
 

 

저작자표시 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

l 이차적 저작물을 작성할 수 있습니다.  

l 이 저작물을 영리 목적으로 이용할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/


Thesis for the Degree of Doctor of Philosophy

Approaches to Multiple Attribute

Group Decision Making under

Linguistic Environment

by

Min Gui Gwak

Department of Applied Mathematics

The Graduate School

Pukyong National University

February 2012



Approaches to Multiple Attribute

Group Decision Making under

Linguistic Environment

언어적 환경에서 다속성 집단의사결정의

해결 방법

Advisor : Prof. Jin Han Park

by

Min Gui Gwak

A thesis submitted in partial fulfillment of the requirement

for the degree of

Doctor of Philosophy

in the Department of Applied Mathematics, The Graduate School,

Pukyong National University

February 2012



Approaches to Multiple Attribute Group Decision Making

under Linguistic Environment

A dissertation

by

Min Gui Gwak

Approved by :

(Chairman) Young Chel Kwun, Ph. D.

(Member) Yong-Soo Pyo, Ph. D. (Member) Sung-Jin Cho, Ph. D.

(Member) Jin-Soo Hwang, Ph. D. (Member) Jin Han Park, Ph. D.

February 24, 2012



CONTENTS

Abstract(Korean) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Linguistic harmonic mean operators and their
applications to group decision making . . . . . . . . . . . . . . . . 7

2.1. Some new aggregation operators . . . . . . . . . . . . . . . . . . . . . . 8

2.2. A method for group decision making with linguistic
preference relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3. Application I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4. Application II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1. Approach to AMT selection . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2. Practical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Uncertain linguistic harmonic mean operators
and their applications to multiple attribute
group decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1. Some operational laws of uncertain linguistic
variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2. Some new uncertain linguistic aggregation operators . . . . 27



3.3. An approach to multiple attribute group decision
making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4. Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5. Comparison with other methods . . . . . . . . . . . . . . . . . . . . . . 38

3.6. Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4. Generalized induced linguistic harmonic mean
operators based approach to multiple attribute
group decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1. Generalized induced linguistic aggregation operators . . . . 44

4.1.1. The GILOWHM and GIULOWHM operators . . . . . . . 44

4.1.2. Some properties of the GILOWHM operator . . . . . . . . 50

4.2. An approach to group decision making . . . . . . . . . . . . . . . . 52

4.3. Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



i

언어적 환경에서 다속성 집단의사결정의 해결 방법

곽 민 귀

부경대학교 대학원 응용수학과

요 약



Chapter 1

Introduction

Information aggregation is an essential process of gathering relevant information

from multiple sources. Many techniques have been developed to aggregate data

information [12, 13, 20-23, 27]. Yager and Filev [40] introduced an induced aggre-

gation operator called the induced ordered weighted averaging (IOWA) operator,

which takes as its argument pairs, called OWA pairs, in which one component is

used to induce an ordering over the second components which are exact numerical

values and then aggregated. Later, some new induced aggregation operators have

been developed, including the induced ordered weighted geometric (IOWG) op-

erator [26], induced fuzzy integral aggregation (IFIA) operator [37] and induced

Choquet ordered averaging (ICOA) operator [38]. Xu and Da [26] introduced

two more general aggregation techniques called generalized IOWA (GIOWA) and

generalized IOWG (GIOWG) operators, and proved that the OWA and IOWA

operators are the special cases of the GIOWA operator, and that the OWG and

IOWG operators are the special cases of the GIOWG operator.

Decision making problems generally consist of finding the most desirable al-

ternative(s) from a given alternative set. The increasing complexity of the socio-

economic environment makes it less and less possible for single decision maker

to consider all relevant aspects of a problem [16]. As a result, many decision

making processes, in the real world, take place in group settings. Group decision
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making problems follow a common resolution scheme composed by the following

two phases:

- Aggregation phase: It combines the individual preferences to obtain a col-

lective preference.

- Exploitation phase: It orders the collective preference values to obtain the

best alternative(s).

Recently, a number of studies have focused on the group decision making with

linguistic preference relations [5, 7-15, 28, 32, 33]. Herrera et al. [8] developed

a consensus model for group decision making under linguistic assessments. It is

based on the use of linguistic preferences to provide individuals’ opinions, and on

the use of fuzzy majority of consensus, represented by means of linguistic quan-

tifier. Herrera et al. [9, 11] combined the linguistic ordered weighted averaging

(LOWA) operator with linguistic preference relations and the concept of domi-

nance and nondominance to show its use in the field of group decision making,

and presented three models of group decision making based on LOWA operator,

and presented a consensus model in complete linguistic framework for group de-

cision making. Herrera and Herrera-Viedma [15] analyzed the steps to follow in

linguistic decision analysis of group decision making problem with linguistic pref-

erence relations. Herrera and Mart́ınez [13] developed a linguistic representation

model for representing the linguistic information with the 2-tuples without loss

of information. Motivated by this idea, Xu [28] proposed some linguistic aggre-

gation operators such as linguistic geometric (LG) operator, linguistic weighted

geometric (LWG) operator, linguistic ordered weighted geometric (LOWG) oper-

ator and linguistic hybrid geometric (LHG) operator, and developed an approach

to group decision making with linguistic relations, which is straightforward and

has no loss of information. Xu [34] defined two generalized induced linguistic ag-

gregation operators, including generalized induced linguistic ordered weighted av-

eraging (GILOWA) operator and generalized induced linguistic ordered weighted

geometric (GILOWG) operator, and proved that the induced linguistic ordered

weighted averaging (ILOWA) operator and LOWA operator are the special cases
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of the GILOWA operator, and induced linguistic ordered weighted geometric

(ILOWG) operator and LOWG operator are the special cases of the GILOWG

operator.

Xu [29] proposed uncertain linguistic aggregation operators such as uncer-

tain linguistic weighted averaging (ULWA) operator, uncertain linguistic ordered

weighted averaging (ULOWA) operator and uncertain linguistic hybrid averaging

(ULHA) operator, and developed an approach to multiple group decision making

with uncertain linguistic information. Xu [32] proposed some uncertain linguistic

aggregation operators including the uncertain linguistic geometric mean (ULGM)

operator, uncertain linguistic weighted geometric mean (ULWGM) operator, and

induced uncertain linguistic ordered weighted geometric (IULOWG) operator,

and developed an approach to group decision making with uncertain multiplica-

tive linguistic relation. In some situations, however, the decision makers either

are willing to provide only uncertain linguistic information, or take the input ar-

guments as the form of uncertain linguistic variables rather than numerical ones

because of time pressure, lack of knowledge, or data, and their limited expertise

related to the problem domain. So based on induced ordered weighted averaging

(IOWA) operator proposed by Yager and Filev [40], Xu [33] introduced induced

uncertain linguistic ordered weighted averaging (IULOWA) operator which take

as their argument pair, called ULOWA pair, in which one component is used to

induce an ordering over the second components which are given in the form of un-

certain linguistic variables, and applied the IULOWA operator to group decision

making with uncertain linguistic information. Xu [34] proposed two generalized

induced uncertain linguistic aggregation operators, including generalized induced

uncertain linguistic ordered weighted averaging (GIULOWA) operator and gen-

eralized induced uncertain linguistic ordered weighted geometric (GIULOWG)

operator, and showed that the IULOWA operator and ULOWA operator are the

special cases of the GIULOWA operator, and IULOWG operator and ULOWGM

operator are the special cases of the GIULOWG operator. Xu [34] developed var-

ious generalized induced linguistic aggregation operators, such as the generalized

induced linguistic ordered weighted averaging (GILOWA) and generalized in-
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duced linguistic ordered weighted geometric (GILOWG) operator, both of which

can be used to deal with the linguistic information, and generalized induced uncer-

tain linguistic ordered weighted averaging (GIULOWA) operator and generalized

induced uncertain linguistic ordered weighted geometric (GIULOWG) operator,

both of which can be used to deal with the uncertain linguistic information.

Recently, to meet the challenge of global competitiveness, manufacturing or-

ganizations are now facing the problems of selecting appropriate manufacturing

strategies, product and process designs, manufacturing processes and technolo-

gies, and machinery and equipment. The selection decisions become more com-

plex as the decision makers in manufacturing environment have to assess a wide

range of alternatives based on a set of conflicting criteria. To aid these selec-

tion processes, various multiple attribute decision making methods applied in

the group decision making are available. For example, Chuu [4] developed a

fuzzy multiple attribute decision making applied in the group decision making

to improving advanced manufacturing technology selection process. Yong [43]

proposed an approach for selecting plant location under linguistic environments

using the TOPSIS method taken from group decision making. On the other side,

fuzzy set theory, which was introduced by Zadeh [45], has emerged as powerful

mathematical tool and has been applied in many applied research fields. Since the

field of interconnected systems is so broad as to cover the fundamental theory of

modeling, optimization and control aspects and applications, the stability prob-

lem of interconnected system have been concerned by many researchers [3, 42].

In particular, since the factor of time-delay complicates the analysis, the stability

problem of interconnected fuzzy models with time delays in subsystems is studied

by Chen et al. [3]. We are going to evolve this theory in our method in order to

propose a more applied decision making algorithm.

Information aggregation is essential process of gathering relevant information

from multiple sources. Many techniques, such as the max and min operators,

the weighted geometric mean operator, the weighted arithmetic average (WAA)

operator, the weighted harmonic mean (WHM) operator, the ordered weighted

averaging (OWA) operator, and so on have been developed to aggregate data
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information [23, 25, 26, 27, 35, 36, 41]. Harmonic mean is a conservative average

to be used to provide for aggregation lying between the max and min operators.

Harmonic mean is widely used to aggregate central tendency data. In the ex-

isting literature, the harmonic mean is generally considered as a fusion technique

of numerical data, in the real-life situations, the input data sometimes cannot be

obtained exactly, but linguistic data can be given. Therefore, “how to aggregate

linguistic data by using the harmonic mean?” is an interesting research topic and

is worth paying attention too.

We briefly summarize the contents of the each chapter as follows.

In Chapter 2, we develop some linguistic harmonic mean (LHM) operators,

such as linguistic weighted harmonic mean (LWHM) operator, linguistic ordered

weighted harmonic mean (LOWHM) operator and linguistic hybrid harmonic

mean (LHHM) operator, and then study some desirable properties of the op-

erator, and then present an approach to group decision making based on the

developed operator, illustrate the presented approach with a numerical example.

Based on the LWHM and LHHM operators, develops a multiple attribute decision

making applied in the group decision making to improving advanced manufac-

turing technology selection process and present some concluding remarks.

In Chapter 3, we develop some uncertain linguistic aggregation operators,

such as uncertain linguistic weighted harmonic mean(ULWHM) operator, uncer-

tain linguistic aggregation operators, such as uncertain linguistic ordered weighted

harmonic mean(ULOWHM) operator and uncertain linguistic hybrid harmonic

mean(ULHHM) operator, and then study some desirable properties of the oper-

ator. We present an approach to group decision making based on the developed

operator and illustrate the presented approach with a practical example. Finally,

some concluding remarks is pointed out.

In Chapter 4, we shall develop two new aggregation operators called general-

ized induced linguistic ordered weighted harmonic mean (GILOWHM) operator

and generalized induced uncertain linguistic ordered weighted harmonic mean

(GIULOWHM) operator, which can be used to deal with linguistic information

or uncertain linguistic information, and study some of their desirable properties.
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Each object processed by these operator consists of three components, where the

first component represents the importance degree or character of the second com-

ponent, and the second component is used to induce an ordering, through the first

component, over the third components which are linguistic variables or uncertain

linguistic variables and then aggregated. It is shown that the induced linguistic

ordered weighted harmonic mean (ILOWHM)[21] operator and linguistic ordered

weighted harmonic mean (LOWHM)[21] operator are the special cases of the

GILOWHM operapor and that the induced uncertain linguistic ordered weighted

harmonic mean (IULOWHM) operator and uncertain linguistic ordered weighted

harmonic mean (ULOWHM)operator are the special cases of the GIULOWHM

operapor. Two procedures based on the GILOWHM and GIULOWHM opera-

tors respectively, are developed to solve the multiple attribute decision making

(MADM) problems where all decision information about attribute values take the

forms of linguistic variables or uncertain linguistic variables. Finally, an illustra-

tive example is pointed out.
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Chapter 2

Linguistic harmonic mean

operators and their applications

to group decision making

Harmonic mean is reciprocal of arithmetic mean of reciprocal, which is a con-

servative average to be used to provide for aggregation lying between max and

min operators. In this chapter, we develop some new aggregation operators such

as linguistic harmonic mean (LHM) operator, linguistic weighted harmonic mean

(LWHM) operator, linguistic ordered weighted harmonic mean (LOWHM) op-

erator, and linguistic hybrid harmonic mean (LHHM) operator, which can be

utilized to aggregate preference information taking the form of linguistic vari-

ables, and then study some desirable properties of the operators. Based on the

LHM and the LHHM operators, we propose a practical method for group decision

making with linguistic preference relations, and also give an illustrative example.

Furthermore, based on the LWHM and LHHM operators, we develop a multi-

ple attribute decision making applied in the group decision making to improving

advanced manufacturing technology selection process.
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2.1 Some new aggregation operators

Definition 2.1.1 (Harsanyi [6]) Let WAA : Rn → R, if

WAAw(a1, a2, . . . , an) =
n∑

j=1

wjaj, (2.1)

where aj (j = 1, 2, . . . , n) is a collection of positive real numbers, w = (w1, w2, . . . ,

wn)T is the weight vector of aj (j = 1, 2, . . . , n), with wj ≥ 0 and
∑n

j=1 wj = 1, R

is the set of real numbers, then WAA is called the weighted arithmetic averaging

(WAA) operator. Especially, if wi = 1, wj = 0, j 6= i, then WAAw(a1, a2, . . . ,

an) = ai; if w = ( 1
n
, 1

n
, . . . , 1

n
)T , then the WAA operator is reduced to the arith-

metic averaging (AA) operator, i.e.,

AAw(a1, a2, . . . , an) =
1

n

n∑

j=1

aj. (2.2)

Definition 2.1.2 (Bullen et al. [1]) Let WHM : (R+)n → R+, if

WHMw(a1, a2, . . . , an) =
1∑n

j=1
wi

ai

, (2.3)

where aj (j = 1, 2, . . . , n) is a collection of positive real numbers, w = (w1, w2, . . . ,

wn)T is the weight vector of aj (j = 1, 2, . . . , n), with wj ≥ 0 and
∑n

j=1 wj = 1, R+

is the set of all positive real numbers, then WHM is called the weighted harmonic

mean (WHM) operator. Especially, if wi = 1, wj = 0, j 6= i, then WHMw(a1, a2,

. . . , an) = ai; if w = ( 1
n
, 1

n
, . . . , 1

n
)T , then the WHM operator is reduced to the

harmonic mean (HM) operator, i.e.,

HMw(a1, a2, . . . , an) =
n∑n

j=1
1
aj

. (2.4)

The WAA and the WHM operators first weight all the given data, and then

aggregate all these weighted data into a collective one. Yager [35, 36] introduced

and studied the OWA operator that weights the ordered positions of the data

instead of weighting the data themselves.
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Definition 2.1.3 (Yager [35]) An OWA operator of dimension n is a mapping

OWA : Rn → R that has an associated vector w = (w1, w2, . . . , wn)T such that

wj ≥ 0 and
∑n

j=1 wj = 1. Furthermore,

OWAw(a1, a2, . . . , an) =
n∑

j=1

wjbj, (2.5)

where bj is the jth largest of ai (i = 1, 2, . . . , n). Especially, if wi = 1, wj = 0,

j 6= i, then bn ≤ OWAw(a1, a2, . . . , an) = bi ≤ b1; if w = ( 1
n
, 1

n
, . . . , 1

n
)T , then

OWAw(a1, a2, . . . , an) =
1

n

n∑

j=1

bj

=
1

n

n∑

j=1

aj

= AA(a1, a2, . . . , an). (2.6)

The WAA, the WHM and the OWA operators have only been used in situation

in which the input arguments are the exact values. However, judgements of people

depend on personal psychological aspects such as experience, learning, situation,

state of mind, and so forth. It is more suitable to provide their preferences by

means of linguistic variables rather than numerical ones. In the following, based

on these operators, which can be used to accommodate the situations where the

input arguments are linguistic variables.

