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Thickness and Strain Dependent Magnetic Properties of Ultrathin Fe/Ni Film 

on Cu(001) Substrate

Dongyoo Kim

Department of Physics, Graduate School

Pukyong National University

Abstract

     Using the full potential linearized augmented plane wave (FLAPW) 

method, the magnetic properties of ultrathin Fe/Ni films grown on Cu(001) 

surface have been investigated We have varied both Ni and Fe film thickness 

and also have explored the strain effect on the magnetic anisotropy. For 

surface Fe atom, a typical surface enhancement of spin magnetic moment has 

been observed while the magnetic moments of other constituents are rather 

insensitive to the strain effect. Nonetheless, we have realized that the direction 

of magnetization is significantly affected by the strain factor. For instance, the 

Fe/Ni films always have perpendicular magnetization provided that they grown 

on Cu (001) lattice constant. However, we have obtained a spin reorientation 

transition (SRT) phenomenon in the presence of strain effect. In addition, the 

theoretically calculated X-ray absorption spectroscopy (XAS) and X-ray 

magnetic circular dichroism (XMCD) are presented. Moreover, the validity of 

XMCD sum rule has been explored.
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Chapter 1 Introduction.

     The magnetic properties of thin films and magnetic multi-layers have long 

been extensively investigated since last decades. In these days, the atomic 

manipulation technique has been remarkably improved and this makes it possible 

to grow new structures in an artificial way and tailor the magnetic properties of 

materials. It is well known that the magnetic property is very sensitive to the 

change of electronic structure. In ultrathin films, the influence of alteration of 

electronic structure on the magnetic property of sample will definitely play an 

important role. Indeed, the effect will be most clearly seen in nano scale 

structure. As a result, to date, a great amount of research effort has been 

focusing on the studies of ultrathin magnetic films due to their physical 

properties and promise for potential spintronics device application [1-3].

     Among the many magnetic properties in ultrathin films, the central issue is 

the magnetic anisotropy that determines the direction of magnetization. In 

particular, the spin reorientation transition (SRT) has attracted great attention in 

the filed of theoretical and experimental studies. The Ni/Cu(001) is well known 

as a prototype of SRT structure. It has been known that the Ni/Cu(001) displays 

SRT twice depending on the Ni thickness. For instance, the change of 

magnetization from in-plane to perpendicular to the surface is observed 

approximately at the Ni thickness of 10 monolayers (ML) and another SRT is 

found at roughly 40ML Ni thickness. The similar phenomena are also found in 

other structures such as Fe/Co/Cu and Fe-Co alloys. Also, the SRT is 

substantially influenced by interface and surface contributions, thus many attempts 

have been performed to manipulate the magnetic properties of magnetic thin 

films adding capping layer or surfactant elements [4-9]. Very recently, the 

thickness dependent magnetic anisotropy in Fe/Ni/Cu(001) films have been 
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explored by two different groups [10, 11]. They, however, have shown different 

results. Several factors can affect the magnetic anisotropy of materials such as 

strain, interfaced and surface effects. It is of interest of investigate the physical 

origin of these thickness dependent SRT. 

     In experimental points of view, the X-ray magnetic circular dichroism 

(XMCD) is a powerful tool to study the magnetic materials since one can 

directly extract magnetic information of specific element. Here, the spin and 

orbital sum rules play an essential role [39, 40] since the interpretation of 

experimental results is based on these sum rules. Nonetheless, it is rather rare to 

see studies for the general validity of the sum rule which is based on atomic 

model although one can find huge experimental data utilizing XMCD technique. 

Here, we have calculated X-ray absorption spectroscopy (XAS) and X-ray 

magnetic circular dichroism (XMCD) of Fe/Ni films using the ab initio method. 

     In this dissertation, various magnetic properties of thin films due to strain 

effect will be discussed using the full-potential linearized augmented plane wave 

(FLAPW) method. As mentioned above, the magnetic anisotropy energy (MAE) 

is very important quantity in magnetic device application. The MAE is divided 

into two parts, such as shape anisotropy and magnetocrystalline anisotropy 

(MCA). The shape anisotropy is originated from the magnetic dipole-dipole 

interaction and the MCA can be explained by spin-orbit coupling term. The 

X-ray magnetic circular dichroism (XMCD) is the most widely used to 

investigate the magnetic materials because XMCD can detect spin magnetic 

moment and orbital magnetic moment in individual atom. Therefore, the 

background theory of MAE and XMCD are discussed in chapter 2. 

     To investigate the magnetism of materials, many numerical methods have 

been used.  Among these methods, the full-potential linearized augmented plane 

wave (FLAPW) method is very widely accepted due to the high precision. 
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FLAPW method is based on the density functional theory (DFT), and the DFT 

includes kinetic energy, potential energy, and exchange energy terms. To deal 

with exchange energy term, several approximation methods have been used, such 

as local density approximation (LDA) and generalized gradient approximation 

(GGA). Comparing LDA and GGA methods, the GGA method serves better 

accuracy than LDA method in 3d transition metal. The details will be reviewed 

in chapter 3. In chapter 4, the numerical results are discussed. 
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Chapter 2 Basic Theory

2.1 Magnetic Anisotropy Energy

2.1.1 Introduction

     In ferromagnetic materials, the exchange interaction between electrons is the  

origin of spontaneous magnetization. If there exists no external interaction, the 

spontaneous magnetization can point to certain direction in the crystal i.e., the 

spontaneous magnetization lies in some preferred directions with respect to the 

crystalline axes or to the external shape of the body. This phenomenon is the 

magnetic anisotropy. Here, the direction of spontaneous magnetization is easy 

axis, and other axises are hard axis. For example, the direction of magnetization 

is [001] axis in bulk Fe, so [001], [010], and [100] axises are easy axis. The 

magnetic anisotropy energy (MAE) is defined as the difference in energy 

between the easy axis and hard axis. 

