we have x + 7 € (C}

and thus the inequality (3.19) implies
(VAT £(Z) 4" V(@) Tz 20 forall z € Cy.
By letting z = 0 and = = 27 in (3.19), we obtain
[V f(@) + y' V(@) = 0.
And (3.20) implies y? g(T) = 0, then
—g(z) € C5.

Clearly (Z,y, A\,p = 0) is feasible for (MCD) and corresponding values of
(MCP) and (MCD) are equal. If the assumptions of Theorem 3.1 are
satisfied, then (Z,y, A, p = 0) must be efficient solution for (MCD). O

Theorem 3.3 (Converse Duality) Let (7,7, \,p) be an efficient solution
of (MMCD). Let the condition of (3.18) be satisfied. Assume that

(i) the matrix
Y, [V 1(@) + VX (@ B) + Vi 9(7) + V(5" k(T )
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1s positive or negative definite and

(ii) the vectors

{Vixihi(f@)}i:h,J and {V>k;(T,p)}

j=1,,m

are linearly independent.
If the conditions of Theorem 3.1 hold, then T is an efficient solution for

(MCP).
Proof. Since (7,7, A, p) is an efficient solution for (MMCD), by lemma
3.1, there exist « € R, €01, v€ Oy, § €C; and € € R! such that
—Vf@a = (a7e)[V A h(@P)— Y (VX h(F, )z
~[V(V,(\ (@ 7)) + U Vald k(= 7)))]3
—'[Vg(T) + VE@.B) — 7' V(V,k(Z,D))] = 0,(3.21)
((aTe)p — B)' VAN (& p) + (+7P — 879) Vik(z,B) = 0, (3.23)

—(a"e)[(@,p) — ' V,M(T,D)] — BT [V,h(Z, P)] - £ =0, (3.24)

BTV, (N B(EB) + V(T k(T 5))] = 0, (3.25)
vlg(@) + k(T,p) — P V,k(Z,P)] = 0, (3.26)
Ty =0, (3.27)
&'A=0, (3.28)
(a,3,7,6,€) <0, (3.29)
(a,3,7,6,8) # 0. (3.30)
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{V2A hi(Z, D) }imt,. s and {V2E;(T, D) }j=1,... m are linearly independent, then
(3.23) gives
(a’e)p— 3 =0 and 7p — By = 0. (3.31)

Multiplying (3.22) by % and using (3.27)
—3"V, (7" k(Z,p)) = 0. (3.32)
Using (3.31) in (3.21), we have
—ol'[Vf(@) + Vh(az,p)] — 1 [Vg(T) + Vk(Z,p)] = 0. (3.33)
Multiplying (3.33) by 7 and using (3.31) gives
—(@T e VATf(T) + VA h(E,B)] +BLINVT 9(@) + T k(T, D) = O,
that is
BTV f(T) + VX W@, B) + Vi 9(@) + VI (TP =0.  (3.34)
Differentiating (3.32) with respect to p yields
BTV, VN f(F) + V(N T D) + Vi g(@) + V§Tk@,P)] =0.  (3.35)
Multiplying (3.35) by 3, we get
BT,V @) + V(N Wz, B)) + VI 9(T) + V(7 k(. 5)))8 = 0.

VXTf(T) + V(XTh(E, P)) + Vylg(m) + V(@ k(z,p)) is positive or negative
definite,
p=0. (3.36)
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Hence (3.31) yields
(a’e)p=0 and 7p = 0.

If « =0 and v = 0, then (3.22) and (3.24) gives £ = 0 and 6 = 0, which
contradicts (3.28). Hence
p=0. (3.37)

Using (3.36) and (3.37), (3.26) yields
T (= e =g = .
v [9(Z) +k(Z,0) — b Vpk(Z,0)] = 0.

From (3.18), v7g(%) = 0 implies v ¢(Z) = 0. Since v € Cy then —g(T) € Cj.
The corresponding value of (MICP) and (MMCD) are equal because p = 0
and (3.18). If the conditions of Theorem 3.1 are satisfied, then T is an efficient

solution for (MICP). O

3.4 Wolfe Type Higher Order Duality

In this section, we propose the following Wolfe type higher order multi-
objective dual problem to the primal problem (MCP):
(MWCD) Maximize  f(u) —y g(u)e + ()\Th(u,p) — ka:(u,p)) e
—p" (VA h(u,p) = Vyy"k(u,p)) e
subject to V,(ATh(u, p)) = Vy(y"k(u, p)), (3.38)

yECg, )\%0,
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Now we establish the duality theorems for (MCP) and (MWCD).

Theorem 3.4 ( Weak Duality) Let z be feasible solutions of (MCP) and
(u,y, \, p) feasible for (MWCD) and A > 0(A\Te =1). Assume that

(i) AT f(z) = AT f(u)
= n(z, u)"V,(ATh(u, p)) + A h(u, p) — p" V(A" h(u, p)) (3.39)
y'g9(x) =y g(u)
<z, u) 'V (y"k(u,p) +y k(u,p) = p"Vy (Vo k(u, p)); or (3.40)
(@) n(z, )" (VA h(u,p) = y"k(u,p)) 2 0
= A f(x) —y"g(z)
= M f(u) — y" glu) + (X Wy p) =y k(u, )
—p" V(X h(u, p)) = Vipy"k(u. p)] ; or (3.41)
(i1) ATf(2) —y" glw) — (N f(w) = y"g(u)) = (A" h(u,p) — y"k(u,p))
+pT [V (A h(u, ) = V,(y" k(u, p))]
= F(z,u; V(X h(u, p)) = Vy(y"k(u, ) (3.42)

such that p =0,

then

flx) & flu) —y"g(u)e+ (A h(u,p) — y"k(u,p)) e

_pT (Vp)‘Th(%p) - prTk(uap)) €.
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Proof. (i) Assume to the contrary that

flx) < flu) =y g(u)e+ (N h(u,p) — y" k(u,p)) e

_pT (Vp)\Th(u,p)) - prTk(uap)) €.
Since \; >0 (i =1,---1),

M f(x) < N f(u) =y g(u) + (N h(u,p) — y"k(u,p))

—p" (VpATh(u. p)) = Viy"k(u, p)) - (3.43)
By the conditions (3.39) and (3.40),

N f(x) —y"g(x) = NEf (u) + v gluw)
> n(z,u)” (Vp(A hu, p)) — Vp(y k(u, p)))

+ATh(u, p) =y k() = pEVRA h(u, p)) = V(4 k(u, p)).
From the constraints of (MCP) and (MWCD),

N f(x) = X f(u) =y g(u) + X h(u, p) — y" k(u, p)

=" (VX' h(u,p)) = Vy(y"k(u,p))) ,

which contradicts (3.43).
(ii) From (3.43), and the constraints of (MCP) and (MWCD),

N f(z) =y g(@) < AT f(u) — y"g(uw) + X h(u,p) — y"k(u,p)

=" (Vo (X' (u,p)) = Vp(y"k(u, p))) - (3.44)
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From (3.41), we obtain

n(z,u)" (VA" h(u, p)) — Vy"k(u, p)) <0,

which contradicts (3.43). Hence the result hold. (iii) By (3.44)

0> N f(z) =y glx) = X f(u) +y"g(u) — (\"h(u,p) — y"k(u,p))
+p" (Vp(ATh(u, p)) = Vo(y k(u,p))) -

= F (2,43 V(A h(u, p) = Vp(y"k(u, p))) + pd(z, )

such that p = 0. It follows that
F (z,u; V(A"h(u, p)) = Vp(y" k(usp))) < —pd(z,u). (3.45)

Hence F(x,u;0) = 0 and (3.45) imply that pd(x,u) < 0, which contradicts
p=0.

