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Chapter 1

Introduction and Preliminaries

Multiobjective programming problems airse when more than one objective
function is to be optimized over a given feasible region. Their optimums
are the concept of solution that appears to be-the natural extension of the
optimization for a single objectives. In economic analysis [2], game [11] and
system science, optimums are effective for treating such a multiplicity of

values.

Under certain convexity assumptions and suitable constraint qualifica-
tions, the primal and dual problems have equal optimal objective values and
hence it is possible to solve the primal problem indirectly by solving the dual
problem. In 1961, Wolfe [38] formulated a dual problem for a‘single objective
optimization problem on the-basis of the Kuhn-Tueker necessary optimality
conditions, which is now called the Wolfe dual problems, and proved weak
and strong duality theorems. In 1981, Mond and Weir [32] gave another
type of dual problem for a single objective optimization problem on the basis
of the Kuhn-Tucker necessary optimality condition, which is now called the
Mond-Weir dual problem. They proved weak, strong and converse duality
theorems. Until now, many authors have formulated Wolfe type dual prob-
lems and Mond-Weir type dual problems for several kinds of optimization
problems and have studied these problems for duality theorems. Also several

authors have been interested in optimality conditions and duality theorems



for nondifferentiable multiobjective programming problems, e.g., ([21], [26],
[39], [40]).

Symmetric duality in nonlinear programming was introduced by Dorn [10]
by defining a symmetric dual program for quadratic programs. Subsequently
Dantzig, Eisenberg and Cottle [9] first formulated a pair of symmetric dual
nonlinear programs in which the dual of the dual equals the prime, and
established the weak and strong duality for these problems concerning convex
concave functions. Mond and Weir [32] gave a different pair of symmetric
dual nonlinear programming problems in which the-pseudo-convexity and
pseudo-concavity assumptions reduced to the convexity and concavity ones,
and obtained the weak and strong duality for these problems. Weir and
Mond [37] established two distinct pairs of multiple objective symmetric dual
programs. Under additional assumptions the multiobjective programs are

shown to be self dual.

Several authors have beeninterested in duality theorems for multiobjec-
tive variational problems:. Bector and 'Husain [3|proved duality results for a
multiobjective variational preblem with convexity functions. Various gener-
alizations of convexity have been made in the literature. Bector and Husain
[3] proved duality results for a multiobjective variational problem with con-
vexity functions.

On the other hand, giving continuous analogies of the results of [8], Mond
and Hanson [28] extended the symmetric duality results to variational prob-
lems. Since the invexity conditions on functions were first defined by Hanson
[28] as a generalization of convexity ones, many authors [5, 7, 15, 19, 34, 35]

have extended the concepts of invexity and generalized invexity to those of



the continuous versions of invexity and generalized invexity functions. Smart
and Mond [35] extended the symmetric duality results to variational prob-
lems by using the continuous version of invexity. Kim and Lee [17] presented
a pair of symmetric dual variational problems in the spirit of Mond and
Weir [33] different from the one formulated by Smart and Mond [35], using
the continuous version of pseudo-invexity which is a generalization of that
of invexity. Kim, Lee and Lee [18] extended Kim and Lee’s symmetric dual
results [17] to the multiobjective symmetric dual variational problems under
pseudo-invexity assumptions. Kim and Lee [17] formulated a pair of gen-
eralized symmetric dual variational problems. Weak, strong and converse
duality theorems are established under invexity assumptions for these prob-
lems. Several known results [4, 19, 31, 41] are obtained as special cases.

Let R" be the n-dimensional Euclidean space and let R’ be its non-
negative orthant. We denote the interior of R” by intR'}.

The following convention for inequalities will be used :

r=y ifandonlyif-ao;=7vy, 1=1,2---,n,
r<y ifandonlyif z;<vy;, 1=12---n,
r <y ifand onlyif z; <y, but z#uy,

r<y ifandonlyif z; <y, 1=1,2,---,n,

The following problems is called a multiobjective variational problem



(MVP):
(MVP)

Minimize / F(t,2(8), (b))t

_ (/b P (8, & / PPt (1), ()t )

subject to z(a) = to, x(b) = ty,

gt a@),a() <0, ted.

Let I = [a,b] be a real interval, f : I x R* x R" — 'RP and g : I X
R" x R* — R™ are continuously differentiable functions. We shall denote
the feasible set of (MVP) by Xy := {z € C(I,R")| z(a) = to, x(b) =
tr, g(t,z(t), z(t)) < 0}. Optimization of (MVP), which lets C'(I, R") denote
the space of piecewise smooth functions & (¢) with norm ||z||= ||z| . +| Dz|| .,

is finding efficient solutions defined as follows.

Definition 1.1 A point z*(t)-€ Xy is said to be-an efficient solution of the
problem (MVP) if there exists no other x(t) € Xy such that

/ft:r dt</ft:r )t Vi=1,-- p

b
/ ot z(t), #(t))dt </ frot, z*(t), 2*(t))dt, for someig=1,---p.



Definition 1.2 A point x*(t) € X, is said to be a weak efficient solution of
the problem (MVP) if there does not exist x(t) € X, such that

b
/fi(t,x( dt</ fit, a*(t), z*(t))dt, Yi=1,---,p.

Definition 1.3 (Geoffrion [13]) A point x*(t) € X, is said to be a properly
efficient solution of (MIVP) if there exist a scalar M > 0 such that

/abfi(t,x*( ))dt — /fzta: (t))dt
<M{/ (Fi(E, () (t)ydt — /G(f‘(t,x(), WY Vi= 1, ,p

and

/abfi()(t,x*( ))dt — / fot, z(t),u(t))dt

<M{/ (ot (), ()t — /(f“)(taf() ()t
for some1y =1,--- ,p.

The multiobjective dual variational problem (MMVD) (:Mond-Weir
multiobjective dual variational problem) for (MVP) can be expressed as

the following form:

(MMVD)

Maximize / ft,y(t),y(t))dt

_ (/b FHt (), yt))dt, - - ,/ab fp(t,y(t)’y(t))dt)



subject to y(a) =to, y(b) = ty,

P

S LAy, 500) — ol yle), 900}

i=1

TiERp,TiZO,

At) € RRX() >0, t €1,
where A(t) is a function from 1 into R™.

Efficient solutions of (MMVD) can be defined analogously iin definition

1.1 as follows:

Definition 1.4 A feasible solution (x¥(t), 7, X\*(t)) is said to be an efficient
solution of the problem (MMVD) if there_does not exist a feasible solution
(x(t), 7, A(t)) of (MMVD) such that

/fta: dt</ftx ()dt, Vi=1,-- ,p

/ fot, o ))dt </ fo(t,x(t), x(t))dt, for someig=1,---,p.

The control problem is to choose, under given conditions, a control vector

u(t), such that the state vector x(t) is brought from some specified initial

6



state z(a) = to to some specified final state x(b) = t; in such a way as to
minimize a given functional.

The following problem is called a multiobjective control problem (MCP):

(MCP)

Minimize / " 1t 2 (8), / (¢, (1), (1))t

subject to z(a) = to, z(b) = ty,

g(t, 2@ w@)) €0, den,

h(t,z(t),u(t)) = i(t), t € 1.
Each f' : I x R" x R™ — R'for i = 1,-2=,p, ¢ : I Xx R* x R™ — R for
j=1,--- kand h": I xR" X R" — Rforr=1,--- ., n

Let X :={x € C(I,R")| z(a) = top@(b) = tr, g(t,z(t),u(t)) <0,

h(t,z(t),u(t)) = x(t)}, where C'(I, R™) denotes the space of piecewise smooth
functions z(t) with norm ||z ||= |jz|| _+||Dz|| , be the set of feasible solutions
of problem (MCP). Optimization of (MCP).is finding efficient solutions
defined as follows.
Definition 1.5 A feasible (z*(t),u*(t)) of (MCP) is said to be an efficient

solution of (MICP) if there does not exist a feasible solution (x(t),u(t)) of
(MCP) such that

/ft:r dt</ft:r )t Vi=1,- p

b
/ ot z(t), u(t))dt </ fo(t,*(t), u*(t))dt, for some ig=1,---,p.

7



The multiobjective dual control problem (MMCD) (:Mond-Weir multi-
objective control dual problem) for (MCP) can be expressed as the following

form:

(MMCD)

Maximize ( / ’ P (), u(t))dt, - - / ’ fp(t,x(t),u(t))dt)

subject to  x(a) = to, (b)) =1y,

k

Zﬁfﬁ(t, z(t), u(t)) + Y X() gt 2 (0), ult))

j=1

+ i (ORL(E, 2(t) ) + () = 0, t € 1,

k

Zﬁfﬁ(t, (), u@) Y A (g (ta(t), ut))

=1

+iﬂr(t)h2(t,w(t),U(t)) 20.%E 1,
/ D O (¢ x(t), ult) — ()}t 2 0, t € 1,

/bZ i) g (t, x(t), ut))dt 2 0, t €1,

A(t) =20, tel,

p
Ti % O,Z’Ti = 1.
i=1

8



where \(t) is a function from I into R™ and pu(t) is a function from I into R".
Here A(t) and pu(t) are required to be continuous except perhaps at points of
discontinuity of u(t).

We can define efficient solutions of (MMCD) by ways similar to the case
of (MCP):

Definition 1.6 A feasible solution (z*(t), u*(t), 7", \*(t), u*(t)) of (MMCD)
is said to be an efficient solution of (MMOCD) if there does not exist a fea-
sible solution (x(t),u(t), 75 A(t), u(t)) of (MMCD). such that

/ fi(t,x(t),u(t))dtz/ @, (¢ uliit) ) dt, Vi =1, yp
d

an
b b
/ fio(t,:r(t),u(t))dt>/ fo(t, 2%(t),u(t))dt, for some ig=1,---,p.

Definition 1.7 [30] The support function s(z|D),.being convex and every-

where finite, has a subdifferential, that s, there exists z such that
s(y|D) > s(z|D) + 2" (y — x) for all y € D.
Equivalently,
o = s(2|D).
The subdifferential of s(x|D) is given by

ds(x|D) :={z € D : 2"z = s(z|D)}.



For any set S C R"™, the normal cone to S at a point x € S is defined by
Ns(z) ={y € R": 4y (2 —x) <0 for all z € S}.

It is readily verified that for a compact conver set D, y is in Np(z) if and

only if s(y|D) = 2Ty, or equivalently, x is in the subdifferential of S at y.

In this thesis, we formulate the nondifferentiable multiobjective varia-
tional problem and control problem for generalized invex functions. We ob-
tain sufficient optimality theorems and duality theorems for nondifferentiable
multiobjective variational problem involving generalized type I invex func-
tions. Also, we obtain sufficient optimality theorems for nendifferentiable
multiobjective control problem involving generalized V-p-invex functions.

This thesis consists of four chapters.