Let S = {si : i = 1, 2, . . . , t} be a finite and totally ordered discrete term set.

Any label, si, represents a possible value for a linguistic variable, and it must

have the following characteristics [8]:

(1) The set is ordered: si ≥ sj if i ≥ j;

(2) There is the negation operator: neg(si) = sj such that j = t + 1− i.

(3) Max operator: max(si, sj) = si if si ≥ sj;

(4) Min operator: min(si, sj) = si if si ≤ sj.
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For example, S can be defined so as its elements are uniformly distributed on

a scale on which a total order is defined:

S = {s1 = extremely poor, s2 = very poor, s3 = poor, s4 = slightly poor,

s5 = fair, s6 = slightly good, s7 = good, s8 = very good,

s9 = extremely good}.

To preserve all the given information, we extend the discrete term set S to a

continuous linguistic term set S̄ = {sα : s1 ≤ sα ≤ st, α ∈ [1, t]}, where, if

sα ∈ S, then we call sα an original linguistic term, otherwise, we call sα the

virtual linguistic term [32]. The decision maker, in general, uses the original

linguistic terms to evaluate alternatives, and the virtual linguistic terms can only

appear in operations.

Consider any two linguistic variables sα and sβ, then we define the operations

sα ⊕ sβ, λsα and 1
sα

as follows:

(1) sα ⊕ sβ = min{sα+β, st};

(2) λsα = sλα, where λ ∈ [0, 1];

(3) 1
sα

= s 1
α
.

Based on the operational laws, we extend the WHM operator to linguistic

environment:

Definition 2.1.4 Let LWHM : S̄n → S̄, if

LWHMw(sα1 , sα2 , . . . , sαn) =
1

w1

sα1
⊕ w2

sα2
⊕ · · · ⊕ wn

sαn

=
1

sw1
α1

⊕ sw2
α2

⊕ · · · ⊕ swn
αn

=
1

s∑n

j=1

wj
αj

, (2.7)
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where w = (w1, w2, . . . , wn)T is the weight vector of the sαj
with wj ∈ [0, 1],

∑n
j=1 wj = 1, sαj

∈ S̄, then LWHM is called the linguistic weighted harmonic

mean (LWHM) operator.

Especially, if wi = 1 and wj = 0, j 6= i, then LWHM(sα1 , sα2 , . . . , sαn) = sαi
; if

w = ( 1
n
, 1

n
, . . . , 1

n
)T , then LWHM operator is called the linguistic harmonic mean

(LHM) operator, i.e.,

LHM(sα1 , sα2 , . . . , sαn) =
n

s∑n

j=1
1

αj

. (2.8)

Example 2.1.5 Assume w = (0.3, 0.1, 0.4, 0.2)T , then

LWHMw(s4, s7, s3, s1) =
1

0.3
s4
⊕ 0.1

s7
⊕ 0.4

s3
⊕ 0.2

s1

=
1

s 0.3
4
⊕ s 0.1

7
⊕ s 0.4

3
⊕ s 0.2

1

= s2.36.

Theorem 2.1.6 (Boundedness)

Minj(sαj
) ≤ LWHMw(sα1 , sα2 , . . . , sαn) ≤ Maxj(sαj

)

Proof Let Maxj(sαj
) = sβ and Minj(sαj

) = sα, then

LWHMw(sα1 , sα2 , . . . , sαn) =
1

sw1
α1

⊕ sw2
α2

⊕ · · · ⊕ swn
αn

≤ 1

sw1
β
⊕ sw2

β
⊕ · · · ⊕ swn

β

=
1

s∑n

j=1
wj

β

= sβ,

LWHMw(sα1 , sα2 , . . . , sαn) =
1

sw1
α1

⊕ sw2
α2

⊕ · · · ⊕ swn
αn

11



≥ 1

sw1
α
⊕ sw2

α
⊕ · · · ⊕ swn

α

=
1

s∑n

j=1
wj

α

= sα.

Hence

Minj(sαj
) ≤ LWHMw(sα1 , sα2 , . . . , sαn) ≤ Maxj(sαj

).

Based on the OWA and the LWHM operators and the operation law, we define

a LOWHM operator as below:

Definition 2.1.7 A LOWHM operator of dimension n is a mapping LOWHM :

S̄n → S̄, which has an associated vector w = (w1, w2, . . . , wn)T with wj ∈ [0, 1]

and
∑n

j=1 wj = 1, such that

LOWHMw(sα1 , sα2 , . . . , sαn) =
1

w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

=
1

sw1
β1

⊕ sw2
β2

⊕ · · · ⊕ swn
βn

=
1

s∑n

j=1

wj
βj

, (2.9)

where sβj
is the jth largest of the sαi

.

Especially, if there is a tie between sαi
and sαj

, then we replace each of sαi
and

sαj
by their average (sαi

⊕sαj
)/2 in the process of aggregation. If k items are tied,

then we replace these by k replicas of their average. The weighted vector w =

(w1, w2, . . . , wn)T can be determined by using some weight determining methods

like the normal distribution based method.

Example 2.1.8 Assume w = (0.3, 0.1, 0.4, 0.2)T , then

LOWHMw(s4, s7, s3, s1) =
1

0.3
s7
⊕ 0.1

s4
⊕ 0.4

s3
⊕ 0.2

s1

12



=
1

s 0.3
7
⊕ s 0.1

4
⊕ s 0.4

3
⊕ s 0.2

1

= s2.49.

In the following, let us look at some desirable properties associated with the

LOWHM operator.

Theorem 2.1.9 (Commutativity)

LOWHMw(sα1 , sα2 , . . . , sαn) = LOWHMw(s′α1
, s′α2

, . . . , s′αn
),

where (s′α1
, s′α2

, . . . , s′αn
) is a permutation of (sα1 , sα2 , . . . , sαn).

Proof Let

LOWHMw(sα1 , sα2 , . . . , sαn) =
1

w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

,

LOWHMw(s′α1
, s′α2

, . . . , s′αn
) =

1
w1

s′
β1

⊕ w2

s′
β2

⊕ · · · ⊕ wn

s′
βn

.

Since (s′α1
, s′α2

, . . . , s′αn
) is a permutation of (sα1 , sα2 , . . . , sαn), we have sβj

= s′βj

(j = 1, 2, . . . , n), then

LOWHMw(sα1 , sα2 , . . . , sαn) = LOWHMw(s′α1
, s′α2

, . . . , s′αn
).

Theorem 2.1.10 (Idempotency) If sαj
= sα, for all j, then

LOWHMw(sα1 , sα2 , . . . , sαn) = sα.

Proof Since sαj
= sα, for all j, it follows that

LOWHMw(sα1 , sα2 , . . . , sαn) =
1

w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

=
1

s∑n

j=1
wj

α

= sα.
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Theorem 2.1.11 (Monotonicity) If sαj
≤ s∗αj

, for all j, then

LOWHMw(sα1 , sα2 , . . . , sαn) ≤ LOWHMw(s∗α1
, s∗α2

, . . . , s∗αn
).

Proof Let

LOWHMw(sα1 , sα2 , . . . , sαn) =
1

w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

,

LOWHMw(s∗α1
, s∗α2

, . . . , s∗αn
) =

1
w1

s∗
β1

⊕ w2

s∗
β2

⊕ · · · ⊕ wn

s∗
βn

.

Since sαj
≤ s∗αj

, for all j, it follows that sβj
≤ s∗βj

, then

LOWHMw(sα1 , sα2 , . . . , sαn) ≤ LOWHMw(s∗α1
, s∗α2

, . . . , s∗αn
).

Theorem 2.1.12 (Boundedness)

Minj(sαj
) ≤ LOWHMw(sα1 , sα2 , . . . , sαn) ≤ Maxj(sαj

).

Proof Let Maxj(sαj
) = sβ and Minj(sαj

) = sα, then

LOWHMw(sα1 , sα2 , . . . , sαn) =
1

sw1
β1

⊕ sw2
β2

⊕ · · · ⊕ swn
βn

≤ 1

sw1
β
⊕ sw2

β
⊕ · · · ⊕ swn

β

=
1

s∑n

j=1
wj

β

= sβ,

LOWHMw(sα1 , sα2 , . . . , sαn) =
1

sw1
β1

⊕ sw2
β2

⊕ · · · ⊕ swn
βn

≥ 1

sw1
α
⊕ sw2

α
⊕ · · · ⊕ swn

α

=
1

s∑n

j=1
wj

α

= sα.
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Hence

Minj(sαj
) ≤ LOWHMw(sα1 , sα2 , . . . , sαn) ≤ Maxj(sαj

).

Especially, if the associated weighting vector w = ( 1
n
, 1

n
, . . . , 1

n
)T , then the

LOWHM operator is reduced to the LHM operator, i.e.,

LOWHMw(sα1 , sα2 , . . . , sαn) =
1

w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

=
n

s 1
β1

⊕ s 1
β2

⊕ · · · ⊕ s 1
βn

=
n

s∑n

j=1
1

αj

.

The LWHM operator weights the linguistic argument, while the LOWHM op-

erator weights the ordered position of the linguistic argument instead of weighting

the argument itself, weights represent different aspects in both the LWHM and

the LOWHM operators. However, both the operators consider only one of them.

To solve this drawback, in the following we shall propose a LHHM operator.

Definition 2.1.13 A LHHM operator of dimension n is a mapping LHHM :

S̄n → S̄, which has an associated vector w = (w1, w2, . . . , wn)T with wj ≥ 0 and
∑n

j=1 wj = 1, such that

LHHMω,w(sα1 , sα2 , . . . , sαn) =
1

w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

=
1

s∑n

j=1

wj
βj

, (2.10)

where sβj
is the jth largest of the s̄αi

(s̄αi
= nωisαi

, i = 1, 2, . . . , n), ω =

(ω1, ω2, . . . , ωn)T is the weight vector of sαj
(j = 1, 2, . . . , n) with ωj ∈ [0, 1]

and
∑n

j=1 ωj = 1, and n is the balancing coefficient.
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Example 2.1.14 Assume ω = (0.3, 0.1, 0.4, 0.2)T , w = (0.35, 0.15, 0.20, 0.30)T ,

and

sα1 = s4, sα2 = s7, sα3 = s2, sα4 = s1.

By Definition 2.1.13, we have

s̄α1 = 4× 0.3× s4 = s4.8, s̄α2 = 4× 0.1× s7 = s2.8,

s̄α3 = 4× 0.4× s2 = s3.2, s̄α4 = 4× 0.2× s1 = s0.8

and thus

sβ1 = s4.8, sβ2 = s3.2, sβ3 = s2.8, sβ4 = s0.8.

Therefore,

LHHMω,w(s4, s7, s2, s1) =
1

0.35
s4.8

⊕ 0.15
s3.2

⊕ 0.20
s2.8

⊕ 0.30
s0.8

= s1.77.

Especially, if w = ( 1
n
, 1

n
, . . . , 1

n
)T , then s̄αi

= sαi
, i = 1, 2, . . . , n, in this case,

the LHHM operator is reduced to the LOWHM operator; if ω = ( 1
n
, 1

n
, . . . , 1

n
)T ,

then the LHHM operator is reduced to LWHM operator. Thus, we know that

the LHMM operator generalizes both the LWHM and LOWHM operators, and

reflects the importance degrees of both the given argument and its ordered posi-

tion.

2.2 A method for group decision making with

linguistic preference relations

Based on the LHM and the LHHM operators, we develop a practical method for

group decision making with linguistic preference relations as follows:

Step 1: For a group decision making problem with linguistic preference, let

X = {x1, x2, . . . , xn} be the set of alternatives and D = {d1, d2, . . . , dm} be the
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set of decision-makers, and let λ = (λ1, λ2, . . . , λm)T be the weight vector of

decision-makers, where λk ≥ 0 and
∑m

k=1 λk = 1. The decision-maker dk ∈ D

compares these alternatives with respect to a single criterion by linguistic terms

in the set S = {si} (i = 1, 2, . . . , t), and constructs the linguistic preference

relation Rk = (r
(k)
ij )n×n, where the diagonal elements in Rk are expressed as “−”,

which mean “undefined”, and r
(k)
ij ⊕ r

(k)
ji = st, i, j = 1, 2, . . . , n; i 6= j.

Step 2: Utilize the LHM operator

z
(k)
i = LHM(r

(k)
i1 , r

(k)
i2 , . . . , r

(k)
in )

=
n− 1

1

r
(k)
i1

⊕ 1

r
(k)
i2

⊕ . . .⊕ 1

r
(k)
in

, i = 1, 2, . . . , n; k = 1, 2, . . . , m

to aggregate the preference information r
(k)
ij (i 6= j) in the ith line of Rk, and then

get the preference degree s
(k)
i of the ith alternative over all the other alternatives

(corresponding to dk ∈ D).

Step 3: Utilize the LHHM operator

zi = LHHMw(z
(1)
i , z

(2)
i , . . . , z

(m)
i )

to aggregate z
(k)
I (k = 1, 2, . . . ,m) corresponding to the alternatives xi, and then

get the preference degree zi of the ith alternative over all the other alternatives,

where λ = (λ1, λ2, . . . , λm)T is the weight vector of decision-makers, where λk ≥ 0

and
∑m

k=1 λk = 1; w = (w1, w2, . . . , wm)T is the associated weight vector of the

LHHM operator with wk ∈ [0, 1] and
∑m

k=1 wk = 1.

Step 4: Rank all the alternatives and select the optimal one(s) in accordance

with the values of zi (i = 1, 2, . . . , n).