Theorem 3.5 (Strong Duality) Let T be an efficient solution for (MCP)
and (3.18) is satisfied.

Then there exist A\ = 0 and y € Cy not both zero such that (T,y,\,p =
0) is feasible for (MWCD) and the corresponding values of (MCP) and
(MWCD) are equal. If for all feasible (T,u,y,\,p), the assumptions of
Theorem 3.4 are satisfied, then (T,y, \,p =0) is efficient for (MWCD).

Proof. It follows on the lines of Theorem 3.2. O
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Theorem 3.6 (Converse Duality) Let (T,7, \,p) be an efficient solution
of (MWCD) and let the condition of (3.18) be satisfied. Assume that

(i) the matriz
v, [V f(@) + V(X bz, 5)) - VI©9(@) - V(7" k(. D))

s positive or negative definite and

(ii) the vectors

{ViXihi(Z,P)}, . and {7 k;(T,P) }

Jj=l;:--;m

are linearly independent.
If the conditions of Theorem 5.4 hold, then % is and efficient solution for
(MCP).

Proof. Since (T, 7, A, p) is an efficient solution for (MWCD), by lemma 3.1,

there exist o € R!, 8 € R", v € O3 and § € R such that
~Vf@a+(a"e)Vi'g(@) = (a"e)V (X h(z.p) - 7 k(D))
T T ST, T (— —
+((@’ep+8)" |V (VA h(@.p) = V" k(@ p)) | =0, (3.46)

(a’e)(g(x) + k(@ D)) — (@' e)p+ B)' V,k(T,P) =y =0,  (3.47)

((”e)p+ B)" (V2N h(z,5)) - V3T k(T 7)) =0, (3.48)
—(a”e)h(z,p) + ((aTe)p+ B)'V, (T, p) — 0 =0, (3.49)
87 (Vo' h(z. ) = V(7 k(E.B))) = 0. (3.50)
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) (3.51)

sTX =0, (3.52)
(a,3,7,6) >0, (3.53)
(a, 3,7,6) # 0. (3.54)

{VZXihi(z,p)},_, . ,and {Vik;(z, ﬁ)}jzl ... are linearly independent, then
(3.48) gives

(@"e)p+ 5 =0. (3.55)

Multiplying (3.47) by 77 and using (3.51) and (3.55)
(o) g(z) + 7k(®:p) = 0. (3.56)
Using (3.55) in (3.46), we have
~VI@a+ (") V7 g(@) = (a'e) (V' h(z,p)) ~ V(F"k(E. ) = 0.

(3.57)
Multiplying (3.57) by p and using (3.55),

~(@"e)p" VA" f(@)+(a” )V (@)~ (a" )" (VA h(z.P) - VF'k(Z.)) = 0.
that is

BTV f(@) + VN h(@.P) - Vi 9(@) — Vi K@P) = 0. (3.58)
Differentiating (3.58) with respect to p yields

BV, VX f(Z) + VN W(E, D) — VI 9(T) — VI E(E,P)] = 0. (3.59)
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Multiplying (3.59) by /3, we obtain
87V, IVX f(@) + V(N BT ) — VI 9(T) — VT k(. B))5 = 0.

vV, [VXT f(@) + V(XTh(T, P)) — Vil g(T) — Vi k(Z,p)] is positive or negative
definite,
3 =0. (3.60)
Hence (3.55) yields
(a’e)p= 0.
If « = 0, then from (3.47) and (4.49), we get v = 0 and § = 0, which

contradict (3.54). Hence
(3.61)

iS]
I
=

Using (3.61), (3.56) yields
(ae) @Tg(f) (7, 0)) = ™

From (3.18), 37 g(%) = 0 implies ¥ g(T) = 0. Since § € Cy then —g(T) € Cj.
Since p = 0 and (3.18), the corresponding value of (MCP) and (MWCD)

are equal. If the conditions of Theorem 3.4 are satisfied, then 7 is an efficient

solution of (MCP). O

Remark 3.1 If C;=R" and C; = RT,

(i) h(u,p) = pI'V,f(u), k(u,p) = p'Vg(u), then our higher order dual
programs become first order dual programs [81], and

(i) h(u,p) = p"V,f(u) + 30" V2f(W)p, k(u,p) = p"Vg(u) + 59" Vig(u)p,

then we obtain second order dual programs in [52].
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3.5 Fritz John Higher Order Duality with Cone

Constraints

In this section, we consider the Fritz John higher order programming prob-
lem and establish weak, strong and converse duality theorems using Fritz
John [51] necessary optimality conditions instead of Karush Kuhn-Tucker

[51].
We propose the following nonlinear programming problem,

(FCP) Minimize f(x)

subjeet to | glz) € C3, x¢ Ch,

and its Fritz John higher order dual

(FCD) Maximize  f(u) + h(u,p) — p* V,h(u,p)
subject to — YVph(u,p) +V,(y" k(u,p)) = 0, (3.62)
—(g(u) + k(u,p) = p" Vyk(u,p)) € C5,

yeCy, yER, (v,y) #0,

where

(1) f:R" - R and g:R" — R™are differentiable functions,
(2) €y and Cy are closed convex cones in R™ and R™ with nonempty

interiors, respectively,
(3) Cf7 and Cj are polar cones of Cy and Cs, respectively,
(4) h:R"xR" — Rand k: R" x R" — R are differentiable functions;
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V,(hj(u,p)) denotes the n x 1 gradient of h; with respect to p, and

Vo(yTk(u,p)) denotes the n x 1 gradient of y*'k with respect to p,

respectively.

Now we establish the duality theorems for (FCP) and (FCD).

Theorem 3.7 (Weak Duality) Let x be feasible solutions of (FCP) and
(u,y, \,p) feasible for (FCD). Assume that f be an higher order pseudo-

invex and y*g be an strictly higher order quasi-invex with respect to same 1

for all feasible (v, x,u,y, \,p), then

F@) > fu) +y"g(w) + (A h(u, p) +y" k(u, p))

—p" (VAT h(u, p)) =+ Vpy " k(u, p)) .
Proof. Suppose that
f@).< fu) + hulp) — p"Vh(u, p). (3.63)
This in view of higher order pseudo-invexity of f(-) yields
n(x,u)"'V,h(u,p) < 0.

Thus
n(@,w) Y Vyh(u,p) < 0. (3.64)

From the constraints of (FCP) and (FCD),

y (@) < y"g(u) + y k(u,p) — p" Vo(y k(u, p)).
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By strictly higher order quasi-invex of y”¢ assumption,
n(x, w) 'V, (y" k(u, p)) < 0. (3.65)
Combining (3.64) and (3.65), we have
0z, w) [YVph(u, p) + Vy(y k(u, p))] <0

which contradicts (3.62). Hence

f(z) = f(u) + h(u,p) — p" Vph(u, p).

That is
inf(FCP) > sup(FCD).

O

Theorem 3.8 (Strong Duality) If @ is an optimal solution for (FCP)
and let

h(Z,0) =0, k(Z,0)=0, V,A(T,0)= V@), V,kZ0)=VgE). (3.66)

Then there exist v € Ry and y € Cy such that (v, Z,y,p = 0) is feasible for
(FCD) and the corresponding values of (FCP) and (FCD) are equal. If
the assumptions of Theorem 3.7 is satisfied, then (v,T,y,p = 0) is optimal
solution for (FCD).