In Chapter 2, we formulate nondifferentiable multiobjective variational
problem with equality and inequality constraints. We introduce vector type
invexity along the lines of Jeyakumar and Mond [15} extending the pseudo,
quasi, quasi-pseudo, pseudo-quasi type-I invexity of Kaul et al. [16]. Some
sufficiency results are established. We establish the Mond-Weir type dual and
general Mond-Weir type dual problems and prove weak, strong and converse
duality theorems under generalized V-type I assumptions. As a special case
of our duality results, we obtain the Wolfe type duality theorems.

In Chapter 3, a pair of nondifferentiable multiobjective symmetric dual
variational problem is formulated. Our duality results improve and extend
ones in Smart and Mond. Under suitable invexity assumptions, we establish

the weak, strong and converse duality theorems for efficient solutions.

10



In Chapter 4, we obtain duality results for multiobjective control prob-
lems under V-p-invexity (V-p-pseudo invexity, V-p-quasi invexity) assump-
tions. The results of the present section extend the work of Mishra and
Mukherjee [24] to more generalized V-p-invex functions. It is also shown
that for V-p-invex functions, the necessary conditions for optimality in the
control problem are also sufficient. Moreover, we formulate Wolfe formulate
nondifferentiable multiobjective control problems. For these problems, Wolfe

and Mond Weir type duals are proposed. We establish their duality relations.

11



Chapter 2

Nondifferentiable Multiobjective Variational Problem

with Generalized Type I Invexity

2.1 Introduction

The following problems is called a nondifferentiable. multiobjective varia-

tional problem with equality or inequality constraints:

(NMVP)

Minimize / (f(t, 5(), &(t)) + s(z(t)| D)) dt

12



(NMVPE)

Minimize / (F(t, 2(8), #(1)) + s(x(t)| D)) dt
— ([ (' tnte) i) + s(ato)|Dr))at,

’/ (fp(t’l»(t)’i’(t))—I—S(l'(t)|Dp))dt)

where f ! IXR"XR"—= RP, g: IXR"XR" — R™"and h: [IXR"XR" —
R1, are assumed to continuously differentiable functions. Let [ = [a,b] be a
real interval. In order.to. consider f(t,x(t),&(t)), where x(t) : I — R™ with
derivative &(t), denote the partial derivative of f with respect to ¢, z(t), and
#(t), respectively, by f;, f. and f;, such that
f_<8f 8f) f__<8f 8f)
T 81’1’ ’al’n ’ T 8:i71’ ’al’n
The partial derivatives of other functions used will be written similarly.
Let C(I,R") denote the space of piecewise smooth functions z(t) with

norm ||z||= ||z|,, +|Dx||.,, where the differentiation operator D is given by

t
u= Dr <= x(t) =ty + / u(s)ds,

13



in which a(t) is a given boundary value. Therefore D = 4 except at discon-
tinuities.

In this chapter, we are concerned with the nondifferentiable multiobjec-
tive variational problem with equality and inequality constraints. We intro-
duce new classes of generalized V-type I vector valued functions for varia-
tional problems and consider the nondifferentiable multiobjective variational
problem (NMVP) and (NMVPE). A number of sufficiency results are
established using Lagrange multiplier conditions under various types of gen-
eralized V-type I requirements. Duality theorem are proved for Mond-Weir
and general Mond-Weir type duality under the above generalized V-type I
assumptions and their generalizations. As special case of our duality results,

we obtain the Wolfe type duality theorems.

2.2 Definitions and Preliminaries

Let us now'denote by X be the set of all feasible solutions of the problem
(NMVP) given by
Xo :={x(t) € C(I,R")| x(a) =to, =(b) = ts, g(t,x(t), &(t)) < 0},

and X be the set of all feasible solutions of the problem (NMVPE) given by

Xy :={z(t) e C(L,R")| z(a)=ty, x(b) =ty,

g(t,x(t),z(t)) <0, h(t,z(t),z(t)) = 0}.

Following Aghezzaf and Hachimi [1] we define generalized type I invex

functions for variational problems as follows.

14



Definition 2.1 (f(z),g(x)) is said to be V-type I invex with respect to n(t),
a;(t) and B;(t) at x*(t) if for allt = 1,---,p and j = 1,--- ,m there
exists a differentiable vector function n(t) € R™ , and real-valued functions

a;(t) € RL \ {0} and B;(t) € Ry \ {0} such that

/(fi(t,fv(t),fb(t))+S(fv(t)|Di))dt—/ (f'(t, 2" (1), 3" (1)) + s(2" ()| Dy))dt

2/ ai(x(t), @ (1), &), " () (t, x(t), a7 (E)a(t), &" (0)){f2(t, 2"(8), &"(¢))

+wi(t)) — — filty (1), &7(2)) bt (2.1)

—%gfb(t, (1), *(t)) Jdt. (2.2)

for every x(t).

Ifin the above definition, (2.2) is a strict inequality, then we say that (f(x), g(x))
is semistrictly V-type I invex at x*(t).

We now define and introduce the notions of weak strictly-pseudoquasi V-type I

wmwvexity, weak quasistrictly-pseudo V-type I invexity and weak strictly-pseudo

V-type I invezity for (NMVP).

15



Definition 2.2 (f(x),g(x)) is said to be weak strictly-pseudoquasi V-type
I invex with respect to n(t) , ai(t) and B;(t) at x*(t) if there exists a
differentiable vector function n(t) € R" , and a;(t) € Ry \ {0} and B;(t) €
R, \ {0} , such that for some vector 1; € RP ,7; > 0 and piecewise smooth

function M) : T — B™ A(t) >0,
A Z i (o(0), 4 (6),6(0), 8 ()1, (1), £(0)) + (1) D)yl
<[ gnam(w, S0 (0 2 ()L (o (0),8768)) + (o (D) Do) e
= [ gfm(t,fc(t),w*(t),jf(t),jf*(t)){fi(t,$*(t),<i“*(t)) Y it

L B
~ it 7 (1,87 (6) Jdt <0

and

—%gé (t,z*(t),2*(t)) }dt < 0.

This definition is a slight extension of that of the weak strictly-pseudoquasi

V-type I functions [1].

16



Definition 2.3 (f(x), g(x)) is said to be weak quasi strictly-pseudo V-type I
invex with respect to n(t) , a;(t) and B;(t) at x*(t) if there exists a differen-
tiable vector function n(t) € R™ , and o;(t) € R\ {0} and (;(t) € Ry \ {0}
, such that for some vector T, € RP ,7; > 0 and piecewise smooth function

A(t): T — R™ A(t) > 0,
/ab é i (w(t), (1), @(t), 2 () L (8, 2 (t), &(t)) + s(x(t)| D;) }dt
< /ab gwi(fﬂ(t), w¥(t), &(t), 2" () (¢ 2" (8),27(t)) + s(2” (1) Dy) }dt
— /ab é Tin(t, = (t)4@” (t), & (t), & OM (8, a7 (1), 2°(2)) + wi(?t)

d i * . %
_%.fgb(twr (t),l’ (t))}dt <0

and

—gh(t,a(£),8" (1)}t < 0.

Definition 2.4 (f(z),g(x)) is said to be weak strictly-pseudo V-type I invex

with respect to n(t) , a;(t) and B;(t) at x*(t) if there exists a differentiable

17



vector function n(t) € R* , and a;(t) € Ry \ {0} and [;(t) € Ry \ {0}
, such that for some vector T, € RP ,7; > 0 and piecewise smooth function

At): I — R™ At)>0,

/ Z Tio(x(t), 2" (8), &(t), 3" () {f'(t, 2(t), 2(8) + s(x ()| D;) bt

a .

</ ;Tiozi(lﬂ(t),x*(t)>Cb(t),j:*(t)){fi(t,x*(t)’j;*(t))_I_S(I*(t”Di)}dt

= / Z T 2 ()@ (), (), & () falt, &7(6), 57 (8)) + wi(t)

d i * -k
—ﬁfi(t,x (t), z%(¢)) pdt < 0

and

—/ Do (O a(t), 2 (8), #(0), 7(8))g (b (¢), 47 (1)) dt < O

a .

Following Hanson, Pini and Singh [14] we define vector type I invexity for

variational problems as follows.

Definition 2.5 (f(x), g(x)) is said to be quasi V-type I invex at x*(t) with

respect to n(t) , a;(t) and B;(t) at x*(t) if there exists a differentiable

18



vector function n(t) € R* and o;(t) € Ry \ {0} and B;(t) € Ry \ {0},
such that for some vector 7, € RP ,1; > 0 and piecewise smooth function

At): I — R™ At)>0,
/ Zﬁai(ff(t%I*(t%i(t)>i*(t)){fi(t>ff(t),5f(t))+S(ff(t)|Di)}dt
S/ Zﬂ'ai(ff(t%ZB*(t%i(t)>i*(t)){fi(t>ff*(t)>ff*(t))+S(~T*(t)|Di)}dt

= / Z Tt w(t), 2" (8), (), & () falt 27(1), 37(1) + wi(t)

d 7 * %3
— it (), 5N}t <0 (2.3)

and

| SO, (0,5(0). 5 0)g' ), ()t = 0

=>/ D Am(t,x(t), 2™(8), i), & (8) {gl (t, 2" (¢), 7 (1))

a .

_%g;(t,z*(t),sg*(t)}dt <0. (2.4)

If (f(x),g(x)) is quasi V-type I invex at each z*(t) , we say (f(x),g(x))
is quasi V-type I invex on I X R™ x R". If the second (implied) inequality in
(2.3) is strict (xz(t) # x*(t)) (f(x), g(x)) is semi strictly quasi V-type I invex

at z*(t) or on I x R™ x R™ as the case may be.
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Definition 2.6 (f(z),g(x)) is said to be pseudo V-type I invex at x*(t) with
respect to n(t) , a;(t) and B;(t) at x*(t) if there exists a differentiable
vector function n(t) € R* and o;(t) € Ry \ {0} and B;(t) € Ry \ {0} ,
such that for some vector 7, € RP ,1; > 0 and piecewise smooth function

A(t): I — R™, \(t) >0, the implications
/ me(t,fﬂ(t%if*(t%i‘(t),f‘f*(t)){fi(t,ﬂﬁ*(t),i*(t))+wi(t)
—if@'(t (), 2(£))}dt, >0
gt o= R
:>/ Zﬁai(fﬂ(t),if*(t),fb(t),fb*(t)){fi(t,w(t),50(75))+S(iﬂ(t)|Di)}dt

> [ 3 e ), 800 @ 0. 0) £ 85 0oy

(2.5)

and

| 3ottt @), 60,5 0) (gt (0,5 0)

_%%@J%%ﬁ@ﬂﬁzo

— [ A5 (0) 50,3 () (0.2 ()dk <0

(2.6)
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hold. If (f(x), g(x)) is pseudo V-type I invex at each x*(t) ,we say (f(z), g(x))
pseudo V-type I invex on I x R™ x R".If the second (implied) inequality in
(2.5)(Eq.(2.6)) is strict, (f(x),g(x)) is semi strictly pseudo V-type I invex
in f(x) (in g(x)) at x(t) or on I x R™ x R"™ as the case may be. If the second
(implied) inequality in (2.5)and (2.6) are both strict we say that (f(x), g(x))
is strictly pseudo V-type I invex at z*(t) or on I x R" X R" as the case may

be.