Step 5: End.

2.3 Application I

In this section, we consider that a group decision making problem involves the

evaluation of five schools xi (i = 1, 2, 3, 4, 5) of a university (adapted from [28]).
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One main criterion used is research. There are three decision-makers dk (k =

1, 2, 3), whose weight vector is λ = (0.3, 0.4, 0.3)T . The decision-makers compare

these five schools with respect to the criterion research by using the linguistic

terms in the set S = {s1 = extremely poor, s2 = very poor, s3 = poor, s4 =

slightly poor, s5 = fair, s6 = slightly good, s7 = good, s8 = very good, s9 =

extremely good}, and construct, respectively, the linguistic preference relations

Rk (k = 1, 2, 3) as listed in Tables 2.1-2.3.

Table 2.1: Linguistic preference relation R1

x1 x2 x3 x4 x5

x1 − s2 s4 s3 s7

x2 s8 − s5 s4 s6

x3 s6 s5 − s2 s4

x4 s7 s6 s8 − s3

x5 s3 s4 s6 s7 −

To get the best school(s), the following steps are involved:

Step 1: Utilize the LHM operator to aggregate the preference information in

the ith line of the Rk (k = 1, 2, 3), and then get the preference degree z
(k)
i of the

Table 2.2: Linguistic preference relation R2

x1 x2 x3 x4 x5

x1 − s3 s4 s6 s5

x2 s7 − s7 s4 s5

x3 s6 s3 − s4 s6

x4 s4 s6 s6 − s4

x5 s5 s5 s4 s6 −
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Table 2.3: Linguistic preference relation R3

x1 x2 x3 x4 x5

x1 − s2 s6 s4 s7

x2 s8 − s4 s3 s4

x3 s4 s6 − s5 s7

x4 s6 s7 s5 − s3

x5 s3 s6 s3 s7 −

ith school over all the other schools:

z
(1)
1 = s3.26, z

(2)
1 = s4.21, z

(3)
1 = s3.77,

z
(1)
2 = s5.40, z

(2)
2 = s5.43, z

(3)
2 = s4.18,

z
(1)
3 = s3.58, z

(2)
3 = s4.36, z

(3)
3 = s5.27,

z
(1)
4 = s5.21, z

(2)
4 = s4.80, z

(3)
4 = s4.74,

z
(1)
5 = s4.48, z

(2)
5 = s4.90, z

(3)
5 = s4.10.

Step 2: Utilize the LHHM operator (whose weight vector w = (0.3, 0.4, 0.3)T )

to aggregate z
(k)
i (k = 1, 2, 3) corresponding to the school xi, and then get the

preference degree zi of the ith school over all the other schools:

z1 = s3.57, z2 = s4.76, z3 = s4.35, z4 = s5.00,

z5 = s4.55.

Step 3: Utilize the values of zi (i = 1, 2, 3, 4, 5) to rank the schools:

x4 Â x2 Â x5 Â x3 Â x1

and thus the best school is x4.
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2.4 Application II

In this section, a new advanced manufacturing technology (AMT) selection method

using linguistic multiple attributes analysis as well as group decision making is

proposed.

2.4.1 Approach to AMT selection

Let X = {x1, x2, . . . , xn} be a finite set of n feasible alternatives (courses of AMT),

and G = {G1, G2, . . . , Gm} be a set of m attributes, whose weight vector is w =

(w1, w2, . . . , wm)T , where wi ≥ 0 and
∑m

i=1 wi = 1, and let D = {d1, d2, . . . , dl}
be the set of decision-makers, whose weight vector is λ = (λ1, λ2, . . . , λl)

T , where

λk ≥ 0 and
∑l

k=1 λk = 1. The decision maker dk ∈ D may provide the linguistic

decision matrix Rk = (r
(k)
ij )m×n, where r

(k)
ij is a performance rating (attribute

value), which takes the form of linguistic variable, of the alternative xj ∈ X

with respect to the attribute Gi ∈ G for all i = 1, 2, . . . ,m; j = 1, 2, . . . , n;

k = 1, 2, . . . , l.

In the following, based on the LWHM and LHHM operators, we shall develop

a multiple attribute decision making applied in the group decision making to

improving advanced manufacturing technology selection process.

Step 1: Utilize the LWHM operator:

r
(k)
j = LWHMw(r

(k)
1j , r

(k)
2j , . . . , r

(k)
mj)

=
1

w1

r
(k)
1j

⊕ w2

r
(k)
2j

⊕ · · · ⊕ wm

r
(k)
mj

to aggregate all the elements in the jth column of Rk and get the overall attribute

value r
(k)
j of the alternative xj corresponding to the decision maker dk.

Step 2: Utilize the LHHM operator:

rj = LHHMω(r
(1)
j , r

(2)
j , . . . , r

(l)
j )

=
1

ω1

ṙ
σ(1)
j

⊕ ω2

ṙ
σ(2)
j

⊕ · · · ⊕ ωl

ṙ
σ(l)
j
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to aggregate the overall attribute values r
(k)
j (k = 1, 2, . . . , l) corresponding to the

decision-maker dk (k = 1, 2, . . . , l) and get the collective overall attribute value

rj, where ṙ
σ(k)
j is the kth largest of the weighted data ṙ

(k)
j (ṙ

(k)
j = lλkr

(k)
j , k =

1, 2, . . . , l), ω = (ω1, ω2, . . . , ωl)
T is the weighting vector of the LHHM operator

with ωk ≥ 0 and
∑l

k=1 ωk = 1.

Step 3: Rank all the alternatives xj (j = 1, 2, . . . , n), and then select the

most desirable one in accordance with the collective overall preference values rj

(j = 1, 2, , . . . , n).

Step 4: End.

2.4.2 Practical example

The following practical case was adapted from [4]. Due to increasing customiza-

tion, a leading Taiwan firm in the bicycle industry needs a flexible manufacturing

system (FMS) to produce a customized bike, which is designing for customer’s

requirements. After performing task analysis, it has been identified that this sys-

tem should be produce mountain bikes and road racing bikes for a customized

order. After preliminary screening, three competing alternatives, x1, x2 and x3

are identified that are capable of performing this production task. A committee

of three decision-makers, d1, d2 and d3 has been formed to conduct further eval-

uation and to select the most suitable FMS. The attributes which are considered

here in assessment of xj (j = 1, 2, 3) are: (1) G1 is process flexibility; (2) G2

is product quality; (3) G3 is learning; (4) G4 is exposure to labor unrest. The

decision-maker dk (k = 1, 2, 3) evaluates the performance of FMS xj (j = 1, 2, 3)

according to the attributes Gi (j = 1, 2, 3, 4) by using the linguistic terms in the

set

S = {s1 = extremely low, s2 = very low, s3 = low,

s4 = slightly low, s5 = middle, s6 = slightly high,

s7 = high, s8 = very high, s9 = extremely high}.
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and constructs, respectively, the linguistic decision matrix Rk (k = 1, 2, 3) as

listed in Tables 2.4-2.6. Let w = (0.35, 0.15, 0.20, 0.30)T be the weight vector of

the attributes Gi (i = 1, 2, 3, 4), and λ = (0.3, 0.4, 0.3)T be the weight vector of

the decision-makers dk (k = 1, 2, 3).

Table 2.4: Linguistic decision matrix R1

x1 x2 x3

G1 s6 s3 s7

G2 s5 s6 s4

G3 s7 s6 s5

G4 s4 s6 s5

Table 2.5: Linguistic decision matrix R2

x1 x2 x3

G1 s5 s5 s7

G2 s6 s3 s8

G3 s2 s7 s7

G4 s5 s6 s5

Table 2.6: Linguistic decision matrix R3

x1 x2 x3

G1 s7 s5 s6

G2 s4 s7 s7

G3 s3 s8 s7

G4 s3 s6 s6

To get the best alternative(s), the following steps are involved:

Step 1: Utilize the LWHM operator to aggregate all the elements in the jth

22



column of Rk and get the overall attribute value r
(k)
j :

r
(1)
1 = s5.21, r

(1)
2 = s4.44, r

(1)
3 = s5.33,

r
(2)
1 = s3.92, r

(2)
2 = s5.04, r

(2)
3 = s6.36,

r
(3)
1 = s3.93, r

(3)
2 = s6.01, r

(3)
3 = s6.32.

Step 2: Utilize the LHHM operator (suppose that its weight vector is ω =

(0.2, 0.5, 0.3)T ) to aggregate the overall attribute values r
(k)
j (k = 1, 2, 3) corre-

sponding to the decision maker dk (k = 1, 2, 3), and get the collective overall

attribute value rj (j = 1, 2, 3):

r1 = s4.28, r2 = s4.99, r3 = s5.96.

Step 3: Utilize the values of rj (j = 1, 2, 3) to rank the alternatives:

x3 Â x2 Â x1

and thus the best alternative is x3.

2.5 Conclusions

In this chapter, we have defined operational law of linguistic variables and de-

veloped some new aggregation operators including the LHM, the LWHM, the

LOWHM and LHHM operators, which can be utilized to aggregate preference

information taking the form of linguistic variables. Based on the LHM and the

LHHM operators, we have proposed a practical method for group decision mak-

ing with linguistic preference relations. Theoretical analysis and the numerical

results show that the method is straightforward and has no loss of information.

Moreover, a new AMT selection method using linguistic multiple attributes anal-

ysis as well as group decision making is proposed. In the future, we shall continue

working in the application and extension of the LWHM operator in other domain.
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Chapter 3

Uncertain linguistic harmonic

mean operators and their

applications to multiple attribute

group decision making

In this chapter, some uncertain linguistic aggregation operators called uncertain

linguistic weighted harmonic mean (ULWHM) operator, uncertain linguistic or-

dered weighted harmonic mean (ULOWHM) operator and uncertain linguistic

hybrid harmonic mean (ULHHM) operator are proposed. An approach to mul-

tiple attribute group decision making with uncertain linguistic information is

developed based on the ULWHM and the ULHHM operators. Finally, a prac-

tical application of the developed approach to multiple attribute group decision

making problem with uncertain linguistic information is given.
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3.1 Some operational laws of uncertain

linguistic variables

Let s̃ = [sα, sβ], where sα, sβ ∈ S̄, sα and sβ are the lower and upper limits,

respectively. We call s̃ the uncertain linguistic variables. Let S̃ be the set of all

the uncertain linguistic variables.

Consider any three uncertain linguistic variables s̃ = [sα, sβ], s̃1 = [sα1 , sβ1 ]

and s̃2 = [sα2 , sβ2 ], and let λ ∈ [0, 1], then we define their operations as follows:

(1) s̃1 ⊕ s̃2 = [sα1 , sβ1 ]⊕ [sα2 , sβ2 ] = [sα1 ⊕ sα2 , sβ1 ⊕ sβ2 ] = [sα1+α2 , sβ1+β2 ];

(2) λs̃ = λ[sα, sβ] = [λsα, λsβ] = [sλα, sλβ];

(3) 1
s̃

= 1
[sα,sβ ]

= [ 1
sβ

, 1
sα

] = [s 1
β
, s 1

α
].

In order to compare uncertain linguistic variables, Xu [32] provided the fol-

lowing definition:

Definition 3.1.1 Let s̃1 = [sα1 , sβ1 ] and s̃2 = [sα2 , sβ2 ] be two uncertain linguis-

tic variables, and let len(s̃1) = β1 − α1 and len(s̃2) = β2 − α2, then the degree of

possibility of s̃1 ≥ s̃2 is defined as

p(s̃1 ≥ s̃2) =
max{0, len(s̃1) + len(s̃2)−max(β2 − α1, 0)}

len(s̃1) + len(s̃2)
(3.1)

From Definition 3.1.1, we can easily get the following results:

(1) 0 ≤ p(s̃1 ≥ s̃2) ≤ 1, 0 ≤ p(s̃2 ≥ s̃1) ≤ 1;

(2) p(s̃1 ≥ s̃2) + p(s̃2 ≥ s̃1) = 1. Especially, p(s̃1 ≥ s̃1) = p(s̃2 ≥ s̃2) = 1
2
.

Wei and Yi [24] introduced the concept of fuzzy triangular linguistic variable

as follow:
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Definition 3.1.2 Let ŝ = (sα, sβ, sγ), where sα, sβ, sγ ∈ S̄, sα,sβ, and sγ are

the lower, modal and upper values of ŝ, respectively, then we called ŝ a trian-

gular fuzzy linguistic variable, which characterized by the following membership

function:

µŝ(sθ) =





0, s1 ≤ sθ ≤ sα,
d(sθ,sα)
d(sβ ,sα)

, sα ≤ sθ ≤ sβ,
d(sθ,sγ)
d(sβ ,sγ)

, sβ ≤ sθ ≤ sγ,

0, sγ ≤ sθ ≤ st,

(3.2)

where d(sα, sβ) = |β − α| is the distance between sα and sβ.

Clearly, sβ gives the maximal grade of µŝ(sθ) (µŝ(sβ) = 1), sα and sγ are

the lower and upper bounds with limit in the field of possible evaluation. If

sα = sβ = sγ, then ŝ is reduced to a linguistic variable. If sα = sβ or sβ = sγ,

then ŝ is reduced to an uncertain linguistic variable.

In the following, Wei and Yi [24] introduced a formula for comparing triangular

fuzzy linguistic variables.

Definition 3.1.3 Let ŝ1 = (sα1 , sβ1 , sγ1) and ŝ2 = (sα2 , sβ2 , sγ2) be any two trian-

gular fuzzy linguistic variables, then the degree of possibility of ŝ1 ≥ ŝ2 is defined

as

p(ŝ1 ≥ ŝ2) = λ max

{
1−max

[
d(sβ2 , sα1)

d(sβ1 , sα1) + d(sβ2 , sα2)
, 0

]
, 0

}

+(1− λ) max

{
1−max

[
d(sγ2 , sβ1)

d(sγ1 , sβ1) + d(sγ2 , sβ2)
, 0

]
, 0

}
(3.3)

Definition 3.1.4 The α-cut of a triangular fuzzy linguistic variable is a subset

of S̄ and is denoted by

[ŝ]α = {sθ ∈ S̄ : µŝ(sθ) ≥ α}, (3.4)

where µŝ(sθ) is the membership function of ŝ and α ∈ [0, 1].
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The lower and upper points of any α-cut, [ŝ]α, are represented by [ŝ]Lα and

[ŝ]Uα , respectively, and suppose that both are finite.

Remark 3.1.5 If ŝ = [[ŝ]Lα, [ŝ]Uα ], then by choosing α = 1 we can identify the

modal value of ŝ, and by α = 0 we can identify the lower and upper values of ŝ.

3.2 Some new uncertain linguistic aggregation

operators

Definition 3.2.1 Let ULHM : S̃n → S̃, if

ULHM(s̃1, s̃2, . . . , s̃n) =
n

1
s̃1
⊕ 1

s̃2
⊕ · · · ⊕ 1

s̃n

(3.5)

where s̃ ∈ S̃, i = 1, 2, . . . , n, then ULHM is called the uncertain linguistic har-

monic mean (ULHM) operator.