     The magnetic anisotropy arises from dipolar interaction (shape anisotropy) 

and spin-orbit coupling (magnetocrystalline anisotropy). The shape anisotropy 

always prefers in-plane magnetization in film structure. However, the 

magnetocrystalline anisotropy (MCA) does not show simple behaviors. 

     In this section, we will discuss physical origins of magnetic anisotropy. In 

section 2.1.2 we present the phenomenological description of magnetic anisotropy 

at macroscopic level. The magnetic anisotropy arising from the dipole-dipole 

interactions and from the spin-orbit coupling will be treated in section 2.1.3 and 

2.1.4, respectively. 
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2.1.2 Phenomenology of Magnetic Anisotropy

     The MAE depends on the orientation of the magnetization with respect to 

the crystalline axes of the ferromagnetic body, and with respect to its shape 

(shape anisotropy). Thus, the total MAE may be expressed as

   ,                     (2.1)

where ,  , and  are total magnetic anisotropy energy, 

magnetocrystalline anisotropy energy and shape anisotropy energy, respectively. It 

is clear that the first term is an intrinsic contribution, whereas the second one is 

essentially of geometric character. 

     The simplest case of the MAE is uniaxial magnetic anisotropy. One can 

see details in reference [13]. The hexagonal cobalt has easy axis, parallel to the 

c-axis of the crystal at room temperature. In other words, the MAE is increases 

with , the angle between the c-axis and the magnetization vector. We can 

express MAE as following:

  





 ,  (2.2)

and

  

  


  



    

       (2.3)

where   is the azimuthal angle of the magnetization in the plane perpendicular 
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to the c-axis and the coefficients  are anisotropy constants. 

     For cubic crystals such as Fe and Ni, the MCA is can be expressed in 

term of the direction cosines     of the magnetization vector with respect 

to the three cube edges. The usual expression for the anisotropy of cubic system 

is 

   
 
 

 
 

 
 

 
 




 


 


 

            (2.4)

The anisotropy constants of hcp Co, Fe, and Ni are given in Table 2-1. 

Combining the values in Table 2-1 and equations (2.3) and (2.4), we can see 

that hcp Co have easy axis parallel to the c-axis. Also, Fe and Ni have easy 

axis for [100] and [111], respectively.

Co (hcp) Fe (bcc) Ni (fcc)

 (erg.cm-3) × (a) × (b) × (c)

 (erg.cm-3) × (a) × (b) × (c)

Table 2-1. Anisotropy constants of Co (T=15°C) , Fe (T=20°C), and Ni (T=23 °C). 
(a) Ref [14], (b) Ref [15], (c) Ref [16]. 
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2.1.3 Anisotropy Arising from Dipolar Interactions. 

     The dipole-dipole interaction has been discussed by Janse [5]. The 

expression of the dipole-dipole Hamiltonian is 

        



 ′′


                       

× ∙′  ′
 ′∙ ′∙      (2.5)        

                                                            

Where  is the magnetization density operator, expressed in  unit volume. 

In 3d transition metals, the magnetization distribution is almost spherical, and 

can be replaced by the dipolar magnetic moments , so tat the dipolar energy 

can be written as

  





≠




 ∙ 
 ∙ ∙         (2.6)

Because all magnetic moments are parallel in ferromagnetic materials,  is

 





≠





              (2.7)

where  is the angle between magnetization and the direction of the pair 

   . For a give pair the dipolar energy is minimum when the moments are 

parallel to direction of pair.
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Shape Anisotropy

     Because   at site i produced by all the other dipole moments, does 

not depend on their exact positions at the atomic level, so that one can replace 

the individual moments by the continuous magnetization distribution . These 

considerations are accounted for Lorentz method. A spherical cavity of radius R 

centered at site i, and the moment distribution is approximated by the 

macroscopic magnetization density . Since the cavity space is bound by 

volume and surface, we can define magnetic charges, volume charge and surface 

charges,  ∇∙
 , and  ∙

 . In case the magnetization is uniform, 

the surface magnetic charges only contribute. Thus,  can be written 

   
  

                     (2.8)

where  is due to the dipoles inside the cavity,    (the Lorentz 

field) is the field created by charges at surface of the cavity, and  (the 

demagnetizing field) is due to the charges on the external surface. The magnetic 

energy of the shape anisotropy is given by 

                    



                    (2.9)

For the ellipsoid sample and uniform demagnetising field, the shape anisotropy is 

expressed in terms of a demagnetising tensor, 

                           ∙
                        (2.10)
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where D is a tensor of trace 1. Then, the shape anisotropy per unit volume is 

   
  , and  

 , where  refer to volume 

magnetization. For a layered system such as thin films and multi-layer films, 

The shape anisotropy energy are 
 

   , and 
 ≈ , where 

 si surface magnetization. From this equations, we can know that the shape 

anisotropy energy show in-plane direction for surface always. 

2.1.3 Anisotropy Arising from the Spin-Orbit Coupling

     When the electron moves at a velocity   in the electrostatic field 

  created by core electrons and protons, the electron feels the magnetic field 

according to special relativity theory, and the magnetic field can be written as 

                              

   

 ×  .                      (2.11)

Since the electron has a moment  , the electron moving in electrostatic field 

feels the magnetic field 

   


×  .                     (2.12)

Therefore, the corresponding interaction energy between spin of electron and 

magnetic field   is
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  ′ 
 ∙  

 ∙  


×  

 




∙   × 

              (2.13)

Because the electrostatic field   equal to 




, 

 ′ 


 





 


 × ∙              (2.14)

Using the  
   and  ×    , we can replace  ′  following as, 

 ′

 





 


 ∙  .                (2.15)

Thus, we find the quantum mechanical operator of spin-orbit coupling, 

  
∙ ,                       (2.16)

 







                      (2.17)

where  is the spin-orbit constant. 