Definition 2.7 (f(x), g(@)) is said to be quasi pseudo V-type I invex at x*(t)
with respect to n(t), a;(t) and B;(t) at x*(t) if there exists a differentiable
vector function' n(t) € R" and o;(t) &R\ {0} and B;(t) € Ry \ {0} ,
such that for some vector 7, € RP 17, > 0 and piecewise smooth function

A(t) : I — R™, \(t) > 0, the implications
/ Zﬂ'ai(fﬂ(t),f*(t)>i(t),i*(t)){fi(t,fﬂ(t)>i(t))+S($(t)|Di)}dt
< / Zﬂai(fﬂ(t)w*(t%fb(t%C'E*(t)){fi(tw*(t),i*(t)) + s(z"(t)|D;) tdt

= / Z Tin(t,x(t), 2*(t), &(t), &* () { fo(t, 2" (1), % (1)) + wi(?)

A fiiy iy o
— - fi(t, 2 (8), 3" (1) yt <0 (2.7)

and
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/ZAj(t)ﬁ(t,fﬂ(t),iv*(t),ff(t),fb*(t)){gi(t,fv*(t),fb*(t))

—Eg%(t,:v*(t),:b*(t))}dt >0

— [ A5 (0,(0,8 ()9 (0.2 ()t <O,

a

(2.8)

hold. If (f(x),g(x)) is quasi pseudo V-type I inver at each x*(t) ,we say
(f(x),g(x)) quasipseudo V-type I invex on I x R"x R™.If the second (implied)
inequality in (2.8) is strict,we say that (f(x),g(x)) is quasi strictly pseudo

V-type I invex at z*(t) or on I X R" X R™ as the case may be.

In order to prove the strong-duality theorem we will invoke the following

lemmas due to Changkong and Haimes [6].

Lemma 2.1 A point x*(t) € Xo-is an efficient solution for (NMVP) if and

only if z*(t) solves Vk =1,--- |p,
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NMVP,(z*(t))  Minimize / (f(t,z(t), 2(t)) + s(x(t)|Dy))dt

subject to  x(a) = to, x(b) = ty,

g (t,x(t),i(t)) <0,

/ (9 (b (8), #(8)) + s(x(8)| Dy))dt

< [ (P 0.50) Rl O
VJE {1> >p}7]7ék

Lemma 2.2 A point 2*(t) € X; is anefficient solution for (NMVPE) if

and only if z*(t) solves Vk=1,--- |p,

subject to  x(a) = ty, x(b) =ty,

@t x(t),£(t)) <0, h(t,z(t), #(t)) = 0,
/ (9t 2(8), #(8)) + s(x(8)| Dy))dt
= [Pl (0.5°0) + st D)

\V/]E{l, >p}>]7ék:
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2.3 Sufficient Optimality Theorems for (NMVP)

We establish some sufficient conditions for an 2*(t) € Xy to be an effi-

cient solution of problem (NMVP) under various generalized type I invexity

conditions specified in the definitions given above.

Theorem 2.1 (Sufficiency) Suppose that
(ii) there exists 77 € RP, 7 > 0_and-a-piecewise smooth function

N(t) : I — R™ \*(t) >0 such that

(of 3073 (300 80 (0) + il 31750050, 21 (9)
ZA* )Rt (0) (@) = ot (1), 8°()) = 0.

) [ 3N (e (0,52t =D,
(c) <wi(t),z(t) >=s(z™(t)|D;), i=1,---,p.

(iii)  (f(z)+z(t)Tw(t), g(x)) is quasi strictly pseudo V-type I invex at x*(t)
with respect to n(t), 7", \*(t) and for some positive functions o;(t), 5;(t)

for i=1,.p j=1,-,m,

Then z*(t) is an efficient solution for (NMVP).
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Proof. Suppose x*(t) is not an efficient solution of (NMVP). Then there
exists a x(t) € Xy such that

/ (f'(t, (), (1)) + s(x(t)|Dy))dt

< / (fi(t,2*(t), 2*(t)) + s(a*(t)|D;))dt, Yi=1,--- ,p

and

[ o0, ID )
b ry
< / (fo(t,z™(t)s@" (t)) + s(z™(t)| Dy, ))dt, for some ip=1,---,p.

Since < w;(t),2(t) >< s(x(t)|Di), i = 1,-++,p and < w;(t),z*(t) > =
S(I*(t)|DZ)> Aw 17 » Ps

/u%wwﬂm+ﬂwmww
g/u%amw»HWWQWt
é/U%f@ﬁ@deWth

= [P @) + O, =1
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and
/Xﬂwﬂmﬂm+z@%mmﬁ
= [ (tatt).a(0) + s(al0) D)

</Xﬂwf@@w»+wmmmmﬁ

= / (fio(t, z* (@), (1)) + () wi, (t))dt, for some ig = 1, -

which implies that 7;° > 0

/a;Ti*ai(x(t)’x*(t)’jj(t)vi'*(t))(fi(t,a?(t),j:(t))
+a(t) wi(t))dt
</a Z;T{kai(x(t),x*(t),:‘v(t),:b*(t))(fi(t,z*(t)’jj*(t))

+ 2*(t) "w; (¢))dt.

From the above inequality and hypothesis (iii),it follows that

/ZT?U(héf(t),iv*(t),é‘B(t),é‘f*(t))(fi(t,iﬂ*(t),i*(t))

(1) — 70 (0,3 (1)dt < 0

26
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By the inequality (2.9)and hypothesis (ii)(a) we have

Z Nt o(t), 2 (t), @(t), &7(4)) (gh(t, 27 (t), 3" (1))

a

gt (0,0 > 0 (2.10)

From the above inequality and hypothesis (iii) it follows that

| X 0800005 0y (), 8 0)de <o
Now from hypotheses (i) and (ii)(b) it follows that

b m
> X(Ogl(t,2"(t),&*(#))dt =0, for every j,
j=1

a

which further implies that

Z X ()35 ((t), (), & (t), " (1) g’ (t, 2" (t), 2" (t))dt = 0.

a

The last equation contradicts the inequality (2.10) and hence z*(t)
is an efficient solution of (NMVP). O
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2.4 Formulations of Four Pairs of Variational Dual

Problem

We formulate four pairs of the following nondifferentiable multiobjective

variational dual problems.

(NMVD) :

Maximize

[ s 0@ o i+ 3 Aa(0hgat.ple). i) )
(0,900 0" Qunlt)+ 3Bt y(o). 66

o [ @,50) O + S Malt)aatt. ), 5(0))c)
subject to

yla) =to, y(b)y=ty,

p

S Uit v @R ) (), 50)

i=1

m

) Xt y(t), §(t) — %gi(t, y(1),9(t))) =0,

j=1

/ As(B)gs(t, y(b), §(1)) = 0,

T € RP,TZ' 2 0,

At) e R™, At) >0, tel,
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where e = (1,1, ---

, )T € RP and AUB = {1,--- ,m}. When A = () and

B ={1,--- ,m}, our dual problem (NMVD) is reduced as follows:

(NMMVD) :

Maximize

/ (F (s (), 5(0) + o7 (£ (1)t
— ([ g0+ o @),

». ’]/ (fp(t,y(t),y(t)<+-yT(t)U&(t))dt)
subject to

y(a) = to, y(b) =ty

P

S it (0, AN l®) — L pieud). 560

=1

m

P NGB IO, Ty (e u(0),5(0))) =0,

J=1

[ vogts.im 2o =1 m,

TZ’ERP,’TZ'EO, Vizl,---,p,

A(t) e R™, At)>0, tel.

We let Yj the set of feasible solutions of problem (NMMVD); i.e.,
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Yo ={(y(®), 7, M) y(a) = to, y(b) =1y,

p

S Rt u(0)50) + ) — L 7o), 5(0)

i=1

m

£ (01 y(0),500)) — e (0) 5(0)) =0,

j=1

[ v@resim =0 vistem

7, € R?, mZO0rWOeR™ yjX4).>0, tel}.

Analogous to (NMMVD) and (NMVP), the following problem (INM-
MVDE) is a dual to (NMVPE).

(NMMVDE)

Maximize

/ ity 0 )y e (1)t
—( / (P 6y (), i) + 5T (un () e,

e / (PP (., y(0), (t) + y" (£)wp(t))d)

subject to yla) =to, y(b) =1y,



We let Y7 the set of feasible solutions of problem (NMMVDE) ; i.e.,
Y= {0 r, A gla)=to, y(b) =1ty

Z i fy (8, (), @) F wilt) = %f})(t, y(@); (1))}

m

F ATt 0, 3(6)) — Sl v, 9(0)

B3 e U 1 (0) 5(0) — (6, w(0), 5(0)) =0,

[ vogt . 2o =1 m,
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p
7 > 0, anl, tel}.
=1

We consider the following general Mond-Weir[30] type dual problem.

(NGMMVDE) :  Maximize
([t v, o) + @t

+ 2SN y(8.9®) + > OB (by(0). §(1)))dt,

Jj€Jo leKy

.\ / (PP (6, y (0 90) + o () (2)

B30 M0 (490, 50) + 33 )ty (1), 5(0)))dt )

J€Jo leKo

(2.11)

Subject to
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>0, Y om=L——tel (2.14)

where J, C {li-:-,m}, a =0,1,--- r with J,NJs =0, a # f and
U oo = {1+ ym} and K, Cc {1,--- Jk},aa =0,1, -+ ;7 with K,NKg =
0, o # 3 and UpmoKo = {1 - B}

2.5 Duality Theorems

Now we establish some duality theorems between the nondifferentiable
multiobjective variational problem (NMVP) andits dual problem (NM-
MVD).

Theorem 2.2 (Weak Duality) Suppose that

(i) z(t) € Xy :

(ii) (y(t), 7 A()) € Yo and 72 > 0

(iii) (f(z) + 2T ()w(t), g(x)) is pseudo V-type I inver at y(t) with respect to
n(t), 7, A(t) and for some positive function a;(t), B;(t), fori=1,---.p, j =

1. ,m.
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Then the following cannot hold:

/ (Fi(t, (), () + s(2(8)| D)) dt
< / it y(0).9(6) + g  Oun(t)dt, Yi=1,-- p (2.15)

and
/ (Fo(t, 2(t) 8 (8) -+ 5(2()| Dy )t

< / (fo(t,y(t), ylt)) + y* (t)ws, (£)dt, for someig=1,---,p.

(2.16)
Proof. By hypothesis (ii) we have
b rl
/ A (O, g () dE 2 00w Y5 =1,--- ,m.
which implies that
b m '
[ M08, 0,500, 00 50 50, 0 = 0,
a =1
vji=1.-m. (2.17)
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By the hypothesis (iii) and (2.18) it follows that
| 3o Aot a0, p(0). 600,50 (gt (0), 50

d . ‘ 4
—Egi(t,y(t),y(t))} <0, Vj=1,--,m.