Example 3.2.2 Given the collection of uncertain linguistic variables: s̃1 = [s2, s3],

s̃2 = [s1, s2], s̃3 = [s3, s4], s̃4 = [s4, s5], then by (3.5) and the operational laws of

uncertain linguistic variables, we have

ULHM(s̃1, s̃2, s̃3, s̃4) =
4

1
s̃1
⊕ 1

s̃2
⊕ 1

s̃3
⊕ 1

s̃4

=
4

1
[s2,s3]

⊕ 1
[s1,s2]

⊕ 1
[s3,s4]

⊕ 1
[s4,s5]

= [s1.92, s3.13].

Definition 3.2.3 Let ULWHM : S̃n → S̃, if

ULWHMw(s̃1, s̃2, . . . , s̃n) =
1

w1

s̃1
⊕ w2

s̃2
⊕ · · · ⊕ wn

s̃n

, (3.6)

where w = (w1, w2, . . . , wn)T is the weighting vector of s̃j (j = 1, 2, . . . , n), with

wj ≥ 0 and
∑n

j=1 wj = 1, then ULWHM is called the uncertain linguistic weighted

harmonic mean (ULWHM) operator.
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Especially, if wi = 1, wj = 0, j 6= i, then ULWHMw(s̃1, s̃2, . . . , s̃n) = s̃i; if

w = ( 1
n
, 1

n
, . . . , 1

n
)T , then the ULWHM operator is reduced to the ULHM operator.

Furthermore, the ULWHM operator has the following property similar to that of

the LWHM operator:

minj(s̃j) ≤ ULWHMw(s̃1, s̃2, . . . , s̃n) ≤ maxj(s̃j).

Example 3.2.4 Given the collection of uncertain linguistic variables: s̃1 = [s2, s3],

s̃2 = [s1, s2], s̃3 = [s3, s4], s̃4 = [s4, s5], and let w = (0.3, 0.2, 0.3, 0.2)T be the

weight vector of s̃j (j = 1, 2, 3, 4), then by (3.6), we have

ULWHMw(s̃1, s̃2, s̃3, s̃4) =
1

0.3
s̃1
⊕ 0.2

s̃2
⊕ 0.3

s̃3
⊕ 0.2

s̃4

=
1

0.3
[s2,s3]

⊕ 0.2
[s1,s2]

⊕ 0.3
[s3,s4]

⊕ 0.2
[s4,s5]

= [s2.00, s3.17].

Definition 3.2.5 An uncertain linguistic ordered weighted harmonic mean (UL-

OWHM) operator of dimension n is a mapping ULOWHM : S̃n → S̃, which

has associated weighting vector w = (w1, w2, . . . , wn)T such that wj ∈ [0, 1],

j = 1, 2, . . . , n, and
∑n

j=1 wj = 1. Furthermore:

ULOWHMw(s̃1, s̃2, . . . , s̃n) =
1

w1

s̃β1
⊕ w2

s̃β2
⊕ · · · ⊕ wn

s̃βn

, (3.7)

where s̃βj
is the jth largest of the s̃i ∈ S̃.

Especially, if wi = 1, wj = 0, j 6= i, then ULOWHMw(s̃1, s̃2, . . . , s̃n) = s̃i;

if w = ( 1
n
, 1

n
, . . . , 1

n
)T , then the ULOWHM operator is reduced to the ULHM

operator. The weighting vector w = (w1, w2, . . . , wn)T can be determined by using

some weight determining methods like the normal distribution based method (see,

Refs.33, 34, 40 for more details).

To rank these arguments s̃i (i = 1, 2, . . . , n), we first compared each argument

s̃i with all arguments s̃j (j = 1, 2, . . . , n) by using (3.1), and let pij = p(s̃i ≥ s̃j).
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Then we construct a complementary matrix P = (pij)n×n where:

pij ≥ 0, pij + pji = 1, pii =
1

2
, i, j = 1, 2, . . . , n.

Summing all elements in each line of matrix P, we have pi =
∑n

j=1 pij, i =

1, 2, . . . , n. Then, in accordance with the values of pi (i = 1, 2, . . . , n), we rank

the arguments s̃i (i = 1, 2, . . . , n) in descending order.

Example 3.2.6 Given the collection of uncertain linguistic variables: s̃1 = [s2, s3],

s̃2 = [s1, s3], s̃3 = [s2, s4], s̃4 = [s3, s4]. To rank these arguments, we first com-

pare each argument s̃i with all arguments s̃j (j = 1, 2, . . . , n) by using (3.1),

let pij = p(s̃i ≥ s̃j) (j = 1, 2, 3, 4), then we utilize these possibility degrees to

construct the following matrix P = (pij)4×4:

P =




0.500 0.667 0.333 0.000

0.333 0.500 0.250 0.000

0.667 0.750 0.500 0.333

1.000 1.000 0.667 0.500




.

Summing all elements in each line of matrix P, we have

p1 = 1.500, p2 = 1.083, p3 = 2.250, p4 = 3.167.

Then we rank the arguments s̃i (i = 1, 2, 3, 4) in descending order in accordance

with the values of pi (i = 1, 2, 3, 4):

s̃β1 = s̃4 = [s3, s4], s̃β2 = s̃3 = [s2, s4], s̃β3 = s̃1 = [s2, s3], s̃β4 = s̃2 = [s1, s3].

Suppose that the weighting vector w = (w1, w2, w3, w4)
T of the ULOWHM oper-

ator is w = (0.3, 0.2, 0.3, 0.2)T , then by (3.7), we get

ULOWHMw(s̃1, s̃2, s̃3, s̃4) =
1

0.3
s̃4
⊕ 0.2

s̃3
⊕ 0.3

s̃1
⊕ 0.2

s̃2

=
1

0.3
[s3,s4]

⊕ 0.2
[s2,s4]

⊕ 0.3
[s2,s3]

⊕ 0.2
[s1,s3]

= [s1.82, s3.42].
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Based on Definition 2.1.7, we have the following properties of the ULOWHM

operator:

Theorem 3.2.7 Let s̃1, s̃2, . . . , s̃n be a collection of uncertain linguistic variables

and w = (w1, w2, . . . , wn)T be the weight vector of the ULOWHM operator with

wj ≥ 0 and
∑n

j=1 wj = 1; then we have the following.

(1) (Idempotency): If all s̃j (j = 1, 2, . . . , n) are equal, i.e., s̃j = s̃ for all j,

then

ULOWHMw(s̃1, s̃2, . . . , s̃n) = s̃.

(2) (Boundedness):

min
j

(s̃j) ≤ ULOWHMw(s̃1, s̃2, . . . , s̃n) ≤ max
j

(s̃j).

(3) (Monotonicity): If s̃j ≤ s̃∗j , for all j, then

ULOWHMw(s̃1, s̃2, . . . , s̃n) ≤ ULOWHMw(s̃∗1, s̃
∗
2, . . . , s̃

∗
n).

(4) (Commutativity): If (s̃′1, s̃
′
2, . . . , s̃

′
n) is a permutation of (s̃1, s̃2, . . . , s̃n),

then

ULOWHMw(s̃1, s̃2, . . . , s̃n) = ULOWHMw(s̃′1, s̃
′
2, . . . , s̃

′
n).

Proof (1) Since s̃j = s̃, for all i, we have

ULOWHMw(s̃1, s̃2, . . . , s̃n) =
1

w1

s̃β1
⊕ w2

s̃β2
⊕ · · · ⊕ wn

s̃βn

=
1

w1

s̃
⊕ w2

s̃
⊕ · · · ⊕ wn

s̃

= s̃.

(2) Let maxj(s̃j) = s̃k and minj(s̃j) = s̃l, then

ULOWHMw(s̃1, s̃2, . . . , s̃n) =
1

w1

s̃β1
⊕ w2

s̃β2
⊕ · · · ⊕ wn

s̃βn

≤ 1
w1

s̃k
⊕ w2

s̃k
⊕ · · · ⊕ wn

s̃k

= s̃k,
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ULOWHMw(s̃1, s̃2, . . . , s̃n) =
1

w1

s̃β1
⊕ w2

s̃β2
⊕ · · · ⊕ wn

s̃βn

≥ 1
w1

s̃l
⊕ w2

s̃l
⊕ · · · ⊕ wn

s̃l

= s̃l.

Hence

minj(s̃j) ≤ ULOWHMw(s̃1, s̃2, . . . , s̃n) ≤ maxj(s̃j).

(3) Since s̃j ≤ s̃∗j , for all j, it follows that s̃βj
≤ s̃∗βj

, then

ULOWHMw(s̃1, s̃2, . . . , s̃n) =
1

w1

s̃β1
⊕ w2

s̃β2
⊕ · · · ⊕ wn

s̃βn

≤ 1
w1

s̃∗
β1

⊕ w2

2̃∗
β2

⊕ · · · ⊕ wn

s̃∗
βn

= ULOWHMw(s̃∗1, s̃
∗
2, . . . , s̃

∗
n).

(4) Since (s̃′1, s̃
′
2, . . . , s̃

′
n) is a permutation of (s̃1, s̃2, . . . , s̃n), we have s̃βj

= s̃′βj
,

for all j, then

ULOWHMw(s̃1, s̃2, . . . , s̃n) =
1

w1

s̃β1
⊕ w2

s̃β2
⊕ · · · ⊕ wn

s̃βn

=
1

w1

s̃′
β1

⊕ w2

s̃′
β2

⊕ · · · ⊕ wn

s̃′
βn

= ULOWHMw(s̃′1, s̃
′
2, . . . , s̃

′
n).

Besides the above properties, the ULOWHM operator has the following de-

sirable results.

Theorem 3.2.8 Let s̃1, s̃2, . . . , s̃n be a collection of uncertain linguistic variables

and w = (w1, w2, . . . , wn)T be the weight vector of the ULOWHM operator with

wj ≥ 0 and
∑n

j=1 wj = 1; then we have the following.
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(1) If w = (1, 0, . . . , 0)T , then

ULOWHMw(s̃1, s̃2, . . . , s̃n) = max
j

(s̃j).

(2) If w = (0, 0, . . . , 1)T , then

ULOWHMw(s̃1, s̃2, . . . , s̃n) = min
j

(s̃j).

(3) If wj = 1 and wi = 0 (i 6= j), then

ULOWHMw(s̃1, s̃2, . . . , s̃n) = s̃βj
,

where s̃βj
is the jth largest of s̃j (j = 1, 2, . . . , n).

Proof (1) Since w = (1, 0, . . . , 0)T , we have

ULOWHMw(s̃1, s̃2, . . . , s̃n) =
1

1
s̃β1
⊕ 0

s̃β2
⊕ · · · ⊕ 0

s̃βn

= s̃β1

= max
j

(s̃j).

(2) Since w = (0, 0, . . . , 1)T , we have

ULOWHMw(s̃1, s̃2, . . . , s̃n) =
1

0
s̃β1
⊕ 0

s̃β2
⊕ · · · ⊕ 1

s̃βn

= s̃βn

= min
j

(s̃j).

(3) Since wj = 1 and wi = 0 (i 6= j), we have

ULOWHMw(s̃1, s̃2, . . . , s̃n) =
1

0
s̃β1
⊕ 0

s̃β2
⊕ · · · ⊕ 1

s̃βj
⊕ · · · ⊕ 0

s̃βn

= s̃βj
.
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Clearly, the fundamental characteristic of the ULWHM operator is that it

considers the importance of each given uncertain linguistic variable, whereas the

fundamental characteristic of the ULOWHM operator is the reordering step, and

it weights all the ordered positions of uncertain linguistic variables instead of

weighting the given uncertain linguistic variables themselves. In the following, by

combining the advantages of the ULWHM and ULOWHM operators, we develop

a ULHHM operator that weights both the given uncertain linguistic variables and

their ordered positions.

Definition 3.2.9 An uncertain linguistic hybrid harmonic mean (ULHHM) op-

erator of dimension n is a mapping ULHHM : S̃n → S̃, which has associated

weighting vector w = (w1, w2, . . . , wn)T such that wj ∈ [0, 1], j = 1, 2, . . . , n, and
∑n

j=1 wj = 1, such that

ULHHMω,w(s̃1, s̃2, . . . , s̃n) =
1

w1

s̃β1
⊕ w2

s̃β2
⊕ · · · ⊕ wn

s̃βn

, (3.8)

where s̃βj
is the jth largest of the weighted uncertain linguistic variables ˙̃si ( ˙̃si =

nωis̃i, i = 1, 2, . . . , n), ω = (ω1, ω2, . . . , ωn)T is the weight vector of s̃i (i =

1, 2, . . . , n) with ωi ∈ [0, 1] and
∑n

i=1 ωi = 1, and n is the balancing coefficient.

Especially, if ω = ( 1
n
, 1

n
, . . . , 1

n
)T , then ˙̃si = s̃i, i = 1, 2, . . . , n, in this case, the

ULHHM operator is reduced to ULOWHM operator; if w = ( 1
n
, 1

n
, . . . , 1

n
)T , then

the ULHHM operator is reduced to ULWHM operator.

Example 3.2.10 Given the collection of uncertain linguistic variables: s̃1 =

[s2, s3], s̃2 = [s1, s3], s̃3 = [s2, s4], s̃4 = [s3, s4], and let w = (0.3, 0.2, 0.3, 0.2)T

be the weight vector of s̃j (j = 1, 2, 3, 4). Then we get the weighted uncertain

linguistic variables:

˙̃s1 = 4× 0.3× [s2, s3] = [s2.4, s3.6],

˙̃s2 = 4× 0.2× [s1, s3] = [s0.8, s2.4],

˙̃s3 = 4× 0.3× [s2, s4] = [s2.4, s4.8],

˙̃s4 = 4× 0.2× [s3, s4] = [s2.4, s3.2].
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By using (3.1), we construct the following matrix:

P =




0.500 1.000 0.333 0.600

0.000 0.500 0.000 0.000

0.667 1.000 0.500 0.750

0.400 1.000 0.250 0.500




.

Summing all elements in each line of matrix P, we have

p1 = 2.433, p2 = 0.500, p3 = 2.917, p4 = 2.150.

Then we rank the arguments s̃i (i = 1, 2, 3, 4) in descending order in accordance

with the values of pi (i = 1, 2, 3, 4):

s̃β1 = s̃3 = [s2, s4], s̃β2 = s̃1 = [s2, s3], s̃β3 = s̃4 = [s3, s4], s̃β4 = s̃2 = [s1, s3].

Suppose that the weighting vector w = (w1, w2, w3, w4)
T of the ULHHM operator

is w = (0.3, 0.2, 0.3, 0.2)T , then by (3.8), we get

ULHHMw(s̃1, s̃2, s̃3, s̃4) =
1

0.3
s̃3
⊕ 0.2

s̃1
⊕ 0.3

s̃4
⊕ 0.2

s̃2

=
1

0.3
[s2,s4]

⊕ 0.2
[s2,s3]

⊕ 0.3
[s3,s4]

⊕ 0.2
[s1,s3]

= [s1.82, s3.53].