     To calculated MCA, several methods are used. In the direct method, the 

MCA can be calculated by comparing the total energy between two systems, 

in-plane and out-of-plane magnetization for surface systems. However, the MCA 

has the value of several . In most of sample, this value is hard to 
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distinguish from numerical error of total energy calculation. Another method is 

force theorem, but this method require very large computational power. 

According to ref [42], the calculations can be simplified by torque method, and 

the torque is written as, 

  


〈   〉,                   (2.18)

where  is spin-orbit coupling Hamiltonian. If magnetization direction is 

   , the ∙  term can be expressed as, 

∙   


 





 

  


 

  
 

 

  


 


 

          (2.19)

In this equation, we can know that the MCA does not depend on the crystal 

symmetry.
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2.2 X-ray Magnetic Cicular Dichroism (XMCD)

      The magnetic properties of the 3d transition metals are mainly determined 

by their d valence electrons [18-20]. The properties of 3d-electrons are best 

probed in an X-ray absorption experiment by excitation of 2p core electrons to 

unfilled 3d states as illustrated by a simple on-electron picture [17]. According 

to the one electron approach, the electron is excited from the spin-orbit split 

 and  levels to empty d valence states. The origin of circular x-ray 

dichroism at the  edges of 3d transition metals is illustrated by two-step 

model proposed by Stöhr [5]. In the first step, right(+) or left(-) circularly 

polarized photons excite the spin-polarized electrons in p shell. In spin-orbit split 

levels,  (, l+s) and  (, l-s) levels have opposite spin-orbit coupling, 

so that the spin polarization will be opposite sign. Then, each circularly 

polarized photons can excite spin up or spin down electrons each other. 

     In second step, the magnetic properties can be analyzed. As shown in Fig. 

2-1(a), the XMCD intensities, A ( edge) and B( edge), can determine the 

spin moment quantitatively using the spin sum rule, , and orbital 

momentum can be measured by orbital sum rule, , as shown in Fig 2-1 

(b). The details of XMCD spectroscope is in ref [17].
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(a) Spin Moment (b) Orbital Moment

Fig 2-1. XMCD illustrated in a one-electron model. (a) is  spin 
moment and (b) is orbital moment. [from reference 17].
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Chapter 3 FLAPW Method

3.1 The Density Functional Theory

 

3.1.1 The Density Functional Theory

     The FLAPW method bases on density-functional theory (DFT), called 

Hohenberg-Kohn-Sham or Kohn-Sham equation[29, 30]. In the DFT, the total 

energy of a periodic solid is a functional of the atomic positions and the 

electron density, and consists of three parts, kinetic, potential and exchange 

correlation terms. In this section will review the density functional theory.

     To explore the physical properties of real materials, quantum mechanical 

method is required and also has to solve many body problem. In many body 

problem, there are huge number of interaction among electrons and ions such 

electron-electron, electron-ion, and ion-ion interaction. The Born-Oppenheimer 

approximation [31] assumes that the motion of nuclei is so slow compared with 

electrons that the motion of nuclei can be neglected. This implies that the 

position of nuclei is fixed and the electronic structure is obtained for a specific 

atomic geometry. 

    Let us assume the system having N interacting electrons. The system is 

influenced under the external potential and the Coulomb repulsion which is 

electron-electron interaction, the Hamiltonian can be written as follows.

     ,                        (3.1)

 where T is kinetic energy operator, 
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 
 



∇
,                       (3.2)

and the external potential, V, is expressed by two terms due to external field 

and fixed ions.  

 





  ,               (3.3)

where ri and Rj indicate the position of i-th electron and j-th ion, respectively. 

The Coulomb repulsion interaction (electron-electron interaction) is follows:

 

  


                        (3.4)

Now, we will reconstruct this Hamiltonian using the electron density, . The 

electron density is given by:

 



                       (3.5)

where  is the single-particle wave function and  is the number of electrons 

in state i. Kohn and Sham expressed the ground state energy in the static 

potential Vext:

   
′

′
′ ,       (3.6)
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                     (3.7)

where ′
′

′ is Hartree energy,  refer to kinetic energy, and 

 means exchange-correlation energy. Appling variational principle to 

equation (3.6), 




             (3.8)

here, 

                  

   ′
′

′                  (3.9)

and 

                    (3.10)

The equation (3.8) means that system is under given potential   . 

Therefore, one can obtain simple the one-particle Schrödinger equation

 




∇  ,            (3.11)

where,  . Equation (3.11) is the Kohn-Sham equations 

and  is an orthonormal set. Also, the exchange-correlation potential 

(interaction and energy) should be explained by approximation method.
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3.1.2 Spin-polarized density functional theory

    To deal with magnetic materials, the density functional theory has to include 

the spin polarized electrons and magnetization is not zero. Because the exchange 

correlation potential of the Kohn-Sham equation have electron density terms, 

, the electron density devide into spin-up and spin-down expressed as 

  ↑  ↓. Also, the magnetization density,   ↑ ↓ is 

important value. In magnetic system, the magnetization density has spin-up or 

spin-down. Therefore, the spin-polarized Kohn-Sham equations are



∇ 

 
  


,            (3.12)

where,  σ is spin-up (↑, or majority) or spin-down (↓, or minority), and


   

     .             (3.13)

In equation (3.12), the wave function 
 is single-particle wave function and 

can have two spin state, spin-up and spin-down. 

3.1.3 Approximation method for exchange-correlation

     

     The density functional formalism has the exchange correlation term. To 

obtain exact solution of systems, the exchange correlation energy  is essential, 

but explicit form of this functional has not been found yet. Thus, approximations 

should be used. Mostly used approximation methods are the local density 
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approximation (LDA) and the generalized gradient approximation (GGA). 

Local density approximation (LDA)

     It is the underlying idea of LDA that the exchange correlation energy 

depend only on the local electron density of each volume element .

≈ ,                  (3.14)

where,  is the exchange corelation energy per electron of a homogeneous 

electron gas with the same electron and magnetization density. 