Using the inequality (2.19) and hypothesis (ii) we have

[ s 70,00, 560 £ 50500
L () fte) 2 0, Vi =1 .

Hypothesis (iii) and (2.20) give

/a ;Tiai(f(t)ay(t%i(t),y(t))(fi(t’I(t)’i(t))
+a” (Bw,(t))dt
g/a ;ﬂ'ai@(t%y(t),i?(t),y(t))(fi(t’y(t)’y(t))

+y7 ()w;(t))dt.

Suppose contrary to the result that (2.16) and (2.17) hold.

Then since each a;(t) >0 and 7; > 0, we have
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/a ;Ti@i(x(t)>y(t)>i(t),y(t))(fi(t’x(t)’i(t))
+S(z(t)|D;))dt

</a ;ﬂ'ai(f(t)ay(t),iT(t),y(t))(fi(t’y(t)’y(t))
+y” ()w;(t))dt.

Since T (t)w;(t) < S(x(t)|D;), i=1,---,p, we have

/a;Ti&i(z(t)7y(t)ai(t),y(t))(fi(t’x(t)’i.(t))
+a L (t)w; (t))dt
</a ;Tiai(f(t)ay(t),i?(t),y(t))(fi(t’y(t)’y(t))

+y” (Bwit)))dt.
Which contradicts (2.21). Hence the conclusion follows. O

Corollary 2.1  Assume that weak duality theorems (2.2) hold between
(NMVP) and (NMMYVD). If (y*(t), 7%, A*(t)) is feasible for (NMMVD)
such that y*(t) is feasible for (NMVP) and y*T (t)w;(t) = s(y*(t)|D;)(i =
1, p) theny*(t) is an efficient solution for (NMVP) and (y*(t), 7%, \*(t))
is an efficient solution for (NMMVD).
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Proof. Suppose that y*(t) is not efficient for (NMVP).
Then there exists same feasible z(t) for (NMVP) such that

/ (f'(t,x(t), &(t)) + s(x(t)|Dy))dt

< / (Fi(t (1), 5°(1)) + s(y*(£) | Dy))dt,

Vi

I
—_

and
/ (Fis(t, o (@F () + s (B)Dg )it

b
< / (F (™ (0, 5°(1) @A) Do) ),
for some iy=1,--+,p.

since < w;(t), y*(t)y>=s(y D), i=1ds0 P

/ (f*(t,2(8), &(8) + s(x(t)| Dy))dt

< / 1ty (0, 5°(0) + 5T (wi(t))de Y i =1, p

and
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/ (fot,2(t), 2(t)) + s(x(t)| Dy, ))dt,

b
= / (Fio(t,y* (), 7" () + v* " (H)w;, ())dt, for some ig=1,--- ,p.

This contradicts weak duality.

Hence y*(t) is an efficient for (NMVP).

Now suppose (y*(t), 7%, \*(t)).is not an efficient for (NMMVD).
Then there exist some (x(t), 7, A(t)) feasible for (NMMVD)
such that

/ (Fi(t, 2 (045 (8)) + 2T (¢ ws(t) )it

> / (F(t, 950, 57(0)) -+ o (1))et, i =15/ p

and

[ ot ate) o)-Fa ey o) d
~ / (Fo(t,y* (1), 5 (1) + y* (t)wiy (£))dt, for some ig = 1,--- ,p.
since < w;(t),y*(t) >=s(y*(t)|D;), i=1,---,p,
/ (fit,z(t), 2(t) + 27 (t)w;(t))dt

> / (Fi(ty™ (1), 5°(1) + s(y (D)t i =1, p
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and
/ (Fo(t, 2(t), 2(8)) + 2 (B (£)
> / (fio(t,y*(t),g)*(t) + s(y*(t)|Ds,))dt, for some ig=1,--- ,p.

This contradicts weak duality. Hence (y*(t), 7, A*(¢)) is an efficient for (NM-
MVD). O

Theorem 2.3 (Strong Duality) Assume that

(i) x*(t) is an efficient solution for (NMVP):

(i) for allk = 1,--- ;p, a*(t) a constraint qualification for NMVP(z*(t))
at z*(t) is satisfied.

Then there exists 7 € RP, 77 > 0, and piecewise smooth function

A(t): T — R™ A*(t) > 0 such that (z*(t), 7, \*(t)) € Yo.

Further, if the assumption of weak duality theorems+(2.2) is

satisfied, then (x*(t), 75, X" (t)) 98 an efficient for (NMMVD).

Proof. Since z*(t) is an efficient solution of (NMVP), then from Lemma
2.1. x*(t) solves NMVPy(z*(t)) for each k = 1,--- ,p. From Kuhn-Tucker

necessary conditions [23] for each k = 1,--- | p, we obtain 7F > 0 for all i # k,

and \(t)(>0) € R™
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such that
{fa(t, 2" (1), & (1)) + wi(t) — %fi(t,fﬂ*(t),fb*(t))}

> TSR (1), &7(1) + we(t) — %ff(t, z*(t),&%(t))}
itk

+ Z N (gt 27 (1), 2" (1)) — %gi(t,fv*(t),i*(t))} =0 (2.21)

/ DA (gt 2 (1), 3% (6))dt = 0. (2.22)

Summing (2.23) over i = 1, -+, p, we have

(L+75 +75 + -+ ) @ 2(), 25(8)) + wi () — %f;(t,x*(t),:‘c*(t))}
+ Z X (O{gh(t, (), &*(£)) — %g%(t,af*(t),fb*(t))}

+(r+ 1+ 75+ + )R (), 55 @) Fws(T) — %fﬁ(t,x*(t),:‘c*(t))}

+ Z N (O{ght, 2™ (1), & (1)) — %gi(t, wr(t), &7 ()} + -

Hr 73+ A D27 (1), 27() + wp(t) — %fi’(t,fv*(t),i*(t))}

+ Z N () {ga(t, 2" (1), 37 (1)) — %gi(t,ﬂf*(t),i*(t))} = 0.
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Let m=1l4+n 4ttt

p?

=T+l T T2

p?

=141+ 4,

DN =X, G =L m X)) = (A[(), -+, AL (1)),

Then we have

Z Tl fa(t, (), (1)) + wi() = %fé(t, 2" (1), &7(t))}

+ Z A5 (g (t, 75(2), &7 (£)) = %gi(t,z*(t),jf*(t))} = 0.

Summing (2.24) for  i=1)=+.p , we have

/ Z Ni(t)g? (¢, x*(t), &*(t))dt = 0.

we conclude that (z*(t), 7", A*(t)) is feasible for (NMMVD). Efficiency of
(x*(t), 7", A*(t)) for (NMMVD) now follows from Corollary 2.1. O

Theorem 2.4 (Converse Duality) Suppose that
(i) (v (t), 7 X (t) € Yo with 7 >0
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(1) y*(t) € Xo :
(iii) (f(z) + 2T (O)w(t), g(z)) is V-type I invex at y*(t) for some positive
functions  «;(t), B;(t) fori=1,---,p, j=1,--- ,m.

Then y*(t) is an efficient solution of (NMVP).

Proof. If follows by the hypothesis (i) that

/b ()G (6 y ()7 (#)dt =0, Vi=1,---,m (2.23)

By hypothesis (iii), for any z(t) € Xy, we have

/ Z T (fi(t, (E), 2°(t)) + xT(R)wq(E))dt

—/ Z%*(fi(t,y*(t),@)*(t)) + yT () w;(t))dt



(g3t (0),9°(0)) — 3t (0) 30

j=1-- m. (2.24)

Now by the facts o;(t) > 0, 5;(t) > 0, Vi,j and 7 > 0, \*(t) = 0, it follows
by (2.25) (2.26) that

{filt,z(t), 2(t)) + T (t)w;(t) }dt

/ T ONEORORRO)

1=

= [ wnd o @05 OV 0,97 0) H i)

a |

S ONAG))

b A5 (t) .
_/a 2 B (0), (), (D), (1))

j=1

= / Z X5 (@ (e, 2(t), v (t), 2(), 57 () { g (t, y" (1), 57 (1))
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b A .
_/a Z Bi(x (), y*(t), (t), 57 (t))

Jj=1

= [ ntt.a .50 (ZT L0y (0. 37(0) + (1)

m

—%fﬁ(t, .57+ DX Og(ty ()7 (1))

J=1

-y 0,5 O)

+Zm (L8, " (1) (1) = Sl (1), 57 ()}
= 0. (2.25)

From (2.24) and (2.27) it follows that

/ > i R )
/ Z a;(w Z_; 2(t), (¢t )){fl(t ), 7 (1) + vy (Hwi(t) Yt
(2.26)

Now suppose that y*(¢) is not an efficient solution of (NMVPE). Then there

exists an z(t) € Xy such that

/ {Fi(t,z(t), &(t) + 2T (t)w;(t) Ydt
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/{f Ey (1), 57 (0) + o (wi(t)}dt, Yi= 1, p
and
/ {50 (8, (1), (1)) + 27 (O (£) e

/ {0,y (1),57(1) + " (Hwig (1) }dt, for someig = 1,--- ,p.

Which implies that

/ Zal ) R 0, 6(0) o 1)

E : (£t (1), 57 (t) + y() wi(t)}at
A ),w(t)), *(t))
(2.27)

Now (2.28)and (2.29)-contradiet-each other: Hence the conclusion follows.
O

Now we establish weak, strong and converse duality theorems between
the nondifferentiable multiobjective variational problem (NMVPE) and its
dual problem (NMMVDE).

Theorem 2.5 (Weak Duality) Assume that for all feasible z(t) for

(NMVPE) and all feasible (y(t), 7, A(t), u(t)) for (NMMVDE) any of the
following holds:

(i) (f(z) + yT(Ow(t), g(z) + h(x)) is weak strictly - pseudoquasi V-type I
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invez at y(t) with respect to n(t) and 7, > 0 and for some positive functions
a;(t), Bi(t) fori=1,---,p, j=1,--- ,m,:

(ii) (f(x) +yT (H)w(t), g(x) + h(x)) is weak strictly - pseudo V-type I invex at
y(t) with respect to n(t) and 7, > 0 and for some positive functions a;(t), 5;(t)

fOT’ézl,"' » Dy ]:17 , M.

Then the following inequalities cannot hold:
b .
[ it et sty T @iy

< / (Pl y (), 5(0) +y (D) dEY = 13- p (2.28)
and

/ (P (b x(t), (8)) + 2 () wig(6))

< / (ot u@i(t) + y" (s (£))dt, for-some s =1, .p
(2.29)

Proof. Suppose contrary to the result that (2.30) and (2.31) hold.

Then since each a;(t) > 0 and 7; > 0, we have

/ Z Tio(w(8), y(t), 2(t), g () (f' (£ (1), &(t) + 2" (H)wit))dt

</ D (a0 (0,0 SO 40, 50) + o o)
(2.30)
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Since (y(t), 7, A(t), u(t)) is feasible for (NMMVDE), it follows that

| M@0, 0. 500005 ¢ 5(0),5(0) 2 0

and

/ pu(On((t), y(t), &(t)y(t)h' (¢, y(t), 5(t) = 0.