Proof. Since T is an optimal solution for (FCP), by lemma 3.1, there exist

v € Ry and y € Cy with (v,y) # 0 such that

y () =0
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and

W@ +Vylg@)]| (z—7) =0 forall ze€C. (3.67)

Since x € C} and (' is a closed convex cone, we have x + 7 € (4 and thus

the inequality (3.67) implies
Vi@ +yTg(@)] e = 0. (3.68)
By letting z = 0 and = = 27 in (3.68), we obtain

WV (@) +y g(@)] = 0.

By (3.66),
’vah(fvp) i Vp(ka(f> p)) = @

From y%g(Z) = 0 implies y” ¢(7) < 0,
9(7) € Cy

Thus, (v,Z,y,p = 0) is feasible for (FCD), and corresponding values of
(FCP) and (FCD) are equal. If assumptions of Theorem 3.7 are satisfied,

then (7,7, y,p = 0) must be an optimal solution for (FCD). O

Theorem 3.9 (Converse Duality) Let (7,7, \,p) be an optimal solution
of (FCD). Let the condition of (3.66) is satisfied. Assume that
(i) the matrix

VVo(VA(Z, D) + Vy k(Z,D)) — Vo(7h(Z. D) + ¥y k(T D))
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1s positive or negative definite and

(ii) the vectors

—T _ .
{V2oX hi(Z, D) Yim1, 0 and {V2y"k;(T,D) i1, m

are linearly independent.
If the conditions of Theorem 3.7 hold, then X is an optimal solution for

(FCP).

Proof. Since (T, 7, A, p) is an optimal solution for (FCD), by lemma 3.1,
there exist « € Ry, B € RY, pe Uy, §€ C5 and w € Ry such that

~a [Vf(@) + Vh@ D) = p" UV k(T D))]

+87 [vVoh(&, D) + Vpdy K. D)

—p [Vy(2)+ VE(@&D) = p' V(V,k(T,P))] =0, (3.69)

BT (V,pk(Z,p)) =6 =0, (3.70)
(ap +v8)" V(T D) + (pp) + B yVok(T, D) = 0, (3.71)
BT [Vph(z,p)) = w =0, (3.72)
BT [vWVh(@.P) + Vuy k(7. P)] =0, (3.73)
—p [9(x) + k(T,p) — ppk(z,D)] = 0, (3.74)
6Ty =0, (3.75)
wy =0, (3.76)
(a,3,p,0,w) #0. (3.77)
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Since V2h(Z,p), V2k(T,p) are linearly independent, then (3.71) gives
ap+v6=0 and pp+ By =0. (3.78)
Multiplying (3.70) by y* and then using (3.75),
B [Vo(y" k(@ B)] = 0. (3.79)
Using (3.78) in (3.69), we have
~a[Vf(@) + VM, D)| - p" [9(Z) + VE(Z,D)] = 0. (3.80)
Multiplying (3.80) by p and using (3.78), we obtain
BT WV @)+ Vh@ D) + Vite(®) + Vy k(T,p)] =0,
that is

BT YV f(®) + Vi@, p) $9Vph(z, D)

=V k@, p) + Vy'g@) + Vy'k(z,p)] =0. (3.81)
Differentiation (3.81) with respect to p yields
B [VWVu(Vh(z,p) + Vy k(T,p)) — Va(vh(T,p) + y" k(T,p))] = 0. (3.82)

Multiplying (3.82) by [, we get

B [WV(VR(ZP) + Vy' k(T D)) = V,(Yh(T, D) + y"k(z,P))] B = 0.
Assuming that condition (i), it follows that
p=0. (3.83)
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Hence (3.78) yields

ap=0 and pp = 0.

If « =0 and p = 0 then (3.70) and (3.72) give § = 0 and w = 0. Hence
(o, B, p,6,w) = 0, which contradicts (3.77). Hence

p=0. (3.84)
Using (3.83) and (3.74) yield
p [9(T) + k(Z,0) — p"V,k(z,0)] = 0.
pg(T) = 0 implies pg(7) < 0. Since p € Csy, then
9(z) € C3.

Hence 7 is feasible for (FCP) and since p = 0 and A(7,0) = 0, the objective
values of (FCP) and (FCD) are equal. If assumptions of Theorem 3,7 hold,

then 7 is an optimal solution of (FCP). O

Remark 3.2 If C; = R", C, = R, h(u,p)p" V,pf(u) + 5" V2f(u)p and
k(u,p) = pt'Vg(u) + %pTvzg(u)p, then we get Fritz John second order dual

programs studied by Husain et al. [32].
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Chapter 4

Second Order Non-Differentiable Symmetric
Duality for Multiobjective Programming

Programs with Cone Constraints

4.1 Introduction

In the literature of mathematical programming there are a large number

of papers discussing duality theory for a problem involving the square root of

a positive semidefinite quadratic function, V&7 Bx. The square root of a pos-
itive semidefinite quadratic form is one of the few cases of a non-differentiable
function for which one can write down the sub or quasi differentials explic-
itly. Mond and Schechter [60] replace VT Bz by a somewhat more general
function, namely the support function of a compact convex set, for which the
subdifferential may be simply expressed.

Suneja et al. [74] formulated a pair of multiobjective symmetric dual
programs of Wolfe type over arbitrary cones in which the objective function
was optimized with respect to an arbitrary closed convex cone by assuming
the involved function to be cone-convex. Recently, Khurana [49] introduced
cone-pseudo-invex and strongly cone-pseudo-invex functions and established
duality theorems for a pair of Mond-Weir type multiobjective symmetric

dual over arbitrary cones. Very recently, Kim and Kim [45] studied two
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pairs of non-differentiable multiobjective symmetric dual problems with cone
constraints over arbitrary closed convex cones, which are Wolfe type and
Mond-Weir type.

In the second order case, Mishra [54] formulated a pair of multiobjective
second order symmetric dual nonlinear programming problems under second
order pseudo-invexity assumptions on the involved functions over arbitrary
cones and established duality results. Mishra and Lai [56] introduced the
concept of cone-second order pseudo-invex and strongly cone-second order
pseudo-invex functions and formulated a pair of Mond-Weir type multiob-
jective second order symmetric dual programs over arbitrary cones.

In this chapter, we formulate Mond-Weir and Wolfe type non-differentiable
multiobjective second order symmetric dual problems with cone constraints
over arbitrary closed convex cones. Subsequently, weak, strong, and con-
verse duality theorems for weakly efficient solutions are establish under the
assumptions of second order pseudo-invex functions. And we introduce some

special cases of our results.

4.2 Notations and Preliminaries

Now we will give some definitions and preliminary results needed in next
sections.
Definition 4.1 A nonempty set K in R* is said to be a cone with vertex

zero if v € K implies that Ax € K for all A = 0. If, in addition, K is conver,

then K s called a convexr cone.
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Definition 4.2 A feasible point T is a weakly efficient solution of (K P) if

there exists no other x € X such that f(T) — f(x) € intK.

Definition 4.3 [54] Let f : C1 x Cy — R be a twice differentiable function.

(i) f is said to be second order pseudo-invez in the first variable at u € C4
for fixed v € Cy if there exists a function n, : Cy x Cy — C} such that

forr e CY,

77{(557 U)[fo(uv U) T me(u, U)T] =

= f(z,v) = f(u,v)+ %rTvmf(u,v)r & \).

(ii) f is said to be second order pseudo-inver in the second variable at
v € Cy for fired uw € Cy if there emists a function 1y : Cy X Co — Cy

such that for p € Cs,

1 (Y, 0)[Vyf (u,0) + Vyy f (u,0)p] = 0

1
= f(u,y) = f(u,0) + 5p" Vi f(u,0)p 2. 0,
for all x,u € Cy and y,v € Cs.

f is second order pseudo-incave at u € C; with respect to r € C, if —f is

second order pseudo-invex at u € C with respect to r € C4.