Generalized gradient approximation (GGA)

     The generalized gradient approximation (GGA) have improved the 

description of total energies, ionization energies, and electron affinities of atoms, 

atomization energies of molecules [32, 33, 34] and some solid state properties 

[35, 36, 37, 38]. The GGA is written as: 


     ∇          (3.15)  

As shown above, GGA depends on locally on the electronic density  and 

its gradient. This method means non-homogeneous electron gas system.
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3.2 The Thin Film Version FLAPW and Basis-set

3.2.1 Introduction.

     In this section we will review the full-potential linear augmented plane 

wave (FLAPW) method [21-23]. The FLAPW method to solve the density 

functional equation for crystalline solid is presently one of the most accurate 

electronic structure calculation methods. This method originates from the 

augmented plane wave (APW) method introduced by Slater [24]. Within the 

APW approach, space is divided into spheres centered at each atom site, called 

muffin-tins (MT), and the remaining interstitial region. Inside the muffinn-tins the 

potential is approximated by a spherically symmetric shape, and in many 

implementations the interstitial potential is set to a constant. Since the basis 

functions of APW method are energy dependent and the eigenvalue problem 

nonlinear, APW method is computationally very demanding. To avoid the 

problems of APW method, the linearized APW (LAPW) method is introduced 

[25, 26]. The energy dependence is removed by selection a fixed set of suitable 

muffin-tin radial functions and their energy derivatives. The APW and LAPW 

method regard potential, actually effective potential, in MT region as constant. 

However, these assumptions are not suitable in several problems such as 

magnetic materials, because spherically symmetry breaking should be considered 

in magnetic materials. Therefore, the full-potential LAPW (FLAPW) method is 

introduced, and has no shape approximation for the charge density and the 

potential. Also, the core electrons are treated full relativistically and the valence 

electrons are treated semi-relativistically [27, 28]. 
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3.2.2 The FLAPW method and Basis-set

     The films have only the 2-dimensional symmetry parallel to the surface 

and there is a number of atomic layers surrounded by vacuum between ± 

and ±(see fig. 3-1.) in z-direction. In the thin film version FLAPW method, 

real space is divided into three regions, the muffin-tins, the interstitial and the 

vacuum region show as Fig. 3-1. In the spherical region, the basis functions are 

products of radial functions and spherical harmonics, in the interstitial region 

plane waves are used. In the vacuum region, the wave functions are products of 

two-dimensional (2D) plane waves and z-dependent functions which are solutions 

of the one-dimensional schrödinger equation for z-axis. For film geometry, the 

wave functions are given by

 


    ,       (3.16)

where  is an arbitrary vector of the two dimensional Brillouin Zone (BZ) and 

 is a three dimensional reciprocal lattice vector. The basis functions are: 

  











 





 

 
 


 

 




    
  



                                                                  (3.17)

In the muffin-tin region two radial wave functions are  and , where  is 

the solutions of the radial Schrödinger equation solved at a fixed energy, ,
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




 


 

       ,   (3.18)

and  is derivatives of . Here we assume that  . The  are 

spherical harmonics and the coefficients 
  and 

  are determined by the 

requirement that the plane waves be continuous in value, as be their radial 

derivative, at the atomic spheres. The Ω is the volume per unit cell from  

to . In the vacuum region the wave functions,  can be obtained from 

one dimensional Schrödinger equation in z-direction.

 



 
       ,          (3.19)

where  is the planar average of the effective potential perpendicular to 

the surface,  are fixed energy parameters for the vacuum region, and  refer 

to 2D reciprocal lattice vectors of the lattice parallel to the surface. 



- 22 -

Fig. 3-1. Geometry for a film calculation.
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Chapter 4. Computational Results

4.1 Numerical Method.

     

     The thin film version of all-electron full potential linearized augmented 

plane wave (FLAPW) method [41-42] was used to explore this issues. Therefore, 

there is no shape approximation in charge, potential and wave function 

expansion. We treat the core electrons fully relativistically. The generalized 

gradient approximation (GGA) [43] was adopted to describe the exchange 

correlation interaction. Spherical harmonics with a maximum angular momentum 

quantum number of lmax = 8 were used for all the expansions in the muffin-tin 

region. In the FLAPW calculations, energy cutoffs of 255 Ry for the charge and 

potential, and 13.7 Ry for the bases were chosen in the interstitial region. We 

used 400 k-points for entire calculations in the irreducible tow-dimensional 

Brillouni zone to evaluate integrals in the reciprocal space and employed 2.2 a.u. 

for muffin-tin (MT) radius of all atoms. Because the main issue is to study the 

magnetic properties depending on Fe and Ni thickness. Therefore, we have 

considered four different systems. The Fe coverage is varied from 0.5 to 2.5 ML 

and the ultrathin Fe film is assumed to be grown on 5 and 7ML Ni under-layer. 

Moreover, the Fe/Ni film is supposed to grow with Cu(001) lattice constant and 

Ni(001) lattice constant, respectively. Also, we assume that Ni and Fe have 

faced centered cubic structure. With this approach, we will be able to understand 

the effect of strain on the SRT. As remarked earlier, the magnetic anisotropy is 

significantly dependent on the change of electronic structure. Consequently, it is 

of necessary to obtain optimized atomic structure and this has been achieved 

through total energy and force minimization procedures
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4.2 Numerical Results and Discussion

4.2.1 Structural Feature

               

     We have calculated the optimized atomic position and vertical distance 

using the total energy and force minimization procedure. In Figure 4-1, the Ni at 

the interface between Ni and Fe adlayer is represented by Nis and the subsurface 

layer is denoted by Nis-1. The Fei stands for i-th adlayer counted from the 

interface. Also, DNi and Di mean calculated vertical distance between two 

neighbor atoms as in Fig 4-1 and the values are given in Table 4-1. One can 

clearly see that the optimized atomic structures are sensitive to the strain effect. 