1

Hence

—/ {ZAj(t)ﬁj(fv(t),y(t),f’v(t%?)(t))gj(t,y(t),y(t))

+D (O ule @),y (@), J@ @R (1, y(0), (1)} < 0. (2.31)

By the hypothesis (i) i.e ; (f(z) + y"(t)w(t), g(x) + h(x)) is weak strictly-

pseudoquasi V-type.l invex, (2.32),(2.33) imply,

| (32 mnttatt). o), 300, 5D 3,000, 560)

& Fitt,u(n),9(0))) )t < 0

[ ECRTOEURTOI0 SPYCIE ORT0) B R ORT0))

q

37 O 0, 0(0),500)) — SR80, 50) ) e <

=1



The above inequalities give

[ a0 00005600 (3 550000 316) — 50500 500)

B3 Oy (0) 50) — B (0), 50) )t < 0. (232

Which contradicts (2.13).
By we have the hypothesis (ii).d-e : (f(@).+ vy’ (z)w(t), g(x) + h(z)) is weak

strictly pseudo V-type I invex, (2.33) and (2.34) imply

/ PIEVCEORTOR ORTOIEYORT0)

~ S A3 y(0), ) < 0 (2.33)

m

/ n(t (), y(8), &), §(0) (Y A () (gt y(8), (1)) — %gg(t,y(t),@’/(t))

j=1
d
! !
+Zuz )Ry (8, y(8), 9(8)) — = hy (8,5 (t), (1)) dt < 0. (2.34)
(2.35) and (2.36) imply (2.34), again contradicting (2.12). O

Corollary 2.2 Assume that weak duality holds between (NMVPE) and
(NMMVDE). If (y*(t), 7, X*(t), u*(t)) is feasible for (NMMVDE) such
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that y*(t) is feasible for (NMVPE), then y*(t) is an efficient solution for
(NMVPE) and (y*(t), 7", X\*(t), u*(t)) is an efficient solution for (NM-
MVDE).

Proof. Suppose that y*(t) is not an efficient for (NMVPE) : then there
exists a feasible z(t) for (NMVPE) such that (2.30) and (2.31) hold. But
(y*(t), 7, \*(t), u*(t)) is feasible for (NMMVDE). Hence the result of weak
duality is contradicted Therefore,~y*(t) must be efficient for (NMVPE).
Now suppose (y*(t),7, X (t),p*(t)) is not an efficient for (NMMVDE).
Then there exist some (x(t), 7, \(t), u(t)) feasible for (NMMVDE) such
that

/a b(f “(t, x(8), #(2)) + =" (Owilt))dt
. /ab(fi(t’y(t%?(t)) 4y wi(8)dt, ¥ i=1, - p
and
/a b(f Ot x(t), (1) + 2T ()wi(t))di
> / b(fi“(t,y(t),@‘/(t)) + yT (t)wy, (t))dt, for some ig=1,--- ,p.

This contradicts weak duality. Hence (y*(t), 7%, A*(¢), u*(t)) is an efficient for
(NMMVDE). O
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Theorem 2.6 (Strong Duality) Assume that

(i) x*(t) is an efficient solution for (MVPE);

(ii) for all k =1,--- | p,x*(t) a constraint qualification for problem

MVPE (x*(t)) is satisfied at x*(t).

Then there exist 7 € RP, 17 > 0, and piecewise smooth function

AN(t): I — R™ \*(t) > 0 and p*(t) : I — R? such that

(x*(t), 7%, A*(t), u*(t)) is feasible for (NMMVDE).

Further, if also weak duality holds-between (NMVPE) and (NMMVDE),
then (z*(t), 7", \*(t),p*(t)) is an efficient solution for (NMMVDE).

Proof. Since z*(t) is an efficient solution of (NMVPE). Then from
Lemma 2.1 = z*(t) solves NMVPEg (2*(t)) for each k = 1,+-- ,p. From
Kuhn-Tucker necessary conditions [23] for each & = 1,---,p, we obtain

78 >0 forally # k, " \i(t) =20 € R™ and p(t) € R such that

(f2(t, ™), #(F) +ai(t) — %fi(t,fv*(t),i*(t)))

BN (1), 5(0) — 7 (0, (1)
ik
+2x (A0, (0), () — (6, 2°(6), (1)

+ZM £)(hL(t, 2*(t), x*(t))—%hl (t,2*(t),#*(£))) = 0, (2.35)

/ Z Ni(t)g’ (t, 2" (t), 2" (t))dt = 0, (2.36)



Summing (2.37) over i =,---,p we have

Let

(Lo T U 200,50+ wn () — (L (0, (1)
+§A§<t>{gz<t,z*,z*<t>> L t.a°0).5(0)

+Zm UL (1, 2°(0), 8 (6) — R (1,°(0), (1)

Lt ) B0 ¥ nlt) — L2 (), (1)

F LA 0 O R 0, ()
+guf(t){hi(w*(t),i*(t)) - e 0)) £
N UL 2 (0,4 (0) + wylt) 2 2 P (0,5 ()

+ZA§(t){gi(t,fv*,i*(t)) = %gm(t z*(t),@*(t))}

+Zul (L, (1), 5°(6)) — k(1,2 (1), 4 (6)) = 0.

=141+ 47

p?

=Tl T

;D’ SEI

=TT+,
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SINWO=X0).  G=Lem) X () = (A0 A (0),

Sy =pit), (=1, ) p(t) = (ui(t), -+, 1))
Then we have

D (1) = S (0,8(0)

m

P AT (0, (1) — 2 6),4()

j=1

43 i (010 (0, 8(1) = (2 (), 57 (2) =

Summing (2.38) fori = 1,--- p, we have

b m b m
/ZA;(t)gj(t,:b(t),:k*(t))dt+/ ZA?(t)gj(t,:b(t),j:*(t))dt—l—---
+ / ZAg(t)gj(t,z(t),j;*(t))dt
:/ SO0 + X2 (0) - X (10" (1), (1) e

:/ S (1)t a(e). 3" (1) dt = 0.
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We conclude that (x*(t), 7, A*(t), u*(t)) is feasible for (NMMVDE).

Efficiency of (z*(t), 7%, A*(¢), p*(t)) for (NMMVDE) now follows from Corol-
lary 2.2. O

Theorem 2.7 (Converse Duality) Suppose that

(1) (&), 7 A1), u*(t)) € Y1 :

(i)  y*(t) € Xy :

(iii) (f(x) + 2T (Ow(t) + iy u()u(t), g(x)) is V-type I invez at y*(t)
with respect to n(t) and-1; > 0 and for some positive functions a;(t), B;(t)
for 1=1,--- p;g=1,---m:

Then y*(t) is an efficient solution of (NMVPE).

Proof. If follows by the hypothesis (i) and (ii)

/A;(t)gj(t,y*(t),y*(t))dt:0, Vis=1 -/ m, (2.37)

By hypothesis (iii), for ‘any z(t)-€ Xi, we have

/ (Pt (t), i(t) + 27 (£ (1))t — / ity (1), 57 (1))
0+ (DR 5 (1), 57 (1))t

%/ ai(x(t), #(t), y" (), " (t))n(t, x(t), y" (1), &(t), g ()t v (1), 57(1))
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bun(t) = (007 (6),5°(0)
£ O 60, 5(0)) — T 070,570,

Vi=1,--,p (2.38)

and
- / ¢ (b (1), 77 (1)) dt
> / By () () (), 57 ()t (1), (), 3 e). 5 g (1, v (1), 57 (1)
d

—Egg(t,y*(t),y*(t))}dt, Vi=1,- - Yo (2.39)

Now by the facts a;(t) >'0,05;(t) > 0,¥i,j and 7* > 0, \*(¢) > 0, it follows
by (2.40)and (2.41) that

/ab ai(x(t),y <Z§,z<t>,y*<t>> (Pt 2(8), 2(1)) + o (wi(t)dt
_/ab :1 i (z(t), y (tT)Z,:i:(t), 7 ))(fi(t’y*( ), 57 (1)) +y" (Dwi(t)
+guf(t)hl(t,y*(t) g (t)))dt

_/ab ) ﬁj(x(t),y)(\;)(’tl(t)’ ‘*(t))gi(ty*(t),@) (£))dt

o4



= / n(t (), y" (6, &8, 57 (0) (D 77 (F (6 y™ (1), 57(8)) + wilt)

i=1

R RONR0))
+Z)\ (G300, (0), 57 (6) — ab(t 0" (6,57 (1))

d

+Zm Bk (6, y" (0,57 (5) = k(6 y" (0,57 (1)) de = 0. (2.40)

From (2.14),(2.39) and (2.42),it follows that

/ ZZ ai(x(t),y*(t)z,:c(t), “(t )){fl(t s (1), (1)) + 2 (thwi(t) yat

Now suppose that y*(t) is not an efficient solution of (NMVPE).
Then there exists an z(t) € X; such that

/ {fit,x(t), 2(t)) + =7 (t)w;(t) }dt

< / iy (0, 57®) + v T Owi®)}de Y i=1,- p
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and

/ (F0 (1 o(t), (1)) + 2 (£ (1)}t

/ {0,y (1),57°(1) + y™" (t)wi, () hat, for some dg =1, ,p.

which implies that

b P *
Tl
< i Filtyy” )+ yT(#)w; () Yt
/ X St vl 50, @) g @O V(e ()
(2.42)
Now (2.42)and(2,43) contradiet each other.
Hence the conclusion follows. |

Now we establish weak, strong and converse duality theorems between the

multiobjective variational problem

(NMVPE) and its generalized Mond-Weir dual problem (NGMMVDE).