3.3 An approach to multiple attribute group de-

cision making

In this section, we consider a MAGDM problem, let X = {x1, x2, . . . , xn} be

a discrete set of n feasible alternatives and G = {G1, G2, . . . , Gm} be a set of

m attributes, whose weight vector is w = (w1, w2, . . . , wm)T , where wi ≥ 0 and
∑m

i=1 wi = 1, and let D = {d1, d2, . . . , dl} be the set of decision makers, whose

weight vector is v = (v1, v2, . . . , vl)
T , where vk ≥ 0 and

∑l
k=1 vk = 1. The

decision maker dk ∈ D may provide the uncertain linguistic decision matrix
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Rk = (r̃
(k)
ij )m×n, where r̃

(k)
ij is an attribute value, which takes the form of uncertain

linguistic variable, of the alternative xj ∈ X with respect to the attribute Gi ∈ G

for all i = 1, 2, . . . , m; j = 1, 2, . . . , n; k = 1, 2, . . . , l.

In the following, we shall develop an approach based on the ULWHM and

ULHHM operators to MAGDM with uncertain linguistic preference relations.

Step 1. Utilize the ULWHM operator:

r̃
(k)
j = ULWHMw(r̃

(k)
1j , r̃

(k)
2j , . . . , r̃

(k)
mj)

=
1

w1

r̃
(k)
1j

⊕ w2

r̃
(k)
2j

⊕ · · · ⊕ wn

r̃
(k)
mj

(3.9)

to aggregate all the elements in the jth column of Rk and get the overall attribute

value r̃
(k)
j of the alternative xj corresponding to the decision maker dk.

Step 2. Utilize the ULHHM operator:

r̃j = ULHHMω(r̃
(1)
j , r̃

(2)
j , . . . , r̃

(l)
j )

=
1

ω1

˙̃r
σ(1)
j

⊕ ω2

˙̃r
σ(2)
j

⊕ · · · ⊕ ωl

˙̃r
σ(l)
j

(3.10)

to aggregate the overall attribute values r̃
(k)
j (k = 1, 2, . . . l) corresponding to

the decision maker dk (k = 1, 2, . . . , l) and get the collective overall attribute

value r̃j, where ˙̃r
σ(k)

j is the kth largest of the weighted data ˙̃r
(k)

j ( ˙̃r
(k)

j = lvkr̃
(k)
j ,

k = 1, 2, . . . , l), ω = (ω1, ω2, . . . , ωl)
T is the weighting vector of the ULHHM

operator with ωk ≥ 0 and
∑l

k=1 ωk = 1.

Step 3. Compare each r̃j with all r̃i (i = 1, 2, . . . , n) by using (3.1), and let

pij = p(r̃i ≥ r̃j), and then construct a possibility matrix P = (pij)n×n, where

pij ≥ 0, pij + pji = 1, pii = 0.5, i, j = 1, 2, . . . , n. Summing all elements in

each line of matrix P, we have pi =
∑n

j=1 pij, i = 1, 2, . . . , n, and then reorder

r̃j (j = 1, 2, . . . , n) in descending order in accordance with the values of pj (j =

1, 2, . . . , n).

Step 4. Rank all the alternatives xj (j = 1, 2, . . . n) by the ranking of r̃j

(j = 1, 2, . . . , n), and then select the most desirable one.

Step 5. End.
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3.4 Illustrative example

In this section, we use a MAGDM problem of determining what kind of air-

conditioning systems should be installed in a library (adapted from [44]) to illus-

trate the proposed approach.

A city is planning to build a municipal library. One of the problems facing

the city development commissioner is to determine what kind of air-conditioning

systems should be installed in the library. The contractor offers five feasible

alternatives, which might be adapted to the physical structure of the library. The

offered air-conditioning system must take a decision according to the following

four attributes:

(1) G1 is performance.

(2) G2 is maintainability.

(3) G3 is flexibility.

(4) G4 is safety.

The five possible alternatives xj (j = 1, 2, 3, 4, 5) are to be evaluated using

the uncertain linguistic variables by three decision makers (whose weight vec-

tor is v = (0.4, 0.3, 0.3)T ) under the above four attributes (whose weight vec-

tor w = (0.2, 0.1, 0.3, 0.4)T ), and construct, respectively, the decision matrices

Rk = (r̃
(k)
ij )5×4 (k = 1, 2, 3) as listed in Tables 3.1-3.3:

Table 3.1: Decision matrix R1

x1 x2 x3 x4 x5

G1 [s5, s7] [s3, s4] [s2, s4] [s4, s5] [s2, s3]
G2 [s4, s5] [s1, s3] [s3, s4] [s3, s5] [s4, s6]
G3 [s2, s4] [s5, s6] [s1, s3] [s6, s7] [s4, s5]
G4 [s3, s4] [s2, s3] [s3, s5] [s2, s3] [s3, s4]

To get the best alternative(s), the following steps are involved:

Step 1. Utilize the ULWHM operator to aggregate all the elements in the
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Table 3.2: Decision matrix R2

x1 x2 x3 x4 x5

G1 [s3, s5] [s4, s5] [s1, s2] [s3, s5] [s1, s3]
G2 [s2, s4] [s2, s3] [s3, s5] [s2, s4] [s4, s5]
G3 [s1, s2] [s2, s3] [s1, s2] [s2, s4] [s5, s6]
G4 [s3, s5] [s4, s6] [s2, s3] [s1, s3] [s4, s6]

Table 3.3: Decision matrix R3

x1 x2 x3 x4 x5

G1 [s2, s3] [s3, s5] [s1, s3] [s2, s3] [s4, s5]
G2 [s3, s4] [s1, s3] [s4, s5] [s3, s4] [s3, s4]
G3 [s1, s3] [s3, s5] [s2, s3] [s4, s5] [s3, s4]
G4 [s2, s3] [s2, s4] [s4, s5] [s1, s2] [s2, s4]

jth column of Rk and get the overall attribute value r̃
(k)
j :

r̃
(1)
1 = [s2.86, s4.55], r̃

(1)
2 = [s2.33, s3.70], r̃

(1)
3 = [s1.75, s3.85],

r̃
(1)
4 = [s3.03, s4.17], r̃

(1)
5 = [s3.03, s4.17],

r̃
(2)
1 = [s1.82, s3.33], r̃

(2)
2 = [s2.86, s4.17], r̃

(2)
3 = [s1.59, s2.50],

r̃
(2)
4 = [s1.49, s3.70], r̃

(2)
5 = [s2.27, s5.00],

r̃
(3)
1 = [s1.59, s3.03], r̃

(3)
2 = [s2.13, s4.35], r̃

(3)
3 = [s2.08, s3.70],

r̃
(3)
4 = [s1.64, s2.86], r̃

(3)
5 = [s2.63, s4.17].

Step 2. Utilize the ULHHM operator (suppose that its weight vector is

ω = (0.2, 0.5, 0.3)T ) to aggregate the overall attribute values r̃
(k)
j (k = 1, 2, 3)

corresponding to the decision maker dk (k = 1, 2, 3), and get the collective overall

attribute value r̃j:

r̃1 = [s1.75, s3.23], r̃2 = [s2.38, s4.00], r̃3 = [s1.75, s3.03],
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r̃4 = [s1.59, s3.23], r̃5 = [s2.33, s4.35].

Step 3. Compare each r̃j with r̃i (i = 1, 2, 3, 4, 5) by using (3.1), and let

pij = p(r̃i ≥ r̃j), and then construct a possibility matrix:

P =




0.500 0.274 0.563 0.526 0.257

0.726 0.500 0.776 0.739 0.459

0.464 0.224 0.500 0.493 0.212

0.474 0.261 0.507 0.500 0.246

0.743 0.541 0.788 0.754 0.500




.

Summing all elements in each line of matrix P, we have

p1 = 2.12, p2 = 3.200, p3 = 1.893, p4 = 1.988, p5 = 3.326

and then we rank r̃j (j = 1, 2, 3, 4, 5) in descending order in accordance with the

values of pj (j = 1, 2, 3, 4, 5):

r̃5 > r̃2 > r̃1 > r̃4 > r̃3.

Step 4. Rank all alternatives xj (j = 1, 2, 3, 4, 5) by the ranking r̃j (j =

1, 2, 3, 4, 5):

x5 Â x2 Â x1 Â x4 Â x3

and thus the most desirable alternative is x5.

3.5 Comparison with other methods

In this section, we compare the proposed method with other methods. The meth-

ods to be compared here are the methods proposed by Xu [29, 32], respectively.

Each of methods has its advantages and disadvantages and none of them can

always perform better than the others in any situations. It perfectly depends on

how we look at things, and not on how they are themselves.
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The method proposed by Xu [32] is suitable for solving group decision making

with uncertain multiplicative linguistic preference relations because the ULOWG

operator combines the uncertain multiplicative linguistic variables giving weights

to the values in relation to their ordering position, diminishing the importance

of extreme values by increasing the importance of central ones; whereas the pro-

posed method in this chapter and the method proposed by Xu [29] are suitable

for solving MAGDM with uncertain linguistic information because the ULHA

operator and ULHHM operator reflect the importance degrees of both the given

uncertain linguistic variables and their ordered positions. Others of relative com-

parison with the methods respectively proposed by Xu [29, 32] are shown in Table

3.4.

Table 3.4: Comparison with other methods

Xu [29] Xu [32] Proposed method

Problem type MAGDM GDM MAGDM

Application area Evaluating Investment Air-conditioning
university faculty of money system selection

Decision Uncertain linguistic Uncertain multiplicative Uncertain linguistic
information decision matrix decision matrix decision matrix

Solution method

Aggregation ULWA operator IULOWG operator ULWHM operator
stage
Exploitation ULHA operator ULOWG operator ULHHM operator
stage
Ranking Complementary Complementary Possibility
stage matrix matrix matrix

Final Ranking of a number Ranking of a number Ranking of a number
decision of alternatives of alternatives of alternatives
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3.6 Conclusions and discussions

In this chapter, we have developed some new aggregation operators including the

uncertain linguistic weighted harmonic mean (ULWHM) operator, the uncertain

linguistic ordered weighted harmonic mean (ULOWHM) operator and the un-

certain linguistic hybrid harmonic mean (ULHHM) operator. The ULOWHM

operator, which is an extension of Chen et al.’s OWHM operator, can be used

in situations where the input arguments are uncertain linguistic variables. The

ULHHM operator generalizes both ULWHM operator and the ULOWHM oper-

ator, and reflects the importance degrees of both the given arguments and their

ordered positions. Based on the ULWHM and ULHHM operators, we have pro-

posed an approach to multiple attribute group decision making with uncertain

linguistic information. We have also applied the proposed approach to the prob-

lem of determining what kind of air-conditioning systems should be installed in

the library. Furthermore, Wei and Yi [24] proposed some harmonic aggrega-

tion operators for aggregating triangular fuzzy linguistic information, such as the

fuzzy linguistic weighted harmonic mean (FLWHM) operator, fuzzy linguistic or-

dered weighted harmonic mean (FLOWHM) operator and fuzzy linguistic hybrid

harmonic mean (FLHHM) operator, and developed an approach to multiple at-

tribute group decision making with triangular fuzzy linguistic variables. From

Definition 3.1.4, since an uncertain linguistic variable can be thought as an α-cut

of triangular fuzzy linguistic variable, each triangular fuzzy linguistic variable is

transform to an uncertain linguistic variable. Therefore, by Definition 3.1.4 and

Remark 3.1.5, we can use the ULHM, ULWHM, ULOWHM, and ULHHM oper-

ators for aggregating triangular fuzzy linguistic information, and thus we can use

the our approach for solving MAGDM problems with triangular fuzzy linguistic

environment.

40



Appendix A. Fuzzy linguistic harmonic mean ag-

gregation operators [24]

A fuzzy linguistic hybrid harmonic mean (FLHHM) operator is defined as follows:

FLHHMω,w(ŝ1, ŝ2, . . . , ŝn) =
1

w1

r̂1
⊕ w2

r̂2
⊕ · · · ⊕ wn

r̂n

,

where w = (w1, w2, . . . , wn)T is the associated weighting vector such that wj ∈
[0, 1], j = 1, 2, . . . , n, and

∑n
j=1 wj = 1, and r̂j is the jth largest element of

the weighted triangular fuzzy linguistic variables ˙̂si ( ˙̂si = ŝi

nωi
, i = 1, 2, . . . , n),

ω = (ω1, ω2, . . . , ωn)T is the weight vector of s̃i (i = 1, 2, . . . , n) with ωi ∈ [0, 1]

and
∑n

i=1 ωi = 1, and n is the balancing coefficient, then the function FLHHM is

called the fuzzy linguistic hybrid harmonic mean (FLHHM) operator of dimension

n.

Especially, if ω = ( 1
n
, 1

n
, . . . , 1

n
)T , then ˙̂si = ŝi, i = 1, 2, . . . , n, in this case, the

FLHHM operator is reduced to the fuzzy linguistic ordered weighted harmonic

mean (FLOWHM) operator; if w = ( 1
n
, 1

n
, . . . , 1

n
)T , then the FLHHM operator is

reduced to the fuzzy linguistic weighted harmonic mean (FLWHM) operator.

Appendix B. An approach to multiple attribute

group decision making under triangular fuzzy lin-

guistic environment [24]

Let X = {x1, x2, . . . , xn} be a discrete set of n alternatives and G = {G1, G2, . . . ,

Gm} be a set of m attributes, whose weight vector is w = (w1, w2, . . . , wm)T , where

wi ≥ 0 and
∑m

i=1 wi = 1, and let D = {d1, d2, . . . , dl} be the set of decision makers,

whose weight vector is v = (v1, v2, . . . , vl)
T , where vk ≥ 0 and

∑l
k=1 vk = 1.

The decision maker dk ∈ D may provide the uncertain linguistic decision matrix

Rk = (r̂
(k)
ij )m×n, where r̂

(k)
ij is an attribute value, which takes the form of triangular
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fuzzy linguistic variable, of the alternative xj ∈ X with respect to the attribute

Gi ∈ G for all i = 1, 2, . . . , m; j = 1, 2, . . . , n; k = 1, 2, . . . , l.

Step 1. Utilize the FLWHM operator:

r̂
(k)
j = FLWHMw(r̂

(k)
1j , r̂

(k)
2j , . . . , r̂

(k)
mj)

to aggregate all the elements in the jth column of Rk and get the overall attribute

value r̂
(k)
j of the alternative xj corresponding to the decision maker dk.