For instance, the vertical positions are always higher in the presence of strain 

compared to those in pseudomorphic growth and the interlayer distance is also 

chanced. Nonetheless, we have realized that the strain has minimal effect on the 

magnetic moments of Fe and Ni atoms because the calculated magnetic moments 

are almost intact. This could be understandable because the magnetic moment is 

simply th difference between majority and minority spin electrons below Fermi 

level. The intensive discussions about magnetic moment and density of states 

(DOS) features will be discussed in next two section. However, the physical 

property of magnetic anisotropy shows completely different behaviors. In Figs. 

4-2(a) and (b), the experimentally observed thickness dependent magnetic 

anisotropy is presented. The theoretically obtained results are shown in Fig. 

4-2(c). The solid symbols means in-plane magnetization, while the open symbols 

denote perpendicular magnetization to the film surface. In Fig. 4-2(c), the 

thickness dependent magnetic anisotropy for pseudomorphic growth is indicated 

by open square which means perpendicular magnetization. In the presence of 

strain effect (denoted by circles), it has been achieved that the magnetic 
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anisotropy shows more or less oscillatory behaviors. As discussed earlier, the 

strain has physically no effect on the magnetic moment, but the strain influence 

on the magnetic anisotropy plays an essential role. the feature stems form that 

the wave function characters of both occupied and unoccupied states enter into 

the determination of magnetization direction, whereas the magnetic moment is 

simply the difference in the spin splitted states below the Fermi level.

Fig. 4-1. Schematic side view of the Fe/Ni 

ultra-thin film structure. 
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(a) Fe/Ni(7ML)/Cu 

Fe coverage 0.5ML 1ML 1.5ML 2ML 2.5ML

D3 3.02

D2 3.029 3.502 3.396

D1 2.783 3.283 3.258 3.311 3.179

DNi 3.358 3.283 3.251 3.243 3.214

(b) Fe/Ni(7ML)

Fe coverage 0.5ML 1ML 1.5ML 2ML 2.5ML

D3 3.240

D2 3.240 3.749 3.560

D1 2.918 3.509 3.358 3.589 3.348

DNi 3.507 3.447 3.397 3.447 3.337

(c) Fe/Ni(5ML)/Cu 

Fe coverage 0.5ML 1ML 1.5ML 2ML 2.5ML

D3 3.010

D2 3.085 3.500 3.402

D1 2.793 3.345 3.195 3.295 3.215

DNi 3.369 3.326 3.278 3.276 3.240

(d) Fe/Ni(5ML)

Fe coverage 0.5ML 1ML 1.5ML 2ML 2.5ML

D3 3.310

D2 3.270 3.639 3.578

D1 2.927 3.447 3.397 3.467 3.357

DNi 3.466 3.376 3.376 3.376 3.366

           Table 4-1. Calculated vertical atomic distance in atomic unit.
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    Fig. 4-2. Magnetic anisotropy energy phase of Fe/Ni/Cu ultra thin films. (a) and (b)  

            are experimental results and (c) indicates calculated result.
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4.2.2 Magnetic Moment

     In Table 4-2, we show the calculated magnetic moments of Ni and Fe 

atoms for 5 and 7 ML Ni thicknesses if the film pseudomorphically grows with 

Cu(001) lattice constant. One can see that the magnetic moment of Fe at the top 

layer is greatly enhanced compared with that of bulk Fe atom and this is a 

typical surface enhancement. For Ni, the interface (NiS) atom has the largest 

magnetic moment when the Fe coverage is 0.5 ML. With increasing Fe 

thickness, the interface Ni magnetic moment decreases rapidly. Note that the 

NiS-1 for 0.5ML and NiS for 1.5ML thicknesses have two different values. This 

is due to atomic structure effect because we have two inequivalent atoms in a 

unit cell. Thus, one can easily note that the NiS-1 in 0.5 ML and NiS in 1.5ML 

will encounter different environment in the presence of 0.5 ML coverage Fe 

adlayer. Thus, these two Ni atoms have different magnetic exchange interaction 

with Fe. For deeper layers, we have found no significant changes. This implies 

that the hybridization effect propagates definitely at least into the first two or 

three Ni layers and it is sizable. We have obtained similar results for 7 ML of 

Ni underlayer thickness. Overall, the calculated magnetic moments display almost 

the same behaviors and this is understandable since the magnetic exchange 

interaction will not be significantly altered even if another Ni layer exists in 

deep region. In Table 4-3, we present the results provided that the Fe/Ni film 

grows with the Ni(001) lattice constant in which the strain effect of 2–.3% is 

considered. Comparing both cases, we have realized that the magnetic moments 

are rather insensitive to the strain effect although the small variations are 

observed.
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          (a)

0.5 ML 1 ML 1.5 ML 2 ML 2.5 ML

Fe3 2.91

Fe2 2.97 2.85 2.60

Fe1 3.14 2.866 2.66 2.65 2.55, 2.64

Nis 0.75 0.674 0.61, 0.69 0.65 0.68

          (b)

0.5 ML 1 ML 1.5 ML 2 ML 2.5 ML

Fe3 2.92

Fe2 2.95 2.84 2.60

Fe1 3.14 2.89 2.67 2.66 2.54, 2.62

Nis 0.75 0.68 0.61 0.65 0.68

         Table 4-2. Calculated magnetic moments (in μB) of Ni and Fe atoms 
                   for (a) 5 and (b) 7 ML Ni thickness with Cu(001) lattice 
                   constant

          (a)

0.5 ML 1 ML 1.5 ML 2 ML 2.5 ML

Fe3 3.00

Fe2 3.00 2.78 2.55

Fe1 3.14 2.86 2.62 2.64 2.53, 2.93

Nis 0.74 0.66 0.63, 0.60 0.63 0.65

          (b)

0.5 ML 1 ML 1.5 ML 2 ML 2.5 ML

Fe3 2.98

Fe2 2.99 2.79 2.53

Fe1 3.15 2.87 2.61 2.69 2.52, 2.59

Nis 0.75 0.66 0.65 0.60 0.63 0.66

         Table 4-3. Calculated magnetic moments (in μB) of Ni and Fe atoms 
                   for (a) 5 and (b) 7 ML Ni thickness with Ni(001) lattice 
                   constant
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4.2.3 Density of State

     In this section, we show the density of states (DOS) features with two 

different lattice parameters, i.e. Cu(001) and Ni(001) lattice constants. The dotted 

and solid lines are for Cu(001) and Ni(001) lattice constants, respectively. In 

Figs. 4-3(a) and (b) the DOS of interface Ni atom for 5 and 7 ML of Ni 

underlayer thickness with 0.5ML Fe adlayer. One can see that the interface Ni 

DOS has almost the same feature with two different Ni underlayer thicknesses. 