Theorem 2.8 (Weak Duality) Assume that for all feasible z(t) for

(NMVPE) and feasible (y(t), 7, A(t), u(t)) for (NGMMVDE), any of the
following holds :
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(i) 7 >0, and (f(z) + 2T ()w(t) + 30 e 5 MO () + 3 i, () (),
djed. Ai(0) g7 () + 3 1ek. u(t)h!(x)) is weak strictly-pseudoquasi V-type I

inver at y(t) with respect to n(t) for any o, 1 < a < r and for some
positive functions «;(t), fori=1,--- p and B(t);

(ii) (f (@) + 2T (Owt) + 3 e 5 N (O (@) + X e, (R (), 30 5c 5, Ai(t)g ()
+ 3 ek, ()R (x)) is weak strictly-pseudo V-type I invex at y(t) with respect
to n(t) and for some positive functions o;(t), fori=1,--- p and B(t);

(iii) (f (@) +a (wt)+325e0 MO @)+ X e, )R (2), 20 e 5, Ai(t)g ()
+ > ek, tu(t)h () is weak quasistrictly-pseudo- V-type Iinvex at y(t) with
respect to n(t) and for some positive functions c;(t), for i = 1,--- p and

B(t);

Then the following inequalities cannot|hold :

/ (1 (8, () (8)) + 5 (P0) Do) db = / (Pt ult), 50 + o7 (Duwilt)

) A OGP g gOYF D ) (8, y(1), 5(t)))dt,

Jj€Jo €Ky

Vi=1,---,p  (2.43)

and
/ (Fo(t, 2(t), (1)) + s(a(t)| Diy))dt < / (0 (6, (), #(8)) + ™ (t)wa (1)

+ Y A (Ey(). 5(0)) + D () (8, y(1), 5(t)))dt,

Jj€Jo leKy

for some ig=1,--- ,p. (2.44)

o7



Proof. Suppose contrary to the result that (2.45) and (2.46) hold. Since
x(t) is feasible for (NMVPE), and A(t) > 0, (2.45) and (2.46) imply

/ (f1(t, (1), (1)) + s(x()| D) + D A(0)g (1 w(t), (1))

J€Jo

+ ) (6,2 (t), (t)))dt

leKy

g/u%wwﬂm+f@ww+zywwmwmw»

jedo

+ 2 R () )t =1,

leKy

and

/ (fo (B @)sa(t) + s Dig) ) A (6)g’ (1w (t) (1))

j€do

+ ) (R (¢, w(t), @ (6))dt

</Xﬂ%uwwya»+y%wwxw

ST A0 Ly, 50) + 3 R y(0), 5(0))dt,

Jj€Jo leKy

for some 1 =1,--- ,p.

Then since a;(t) > 0, (2.21) we have

58



/ Znai(t)(x(t% y(t), 2(t), 5()) (f'(t, 2(t), &(t) + s(x(t)| Dy)

30 MO (b, a(0) + 3 bl a(t), (1))t

Jj€Jo leKy

< / > i) e(0) y10) 00 GO0, 50) + o7 (O (0

+ Y X0 By 9(0) + Y bt y(t), 5(t))dt,

j€Jo leKy

Vi=15--,p, (2.45)

Also, from (2.13) and () > 0 we have

—/ B(E) (1), 9(), &0, HENY A’ (¢ y (1), 1))

Jj€Ja

+ > (@bt ylt),(t))dt < 0,

l€EKa

forall 1<a<r. (2.46)

Using hypothesis (i), we see that (2.47) and (2.48) together give

|3 mntt o), 0. a6e)0) (£ w00 30) + i)

+ 3 NGt y), 5() + D )Ry (1), 9(2))

Jj€Jo leKy
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——(flty D)+ D A (gt (), 9(0) + D O (E (), i(1))) )dt

j€Jo leKy

P

= [ it (0,900,300 900) (32 w910 0) + wi(0)

it u(0),9060)) + S0 ALt 0, 0) — ot ult). 3(1))
J€Jo
32 w0, 50) — Th 1 y(), 50) ) i < 0,

leKy

| 0 90000, 5 XA OG0, 500+ 3T, eyt 9(2). 50

JjE€Ja leKq
ZA (gt y (@), 9E) + Y JpuE)hi(t, y(t) ())))dt
jGJa leKa
= [t 0, we) 00 3 3 MO T — e 90, 5(0)
a JjE€EJu
3 OB 1y (0),900)) — Sy (1), 500 ) <0 1SSy

leEKq

Since the above inequalities give

/abn(t,x(t), (if (1)) + wilt)



+Zm 0B (1, 9(0), 5(0)) — A (1, (1) 5(0)) )t < 0. (2.47)

Since Jo, Ji, -+, J, are partitions of {1,--- ,m} and ko, k1, - , k. are parti-
tions of {1,--- ¢} (2.49) is equivalent to

p

|t 0,000,500 (30 730000, 560 + i)

i=1

m

—%fﬁ(t, y (1), 9(8)) A A (6)(g5 (E, y(£)54(t)) — %gg(t, y(t),4(1)))

+Zm (B 0, () 9(00) o), ) ) < 0. (2.43)

Which contradicts (2.12).

Suppose now that (ii) is satisfied.

/abn(t,x(t), (if (t) +wi(t)

SR, 50) + N D), 50) — a6 u(e), 5(1)
J€Jo
F Ym0y, 9000) — S, 90))dE <0, (2.9

JR OO0 O SR GICA IR T0)

Jj€Ja



<0, Vi<a<r. (2.50)

Since (2.15) the above inequality give

p

| e, p60) 360,500 (30 O (0, 50) + wite)

i=1

T

—%fﬁ(t, y(0),9(8) + D A () (gt y(8), (1) —

j=0

L it (0),507)

+Zm 1A 1, 0(0) 500) = o), 5N )t <0 (250)

and then again we have (2.50): Also we obtain a contradiction.
Using hypothesis (iii), we see that (2.47) and (2.48) together give

p

/ n(tv l’(t), y(t)> i’(t)v y(t))(z Ti(fyj(tv y(t)7 y(t)) .3 wi(t)

i=1
% d % .
——f (t,y(t Dt > N () (gt y(t), 5t)) = 79t y(1),5(1))
Jj€Jo
l d
+ > )yt y (1), i(t)) — oot y(),9(8)))dt = 0,
leKy
b d
[ @) 0.260). 350 (5406 600,900 — Lot v, 5(0)
a j€Ja
d
# 30 (v, 540  Gyhite o), 96 )t <0, ¥1asr
and then again we have (2.50). Also we obtain a contradiction. O
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Corollary 2.3  Assume that weak duality holds between (NMVPE) and
(NGMMYVDE). If (y*(t), 7, X*(t), u*(t)) is feasible for (NGMMVDE)
with 37 5c 5 A5 ()97 (8. y7 (1), 5°(8) = 0, yT (wi(t) = S(y* ()| Di),i =1, ,p
and y*(t) is feasible for (NMVPE), then y*(t) is an efficient solution for
(NMVPE) and (y*(t), 7, \*(t), u*(t)) is an efficient solution for (NGM-
MVDE).

Proof. Suppose that y*(t) is not an efficient for (NMVPE).
Then there exists a feasible x(t) for (NMVPE) such that

/ (FF (1, ), t)) 4S.Lr(e) D))t

b .
< / (F (b, (0), 5-0)) + 0 (B (1)l

Vi=1," /p (2.52)

and

/ (f(t,x(t), 2(t)) + S(@ ()| Dip) (1)) dt

< / (Pt y(0), 5(0)) + 5T (Y (1)),

for some ig =1,--- | p. (2.53)

By hypotheses deJO J(t)gj (t,y*(t),9*(t)) = 0and D7, pr(t)R(t, y*(t), v*(t))=0.
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So (2.54) and (2.55) can be written as

b

| it i) + SO = [ (£l 0.5 0) + 5T Ow)

£ N O Ly 0,57 0) + 3w Oy (0,5 (1) ) dt,
jedo =1

Vi=1,--,p (2.54)

and

b

[ el 0) + SaoD) ) < [ (P, @)+ " w0

XN Ey @, O R DK, 5 (1)) ),
j€do =1

for some ig=1,--- ,p. (2.55)

Since (y*(t), 7, X'(t), pi(t)) is feasible in (NGMMVED) and z(t) is feasible
for (NMVPE) theseinequalities contradict weak duality. Also suppose that
(y*(t), 75, \*(t), u*(t)) is not an-efficient for (NGMMVED). Then there
exists a feasible (y(t), 7, A(t), u(t)) for (NGMMVED) such that

| (o) + v @uio) + Y 200 ¢ y(0).50)

J€Jo

3 R (), 5(2)) ) dt

l€ko

= [ (07 ®) + 5 @) + 3 500 ¢ 0,570

j€do
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i=1,--,p (2.56)
and
| (o366 + " w6+ 37 ()
a J€Jo
3 (Rt y(0), 3E) bt
> [Arreg®d ©) + v Ou )+ YA (D)
@ j€Jo

+ > iRy (), 3 (1) ),

for some jg=1,--- ,p (2.57)

and since 37, N(0)gA (0" (1), (1) 1= 0, Yo i (BRI y* (1), §*(£)) = 0

and y* T (H)w;(t) = S(y* (D) i = 1,- -+, p,(2:58)-and (2.59) reduce to

| (oo i) + v @wio) + 3200 ¢ o(0).50)

J€Jo
S0 O y(0). 300 ) = [ (£ (6 0.5°0) + SO D)),

Vi=1,--,p (2.58)
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and

| (0.9 + o i)+ 30 0097600, 900)

J€Jo
S O 0,500 = [ (55 0,57 0) + Sl 01Dt

for some 1 =1,--- ,p.

Since y*(t) is feasible for (NMVPE), these-inequalities contradict weak
duality.
Therefore y*(t) and (y*(¢), 7, \*(t), u*(t)) are an efficient for their respective

problems. O

Theorem 2.9 (Strong Duality) Assume that

(i) x*(t) is an efficient solution for (NMVPE)

(ii) for all k =1,-+- | p, x*(t) a constraint qualification for problem
NMVPE (z*(t)) is satisfied at x*(t) !

Then there exist 77 € RP,-1">70, and piecewise smooth function

N(t) : T — R*,N*(t) =20 and p*(t) : I — R? such that

(x*(t), 7", A*(t), u*(t)) is feasible for (NGMMVDE) and

Djes NG &y (1), 97 (1) = 0, e (wi(t) = S(a*(#)[Dy), i = 1+ ,p.
Further, if also weak duality holds between (NMVPE) and (NGMMVDE),
then (x*(t), 7", A*(t), u*(t)) is an efficient solution for (NGMMVDE).

Proof. Similar to the proof of Theorem 2.6 and Corollary 2.2 above. O
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2.6 Special Case

As a special case of our duality results between (NMVPE) and (NG-
MMVDE), we give Wolf type duality theorems.
If Jo = {1,- ,mY,Ju = b, ko = {1, .k}, ka = ¢ then (NGMMVDE)
reduced to the Wolf type dual [2]
(NWMVDE)

Maximize

m

([ oot + o) + 3o X (005t v(2). 50

J=1

57 eyt y @), §(8))t,

m

- / (7w (DN 6) + o7 )+ 3 N (D) (), (1))

J=1

+ 3 b ult) i)t

subject to yla) =to, y(b) =1y,

+ ) ) (hi (ty(8), 57 (1)) — %hé(t,y(t) y(t))) =0,

(2.59)



p
T 2 0, Z’Ti =1.
i=1

Now we establish weak, strong, converse duality theorems between the non-
differentiable multiobjective variational problem (NMVPE) and its Wolfe
type dual problem (NWMVDE).