Step 2. Utilize the FLHHM operator:

r̂j = FLHHMv,ω(r̂
(1)
j , r̂

(2)
j , . . . , r̂

(l)
j )

=
1

ω1

˙̂r
σ(1)
j

⊕ ω2

˙̂r
σ(2)
j

⊕ · · · ⊕ ωl

˙̂r
σ(l)
j

to aggregate the overall attribute values r̂
(k)
j (k = 1, 2, . . . l) corresponding to the

decision maker dk (k = 1, 2, . . . , l) and get the collective overall attribute value r̂j,

where ˙̂r
σ(k)

j is the kth largest of the weighted data ˙̂r
(k)

j ( ˙̂r
(k)

j =
r̂
(k)
j

lvk
, k = 1, 2, . . . , l),

ω = (ω1, ω2, . . . , ωl)
T is the weighting vector of the FLHHM operator with ωk ≥ 0

and
∑l

k=1 ωk = 1.

Step 3. Compare each r̂j with all r̂i (i = 1, 2, . . . , n) by using (3.3), and let

qij = p(r̂i ≥ r̂j), and then construct a possibility matrix Q = (qij)n×n, where

qij ≥ 0, qij + qji = 1, qii = 0.5, i, j = 1, 2, . . . , n. Summing al elements in each

line of matrix Q, we have qi =
∑n

j=1 qij, i = 1, 2, . . . , n, and then reorder r̂j

(j = 1, 2, . . . , n) in descending order in accordance with the values of qj (j =

1, 2, . . . , n).

Step 4. Rank all the alternatives xj (j = 1, 2, . . . n) by the ranking of r̂j

(j = 1, 2, . . . n), and then select the most desirable one.

Step 5. End.
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Chapter 4

Generalized induced linguistic

harmonic mean operators based

approach to multiple attribute

group decision making

Two generalized induced linguistic aggregation operator called the generalized

induced linguistic ordered weighted harmonic mean (GILOWHM) operator and

generalized induced uncertain linguistic ordered weighted harmonic mean (GIU-

LOWHM) operator is defined. Each object processed by these operators consists

of three components, where the first component represents the importance de-

gree or character of the second component, and the second component is used

to induce an ordering, through the first component, over the third components

which are linguistic variables (or uncertain linguistic variables) and then aggre-

gated. Based on the GILOWHM and GIULOWHM operators respectively, we

develop two procedures to solve the multiple attribute group decision making

problems where all attribute values are expressed in linguistic variables or uncer-

tain linguistic variables. Finally, an example is used to illustrate the developed

procedures.
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4.1 Generalized induced linguistic aggregation

operators

4.1.1 The GILOWHM and GIULOWHM operators

Definition 4.1.1 [21] An induced LOWHM (ILOWHM) operator is defined as

follows:

ILOWHMw(〈u1, sα1〉, 〈u2, sα2〉, . . . , 〈un, sαn〉) =
1

w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

(4.1)

where w = (w1, w2, . . . , wn)T is a weighting vector, such that wi ∈ [0, 1], i =

1, 2, . . . , n,
∑n

i=1 wi = 1, sβi
is the sαi

value of the LOWHM pair 〈ui, sαi
〉 having

the ith largest ui, and ui in 〈ui, sαi
〉 is referred to as the order inducing variable

and sαi
as the linguistic argument variable. Especially, if w = ( 1

n
, 1

n
, . . . , 1

n
)T , then

ILOWHM is reduced to the LHM operator; if ui = sαi
, for all i, then ILOWHM

is reduced to the LOWHM operator; if ui =No. i, for all i, where No. i is the

ordered position of the ai, then ILOWHM is the LHM operator.

However, if there is a tie between 〈ui, sαi
〉, 〈uj, sαj

〉 with respect to order-

inducing variables, in this case, we can follow the policy presented by Yager and

Filov [40] - to replace the arguments of the tied objects by the mean of the

arguments of the tied objects (i.e., we replace the argument component of each

of 〈ui, sαi
〉 and 〈uj, sαj

〉 by their average (sαi
⊕ sαj

)/2). If k items are tied, we

replace these by k replicas of their average.

In the following, we shall give example to specify the special cases with respect

to the inducing variables.

Example 4.1.2 Consider the following collection of LOWHM pairs:

〈s4, s3〉, 〈s6, s7〉, 〈s3, s1〉, 〈s5, s4〉.
Performing the ordering the LOWHM pairs with respect to the first component,

we have

〈s6, s7〉, 〈s5, s4〉, 〈s4, s3〉, 〈s3, s1〉.
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This ordering induces the ordered linguistic arguments

sβ1 = s7, sβ2 = s4, sβ3 = s3, sβ4 = s1.

If the weighting vector w = (0.3, 0.1, 0.4, 0.2)T , then we get an aggregated value:

ILOWHMw(〈s4, s3〉, 〈s5, s7〉, 〈s3, s1〉, 〈s6, s4〉)
=

1
0.3
s7
⊕ 0.1

s4
⊕ 0.4

s3
⊕ 0.2

s1

= s2.49.

Definition 4.1.3 An induced uncertain LOWHM (IULOWHM) operator is de-

fined as follows:

IULOWHMw(〈u1, s̃1〉, 〈u2, s̃2〉, . . . , 〈un, s̃n〉) =
1

w1

s̃β1
⊕ w2

s̃β2
⊕ · · · ⊕ wn

s̃βn

(4.2)

where w = (w1, w2, . . . , wn)T is a weighting vector, such that wi ∈ [0, 1], i =

1, 2, . . . , n,
∑n

i=1 wi = 1, s̃βi
is the s̃i value of the ULOWHM pair 〈ui, s̃i〉 having

the ith largest ui, and ui in 〈ui, s̃i〉 is referred to as the order inducing variable and

s̃i as the uncertain linguistic argument variable. Especially, if w = ( 1
n
, 1

n
, . . . , 1

n
)T ,

then IULOWHM is reduced to the ULHM operator; if ui = s̃i, for all i, then

IULOWHM is reduced to the ULOWHM operator; if ui =No. i, for all i, where

No. i is the ordered position of the ai, then IULOWHM is the ULHM operator.

However, if there is a tie between 〈ui, s̃i〉, 〈uj, s̃j〉 with respect to order-

inducing variables. In this case, we can replace the argument component of

each of 〈ui, s̃i〉 and 〈uj, s̃j〉 by their average (s̃i ⊕ s̃j)/2). If k items are tied, we

replace these by k replicas of their average.

Example 4.1.4 Consider the following collection of ULOWHM pairs:

〈0.5, [s3, s4]〉, 〈0.3, [s6, s7]〉, 〈0.7, [s2, s3]〉, 〈0.4, [s2, s4]〉.

Performing the ordering the ULOWHM pairs with respect to the first component,

we have

〈0.7, [s2, s3]〉, 〈0.5, [s3, s4]〉, 〈0.4, [s2, s4]〉, 〈0.3, [s6, s7]〉.
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This ordering induces the ordered linguistic arguments

s̃β1 = [s2, s3], s̃β2 = [s3, s4], s̃β3 = [s2, s4], s̃β4 = [s6, s7].

If the weighting vector w = (0.3, 0.1, 0.4, 0.2)T , then we get an aggregated value:

ILOWHMw(〈0.5, [s3, s4]〉, 〈0.3, [s6, s7]〉, 〈0.7, [s2, s3]〉, 〈0.4, [s2, s4]〉)
= [s2.40, s3.94].

An important feature of the ILOWHM operator is that the argument order-

ing process is guided by a variable called the order inducing value. This operator

essentially aggregate objects, which are pairs, and provide a very general family

of aggregations operators. In some situations, however, when we need to provide

more information about the objects, i.e. each object may consist of three compo-

nents, a direct locator, an indirect locator and a prescribed value, it is unsuitable

to use this induced aggregation operator as an aggregation tool. In following we

shall present some more general linguistic aggregation technique.

Definition 4.1.5 A generalized induced LOWHM (GILOWHM) operator is given

by

GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉) (4.3)

=
1

w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

where w = (w1, w2, . . . , wn)T is the associated weighting vector with wi ∈ [0, 1]

and
∑n

i=1 wi = 1, the object 〈vi, ui, sαi
〉 consists of three components, where

the first component vi represents the importance degree or character of second

component ui, and the second component ui is used to induce an ordering, through

the first component vi, over the third component sαi
which are then aggregated.

Here, sβj
is the sαi

value of the object having the jth largest vi. In discussing

the object 〈vi, ui, sαi
〉, because of its role we shall refer to the vi as the direct

order inducing variable, the ui as the indirect inducing variable, and sαi
as the

linguistic argument variable.
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Especially, if vi = ui, for all i, then the GILOWHM operator is reduced to

the ILOWHM operator; if vi = sαi
, for all i, then the GILOWHM operator

is reduced to the LOWHM operator; if vi = No. i, for all i, where No. i is

the ordered position of the sαi
, then the GILOWHM operator is reduced to the

LWHM operator; if w = ( 1
n
, 1

n
, . . . , 1

n
)T , then the GILOWHM operator is reduced

to the LHM operator.

Example 4.1.6 Consider the collection of the objects

〈No. 3, Kim, s1〉, 〈No. 1, Park, s7〉, 〈No. 2, Lee, s2〉, 〈No. 4, Jung, s5〉.

By the first component, we get the ordered objects

〈No. 1, Park, s7〉, 〈No. 2, Lee, s2〉, 〈No. 3, Kim, s1〉, 〈No. 4, Jung, s5〉.

The ordering induces the ordered arguments sβ1 = s7, sβ2 = s2, sβ3 = s1, sβ4 = s5.

If the weighting vector for this aggregation is w = (0.3, 0.1, 0.2, 0.4)T , then we get

GILOWHMw(〈No.3, Kim, s1〉, 〈No.1, Park, s7〉, 〈No.2, Lee, s2〉, 〈No.4, Jung, s5〉)
=

1
0.3
s7
⊕ 0.1

s2
⊕ 0.2

s1
⊕ 0.4

s5

= s2.70.

However, if we replace the objects in Example 4.1.6 with

〈No. 3, Kim, s1〉, 〈No. 1, Park, s7〉, 〈No. 2, Lee, s2〉, 〈No. 3, Jung, s5〉,

then there is a tie between 〈No. 3, Kim, s1〉 and 〈No. 3, Jung, s5〉 with respect to

order direct inducing variable, in this case, we can follow the policy: we replace

the linguistic argument component of each of 〈No. 3, Kim, s1〉 and 〈No. 3, Jung, s5〉
by their average (s1 ⊕ s5)/2 = s3. This substitution gives us ordered arguments

sβ1 = s7, sβ2 = s2, sβ3 = s3, sβ4 = s3. Thus

GILOWHMw(〈No.3, Kim, s1〉, 〈No.1, Park, s7〉, 〈No.2, Lee, s2〉, 〈No.3, Jung, s5〉)
=

1
0.3
s7
⊕ 0.1

s2
⊕ 0.2

s3
⊕ 0.4

s3

= s3.44.
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If we replace (4.3) with

GIULOWHMw(〈v1, u1, s̃1〉, 〈v2, u2, s̃2〉, . . . , 〈vn, un, s̃n〉)
=

1
w1

s̃β1
⊕ w2

s̃β2
⊕ · · · ⊕ wn

s̃βn

(4.4)

then by Definition 4.1.5, we get a GIULOWHM operator. Especially, if vi = ui,

for all i, then the GIULOWHM operator is reduced to the IULOWGM operator;

if vi = s̃i, for all i, then the GIULOWHM operator is reduced to the ULOWHM

operator; if vi = No. i, for all i, where No. i is ordered position of the s̃i, then the

GIULOWHM operator is reduced to the ULWHM operator; if w = ( 1
n
, 1

n
, . . . , 1

n
)T ,

then the GIULOWHM operator is reduced to the ULHM operator.

Example 4.1.7 Consider a collection of the objects

〈0.3, Kim, [s1, s3]〉, 〈0.1, Park, [s7, s8]〉, 〈0.2, Lee, [s2, s3]〉.

Performing the ordering of the objects with respect to the first component, we

get the ordered objects

〈0.3, Kim, [s1, s3]〉, 〈0.2, Lee, [s2, s3]〉, 〈0.1, Park, [s7, s8]〉.

The ordering induces the ordered uncertain linguistic arguments s̃β1 = [s1, s3],

s̃β2 = [s2, s3], sβ3 = [s7, s8]. If the weighting vector for this aggregation is w =

(0, 2, 0.6, 0.2)T , then we have

GIULOWHMw(〈0.3, Kim, [s1, s3]〉, 〈0.1, Park, [s7, s8]〉, 〈0.2, Lee, [s2, s3]〉)
= [s2.33, s3.42].

If the direct order inducing variables vi (i = 1, 2, . . . , n) take the form of un-

certain linguistic variables s̃′i (i = 1, 2, . . . , n), then we shall use, to rank these

uncertain linguistic variables, the procedure for ranking uncertain linguistic ar-

guments when using the ULOWHM operator.
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Example 4.1.8 Consider a collection of the objects

〈[s1, s2], Kim, [s2, s4]〉, 〈[s4, s5], Park, [s7, s8]〉, 〈[s3, s5], Lee, [s2, s3]〉.

To rank the first components vi (i = 1, 2, 3) of the objects, we first compare each

vi with all these first components vi (i = 1, 2, 3) by using (3.1), and then construct

a complementary matrix

P =




0.500 0.000 0.000

1.000 0.500 0.667

1.000 0.333 0.500


 .

Summing all elements in each line of matrix P, we have

p1 = 0.500, p2 = 2.167, p3 = 1.833.

Then we rank all the variables vi (i = 1, 2, 3) in descending order in accordance

with the values of pi (i = 1, 2, 3)

v2 = [s4, s5], v3 = [s3, s5], v1 = [s1, s2].

Performing the ordering of the objects with respect to the first component, we

get the ordered objects

〈[s4, s5], Park, [s7, s8]〉, 〈[s3, s5], Lee, [s2, s3]〉, 〈[s1, s2], Kim, [s2, s4]〉.

The ordering induces the ordered uncertain linguistic arguments s̃β1 = [s7, s8],

s̃β2 = [s2, s3], sβ3 = [s2, s4]. If the weighting vector for this aggregation is w =

(0, 2, 0.6, 0.2)T , then we have

GIULOWHMw

(
〈[s1, s2], Kim, [s2, s4]〉, 〈[s4, s5], Park, [s7, s8]〉,

〈[s3, s5], Lee, [s2, s3]〉
)

= [s2.33, s3.64].
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4.1.2 Some properties of the GILOWHM operator

In the following we shall make an investigation on some desirable properties of

the GILOWHM operator.

Theorem 4.1.9 (Commutativity) If (〈v′1, u′1, s′α1
〉, 〈v′2, u′2, s′α2

〉, . . . , 〈v′n, u′n, s′αn
〉)

is any permutation of (〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉), then

GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉)
= GILOWHMw(〈v′1, u′1, s′α1

〉, 〈v′2, u′2, s′α2
〉, . . . , 〈v′n, u′n, s′αn

〉).