This is quite natural since the interface Ni atom is insensitive to the presence of 

bottom layers and only few majority spin sates are found near the Fermi level 

which means close to half metallic character. In Figs. 4-4(a) and (b), we present 

DOS of Fe atom for 5 and 7 ML of Ni surface, respectively. Once again, the 

DOS shows almost the same feature regardless of the Ni underlayer thickness 

and the strain effect. Interestingly, the 0.5ML Fe adlayer has a half metallic 

state and the band width is very narrow compared with that of Ni atom. This 

narrowing is due to the lack of neighboring atom. Even with increasing Fe 

adlayer thickness, we have found no physically meaningful changes for the DOS 

of interface Ni atom (not shown here). In Figs. 4-5(a) and (b), we show the 

DOS of Fe2 and Fe1 atoms for 1.5 ML Fe coverage, respectively. The DOS of 

top Fe layer (Fe2 which is corresponding to 0.5ML coverage part) has still a 

half metallic feature although little broadening of band width is observed. The 

DOS of Fe1 which is adjacent to the Ni surface has different behavior from that 

of top Fe layer. The half metallic feature vanishes and one can see more 

broadening. This is definitely originated from the hybridization with neighboring 

Fe atom in the same layer. For other systems the spectral shapes of DOS have 

changed, nonetheless the essential feature for magnetic moment almost remains  

he same and the half metallic state for top Fe layer is always found resulting in 

large magnetic moment.
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Fig. 4-3. DOS of interface Ni atoms with (a) 5ML Ni underlayer thickness, (b) 
7ML Ni underlayer thickness. Both cases are for 0.5 ML Fe adlayer.
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Fig. 4-4. DOS of Fe atom with 0.5 ML coverage with (a) 5ML Ni underlayer 
thickness, (b) 7ML Ni underlayer thickness. 
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Fig. 4-5. DOS of Fe for 1.5ML Fe coverage with (a) top Fe layer which 
corresponds to 0.5ML coverage part, (b) Fe layer which corresponds to 1ML 
part.
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4.2.4 Magnetic Anisotropy Energy

     Recently, the thickness dependent magnetic anisotropy of Fe/Ni/Cu(001) has 

been explored, but these two experimental data show somewhat different results. 

For instance, Abe et al. have shown that the Fe/Ni has a perpendicular 

magnetization when the Fe adlayer thickness is about 0.5 - 1 ML level with 7 

ML thickness of Ni underlayer otherwise an in-plane magnetization has been 

found [10]. On the other hand, Thamankar et al. have presented that the 

perpendicular magnetization appears up to 2 ML Fe thickness [11]. Several 

factors like different interface structures due to different growing condition, strain 

effect, adlayer effect can cause such a disparity. Nevertheless, the physical origin 

is not clearly revealed. In theoretical view point, the magnetocrystalline 

anisotropy (MCA) stems from the spin-orbit interaction which is a relativistic 

effect. Therefore, one needs to employ very accurate method to consider such a 

relativistic quantity. Among various numerical methods to calculate magnetic 

anisotropy energy (MAE), it has been known that the torque method is highly 

reliable and accurate even with fewer k-points. Thus, in our calculations we 

employ this method [42]. The calculated magnetic moments and DOS studies 

have revealed that the strain effect and thickness dependence seem minimally 

effective. The spin magnetic moment is simply the difference between occupied 

majority and minority spin electrons and this has nothing to do with the wave 

function character. Nonetheless, the MCA can have completely different behaviors 

since it is substantially dependent on the wave function features. We thus 

theoretically explored the magnetic anisotropy of Fe/Ni/Cu(001) thin films. Four 

different structures have been considered, i.e. Fe/Ni for 5 and 7 ML thicknesses 

of Ni underlayer with two different lattice parameters. We have assumed that the 

Fe/Ni films grow with Cu(001) and Ni(001) lattice constants in lateral direction, 
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Fig. 4-6. Calculated magnetic anisotropy energy per transition metal atom.
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respectively. From these calculations, we can understand the influence both of 

strain and the Ni thickness dependence for the magnetic anisotropy. In Fig. 4-6, 

we present the calculated MAE per transition metal atom. The positive MAE 

means for perpendicular magnetization to the film surface, whereas the negative 

MAE is for in-plane magnetization. The open symbols are the MAE when the 

Fe/Ni film is assumed to be grown with Cu(001) lattice constants, whereas the 

solid symbols are for films with Ni(001) lattice constants. As shown, we have 

obtained that the Fe/Ni film has always a perpendicular magnetization if the film 

grows with Cu(001) lattice constant although the magnitude of MAE varies with 

film thickness. In the presence of strain effect the Fe/Ni(5 ML) films (solid 

squares) still maintain perpendicular magnetization, but interestingly the spin 

reorientation transition (SRT) from out-of-plane to in-plane magnetization arises 

up to 1.5ML Fe coverage. We also see the SRT twice between 1.5 and 2 ML 

coverage. In contrast, the Fe/Ni(7 ML) has an in-plane magnetization when the 

Fe coverage is 0.5 ML and the SRT from in-plane to perpendicular 

magnetization is maintained until 2 ML Fe coverage. As shown in Tables 1 and 

2 the magnetic moments of Fe and Ni atoms are insensitive to the strain effect, 

but it has been found that the magnetic anisotropy is significantly altered due to 

the strain. Indeed, we have realized that the interpretation of magnetic anisotropy 

in terms of simple physical quantity such as orbital anisotropy is not suitable. 