Theorem 2.10 (Weak Duality) Suppose that
(i) x(t) € X
(it) (y(t), 7. A(t)) € Y1

(iii) J2 ( SHLanfite) + ol Owo) + D Al e () + S (b)) ) e

is pseudo inver in y(t) and y(t) with respect to n(t) and for some positive
functions oy, B; for v=1,-"yp, Jj=1:= m

Then the following inegualities cannot hold:
[ rittate).a(0) + s(atoiDd = / (F (1), (0) + o7 (1)

+Ailt)g (¢, +Zuz (Rt y(t) ()))dt

Vi=1,--,p (2.60)

and

[ roate) o) + stwlD)e = [ (5 eu0,50) + 5 O 0
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£ A (O (1), 50) + 3 R ey D). (1) )
for some ig=1,---,p. (2.61)

Proof. Suppose contrary to the result that (2.61) and (2.62) hold.
Since z(t) is feasible for (NMVPE), A(t) > 0 and g¢;(¢, z(t), 2(t)) <0,
jg=1--.m, h(t,z(t),z(t)) = 0. since < w;(t),z(t) >< S(z(t)|D;),i =

and
m

| (ot a0) + s(wl1D) + 32 40900, 960)

J=1
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m

< [ (o3 + o7 s ) + YoM (00 (1 5(0).50)

j=1

+ > mh(Ey(2). 5(1)) )t

for some 1g =1,--- ,p.

since < w;(t),z(t) >=s(z(t)|D;)i=1,---,p,

and
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m

< [ (oo, 90+ " w6+ 30 (00 (¢ 5(0),50)

j=1

+ > Aty (0). 5(0)) )t

for some i =1,--- ,p.



= / rica(x (L), y(t), &), §(8))n(t, x(t), y(t), o(t), §(t)) ( Z fyty(t),9(t))

m

() = S A0, 500) + D2 A (g5 y(0), )

j=1

d d

~ by, +Zm (DR (8, (), 5(8)) — I (1, 9(0), 3(0) )t < 0.

Since (2.60), the above inequalities gives

Which contradicts. |

Corollary 2.4 Assume that weak duality holds between (NMVPE) and
(NWMVDE). If (y*(t), 7, \*(t), u*(t)) is feasible for (NWMVDE) with
Do A (g (8 v (1), 97(2) = 0 and y* T ()wi(t) = S(y*()|Di),i=1,--- ,p
feasible for (NMVPE).

Then y*(t) is an efficient for (NMVPE) and (y*(t), 7%, A*(t), u*(t)) is an
efficient for (NWMVDE).
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Theorem 2.11 (Strong Duality) Assume that

(i) x*(t) is an efficient solution for (NMVPE)

(ii) for all k =1,--- |p, 2*(t) a constraint qualification for problem
NMVPE(z*(t)) is satisfied at x*(t).

Then there exist 77 € RP, 77 > 0 and piecewise smooth function
N(t): I — R*, X*(t) 20 and p*(t) : I — R? such that

(x*(t), 7%, A*(t), u*(t)) is feasible for (NWMVDE)

and ST, N (699 (62° (0, (0 + S, 1 (OR(E, 5(8), 24()) = 0

and x*T (t)w; = S(x*|c;).

Further, if also weak duality holds between (NMVPE) and (NWMVDE),
then (z*(t), 75, A*(t), w*(t)) is an efficient solution for (NWMVDE).

We conclude that (z*(t), 7%, A*(t), w*(t)) is feasible for (NMVPE).
Efficiency of (z*(t), 7", X(t), u*(t)) for (NWMVDE) now follows from Corol-
lary 2.4. O
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Chapter 3

Nondifferentiable Symmetric Duality for Multiobjective

Variational Problems with V-invexity

3.1 Introduction

The following pair of nondifferentiable multiobjectivevariational problems.

(NMSP)
Minimize / ((f(t, 2(t), 2(), y (1), 9(t)) + s(z(1)|C) = y(t)"=(1))
= ()" ADT £ (&, 2(8),2(8), y (1), (1)) — 2(t)

‘%WW@w(t%ab(t>,y(t>,y(t>>>e)dt

subject to z(a) = o, @(b) = 1, y(a)=wo, y(b) = v1,
AT (fy(t, (), & (1), y (), §(1)) — (1))
AT it (1), &(1), y (1), 9(t)) < 0, (3.1)

At) >0, Mt)Te=1,
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(NMSD)

Maximize / ((f(t,u(t),u(t),v(t),@(t))—s(v(t)|D)+u(t)Tw(t))

—(u(t) A folt, ult), a(t), v(t), b(t)) + w(t))

d

_ak(t)Tffg(t, u(t), u(t), v(t), i}(t)))e) dt

subject to u(a) = zo, u(b) = z1, v(a) = yo, v(b) =y,
AT (fo(tult), a(#), o(t), 0(t)) 4 w(t))
()T fy(t, (1), 2(t), y (1), 9(1)) 20, (32)

M) 2 0, Ay el

where (3.1) and (3.2) may fail to hold at corner of (&(t), y(t)) and (u(t), v(t)),
respectively, but must be satisfied for unique right- and left-hand limits,

Mt) e RP ande=(1,--- ;)T € RF.

Let[a,b] be a real interval and f : [a,b] x R"X.R* x R™ x R™ — RP.
Consider the vector valued function f (¢, (t), #(¢),y(t), y(t)), where t € [a, b],
x(t) and y(t) are function of ¢ with z(t) € R™ and y(t) € R™, and #(t) and
y(t) denote the derivatives of z(t) and y(t), respectively. Assume that f has
continuous fourth-order partial derivatives with respect to z(t), (t),y(t) and
y(t). f. and f; denote the p X m matrices of first partial derivatives with

respect to z(t) and (t), i.e.,

f;:<ﬁ af)’ f;:<ﬁ af)’z'zl"n’p‘

81’1’ ’ al’n 8:i71’ ’ al’n
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Similarly, f; and f; denote the p x m matrices of first partial derivatives
with respect to y(t) and y(t). We consider the problem of finding functions
x : [a,b] - R" and y : [a,b] — R™, with (&(t),y(t)) piecewise smooth on
[a,b] to solve the following pair of multiobjective variational problems.

In this thesis, we extend the results of Kim and Lee [17] to the nondifferen-
tiable multiobjective dual problems. We formulate a pair of nondifferentiable
multiobjective symmetric dual variational problems. Under invexity assump-
tions, we establish the weak, strong and converse duality theorems for our

variational problems by using the concept of efficiency.

3.2 Definitions and Preliminaries

Now we define the invexity as follows:
Definition 3.1 The functional fabf is invex in x and  if for each y : [a,b] —

R™, with § piecewise smooth, there ezists a functionn : [a,b] x R™ x R" x

R" x R* — R"™ such that~¥i=1,---,p,
SF @ (e), (0), y(0), 98 — it ulh), al), y(e), (2))) e
2 [}t a(t), (), u(t), ale) (£t ulb), ). y(t), 9(0)
L ORTORTORTON I

for all z(t) : [a,b] — R", u(t) : [a,b] — R™ with (&(t),u(t)) piecewise smooth

on [a,b].
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Definition 3.2 The functional — f;f is invez in y(t) and y(t) if for each
x(t) : [a,b] — R", with @(t) piecewise smooth, there exists a function &(t) :

[a,b] x R™ x R™ x R™ x R™ — R™ such thatVi=1,--- p,
= (), 5(8),0(8), 5(8) = f(E 2(8),3(8), y(), 5(0))dt
= — [y €t 0(8),0(t), (), 5O)T (£t 2(8),3(0). y(), 5(1)
— g 13t 2(0), 8. y(0), 5(1)) ) dt

forallv(t) : [a,b] = R™, y(t):[a,b] — R™ with (0(t),y(t)) piecewise smooth

onla, b.
3.3 Symmetric Duality

Now we establish the symmetric duality theorems of (NMHNP) and
(NMHND).

Theorem 3.1 (Weak Duality) Let (z(t), y(t), Mt)) be feasible for (NMSP)
and (u(t),v(t), A(t)) be feasible for (NMSD). Assume that either for all

t € la,b
(a) x(t) # u(t), / (f + () Tw(t)) is strictly inver in x(t) and (t),

_/ (f — ()T2(t)) is invex in y(t) and §(t), with

n(x(t),u(t)) +u(t) =2 0 and {(v(t), y(t)) + y(t) = 0; or
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(b) y(t) # v(t), / (f + () Tw(t)) is invex in z(t) and &(t), and

b
—/ (f — ()7 2(t)) is strictly invex in y(t) and §(t), with

n(x(t),u(t)) +u(t) =2 0 and £(v(t), y(t)) + y(t) = 0; or

() A(t) >0, / (f + () Tw(t)) is invex in x(t) and ©(t), and

—/ (f — ()" 2(t)) is invex iny(t) and H(t), with
n(x(t), u(t)) +u(t) 2 0 and £(v(t),y(t)) + y(t) =0
(expect perhaps at corners of (&(t),y(t)) or (u(t), v(t))).
Then
S (), 2By (@), () + sz (B)]e) — y(5)7 ()
W £, (1 (1)) (1), (), 5N =4t
— A Fylt (), 2(8), y(2), 9(t)))eldt
£ LUt u(t), (), 0(t), 0(t) = s(u(8)| D) + u(t) w(?)
—[u@®)T O fa(t,ult), i), v(t), (1)) + w(t))
— G AT fa(t,ult), u(t), v(t), v(¢))]e]dt.
Proof. (a) Assume that
JU (), (1), y(8), (1)) + s(x(t)|e) — y(t)=(t)

=[O AR £yt 2(t), (), y (), §(t)) — 2(t))
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— @ AT f3(t (1), &(8), y(t), 9(t)]eldt
< LUt u(t) i (6),0(t), 0(t) = s(u(8)| D) + u(t) w(?)
—[u@®)T )T fa(t,ult), i), v(t), (1)) + w(t))

—IXN)T fi(t,u(t), a(t), v(t), b(t))]e]dt.
Since A > 0 and A(t)Te = 1, it becomes
ST (F(E (), 2(8) ()5 58)) +s(@(t)]e) — y()T=(1))
—[y@&T @ fy (1), 2(); y(8), 9(t)) — (1))
— AT filt, (@), wd), y(2), §(t))]dt
< [ MO w @)y (t), o(8), o(8) = s (B)] D) + ut) w(t)))
=[u(®)" (ME)" fa(t, ult),ult), v(E). o(t)) + w(t))

— ()T (8, ult), i), o(t), 0(1))]dt.

By the assumption of strict invexity of fab(f + () Twit)), i=1,...p,

/ ((Fi(t 2(0), &(0), 0(), 5(8)) + (t) T ()
(P u(t), i), (), 6(8)) + ()T (0))] e

> / (), u(®))T[(f2 (¢ u(t), a(t), v(t), o(t)) +wi(t)

d | |
= Ja(t u(t), alt), o(t), (1)) dt.
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Since A >0, A(t)Te =1, and n(x(t), u(t)) + u(t) = 0, we obtain

/ MO 2 (t), 2(8), v(8), 0(t)) + 2(t) w(?)
=AW (F(t,ult), alt), v(t), o(t)) + ult) w(t))]dt

> / N (t), u(t)) IO (ot u(t), alt), v(t), b(t)) + w(?)

d

A VT fat, u(t), a(t),v(t),ot))]dt

g/ Zu()TINOT (fo(t, w(t), u(t), v(t), 0(t)) +w(t)

d

722" fat e, i), o (1), 6(E)))de.