Proof Let

GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉) =
1

w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

GILOWHMw(〈v′1, u′1, s′α1
〉, 〈v′2, u′2, s′α2

〉, . . . , 〈v′n, u′n, s′αn
〉) =

1
w1

s′
β1

⊕ w2

s′
β2

⊕ · · · ⊕ wn

s′
βn

.

Since (〈v′1, u′1, s′α1
〉, 〈v′2, u′2, s′α2

〉, . . . , 〈v′n, u′n, s′αn
〉) is a permutation of (〈v1, u1, sα1〉,

〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉), we have sβj
= s′βj

(j = 1, 2, . . . , n), then

GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉)
= GILOWHMw(〈v′1, u′1, s′α1

〉, 〈v′2, u′2, s′α2
〉, . . . , 〈v′n, u′n, s′αn

〉).

Theorem 4.1.10 (Idempotency) If sαi
= sα, for all i, then

GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉) = sα.

Proof Since sαi
= sα, for all i, we have

GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉)
=

1
w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

=
1

w1

sα
⊕ w2

sα
⊕ · · · ⊕ wn

sα

= sα.
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Theorem 4.1.11 (Monotonicity) If sαi
≤ s′αi

, for all i, then

GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉)
≤ GILOWHMw(〈v1, u1, s

′
α1
〉, 〈v2, u2, s

′
α2
〉, . . . , 〈vn, un, s

′
αn
〉).

Proof Let

GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉) =
1

w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

GILOWHMw(〈v1, u1, s
′
α1
〉, 〈v2, u2, s

′
α2
〉, . . . , 〈vn, un, s′αn

〉) =
1

w1

s′
β1

⊕ w2

s′
β2

⊕ · · · ⊕ wn

s′
βn

.

Since sαi
≤ s′αi

, for all i, it follows that sβi
≤ s′βi

, then

GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉)
≤ GILOWHMw(〈v1, u1, s

′
α1
〉, 〈v2, u2, s

′
α2
〉, . . . , 〈vn, un, s

′
αn
〉).

Theorem 4.1.12 (Boundedness)

min
i

(sαi
) ≤ GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉) ≤ max

i
(sαi

).

Proof Let maxi(sαi
) = sβ and mini(sαi

) = sα, then

GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉)
=

1
w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

≤ 1
w1

sβ
⊕ w2

sβ
⊕ · · · ⊕ wn

sβ

= sβ,

GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉)
=

1
w1

sβ1
⊕ w2

sβ2
⊕ · · · ⊕ wn

sβn

≥ 1
w1

sα
⊕ w2

sα
⊕ · · · ⊕ wn

sα

= sα.

Hence we have

min
i

(sαi
) ≤ GILOWHMw(〈v1, u1, sα1〉, 〈v2, u2, sα2〉, . . . , 〈vn, un, sαn〉) ≤ max

i
(sαi

).

Similarly, we can prove that GIULOWHM operator also has the desirable

properties above.
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4.2 An approach to group decision making

For a group decision making with linguistic information, let X = {x1, x2, . . . , xn}
be a set of alternatives, and G = {G1, G2, . . . , Gm} be the set of attributes,

and ω = (ω1, ω2, . . . , ωm)T be the weight vector of attributes, where ωi ≥ 0,

i = 1, 2, . . . , m,
∑m

i=1 ωi = 1. Let U = {u1, u2, . . . , ul} be a set of decision

makers, and V = {v1, v2, . . . , vl} be the set of importance degrees or characters

of decision makers uk (k = 1, 2 . . . , l). Suppose that A(k) = (a
(k)
ij )m×n is the

linguistic decision matrix, where a
(k)
ij ∈ S̄ is preference value, which takes the form

of linguistic variables, given by the decision maker uk ∈ U , for the alternative

xj ∈ X with respect to the attribute Gi ∈ G, for all k = 1, 2, . . . , l; i = 1, 2, . . . , m;

j = 1, 2, . . . , n.

In the following, we apply the GILOWHM operator (whose exponential weight-

ing vector w = (w1, w2, . . . , wl)
T , wk ≥ 0, k = 1, 2, . . . l,

∑l
k=1 wk = 1) and the

LWHM operator to group decision making with linguistic information:

Procedure I.

Step 1: Utilize the GILOWHM operator

aij = GILOWHMw(〈v1, u1, a
(1)
ij 〉, 〈v2, u2, a

(2)
ij 〉, . . . , 〈vl, ul, a

(l)
ij 〉),

=
1

w1

a
(1)
ij

⊕ w2

a
(2)
ij

⊕ · · · ⊕ wl

a
(l)
ij

, i = 1, 2, . . . ,m; j = 1, 2, . . . , n

to aggregate all the decision matrices A(k) (k = 1, 2, . . . , l) into a collective de-

cision matrix A = (aij)m×n, where vk (k = 1, 2, . . . l) are direct order inducing

variables and uk (k = 1, 2, . . . l) are indirect order inducing variables.

Step 2: Utilize the decision information given in matrix A, and the LWHM

operator

aj = LWHMω(a1j, a2j, . . . , amj)

=
1

ω1

a1j
⊕ ω2

a2j
⊕ · · · ⊕ ωm

amj

, j = 1, 2, . . . , n
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to derive the collective overall preference values aj of the alternative xj, where

ω = (ω1, ω2, . . . , ωm)T be the weight vector of attributes.

Step 3: Rank all the alternatives xj (j = 1, 2, . . . , n) and select the best one(s)

in accordance with the collective overall preference values aj (j = 1, 2, , . . . , n).

Step 4: End.

Now we consider the group decision making problems under interval uncer-

tainty where all the attribute values are expressed in uncertain linguistic variables.

The following notations are used to depict the considered problems:

Let X, G, ω, U and V be presented as above-mentioned, and let Ã(k) =

(ã
(k)
ij )n×m be an uncertain linguistic decision matrix, where ã

(k)
ij ∈ S̃ is preference

value, which takes the form of uncertain linguistic variables, given by the decision

maker uk ∈ U , for the alternative xj ∈ X with respect to the attribute Gi ∈ G,

for all k = 1, 2, . . . , l; i = 1, 2, . . . , m; j = 1, 2, . . . , n.

Similar to the Procedure I, a procedure for solving the above problems can be

described as follows:

Procedure II.

Step 1: Utilize the GIULOWHM operator

aij = GIULOWHMw(〈v1, u1, ã
(1)
ij 〉, 〈v2, u2, ã

(2)
ij 〉, . . . , 〈vl, ul, ã

(l)
ij 〉),

=
1

w1

ã
(1)
ij

⊕ w2

ã
(2)
ij

⊕ · · · ⊕ wl

ã
(l)
ij

, i = 1, 2, . . . , m; j = 1, 2, . . . , n

to aggregate all the decision matrices Ã(k) (k = 1, 2, . . . , l) into a collective de-

cision matrix Ã = (ãij)m×n, where vk (k = 1, 2, . . . l) are direct order inducing

variables and uk (k = 1, 2, . . . l) are indirect order inducing variables.

Step 2: Utilize the decision information given in matrix Ã, and the ULWHM

operator

ãj = ULWHMω(ã1j, ã2j, . . . , ãmj)

=
1

ω1

ã1j
⊕ ω2

ã2j
⊕ · · · ⊕ ωm

ãmj

, j = 1, 2, . . . , n
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to derive the collective overall preference values ãj of the alternative xj, where

ω = (ω1, ω2, . . . , ωm)T be the weight vector of attributes.

Step 3: To rank these collective attribute values ãi (i = 1, 2, . . . , n), we first

compare each ãi with all ãj (j = 1, 2, . . . , n) by using (3.1). For simplicity, we

let pij = p(ãi ≥ ãj), then we develop a complementary matrix as P = (pij)n×n,

where:

pij ≥ 0, pij + pji = 1, pii = 0.5, i, j = 1, 2, . . . , n.

Summing all elements in each line of matrix P, we have

pi =
n∑

j=1

pij, i = 1, 2, . . . , n.

Then we rank the ãi (i = 1, 2, . . . , n) in descending order in accordance with the

values of pi (i = 1, 2, . . . , n).

Step 4: Rank all the alternatives xi (i = 1, 2, . . . , n) and select the best one(s)

in accordance with the ãi (i = 1, 2, . . . n).

Step 5: End.

4.3 Illustrative example

Let us suppose an investment company, which wants to invest a sum of money

in the best option (adapted by Herrera et al. [12]). There is a panel with five

possible alternatives in which to invest the money: (1) x1 is a car industry; (2)

x2 is a food company; (3) x3 is a computer company; (4) x4 is an arms company;

(5) x5 is a TV company.

The investment company must make a decision according to the following four

attributes (suppose that the weight vector of four attributes is ω = (0.3, 0.4, 0.2,

0.1)T ): (1) G1 is the risk analysis; (2) G2 is the growth analysis; (3) G3 is the

social-political impact analysis; (4) G4 is the environmental impact analysis.
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There is three decision makers uk (k = 1, 2, 3) to evaluate five alternatives as

follows: u1 is Anderson; u2 is Smith; and u3 is Brown, where v1 = No. 3, v2 =

No. 2 and v3 = No. 1 are order positions of relative importance of decision makers

uk (k = 1, 2, 3), respectively. The five possible alternatives xj (j = 1, 2, 3, 4, 5)

are evaluated using the linguistic scale:

S = {s1 = extremely poor, s2 = very poor, s3 = poor,

s4 = slightly poor, s5 = fair, s6 = slightly good,

s7 = good, s8 = very good, s9 = extremely good}.

by three decision makers under the above four attributes Gi (i = 1, 2, 3, 4), and

construct, respectively, the decision matrices A(k) = (a
(k)
ij )4×5 (k = 1, 2, 3) as

listed in Tables 4.1-4.3.

Table 4.1: Linguistic decision matrix A(1)

x1 x2 x3 x4 x5

G1 s6 s9 s4 s3 s6

G2 s3 s7 s8 s8 s4

G3 s7 s4 s6 s8 s7

G4 s2 s4 s6 s7 s8

Now we utilize the proposed procedure I to prioritize these alternatives:

Step 1: Utilize the GILOWHM operator (whose weight vector is w = (0.3, 0.4,

0.3)T )

aij = GILOWHMw(〈v1, u1, a
(1)
ij 〉, 〈v2, u2, a

(2)
ij 〉, 〈v3, u3, a

(3)
ij 〉),

i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5

to aggregate all the decision matrices A(k) (k = 1, 2, 3) into a collective decision

matrix A = (aij)4×5 (Table 4.4).
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Table 4.2: Linguistic decision matrix A(2)

x1 x2 x3 x4 x5

G1 s6 s8 s4 s7 s3

G2 s3 s6 s8 s8 s4

G3 s7 s4 s6 s7 s9

G4 s2 s3 s4 s6 s8

Table 4.3: Linguistic decision matrix A(3)

x1 x2 x3 x4 x5

G1 s6 s8 s4 s7 s2

G2 s4 s6 s8 s7 s4

G3 s7 s3 s7 s9 s8

G4 s3 s4 s4 s7 s7

Step 2: Utilize the decision information given in matrix A, and the LWHM

operator

aj = LWHMω(a1j, a2j, a3j, a4j)

=
1

ω1

a1j
⊕ ω2

a2j
⊕ ω3

a3j
⊕ ω4

a4j

, j = 1, 2, 3, 4, 5

to derive the collective overall preference values aj of the alternative xj:

a1 = s4.02, a2 = s5.44, a3 = s5.57, a4 = s6.55, a5 = s4.20.

Step 3: Rank all the alternatives xj (j = 1, 2, 3, 4, 5) and select the best

one(s) in accordance with the collective overall preference values aj (j = 1, 2,

3, 4, 5):

x4 Â x3 Â x2 Â x5 Â x1

thus the best alternative is x4.
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Table 4.4: Collective linguistic decision matrix A

x1 x2 x3 x4 x5

G1 s6.0 s8.3 s4.0 s5.0 s3.0

G2 s3.2 s6.3 s8.0 s7.7 s4.0

G3 s7.0 s3.6 s6.3 s7.8 s8.0

G4 s2.2 s3.5 s4.4 s6.6 s7.7

If three decision makers evaluate the performance of five companies xj (j =

1, 2, 3, 4, 5) according to attributes Gi (i = 1, 2, 3, 4) by using the uncertain

linguistic terms in the set S̃ and constructs, respectively, the uncertain linguistic

decision matrices Ã(k) (k = 1, 2, 3) as listed in Tables 4.5-4.7.

Table 4.5: Uncertain linguistic decision matrix Ã(1)

x1 x2 x3 x4 x5

G1 [s5, s7] [s7, s9] [s2, s4] [s3, s5] [s4, s6]
G2 [s2, s3] [s6, s7] [s7, s9] [s3, s5] [s4, s6]
G3 [s2, s4] [s5, s6] [s1, s3] [s6, s7] [s4, s5]
G4 [s3, s4] [s2, s3] [s3, s5] [s2, s3] [s3, s4]

In such case, we can utilize the proposed procedure II to prioritize these

alternatives as follows.

Step 1: Utilize the GIULOWHM operator (whose weight vector w = (0.3, 0.4,

0.3)T )

ãij = GIULOWHMw(〈v1, u1, ã
(1)
ij 〉, 〈v2, u2, ã

(2)
ij 〉, 〈v3, u3, ã

(3)
ij 〉),

i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5

to aggregate all the uncertain linguistic decision matrices Ã(k) (k = 1, 2, 3) into a

collective uncertain linguistic decision matrix Ã = (aij)4×5 (Table 4.8).
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Table 4.6: Uncertain linguistic decision matrix Ã(2)

x1 x2 x3 x4 x5

G1 [s6, s7] [s8, s9] [s1, s2] [s3, s5] [s1, s3]
G2 [s2, s4] [s2, s3] [s3, s5] [s2, s4] [s4, s5]
G3 [s1, s2] [s2, s3] [s1, s2] [s2, s4] [s5, s6]
G4 [s3, s5] [s4, s6] [s2, s3] [s1, s3] [s4, s6]

Table 4.7: Uncertain linguistic decision matrix Ã(3)

x1 x2 x3 x4 x5

G1 [s6, s8] [s6, s8] [s1, s3] [s2, s3] [s4, s5]
G2 [s3, s4] [s1, s3] [s4, s5] [s3, s4] [s3, s4]
G3 [s1, s3] [s3, s5] [s2, s3] [s4, s5] [s3, s4]
G4 [s2, s3] [s2, s4] [s4, s5] [s1, s2] [s2, s4]

Step 2: Utilize the decision information given in matrix Ã, and the ULWHM

operator

ãj = ULWHMω(ã1j, ã2j, ã3j, ã4j)

=
1

ω1

ã1j
⊕ ω2

ã2j
⊕ ω3

ã3j
⊕ ω4

ã4j

, j = 1, 2, 3, 4, 5

to derive the collective overall preference values ãj of the alternative xj:

ã1 = [s2.49, s3.98], ã2 = [s2.67, s4.59], ã3 = [s1.78, s3.48],

ã4 = [s2.36, s4.09], ã5 = [s2.77, s4.61].