68



Definition 4.4 [60] Let B be a compact conver set in R™. The support
function s(x|B) of B is defined by

s(z|B) := max{zTy : y € B}.
The support function s(z|B), being convex and everywhere finite, has a sub-
differential, that is, there exists z such that
s(y|B) > s(x|B) + 2" (y — z) for all y € B.

Equivalently,

2 =05 (- |
The subdifferential of s(z|B) is given by

0s(x|B) i=4z € B o'z = s(z|B)},
For any set S C R", the normal cone to .S at a point € S is defined by
Ns(z) :={y € R": y' (2 —2) <0 for all z€ S}.

It is readily verified that for a compact convex set B, y is in Np(x) if and

only if s(y|B) = 2Ty, or equivalently, = is in the subdifferential of s at y.
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4.3 Mond-Weir Type Symmetric Duality

We consider the following pair of second order Mond-Weir type non-

differentiable multiobjective programming problem:

(NMP) Minimize K(z,y, \,w,p)
= f(z,y) + s(z|D) — (y"w)e — %[pTVyy(ATf)(:v, y)ple
subject to — [V, )@, y) —w+ Vi N f) (2, y)p € C3, (4.1)

y VN2, y) = w+ V(A (2, )p] 20, (4.2)

z€ Cyw wenl, w)e K " MNe=1 ecintkK,

(NMD) Maximize  G(u,v,\, z,7)
= f{:0) = sQIB) + (" 2)e = ST Faal X ) )1
subject to VO (u,0) + 24 Vo AT ) (u,v)r € CF,  (4.3)
U VoA ) (u,v) 4+ 2+ Ve (AT ) (u,0)r] £0, (4.4)
veCy,, zeD;, NeK*, MNe=1, ecintK,

where

(1) f:R"x R™ — R* is a three times differentiable function,
(2) Cy and Cy are closed convex cones in R™ and R™ with nonempty
interiors, respectively,

(3) C7 and Cj are positive polar cones of C; and Cy, respectively,

(4) K is a closed convex cone in R* such that intK # () and R% C K,
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(5) 1,z are vectors in R", p, w are vectors in R,

6) e=(1,---,1)7T is vector in R¥,

(7) D;and E;(i =1,--- k) are compact convex sets in R” and R™,
respectively.

Let V(AT f)(x,y) and V,(A\T f)(z,y) are gradients of (AT f)(z,y) with re-

spect to z and y. Similarly, V,.(A\T f)(z,y) and V(AT f)(z,y) are the Hes-

sian matrices of (AT f)(z,y) with respect to x and y, respectively.

Now we establish the symmetric duality theorems for (NMP) and (NMD).

Theorem 4.1 (Weak Duality) Let (z,y, \,w,p) and (u,v,\, z,7) be fea-
sible solutions of (NMP) and (NMD), respectively. Assume that,

(i) AT, y) + ()T 'z is second order pseudo-invex in the first variable for
fized y with respect to ny,

(ii) —( AT f)(z,-) + (-)Tw is second order pseudo-invex in the second variable
for fixed x with respect to 1o,

(111) mi(z,u) +u € Cy and mna(v,y) + y € Cy, then

Gu,v, A\, 2,7) — K(z,y, A, w,p) & intK.
Proof. From (4.3) and 7 (x,u) + u € Cy,
(2, w) + ] [VoOL ) (u,v) + 2 4+ Ve (N f) (u, 0)r] 2 0.
From (4.4), it yields
m(x,w)T [VaAT ) (u,0) + 2 + Ve AT ) (u, 0)r] = 0,
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By the second order pseudo-invexity of (AT f)(-,y) + (-)¥2, we have

AT ) (2,0) + 272 — AT f)(u,v) —ulz + %TTVM()\Tf)(u, v)r20. (4.5)
From (4.1) and n2(v,y) +y € Cy,

~[m(v,y) + 9] [V (N f)(@,y) — 0 + Vi (X" f) (2, y)p] 2 0.

From (4.2), it yields

772(U> y)T[Vy(ATf) (5E> y) — g Vyy(ATf) (5@ y)p] < 0.

By the second order pseudo-invexity of —(A\T f)(z,-) + (-)Tw, we obtain
1
(W f)(,v) —v"w = (AT F) (@, y) +y"wt op" Vi (N (@, y)p 0. (4.6)
From (4.5) and (4.6), we get

AT A (uyw) “aTz+ul2 — %TTVM()\Tf)(u, v)r

1
< (N N(@y) +vlw =yt —opt Vy, (N Nz, y)p. (A7)
Using the fact that 27z < A\Ts(z|D;) and vTw < s(v|E;) fori =1,--- , k, we

get

T2 < Xs(x|D) and v'w < M's(v|E).

Finally, using these, we obtain
1
N ) (@, y) + ATs(z]D) —yTw — 5PTVyy(/\Tf)(éB, y)p

= (N ), v) — ATs(u|E) + uTz — %TTVM()\T Alw ). (48)
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But suppose that G(u,v,\, z,7) — K(x,y, \,w,p) € intK. Since A € K*, it

yields
(1)1t 0) = NTs(01B) + 07z = o7V N7 ) (o1, 0]
[ ) ) + AT s(alD) — g — SV OV f) )] > 0
which is a contradiction to the inequality (4.8). a

In order to prove the strong duality theorem, we need the necessary op-

timality conditions for a point to be a weak minimum of (KP) in Lemma

3.1.

Theorem 4.2 (Strong Duality) Let (Z,9, \,w,5) be a K-weakly efficient
solution for (NMP). Fiz A = X\ in (NMD). Assume that
(i) Vyy(XTf) is positive definite and ﬁT[Vy(XTf) —w| =20 or

VyyXTf is negative definite and T?T[Vy(XTf) <wl<0,
(ii) VN f =W+ V(N )P A0,
(iii) the set {Vyf1,Vyfa, - , W} is linearly independent where f = f(Z,7).
Then there exists Z € D;(i = 1,--- k) such that (Z,7,\,Z,7 = 0) is a feasible
solution for (NMD) and objective values of (NMP) and (NMD) are equal.

Furthermore, under the assumptions of Theorem 4.1, (T,7,\,Z,7 = 0) is a

K-weakly efficient solution for (NMD).
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Proof. Since (7,7, \,,p) is a K-weakly efficient solution for (NMP), by
Lemma 3.1, there exist « € K*,3 € Co,u € BRy,0 € Cf, and p € K such
that

" [Vof + 2] + (B = 1) Ve (A f)
HE = = TP VeV (X -6 =0, (19
(a0 = M)V, f = (a¥e = )" @ + (8 ug = up) V(X )
HB 1 = 50TV, (T (VT P) =0, (4.10)

_%(aTe)pTvyyf]_? F o M@)T[Vyf T Vyyf]_?] —p=0, (4.11)

(" e)7 = (B — /e N, (®), (4.12)
(8= ol ep= ) Wy, (X' ) = 0, (4.13)
BTV, )= @+ Vi (X PBl =0, (4.14)
1T V(N f) =@+ V(X £ =0, (4.15)
6Tz =0, (4.16)
pIX =0, (4.17)
zeD;, 2’7 =s5FD;), i=1,---,k, (4.18)
(o, B, 1,6, p) # 0. (4.19)

As V,, (XT f) is positive or negative definite, (4.13) yields

g =(a"e)p+ uy. (4.20)
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If o = 0, then the above equality becomes
8 =7 (4.21)
From (4.10), we obtain
WV, N ) =T+ PV, (N f)] = 0. (4.22)

By the assumption (ii), we have u = 0. Also, from (4.9), (4.11) and (4.21),
we get 6 = 0, p =0 and § = 0, respectively. This contradicts (4.19). So,
a > 0. From (4.14) and (4.15), we obtain

(8~ )" [V, (3f) = Bt Vi (X )] = 0.