Conventionally, the competitions among bulk, surface, and interface contributions 

to the magnetic anisotropy in two dimensional film system are discussed. 

However, the validity of this approach is questionable for ultrathin film since 

there is no clear separation among those regions. One may also argue that the 

shape anisotropy contribute to the magnetic anisotropy. 

     Traditionally, the continuum model for thin film structure has been 

employed. In Table 4-4, we provide the calculated shape anisotropy and total 



- 37 -

magnetocrystalline anisotropy energies for comparison. Here, the Fe/Ni films are 

assumed to grow with Cu(001) lattice parameters. One can see that the shape 

anisotropy energy is comparable, for instance in 2.5 ML Fe coverage the shape 

anisotropy energy is larger than magnetocrystalline anisotropy energy. We should 

remark that the calculations for shape anisotropy is based on continuum model. 

Thus, it is assumed that the magnetization is uniformly distributed over the 

entire volume and the ultrathin films are very flat. However, the magnetization is 

not uniform as shown in Tables 4-2 and 4-3. Furthermore, the continuum model 

itself may not be applicable for ultrathin films [3]. Thus, the results should be 

considered as just rough estimation of shape anisotropy energy.

     Hence, one needs to consider the contribution to the magnetic anisotropy at 

each k-point in two dimensional Brillouin zone (BZ). We have checked the 

distribution of MAE along the high symmetry directions and found that it is not 

sufficient to understand the magnetic anisotropy with those sampled points. In 

Figs. 4-7, we thus present the distribution of magnetic anisotropy in entire two 

dimensional Brillouin zone. The red circles denote the contributions to the 

perpendicular magnetization at the specific k-point, while the blue ones are for 

the contributions to the in-plane magnetization. The size of circle is proportional 

to the magnitude of magnetic anisotropy energy. In Figs. 4-7(a) and (b), the 

distributions of MAE for the Fe/Ni(5 ML) and Fe/Ni(7 ML) with Cu(001) lattice 

constant are presented, while Figs. 4-7(c) and (d) are for Fe/Ni(5 ML) and 

Fe/Ni(7 ML) with Ni(001) lattice parameter, respectively. In Fig. 4-7(a), one can 

clearly see that large portion of BZ contributes to the perpendicular 

magnetization, whereas the major contributions to the in-plane magnetization 

appears near the zone center (Γ point). With increasing Ni underlayer from 5 to 

7 ML the spin-orbit interaction has very different character as displayed. The 

most significant changes occur approximately within the area of radius  and 
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around the corner of BZ. Summing up these two counteracting effects, it turns 

out that the final direction of magnetization is perpendicular to the film surface. 

In the presence of strain effect the Fe/Ni(5 ML) still has a perpendicular 

magnetization as shown in Fig. 4-7(c). Compared with Fig. 4-7(a) for Fe/Ni(5 

ML) with Cu(001) lattice parameter, we have found that the major changes arise 

near the BZ center although both systems has the same magnetization direction. 

Comparing both Figs. 4-7(b) and (d) one can easily note that the strong in-plane 

contribution around the corner of BZ vanishes, but the strong perpendicular 

contributions (red circles) disappear as well in the presence of strain. Especially, 

the area of radius  used to have perpendicular contribution maintains 

in-plane contribution. These results show that the magnetic anisotropy of ultrathin 

film with the low coverage as investigated here is significantly modified 

according to its environment such as interface geometry and these feature many 

account for the disparity occurred in two experimental data [10,11].
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Fe Coverage 0.5 ML 1 ML 1.5 ML 2 ML 2.5 ML

Esh 222 181 456 173 757

EMCA 246 229 756 436 723

    Table 4-4. Calculated total shape anisotropy energies (Esh) and magnetocrystalline    
              anisotropy energies (EMCA) in μeV for 7 layers of Ni surface systems.

Fig. 4-7. Distribution of magnetic anisotropy over two dimensional BZ for 0.5 ML Fe   
         coverage with (a) Fe/Ni(5 ML) with Cu(001) lattice, (b) Fe/Ni(7 ML) with    
         Cu(001) lattice, (c) Fe/Ni(5 ML) with Ni(001) lattice, (d) Fe/Ni(7 ML) with   
         Ni(001) lattice.
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4.2.5 XMCD and Sum Rule

     To explore magnetic properties of materials, the XAS and XMCD tools 

have been widely employed because one can extract magnetic information of 

specific element. In our calculations, the dipole transition is only considered and 

the core-hole relaxation is assumed to be rigid. Therefore, the exact peak 

position should be shifted if one wants to compare with experimental data. In 

Figs. 4-8(a) and (b), we show the calculated XAS and XMCD of Fe and 

surface Ni atoms in 1 ML Fe coverage with 5 ML Fe underlayer, respectively. 

The dotted lines are for pseudomorphic growth and the solid lines denote the 

XAS and XMCD spectra in the presence of strain effect. One can see that the 

strain has no meaningful influence on the XAS and XMCD signals. Both L3 and 

L2 edges of Fe1 and Nis atoms are well separated and this is a common feature 

observed in most of studies. In Fig. 4-9 (a), (b) and (c), we display the results, 

XMCD and XAS spectra, of Fe2, Fe1 and Nis in 2 ML of Fe coverage, 

respectively. With increasing Fe coverage the main peack structure of Nis atom 

is almost unchanged, but the Fe atom show thickness dependent behaviors. For 

instance, both L3 and L2 edges of Fe1 in 1 ML Fe coverage have well 

pronounced single peak structure. whereas we have ovserved double peak feature 

in 2 ML Fe coverage. Moreover, the top Fe layer (Fe2) also has different 

behavior from Fe1. Indeed, the DOS characters can nicely account for the 

calculated XAS and XMCD spectral shapes. 