Step 3: To rank these collective overall preference values ãj (j = 1, 2, 3, 4, 5),

we first compare each ãj with all ãi (i = 1, 2, 3, 4, 5) by using (3.1), and develop
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Table 4.8: Collective uncertain linguistic decision matrix Ã

x1 x2 x3 x4 x5

G1 [s5.66, s7.27] [s7.00, s8.67] [s1.18, s2.67] [s2.61, s4.17] [s1.82, s4.11]
G2 [s2.22, s3.64] [s1.82, s3.62] [s3.98, s5.77] [s2.50, s4.26] [s3.64, s4.88]
G3 [s1.54, s2.67] [s2.78, s4.11] [s1.18, s2.50] [s3.08, s4.93] [s3.92, s4.96]
G4 [s2.61, s3.92] [s2.50, s4.14] [s2.67, s3.95] [s1.18, s2.61] [s2.86, s4.62]

a complementary matrix:

P =




0.500 0.384 0.690 0.503 0.363

0.616 0.500 0.776 0.611 0.484

0.310 0.224 0.500 0.327 0.201

0.497 0.389 0.673 0.500 0.370

0.637 0.516 0.799 0.630 0.500




.

Summing all elements in each line of the matrix P, we have

p1 = 2.440, p2 = 2.987, p3 = 1.562, p4 = 2.429, p5 = 3.082

and then we rank ãj (j = 1, 2, 3, 4, 5) in descending order in accordance with the

values of pj (j = 1, 2, 3, 4, 5):

ã5 > ã2 > ã1 > ã4 > ã3.

Step 4. Rank all alternatives xj (j = 1, 2, 3, 4, 5) by the ranking ãj (j =

1, 2, 3, 4, 5):

x5 Â x2 Â x1 Â x4 Â x3

and thus the most desirable alternative is x5.
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4.4 Conclusions

In this chapter, we have defined the GILOWHM and GIULOWHM operators, by

which each object processed consists of three components, where the first compo-

nent represents the importance degree or character of the second component, and

the second component is used to induce an ordering, through the first component,

over the third components which are linguistic variables (or uncertain linguistic

variables) and then aggregated. We have also shown that the ILOWHM operator

and LOWHM operator are the special cases of the GILOWHM operator, and that

the IULOWHM operator and the ULOWHM operator are the special cases of the

GIULOWHM operator. In the process of aggregating information, these opera-

tors can avoid losing the original linguistic or uncertain linguistic information and

thus ensure exactness and rationality of the aggregated results. Moreover, based

on the GILOWHM and GIULOWHM operators respectively, we have developed

two procedures for solving the MADM problems where all decision information

about attribute values take the forms of linguistic variables or uncertain linguistic

variables. To verify the effectiveness and practicality of the developed procedures,

we have given an illustrative example.

60



Bibliography

[1] P.S. Bullen, D.S. Mitrinovi, P.M.Vasi, Means and their inequalities, The

Netherlands, Reidel (1988).

[2] H.Y. Chen, C.L. Liu, Z.H. Shen, Induced ordered weighted harmonic av-

eraging (IOWHA) operator and its application to combination forecasting

method, Chinese Journal of Management Sciences 12 (2004), 35–40.

[3] C.Y. Chen, J.R.C. Hsu, C.W. Chen, Fuzzy logic derivation of neural net-

work models with time delays in subsystems, Int. J. Artif. Intell. T. 14

(2005), 967–974.

[4] S.J. Chuu, Selecting the advanced manufacturing technology using fuzzy

multiple attributes group decision making with multiple fuzzy information,

Comput. Ind. Eng. 57 (2009), 1033–1042.

[5] M. Delgado, J.L. Verdegay, M.A. Vila, Linguistic decision making models,

Int. J. Intell. Syst. 8 (1993), 351–370.

[6] J.C. Harsanyi, Cardinal welfare, individualistic ethics, and interpersonal

comparisons of utility, J. Polit. Economy 63 (1955), 309–321.

[7] F. Herrera, J.L. Verdegay, Linguistic assessments in group decision, Pro-

ceedings of 11th European Congress of Fuzzy Intelligent Technology (1993),

941–948.

61



[8] F. Herrera, E. Herrera-Viedma, J.L. Verdegay, A model of consensus in

group decision making under linguistic assessments, Fuzzy Sets Syst. 78

(1996), 73–87.

[9] F. Herrera, E. Herrera-Viedma, J.L. Verdegay, Direct approach process in

group decision making using linguistic OWA operators, Fuzzy Sets Syst. 79

(1996), 175–190.

[10] F. Herrera, E. Herrera-Viedma, Aggregation operators for linguistic

weighted information, IEEE Trans. Syst. Man. Cybern. 27 (1997), 646–656.

[11] F. Herrera, E. Herrera-Viedma, J.L. Verdegay, A rational consensus model

in group decision making linguistic assessments, Fuzzy Sets Syst. 88 (1997),

31–49.

[12] F. Herrera, E. Herrera-Viedma, L. Martinez, A fusion approach for man-

aging multi-granularity linguistic term sets in decision making, Fuzzy Sets

Syst. 114 (2000), 43–58 .

[13] F. Herrera, L. Martinez, A 2-tuple fuzzy linguistic representation model for

computing with words, IEEE Trans. Fuzzy Syst. 8 (2000), 746–752.

[14] F. Herrera, E. Herrera-Viedma, Choice functions and mechanisms for lin-

guistic preference relations, Eur. J. Oper. Res. 120 (2000), 144–161.

[15] F. Herrera, E. Herrera-Viedma, Linguistic decision analysis: steps for solv-

ing decision problems under linguistic information, Fuzzy Sets Syst. 115

(2000), 67–82.

[16] S.H. Kim, S.H. Choi, J.K. Kim, An intractive procedure for multiple at-

tribute group decision making with incomplete information: range-based

approach. Eur. J. Oper. Res. 118 (1999), 139–152.

[17] X.W. Liu, S.L. Han, Orness and parameterized RIM quantifier aggregation

with OWA operators: A summary, International Journal of Approximate

Reasoning 48 (2008), 77–97.

62



[18] J.H. Park, M.G. Gwak, Y.C. Kwun, Linguistic harmonic mean operators

and their applications to group decision making, Int. J. Adv. Manuf. Tech-

nol. 57 (2010), 411–419.

[19] J.H. Park, M.G. Gwak, Y.C. Kwun, Uncertain linguistic harmonic mean

operators and their applications to multiple attribute group decision mak-

ing, Computing 93 (2011), 47–64.

[20] J.H. Park, M.G. Gwak, Y.C. Kwun, Generalized induced linguistic har-

monic mean operators based approach to multiple attribute group decision

making, Journal of Computational Analysis and Applications (2011), in

press.

[21] J.H. Park, B.Y. Lee, M.J. Son, An approach based on the LOWHM and

induced LOWHM operators to group decision making under linguistic in-

formation, Int. J. Fuzzy. Logic Intell. Syst. 20 (2010), 285–291.

[22] L.I. Tong, C.C. Chen, C.H. Wang, Optimization of multi-response processes

using the VIKOR method, Int. J. Adv. Manuf. Technol. 31 (2007), 1049–

1057.

[23] V. Torra, Y. Narukawa, Information fusion and aggregating information,

Berlin, Springer (2007).

[24] G.W. Wei, W.D. Yi, Fuzzy linguistic hybrid harmonic mean operator and

its application to software selection, Journal of Software 4 (2009), 1037–

1042.

[25] Z.S. Xu, Q.L. Da, The uncertain OWA operators, Int. J. Intell. Syst. 17

(2002), 569–575.

[26] Z.S. Xu, Q.L. Da, An overview of operators for aggregationg information,

Int. J. Intell. Syst. 18 (2003), 953–969.

[27] Z.S. Xu, Uncertain Multiple Attribute Decision Making: Methods and Ap-

plications, Tsinghua University Press, Beijing (2004).

63



[28] Z.S. Xu, A method based on linguistic aggregation operators for group

decision making with linguistic preference relations, Inf. Sci. 166 (2004),

19–30.

[29] Z.S. Xu, Uncertian linguistic aggregation operators based approach to mul-

tiple attribute group decision making under uncertain linguistic environ-

ment, Inf. Sci. 168 (2004), 171–184.

[30] Z.S. Xu, An overview of methods for determining OWA weights, Interna-

tional Journal of Intelligent Systems 20 (2005), 843–865.

[31] Z.S. Xu, Deviation measures of linguistic preference relations in group de-

cision making, Omega 33 (2005), 249–254.

[32] Z.S. Xu, An approach based on the uncertain LOWG and induced uncertain

LOWG operators to group decision making with uncertain multiplicative

linguistic preference relations, Decis. Support Syst. 41 (2006), 488–499.

[33] Z.S. Xu, Induced uncertain linguistic OWA operators applied to group de-

cision making, Inf. Fusion 7 (2006), 231–238.

[34] Z.S. Xu, On generalized induced linguistic aggregation operators, Int. J.

Intell. Syst. 35 (2006), 17–28.

[35] R.R. Yager, On ordered weighted averaging aggregation operators in mul-

ticriteria decision making, IEEE Trans. Syst. Man Cybern. 18 (1988), 183–

190.

[36] R.R. Yager, Families and extension of OWA aggregation, Fuzzy Sets Syst.

59 (1993), 125–148.

[37] R.R. Yager, The induced fuzzy integral aggregation operator, Int. J. Intell.

Syst. 17 (2002), 1049–1065.

[38] R.R. Yager, Induced aggregation operators, Fuzzy Sets Syst. 137 (2003),

59–69.

64



[39] R.R. Yager, Centered OWA operators, Soft Computing 11 (2007), 631–639.

[40] R.R. Yager, D.F. Filev, Induced ordered weighted averaging operators,

IEEE Trans. Syst. Man. Cybern. 29 (1999), 141–150.

[41] R.R. Yager, J. Kacprzyk, The ordered weighted averaging operator: Theory

and application, Boston, Kluwer (1997).

[42] K. Yeh, C.W. Chen, C.Y. Chen, Robustness design of time-delay fuzzy

systems using fuzzy Lyapunov method, Appl. Math. Comput. 205 (2008),

568–577.

[43] D. Yong, Plant location selection based on fuzzy TOPSIS, Int. J. Adv.

Manuf. Technol. 28 (2006), 839–844.

[44] K. Yoon, The propagation of errors in multiple-attribute decision making

analysis: A practical approach, Journal of Operational Research Soceity 40

(1989), 681–686.

[45] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

[46] L.A. Zadeh, The concept of a linguistic variable and its application to ap-

proximate reasoning-I, Inform. Sci. 8 (1975), 199–249.

[47] L.A. Zadeh, The concept of a linguistic variable and its application to ap-

proximate reasoning-II, Inform. Sci. 8 (1975), 301–357.

[48] L.A. Zadeh, The concept of a linguistic variable and its application to ap-

proximate reasoning-III, Inform. Sci. 9 (1976), 43–80.

65



감사의 글

본 논문이 완성되기까지 항상 학문의 연구를 독려하시고 밝은 가

르침과 날카로운 깨우침으로 이끌어주신 박진한 지도교수님께 먼저

머리 숙여 깊은 감사드립니다. 저희 졸고에 대해 아낌없는 질책과

편달로 더 아름다운 논문을 요구하시며 마지막까지 정성을 쏟을 수

있게 지도해주신 권영철 교수님, 항상 격려와 지도 조언을 해주신

황진수 교수님, 많은 지도와 격려를 해주신 표용수 교수님, 조성진

교수님께 진심으로 감사드립니다.

아울러 음으로 양으로 도움을 주신 부경대학교 응용수학과의 여러

교수님들, 깊은 관심으로 지켜봐주신 여러 선배님들과 연구실의 많

은 후배들에게도 깊은 감사의 뜻을 전하고 싶습니다.

오늘이 있기 까지 항상 묵묵히 지켜봐주시고 격려해 주신 부모님과

어머님, 오빠 그리고 가족들의 은혜에 작은 보답이 되었으면 합니

다. 무엇보다도 본인이 학위과정을 마칠 수 있도록 많은 어려움을

인내하며 따뜻한 사랑으로 외조해 준 남편과 이 기쁨을 함께하고

싶으며, 더욱더 열심히 정진하여 진정한 이학박사가 되도록 노력할

것을 다짐합니다.


	1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	2. Linguistic harmonic mean operators and
	applications to group decision making . . . . . . . . . . . . . . . .
	2.1. Some new aggregation operators . . . . . . . . . . . . . . . . . . . . . .
	2.2. A method for group decision making with

	preference relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	2.3. Application I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	2.4. Application II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	2.4.1. Approach to AMT selection . . . . . . . . . . . . . . . . . . . . . . .
	2.4.2. Practical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	3. Uncertain linguistic harmonic mean
	and their applications to multiple
	group decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.1. Some operational laws of uncertain

	variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.2. Some new uncertain linguistic aggregation operators . . . .
	3.3. An approach to multiple attribute group

	making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.4. Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.5. Comparison with other methods . . . . . . . . . . . . . . . . . . . . . .
	3.6. Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . . . . .

	4. Generalized induced linguistic harmonic
	operators based approach to multiple
	group decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.1. Generalized induced linguistic aggregation operators . . . .
	4.1.1. The GILOWHM and GIULOWHM operators . . . . . . .
	4.1.2. Some properties of the GILOWHM operator . . . . . . . .

	4.2. An approach to group decision making . . . . . . . . . . . . . . . .
	4.3. Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


<startpage>8
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Linguistic harmonic mean operators and their
applications to group decision making . . . . . . . . . . . . . . . . 7
 2.1. Some new aggregation operators . . . . . . . . . . . . . . . . . . . . . . 8
 2.2. A method for group decision making with linguistic
preference relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 2.3. Application I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
 2.4. Application II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
  2.4.1. Approach to AMT selection . . . . . . . . . . . . . . . . . . . . . . . 20
  2.4.2. Practical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3. Uncertain linguistic harmonic mean operators
and their applications to multiple attribute
group decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
 3.1. Some operational laws of uncertain linguistic
variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
 3.2. Some new uncertain linguistic aggregation operators . . . . 27
 3.3. An approach to multiple attribute group decision
making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
 3.4. Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
 3.5. Comparison with other methods . . . . . . . . . . . . . . . . . . . . . . 38
 3.6. Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4. Generalized induced linguistic harmonic mean
operators based approach to multiple attribute
group decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
 4.1. Generalized induced linguistic aggregation operators . . . . 44
  4.1.1. The GILOWHM and GIULOWHM operators . . . . . . . 44
  4.1.2. Some properties of the GILOWHM operator . . . . . . . . 50
 4.2. An approach to group decision making . . . . . . . . . . . . . . . . 52
 4.3. Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
</body>