Using (4.20), it follows that

PV, (X £).—] HP V(A )P =0. (4.23)
We now prove that 7 = 0. Otherwise, the assumption (i) implies that

PV, f) =]+ 5"V, (X ) A0,
which contradicts (4.23). Hence p = 0. From (4.20), we have

B = uy. (4.24)

Using (4.24) and p = 0 in (4.10), we obtain

(o = pN)'V,f — (e — )y = 0.
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By the assumption (iii), we get
a=p\ and ofe = p. (4.25)
Therefore, p > 0, it follows that
_T *
V.(\ f)+2z€eCf.
Multiplying (4.26) by T and using equation (4.16), we get
Ty i
BV Ol 2] =.0.

Taking z := z € D;(i = 1,---,k), we find that (Z,7,\,%,7 = 0) is feasible
for

for (NMD). Moreover from (12), we get y € Ng, (w) fori =1,--- | k, so that

¥ =s(y|E) fori =1, -ESkie., (7 w)e = 5(7|E).

Consequently, using (4.18),

Thus objective values of (NMP) and (NMD) are equal. We will now show

that (Z,7, \, 2,7 = 0) is a K-weakly efficient solution for (NMD), otherwise

there exists a feasible solution (u, v, \, z,7 = 0) for (NMD) such that
G(u,v,\, 2,7 =0) — G(Z,7,\,Z,7 = 0) € intK
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Since objective values of (NMP) and (NMD) are equal.
G(u,v,\, z,7 = 0) — K(Z,7,\,w,p = 0) € intK,

which contradits weak duality theorem. Hence the result hold. O

Theorem 4.3 (Converse Duality) Let (u,v, \, Z,7) be a K-weakly efficient

solution for (NMD). Fiz A = X in (NMP). Assume that

(i) Vyy(XTf) is positive definite and ]_DT[Vy(XTf) —w| =20 or
VyyXTf is negative definite and ﬁT[Vy(XTf) —w| £0,
(i) VX f =T+ V(N B0,
(111) the set {Vyf1,Vyfo, -0} is linearly independent where f = f(T,7).

Then there exists W € E;(i = 1,--- k) such that (w,v, \,w,p = 0) is a fea-
sible solution for (NMP) and objective values of (NMP) and (NMD) are

equal. Furthermore, under the assumptions of Theorem 4.1, (@, 7, \,w,p = 0)

is a weakly efficient solution for (NMP).

Proof. It follows on the lines of Theorem 4.2. O
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4.4 Wolfe Type Symmetric Duality

We consider the following pair of second order Wolfe type non-differentiable

multiobjective programming problem:

(NWP) Minimize K(z,y,\,w,p)
= f(z,y) + s(z|D) — (y" V(X" f)(z,y))e
—(" VN ) (2, y)p)e — %[pTVyy(ATf)(:B, y)ple

subject to  ~[V,(\ )&, y) — w + V(N f)(a, y)p € C5,(4.26)

z€ Cor ot lcanlie ) € K5 Me =1, ecintK,

(NWD) Maximize  G(u,v, \, 2,7)
= f(u,v) — s(v|E) — (u" V(A" f)(u,v))e
v N %[TTVM()\T ), v)rle

subject to VAT £)(u,0) + 2 + Ve AT f)(w,0)r € CF, - (4.27)

veCy,, zeD;, MeK* MNe=1, ecintK,

where
(1) f:R"®xR™ — R¥ is a three times differentiable function,
(2) €y and Cy are closed convex cones in R™ and R™ with nonempty
interiors, respectively,

(3) Cf and (3 are positive polar cones of Cy and Cs, respectively,
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(4) K is a closed convex cone in R* such that intK # () and R% C K,

(5) 1,z are vectors in R", p, w are vectors in R,

(6) e=(1,---,1)T is vector in R,

(7) D; and E;(i =1,--- k) are compact convex sets in R” and R™,
respectively.

Let V(AT f)(z,y) and V(AT f)(x,y) are gradients of (AT f)(x,y) with
respect to z and y. Similarly, V,,(AT f)(z,y) and V,, (AT f)(z,y) are the

Hessian matrices of (AT f)(x,y) with respect to = and y, respectively.

Now we establish the symmetric duality theorems for (NWP) and (NWD).

Theorem 4.4 (Weak Duality) Let (z,y, A\,w,p) and (u,v, )\, z,7) be fea-
sible solutions of (NWP) and (NWD), respectively. Assume that,
(i) ATH)(-,y) + (-)''z is second order invex in the first variable for fized y
with

respect to 11,

(ii) —(ATf)(x,)+(-)Tw is second order inver in the second variable for fived

x with respect to 1o,
(#ii) m(z,u) +u € Cy and n2(v,y) +y € Cs.
Then
G(u,v, A\, z,17) — K(z,y,\,w,p) ¢ intK.
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Proof. Since (AT f)(-,y) + ()2 is second order invex with respect to n; for

fixed y
M) (@, 0) + 252 = OV fu,v) —u'z
2 (o, ) VeV F)(0,0) + 2 4 Vea V1) ()] = 207 TN ) o, )
From (4.27) and 7:(z, u) + u € Ch,
i (1) + 4] T [VaOL F) (1, 0) + 2 + Ve (AT ) (u, v)r] 2 0

Hence
OT ) (s, v) 574 — e, TS + %TTVM()\T ), v)r
> —uf [ VoL f)(u,0) + 2 + VaelA™ f)(u, v)r]. (4.28)

Since —(AT f)(x,-) + (-)Tw is second order invex with respect to 7, for fixed

X,

—(\' )@, v) +oTw+ (N f)(2,y) —y'w

= —io(0,9) (9,7 1) (,9) = w0+ Ty V7 1) ,0)0] + 527 Vi OV ) )

From (4.26) and n2(v,y) +y € Cs,

[+ y]T[Vy()‘Tf)(% y) —w+ VyyO‘Tf)(iE, y)p| = 0.
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So,

T f)(a, 0) 0w+ T f) () = 5w = 5"V OV ), )
2 [V, £) () — 0+ Ty (X 1), )8 (4.29)

Therefore, by (4.28) and (4.29),

A )@, y) + 2"z =y [V (N f) (2, y)
PV 1) @8]~ 587V (X ) )
2 ()\Tf)(u, v) — vlw — uT[Vm()\Tf)(u, v)

oL N %TTVM()\T |\

Using the fact that 272 < s(®|D;) and vTw < s(z|E;) for i = 1,--- |k, we
get
17z < X s(z]D)andv™w < MTs(v|E).
Hence,
()@, y) + AN s(z|D) — y [V, (A" f)(2,y)
1
‘I'Vyy()‘Tf) (. y)p] — §pTvyy(>‘Tf) (z,y)p

= (A f)(u,0) = As(v|E) — o [Vo (A" f)(u,v)

VOV ), 0)r] — %TTVM(AT Al o) (430
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But suppose that G(u,v,\, z,7) — K(x,y, \,w,p) € intK. Since A € K*, it
yields

{(Awu, 0) = ATs(u]E) — uT[Va(AT £, 0) + Vae X ) (1, 0}
1 T T
—57’ Viz(A f)(u,v)r}
- {(ATf)(af, y) = NTs(2|D) — 571V, (X7 F) (@, 4) + Voo (N £ 2 )1

»%pTVyy(ATf)(:B, y)p] >0

which is a contradiction to the inequality (4.30). O

In order to prove the strong duality theorem, we now obtain necessary

optimality conditions for a point to be a weak minimum of (KP) in Lemma

3.1.