     The interpretation of XMCD spectra is based on following orbital and spin 

sum rules.
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 
 



 

  


 

 

  
                (4-1)

            

  


 

  


     




     
   (4-2)

Where    ,      , and the Tz is the spin magnetic 

dipole moment. The Nh can be obtained by integrating over the unoccupied 

valence states. Nonetheless, the extensive studies for the general validity XMCD 

sum rule are rather rare although many experimental data interpreted based on 

that sum rule. Thus, it will be of interest to investigate the use fulness of sum 

rule based on ab initio method. We now present sum rule errors of Fe/Ni films 

grown on 5 ML of Ni underlayer in the presence of strain effect. the left hand 

sides in Eqs, (4.1) and (4.2) are obtained from XAS and XMCD spectral shapes 

and the right hand sides are achieved from ab initio calculations. In Table 4- , 

we present sum rule errors of Fe/Ni films grown on 5 ML of Ni underlayer. 

The numbers in parenthesis stand for the errors in the presence of strain effect. 

Here, we check the sum rule errors arising from orbital part, spin part, and the 

total error separately obtained from the orbital sum rule error 

  


, the spin sum rule error    


, 

and the total sum rule error    


 where 
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    . First of all, it has been observed that the strain no 

meaningful influence on the sum rule accuracy and this could be understood 

from the calculated XAS and XMCD spectra. One can also see that the sum 

rule is quite reliable in most cases. Nonetheless, the sizable sum rule error in Rt 

is found in certain structure, for instance the Nis atoms in 1 ML, 1.5 ML, and 

2 ML Fe coverage have about 20% error, but the Nis atoms in 0.5 ML and 2.5 

ML have less than 10% error. In contrast, the sum rule error of Fe atom is 

quite small for all systems. Very interestingly, the separately calculated sum rule 

error arising from spin (Rs) or orbital (Ro) part is always sizable in most of 

systems, but the total error, which is combination of these two components, is 

significantly suppressed. This feature stems from the denominator in Eqs. (4.1) 

and (4.2), i.e the It related to the number of holes plays an crucial role in the 

accuracy of sum rule. As shown in Eqs. (4.1) and (4.2), the error of Nh enters 

into the Io and Is if one considers the error separately and this causes the 

sizable sum rule error. However, the cancelation of It occurs in total error Rt 

and this results in suppression of sum rule error although the sizable inaccuracy 

from each component is observed. Indeed, it has been suggested that the XMCD 

sum rule can be improved using the combined form, not employing spin and 

orbital sum rules separately [19].
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           Fig. 4-8. XMCD and XAS spectra of (a)Fe1 and (b)Nis for Ni 5ML.
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        Fig. 4-9. XMCD and XAS spectra of (a)Fe2, (b)Fe1, and (c)Nis for Ni 5ML.
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Fe thickness atom Ro Rs Rt

0.5 ML
Fe1 -0.05 (-0.04) -0.06 (-0.06) 0.01 (0.01)

Nis -0.16 (-0.18) -0.08 (0.08) -0.08 (-0.10)

1 ML
Fe1 -0.08 (-0.16) -0.11 (-0.19) 0.04 (0.04)

Ni -0.29 (-0.31) -0.08 (-0.10) -0.22 (-0.23)

1.5 ML

Fe2 -0.06 (-0.05) -0.01 (-0.06) -0.04 (0.02)

Fe1 -0.19 (-0.18) -0.12 (-0.13) -0.07 (-0.05)

Nis-a -0.17 (-0.18) -0.14 (-0.14) -0.04 (0.02)

Nis-b -0.19 (-0.12) -0.15 (-0.25) -0.05 (0.17)

2 ML

Fe2 -0.04 (-0.06) -0.11 (-0.13) 0.08 (0.08)

Fe1 -0.06 (-0.06) -0.14 (-0.14) 0.08 (0.08)

Nis -0.31 (-0.31) -0.14 (-0.13) -0.20 (-0.21)

2.5 ML

Fe3 -0.05 (-0.03) -0.08 (-0.06) 0.03 (0.04)

Fe2 -0.19 (-0.19) -0.12 (-0.12) -0.07 (-0.07)

Fe1-a -0.22 (-0.21) -0.15 (-0.15) -0.08 (-0.07)

Fe1-b -0.19 (-0.20) -0.14 (-0.14) -0.05 (-0.06)

Nis -0.19 (-0.20) -0.15 (-0.15) -0.05 (-0.07)

   

     Table 4-5. Calculated sum rules error. The numbers in parenthesis stand for 

               the errors in the presence of strain effect.
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4.3 Conclusion

     

     In conclusion, we have investigated the magnetic properties of 

Fe/Ni/Cu(001) films varying both thickness of Fe adlayer and Ni underlayer 

including the strain effect. It has been found that the spin magnetic moments are 

less sensitive to the strain effect. For the top Fe adlayer a sensitive to the strain 

effect. For the top Fe adlayer a typical surface enhancement of spin magnetic 

moment is found and the half metallic state is observed. From the magnetic 

anisotropy calculations, we have found that the Fe/Ni have perpendicular 

magnetization to the surface. However, the direction of magnetization changes in 

the presence of strain and it is also dependent on the Fe film thickness. These 

results imply that the magnetic anisotropy may strongly depend on the interface 

structure or growing mode in the presence of very low adatom coverage, thus it 

is of necessity to identify the structure of film for understanding the SRT 

phenomenon. 

    Nonetheless, the XAS and XMCD spectral shape show almost the same 

trend even in the presence of strain effect. Through the sum rule calculations, 

we have found that the sum rule error of Fe atom is quite satisfactory, but the 

Nis atom shows rather large error in some cases. Interestingly, we suggest that 

the sum rule can be improved by combining the spin and orbital sum rules, 

whereas the sum rule form each component has sizable error.
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