Theorem 4.5 (Strong Duality) Let (T,7, \, W, D) be a K-weakly efficient
solution for (NWP). Fiz A\ = X in (NWD). Assume that
(i) Vyy(XTf) is positive definite and ﬁT[Vy(XTf) —w| =20 or

VyyXTf is negative definite and ﬁT[Vy(XTf) —w| £0,
(i) VX f =@+ V(X f)p#0,
(iii) the set {Vyf1,Vyfa,--- , W} is linearly independent where f = f(T,7).
Then there exists Z € Di(i = 1,--- k) such that (Z,7,\,Z,7 = 0) is a feasible

solution for (NWD) and objective values of (NWP) and (NWD) are equal.
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Furthermore, under the assumptions of Theorem 4.4, (Z,7,\,Z,7 = 0) is a

K-weakly efficient solution for (NWD).

Proof. Since (7,7, \,w,p) is a K-weakly efficient solution for (NW P),
by Lemma 1, there exist o € K*, 8 € Cs, p € fR4, 0 € Cf, and p € K such
that

oT[Vaf + 2e] + (8 = (")) VX f)

_ gk - | o3
+(B = (o’ e)y = 5(a"e)p)" Va(Vyy (A" f))p = 0 = 0, (4.31)

(8- (ae)g— (aTe)p) 'V (X f)

T

+(8 — (aTe)y — (aTe)]_o)TVy(Vyy(X o) = 0 (4.32)

(a’e) | 7" Vof =7 (Viuf)P = %ﬁTvyyﬁo + 6" [Vyf + VPl = p =0,

(4.33)
B € Ng,(w), (4.34)
(8- aTeg— (aTe)p) TV, (A f) =0, (4.35)
BTV,(N' f) =@ + V(XN B =0, (4.36)
1 [V, (N f) =@ + V(X ) =0, (4.37)
6Tz =0, (4.38)
P =0, (4.39)
zeD;, 2’7 =s5z|D;), i=1,---,k, (4.40)
(a, B, 1,0, p) # 0. (4.41)
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By the assumption (i) and (4.35) yields

3= (a"e)(y+D) (4.42)

If @« =0, then (4.41),(4.31) and (4.33) give 3 =0, 6 = 0 and p = 0. This
contradicts (4.40). Therefore o > 0. Using (4.41) in (4.32)

%(aTﬁ’)Z_?TVy(VyyW)T? =0,
which using the assumption (ii) implies
p=0.
Then (4.41) implies 3 = (a’e)y. So y € Cy. Using (4.42) in (4.31)
oW S (4.43)

Taking Z := z € D;(i = 1,--- , k), we find that (T,7, \,z,7 = 0) is feasible
for (NWD). Multiplying (4.43) by 7 and using (4.37), we get

ol [Vm(XT f)—w| =0 (4.44)
Consequently, using (4.44), (4.45) and (4.46),

K@ Xwp=0) =77 +s@D) — @ V(X £)T.75)e



Thus objective values of (NWP) and (NWD) are equal. We will now show
that (7,7, \,Z,7 = 0) is a K-weakly efficient solution for (NWD), otherwise

there exists a feasible solution (u,v, ), z,7 = 0) for (NWD) such that
G(u,v,\, 2,7 =0) — G(Z,7,\, 2,7 = 0) € intK

Since objective values of (NWP) and (NWD) are equal.
G(u,v,\, z,7 =0) — K(Z,7,\,w,p = 0) € intK

which contradits weak duality theorem. Hence the result hold. O

Theorem 4.6 (Converse Duality) Let (@, v, \, Z,7) be a K-weakly efficient
solution for (NW D). Fiz A = X in (NWP). Assume that
(i) Vyy(XTf) is positive definite and pT[Vy(XTf) —w| =0 or

VyyXTf is negative definite and pT[Vy(XTf) —w] L0,
(i) VN f =T+ Yy (X )P0,
(111) the set {Vyf1,Vyfa, -+, W} is linearly independent where f = f(T,7).
Then there exists W € E;(i = 1,--- k) such that (W,7, \,w,p = 0) is a feasi-
ble solution for (NWP) and objective values of (NWP) and (NWD) are

equal. Furthermore, under the assumptions of Theorem 4.4, (@, 7, \,w,p = 0)

is a weakly efficient solution for (NWP).

Proof. It follows on the lines of Theorem 4.5. O
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4.5 Special Cases

We give some special cases of our symmetric duality.

First of all, if 7 = R? and Cy = R, then our results reduce to the

following programming problems.

(1) If k = 1, , then (NWP) and (NWD) become the pair of Mond-Weir
symmetric dual programs considered in X.M. Yang et al. [83] for the same

B and D.

(2) If £ = 1, then (NMP) and (NMD) are redued to the second order

symmetric dual programs in Hou and Yang [31].

(3) Let D € R® x R™ and E € R™ x R™ are positive semidifinite symmetric
matrices. If s(z|B) = (¢7Dx)z where B = {Dz|z” Dz < 1} and s(y|C) =
(yTEy)z where C' = {Bwlwlew £ 1}, €, =R" and Cy, = R7, then (NMP)
and (NMD) become nondifferentiable second order symmetric duality in

multiobjective programming in Ahmad and Husain [5].

(4) Let D € R" x R" and E € R™ x R™ are positive semidifinite symmetric
matrices. If s(z|B) = (27 Dz)? where B = {Dz|z"Dz < 1} and s(y|C) =
(y"Ey)? where C = { Ew|uwTew < 1}, C; = R? and C; = R7, then (NWP)
and (NWD) is reduced to nondifferentiable second order symmetric duality

in multiobjective programming. In addition, if £ = 1, then we get second
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order symmetric dual programs on nondifferentiable studied by Ahmad and

Husain [4].

Next, if D = {0} and E = {0}, then our programs become a pair or

symmetric differentiable dual programs.
(1) If D = {0}, E = {0}, C; =R} and (3 = R, then (NWP) and (NWD)
become the pair of Mond-Weir symmetric dual programs considered in X.M.

Yang et al. [84].

(2) If B = {0} and D = {0}, then (NMP) and (NMD) reduced to the

second order symmetric dual programs in Mishra and Lai [56].

(3) If B={0}, D = {0} and we remove the second order terms in (NMP)
and (NMD), we get the problems (P) and (D) given by Khurana [49].

(4) B = {0}, D = {0}, C; = R} and C; = R} in (NMP) and (NMD),

then our results reduce to the results obtained by Suneja et al. [76].

(5) If k =1, B = {0}, D = {0}, C; = R} and Cy = R7Y, then (NMP)
and (NMD) and (NWP) and (NWP) are reduced to the second order

symmetric dual programs in Mishra [55].

(6) If B={0} and D = {0}, then (NWP) and (NWD) are reduced to the
(P) and (D) in Mishra [54], and remove the second order terms, we get the

first order multiobjective symmetric duality with arbitrary cones [48].
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(7) If k =1, B = {0}, D = {0}, C; = R} and C5 = R} in (NMP) and
(NMD), then we get second order symmetric dual programs which studied
by Bector and Chandra [10].

(8) If B = {0}, D = {0}, C; =R%, Cy = R and k = 1, then we get the

first order symmetric dual programs which studied by Chandra et al. [14].

(9) If k =1, €1 = R and Cy = R, then (NWP) and (NWD) become
the pair of Wolfe type second order symmetric duality in nondifferentiable

programs in Gulati and Gupta [29].

(10) If K = 1,B = {0}, D = {0}, C; = R} and Cy = R, then (NMP)
and (NMD) reduce to a pair of primal problem and dual problem programs
studied in Yang [82].

In particular, if p = » = 0, then our models and results can be reduced
to first order models in Gulati et al. [27], Suneja et al. [74], Khurana [40]
and Mond and Schechter [60].
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Chapter 5

Generalized Second Order Symmetric

Duality for Multiobjective Programs

5.1 Introduction and Preliminaries

Symmetric duality in nonlinear programming was introduced by Dorn [20].
Subsequently, Dantzig, Eisenberg and Cottle [19] formulated a pair of the
symmetric dual programs in which the dual of the dual equals the primal,
and established the weak and strong duality for these problems concerning
convex and concave functions. At the same time, Mond [59] presented a
slightly different pair of symmetric dual nonlinear programs and obtained
more generalized duality results than that of Dantzig, Fisenberg and Cottle
[19].

On the other hand, Mond and Weir [63] gave a different pair of sym-
metric dual nonlinear programming problems in which pseudo-convexity and
pseudo-concavity assumptions were reduced to the convexity and concavity
ones, and obtained the weak and strong duality for these problems.

Weir and Mond [80] formulated a pair of the symmetric and self dual
nonlinear programs for multiobjective nonlinear programming. Mond and
Weir [61] proved symmetric duality theorems for multiobjective nonlinear
programs under the assumptions of pseudo-convexity and pseudo-concavity.

Very recently, the concept of symmetric duality for multiobjective variational
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problems has been extended to the class of multiobjective variational prob-
lems by Ahmad [2]. In 1997, Kim et al. [47] suggested another second order
symmetric and self dual programs in multiobjective nonlinear programming
and proved the weak, strong, and converse duality theorems under convexity
and concavity conditions.

Recently, many authors [29, 3, 5, 75, 26| have studied second order sym-
metric duality and nondifferentiable second order symmetric duality. And
Kim et al. [42], suggested multiobjective generalized nondifferentiable second
order symmetric dual programs and established weak, strong and converse
duality under the assumption of F'-convexity.

In this chapter, we formulate a pair of generalized second order symmetric
programs in multiobjective nonlinear programming. For these programs, we
establish weak, strong, and converse duality theorems for efficient solutions
under suitable convexity assumptions. These results are the extension of
second order symmetric duality relations due to Kim et al. [47]. And we

present some special cases of our duality results.

Definition 5.1 A differentiable function f = (fl, e ,fk) :R™ — RF¥ is said

to be convez(strictly convez) if for all x,u € R,
fiw) = filu) =2 (>) (& —w)'V fi(u), foreach i=1,---k,

where in the case of strict convexity, x # u.
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5.2 Generalized Second Order Symmetric Duality

Let f be a twice differentiable function from R™ x R™ into R¥ and N =
{1,2,---,n}, M ={1,2,--- ,m}, ACN, I C M, N\A= B and M\
I = J. Note that A, B,I or J can be empty. We rearrange z,y as r =
(xa,zp) and y = (yr,y,), respectively. V,f(x,y) denotes k x n matrix of
first partial derivatives. If A € R¥, then A\ f is a scalar valued function.

Let V(AT f)(z,y) and V(AT f)(z,y) denote gradient(column) vectors with

respect to = and y, respectively. Subsequently, let V(AT f) and V,, (AT f)

denote respectively the nxn and m xm matrices of second partial derivatives.

We consider the following pair of generalized multiobjective symmetric

dual nonlinear programs.

(GMSP) Minimize  f(z,y) — (yrt Vo, O f)(z,9))e
> (levny()‘Tf) (z,y)ple
SU-bjeCt tO Vy()\Tf) (l’, y) _I— Vyy(ATf) ($> y)p é 07

Ys YV, N )@, ) + 95 Vi, (N ) (,y)p 2 0,

=0, A>0 MNe=1,
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(GMSD) Maximize  f(u,v) — (ua? Vo, (AT f)(u,v))e
— (A" Vaa, (N f) (w, v)p)e
subject to V(AT £)(u,v) + Ve (A f) (u, v)p < 0,

upVon (N f)(1,0) + g Ve, (N ) (u,0)p 2 0,

where f : R" xR™ - R¥ A e RFand e = (1,--- ,1)T e R*. V., (AT f)(x,v),
Vi AN f)(2,y), Vy, (AT f) and V,,, (AT f) are gradient vectors with respect

to x4, xp,yr and y,, respectively. V. f(z,y) and V,, f(z,y) are respectively

the n x n and m X m symmetric Hessian matrices.

Now we establish the symmetric duality theorems for (GMSP) and
(GMSD).

Theorem 5.1 (Weak Duality) Let (z,y, ), p) be feasible for (GMSP)

(T Geene) (oy) =0

Assume that f(-,y) is convex for fized y, and — f(x,-) is convez for fized x.

Then

with

fla,y) = (' V(N ) (@ 9))e = (ur' Vi, A f) (@, y)p)e
£ F1,0) = WY, OV F) (1, 0)e — (1T Vo (N7 ) (1, )7
Proof. Assume to the contrary that,
fla,y) = (i Vi, (N ) (@ y))e = (yr" Vi, (N f) (@, y)p)e
< flu,v) = WAV, (N ) (u,0))e = (ua” Ve, (AT f) (u, 0)7)e.

92



Then, since A > 0,

W) @, y) =y Vi, (A )@, y) — yr' Vi, (A ) (@, y)p

< (AT F)(u,0) = w4V, (N ) (1, 0) = ua® Ve , (AT ) (u,0)p. - (5.1)
From the assumptions of convexity of f(-,y) and —f(z,-),

W) @,y) = yi Vo, N F)@,9) = 91 Vi W (@ y)p — (A f) (w,0)

= —(ua" Vo, (AT ) (1, 0)) = wa" Vg, (N f) (1w, 0)p = (up” Vo (A ) (u,0))
~up" Vaay (N ) (0, 0)p 495 Vi, (N )@, y) + 47 Vi, N ), 9)p

2 —(ua" Vo, (AT ) (u,0)) = ua” Vs (A f)(w, 0)p

(by the constraints of (GMSP) and (GMSD)).

This contradicts (5.1), thus the result holds. O

In order to prove the strong duality theorem, we need the following Fritz

John necessary optimality theorem.

Proposition 5.1 (Fritz John Optimality Conditions) If (7,9, \,p) is
a weakly efficient solution of (GSP), then there exists (c, 3,7, p,w) in R* x
R™ x R x R™ x R¥ such that

K =a"[f = (51 V(AT f))e = (5] Vo, AT ))D)e] + BT [Vy (A f) + Vi (AT £)P]

-7 [?ﬁvw (S\Tf) + ?ﬁvyw O\Tf)p} - PTZE — W'
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satisfies

V.K =0,
v, K =0,
v, K =0,
V,K =0,

VaK =0,

BV (W) + Vi (N £)p] = 0,

I Ve KT F) + 55V, X F)p] =0,

wirx=
(@, 8,7, pyw) =0,

(Q,ﬂ,’}/,p, w)) 7& 0.

Theorem 5.2 (Strong Duality) Let f be a three times differentiable func-
tion from R* xR™ to R*. Let (:E, 7, 5\,]5) be an efficient solution of (GMSP):
fit X=X and p = p in (GMSD). Assume that the assumption of the Theo-
rem 5.1 hold. Suppose that

(i) Vyy (XTf) (Z,7y) is non-singular,

(1) Vi, (N F)(@,9) + Vi, N )(Z, )5 # 0 and

(iii) the set {V,, fi(Z, ?7)}@:1k is linearly independent.

Then (Z,5, A\, p = 0) is an efficient solution of (GMSD) and the objective
values of (GMSP) and (GMSD) are equal.

94



Proof. Since (Z,7,\,p) is an efficient solution of (GMSP), it follows from

proposition 2.1 that there exist o € R*, 3 € R™, v € R, p € R" and w € R¥

such that the following Fritz John conditions are satisfied at (:Tt, U, \, ]5):

v, (an) — (Vylm (S\Tf) Vya (S\Tf)) ((Oé’j;z y_lﬁ_JﬁI>

V{7 (P = 5.2

N (Vyfyf (S‘Tf) Vyur (S‘Tf)) ((a'ﬂji)y—] ;Jﬁfr _(I—a(;;);)lp])

L o { (VT )5 NV EET F)p) ((aj;jy_f Eﬁ 1)} —0,

(5.3)

3 Y \ T y N p
(o — ’YA)TVny T (Vyfy.r()‘Tf) VnyJ()‘Tf)) ((QW?jj?ﬁ ﬁJﬁ‘ll' _I’Y—P:ylpl)

—Vy, { (Va0 OTHP Vi, (AT F)D) ((“Te)y’ ‘ﬁf)} =0,

VYs =B
(5.4)
wutn) (75, ) <o (5.5)
s 7 (%, 5"
— (Vyy SO Vi, [D) (éjje_)yﬁ[;_ﬁ ;) =0, (5.6)
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BV, (ANf) + Vi (A D) = 0, (5.7)

YG3 VAT F) + 95V, (AT D) = 0, (5.8)
p'z =0, (5.9)
W\ =0, (5.10)
(a, 8,7, p,w) 2 0, (5.11)
(a, 8,7, p,w) # 0. (5.12)

Since V,, (AT f) is non-singular, (5.5) yields
Br = (a¥e)y; and B = vy (5.13)
From (5.3) and (5.13), we have
(aTe)Vy, (X f)p) = 0. (5.14)
Suppose that o = 0. From (5.4),
V(Vyy (ATF) + Vi, (A f)P) = 0.

Since V,,,(ATf) + V,,, (AT f)p # 0, v = 0. From (5.13) and (5.6), we have
B =0and w = 0. From (5.2), we havep = 0. This is a contradiction to (5.12).

Hence « # 0. Since V,, (AT f)p is non-singular, we get from (5.14),
p=0. (5.15)
Using (5.2),(5.13) and (5.15), we get

V.(a' f)(z,5) = 0. (5.16)
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From (5.4),(5.12) and (5.14), we have (a —y\)TV,, f = 0.,

Since {V,, fi(Z, ) }i=1,... x is linearly independent,
a =Y\ (5.17)

If y=0in (5.17), @ = 0. From (5.13), 5 =0. In (5.6) and (5.2), w = 0 and
p = 0. This is contradiction to (5.12). Hence p > 0 and « > 0. Substituting
(5.17) in (5.16), we have

V(A f)(Z,5) 2 0.

Since v > 0,
V(X f)(738) = 0. (5.18)
Using p = 0, and (5.18),
Vo ATf) + Ve (N £)p = 0 (5.19)
and
BV oy N f) + 35 Ve VT f)p = 0. (5.20)

Now multiplying (5.6) by A and using (5.7),(5.8) and (5.10) gives

U1 Vi A&, 9) + 51 Vi, AT f) (2, 9)p = 0. (5.21)

Hence from (5.19) and (5.20), (Z, 7, A, p = 0) is feasible solution of (GMSD)
and the objective values of (GMSP) and (GMSD) are equal there. O

By the similar method of Theorem 5.2, we can prove the following con-

verse duality theorem.
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Theorem 5.3 (Converse Duality) Let f be a three times differentiable
function from R™ x R™ to R¥. Let (ﬂ,@, 5\,}5) be an efficient solution of
(GMSD): fiz A = X and p = p in (GMSP). Assume that the assumptions
of Theorem 5.1 hold. Suppose that

(i) Vo (E\Tf) (u,v) is non-singular,

(11) VN F)(@,0) + Vi (N f)(@,0)7 # 0 and

(ii1) the set {V, fi(u,0)},_, . is linearly independent.

Then (6,7, \,p = 0) is an efficient solution of (GMSD) and the objective
values of (GMSD) and (GMSP) are equal.

5.3 Special Cases

If ] = M and A = N, then our pair of programs ((GMSP) and (GMSD)
are reduced to the following (WSP) and (WSD).

(WSP)  Minimize  f(z,y) — (y" V(N f)(z,9))e — (4" Vyy (AT f) (2, y)p)e
subject to Vy()‘Tf) (5E> y) + VyyO‘Tf) (5E> y)p <0,

>0, A>0, MNe=1,

(WSD) Maximize  f(u,v) — (u' V(AT f)(u,v))e — (uT Ve (AT £ (u, v)p)e
subject to Vm()\Tf)(u, v)+ Vm()\Tf)(u, v)p<0,

v>20, A>0, MNe=1,

98



where f : R* x R™ — R¥ A\ € RF and e = (1,---,1)T € R¥. In Kim
et al. [47] proved the following duality theorems under suitable convexity

assumptions.

Theorem 5.4 (Weak Duality) Let (z,y, \,p) be feasible for (WSP), and
(u,v, A, p) be feasible for (WSD) with

(Vm(ATOf)(u,v) _Vyy(Agf)(I’y)) (Zj - Z) <0.

Assume that f(-,y) is convex for fized y, and — f(x,-) is convez for fized x.

Then

Fz,y) — WV, O ) (@,9)e = (0 Vi (A f) (@, y)p)e

£ f(u,v) = (WEVL AT £)(u,0))e = (u” Ve (AT f)(u, v)r)e.

Theorem 5.5 (Strong Duality) Let (:f,gj, ;\,]5) be an efficient solution of
(WSP): fit A= X and p =P in (WSD). Let V,,(AT f)(Z,¥) be positive defi-
nite, and the set {V, fi(Z, ?j)}z=1k be linearly independent. Assume that the
assumptions of the Theorem 5.4 hold. Then the objective values of (WSP)
and (WSD) are equal, and (it,gj, 5\,}5) is an efficient solution of (WSD).

Theorem 5.6 (Converse Duality) Let (ﬂ,@, 5\,]5) be an efficient solution
of (WSD): fiz A = X and p = p in (WSD). Let V.(\T f)(u,v) be negative
definite, and the set {V, fi(u,v)},_; . ;. be linearly independent. Assume that
the assumptions of Theorem 5.4 hold. Then the objective valued of (WSP)
and (WSD) are equal, and (ﬂ,@, 5\,}5) is an efficient solution of (WSP).
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If I =0 and A = (), then our pair of programs (GMSP) and (GMSD) are
reduced to the following (MSP) and (MSD).
(MSP) Minimize  f(z,y)
subject to Vy()‘Tf) (z,y) + VyyO‘Tf) (z,y)p <0,

YV, ) (@, y) + y V(A ) (@, y)p 2 0,

r=0,A>0Me=1,
(MSD) Maximize  f(u,v)
subject to VoA f)(w, v) + Ve (X f)(u, v)p < 0,
uTVz()\Tf)(u, V) + u' Ve (AL f) (u,v)p = 0,
v=0 )30 Me =1,

where f: R* x R™ — R¥ X € R¥ ande = (1,---,1)T € R*. We can obtain

weak, strong, converse duality theorems between (MSP) and (MSD).
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