Now by invexity of —(f;(f Gz

—(f1(t (1), 2(1), y (), 5(8)) — y(t) zu(t))]dt

dtf (t, x(t), #(t), y(t), y(t))]dt.

Since A > 0, A(t)Te =1 and £(v(t),y(t)) +y(t) = 0,

/ MO (f(E 2 (t), a(t), v(t), 0(t) — v(t)"2(1))
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=AW (f(t, (), a(t), y (1), §(t)) — y(t)"2(1))ldt

/ (v VTS, (8 (), i(0), y (), 5(1)) — =(8))
DDyl 20 5(0), (1), ()

g/ —y(&) )T (fy (¢, 2 (t), 2(t), y(1), (1)) — 2(t))

d

- )T (fy(t, 2 (t),a(t),y(0); 9(t))]de. (3.4)

Subtracting (3.4) from (3.3) and rearranging gives

S IX@YEC (8, ()@ (0), y(®), 9(E)) + @) T (t) = (1) 3(t)
—y(t) MO (f (£, 2 (1) (@), y(D), 4(2)) — =(2))
~ G MOt o (1) @(8), y (1), 5()) ) dt
> [N (fgute), alt), o(0)y0(t) = v(6)Tat) + ) w(?)
—u(t)T M) (Falls u(®), blt), vE)0 (L)) + w(t))
— MO (fa(t u(t), u(t), v(t), (t))]]dt. (3.5)

Using the fact that z(t)Tw; < s(z(¢)|C;) and v(t)Tz; < s(v(t)|D;) the above

inequality becomes

ST (8), 2(8), y(2), 3(E) + s(2(1)]C) — y(£)2(t)
—y(O) O (fy (¢, 2(t), 2(2), y (), §(t)) — 2(t))
— AT (f(t (), &(8), y(t), 5(t))]]dt
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> JLNOTCF(Eu(t), i), o(t), (1) = s(u(B)] D) + u(t) w(t))
—u(t) M) (fa(t,ult), i), v(t), (1)) + w(t))

— AN (falt, u(t), wlt), v(t), b(t))]]dt (3.6)
which contradicts (3.3).

(b) Assume that

L LF G, () (0, y (@), 500) + sl ()] e) = y(6) (1))
[y @) AO)T £yt 2 (2), (1), y (1), §(8)) = 2(1))
— @ MO Fy(t 2(), 2(6),y(t). 4(t))]eldt
< JLLf (8 ) dt), v(#), (8) = s(@(@)| D) + u(t)Tw())
= [u(t)" (AE) falt, ul?) ), 0(#), 0(t)) + w(t))

— AN f5(E,ut), alt), v(t), o(t))]e]dt.

Since A > 0 and \(t)Te =1, it becomes

JNOTCF(tw(0), 2(8), (1), 9(8)) + s(x(0)|e) — y(1)" (1))
=y DT Lyt x(t), (1), y (1), 5(1)) — 2(t))
— AT fy(t 2 (t), 2(1), y(2), §(t))]dt
< [T () i (0), 0(8), 0(8) = s(0(8)| D) + () w(?)))
=[u(®)T (AT falt, ult), alt), v(t), 0(t)) + w(t))

— LX) fit, u(t), u(t), v(t), D(t))]dt.
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By the assumption of invexity of fab(f + () Tw;(t),i=1,...,p,

/ [(f1(t, 2 (t), (), v(t), 0(t)) + x(t) wi?))
—(f1(t u(t), a(t), v(t), o(t)) + u(t) wi(t))ldt

%/ (), @) [, ut), alt), v(t), o(t)) + wi(t))
d | |
— 2 T (b, w(t);@l#), o(#), o(0))Jdt.

Since A > 0, A(t)Te =1 and n(z(t),u(t)) + u(t) = 0, we obtain

/ )T (F (¢, ), i(0), 0(t), ) & () w(t))
STt ulie), o(t) 0E)) o (t) o (1))t

b
= / n(x(5u(t) IO (fo(t u(t), wlt), o), ot)) + w(t))

d

_a)\(t)Tfi(t, u(t), uft);o(t), o(t))]dt

%/ —u(t) AT (fat, u(t), alt), v(t), o(1)) +w(t))

—%)\(t)Tfj(t, u(t), u(t), v(t), v(t))]dt. (3.7)

Now by strict invexity of —(f:(f —()Tz%),i=1,...,p,
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Since A > 0, \(t)Te'=1 and &(v(t), y(t)) + y(t) = 0,

/ "N D), 0, 00, BN ()7 =(0)
LX) (F (8, a(8), a(8), y (1) ) = () =(0)
/ (o Yoot (0 5(2), y(0), 5O - (1))
N Uyt R ), e
=/ TN 1 (0, 10, (0, 50) — =(0)
d

— ATyt (t). i(0), y (1), §0))] .

Subtracting (3.8) from (3.7) and rearranging gives
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ST CF (& (), 2(8), y(0), 9(8)) + 28 w(t) — y(8)2(t)
—y(O) AT (fy(t 2 (t), (1), y (1), 5(1)) — 2(1))
— AT (fat (1), £(8), y(2), 5(t))]]dt
> [N (F (8 ue), at), o(8), () = v(6)T2(2) + () w(?)
—u(t) M) (fa(t,ult), i), v(t), (1)) + w(t))
— M) (fa (8 w(e), () 0 (8), 0(2))]]dt. (3.9)

Using the fact that z(t)Tw; < s(x(t)|C;).and v(t)Tz; < s(v(t)|D;) the above

inequality becomes
SOt (@) 0), y ), J8) + 5@ (B)IC) — y(H)T=(1))
()T My (6 () 18D 9(0) = (1)
— (T (1, (), (0), y (0. et
> [P, ule), 28, v(8), 8(8)) = s@)D) + u(t)Tw(t))
—a(®)TIAT (Lot ult), (), o(2), 6(1)) + w(b))
— N (st ult), it), v(t), o(0))])dt (3.10)

which contradicts (3.3).

(c) By the assumption of invexity of fab(f+ ()T 2(t)) and — f;(f — () T%(1)),

i=1,...,p, we obtain (3.7) and (3.4). Subtracting (3.4) from (3.7) gives
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TN (8 (0),8(8), y(0), 3(8) + s(2(1)|C) = y(6)T2(2))
=y (O AT (fy(t 2 (t), (1), y (1), 5(t)) — 2(1))
— AT (fat x(t), £(8), y(2), 5(t))]]dt
= [T (), alt), v(t), it) = s(u(t)| D)+ u(t)Tw())
—u(t) M) (fa(t,ult), i), v(t), (1)) + w(t))

— 0T (S b, ult), @), o(2), D(t))]]dt.

However, since A(¢) > 0, this implies (3.3). O

Theorem 3.2 (Strong Duality) Let (z*(t),y*(t), \*(t),z*(t)) be an effi-
cient solution for (NMSP). Suppose that the system

() () fy (8, 2™ (1), 2°(F), 47 (1), (1)

d

- ()T (b, 2@ @) 0 (D (1))

O TN O gt (0,8 (0),5°(0), 5°(0)

d2
+E(—P(t)T/\*(t)Tfyy(t,I*(t%Z‘B*(t%y*(t),@)*(t)))]P(t) =0 (3.11)
only has the solution p(t) =0 for all t € [a,b] and the set

{fy(t,2"(), 27 (1), y"(t), 9" (1) — y"(t)

e 0.8 0. 0. 0) = 12 )
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is linearly independent.

Assume that N*(t) > 0, ([2(f + ()2 (1), (i = 1,2,--- ,p) is invex in x(t)
and i(t), and —([*(f — ()T27(1)), (i = 1,2,--- ,p) is invex in y(t) and §(t)
with n(x(t),u(t)) + u(t) = 0 and £(v(t),y(t)) + y(t) = O0(except perhaps at
corners of (&(t), (1)) or (u(t),d(t))). Then (z*(t),y"(t), \ (), 2*(t)) is an
efficient solution for (NMSD), and the optimal values of (NMSP) and
(NMSD) are equal.

Proof. Applying the necessary conditions of Valentine [36], if
(x*(t), y*(t), \*(t), 2*(t)) is an efficient solution of (NMSP), then there exist
a € RP, (3 [ajb)— R™ and# € RP such that

H = o) (f(t, 2" (8),2°(1),y" (0), g ®) + 2" () w — y ()" (t)

—[y (O £, G (@), 2" (), 570, 9° (@) — AT ()27 (¢)

SN il (0,5 (), (1), 57 (1))

BTN T I (0, 5760, (1)

=N (fy (827 (1),27(8), 57 (1), 97 (1) + X ()T 27(1) = v A (1)

satisfies

H* dH* dzH*—

M Zﬁ—ﬁ 5 =0, (3.12)
H* — iH* + d—zH* =0 (3.13)
Tooger gy '
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—%fﬁ(tﬂf (), (1), y* (), §"(t))) — v (t) = 0, (3.14)
ﬁT(t)(%/\*T(t)fﬁ(t,I*(t) (), y* (1), 4"(1))
=N (f, (27 (), 27(1), v (1), (1) — 2 (1)) = 0, (3.15)
Y)Y (t) = 0, (3.16)
ai(t)y*(t) + N B(t) — () e)Ni (t)y*(t) € Np, (<)),

el 20, (3.17)
o* () Pwi=5(2*|C;), a0 €.C5, =1y , D), (3.18)
(a(t), B(t), ()2 0, (3.19)

throughout [a,b](except at corners of (&*(¢),y*(t)) where (3.16) and (3.17)
hold for unique right- and left-hand limits). «(t), 5(¢) and y(t) cannot be
simultaneously zero at/any t € [a,b] and ((t) is continuous except perhaps

at corners of (2*(t),y*(t)). Equation (3.16)mow becomes

(a(t) = () )N (1) (fy (t, 2" (1), (), y™ (), 57(8)) — = (1)

——Jy(t,27(0), &7 (), y" (1), 57(1)))



Equation (3.17) gives

a(t) (fo(t, 2" (t), (1), y" (1), 5" (1)) + w(t))

+H(B(t) = (at) e)y™ (1) (N ()" foy (t, 27 (1), &7(8), 57 (1), 47 (1))

—%A* ) fralt, 2" (@), @) y" (), 07 (2)))

= 0. (3.21)

Multiplying (3.22) by 3(t) — (a(t)?e)y*(t) and then using (3.18) and (3.20)

gives

[(B(t) = (e(t)Te)y* ()T (N () fuy (8, 27 (2), 2*(1), ¥ (2), §7(¢))
— N O fg (8,2 (8), 27(1), y* (£), 9 (2)))

+a{(B() — (a()Te)y* ()T A" (1) fig(t, 27 (1), &7(1), 5" (1), 9°()) }
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Bt) = (a(t)e)y*(t)). (3.22)

From (3.22), we have

(a(t) = ()" )X )T (fy(t, 2*(@), &7 (1), v(1), ¥*(t)) — 2*(t)
=@ fo(t (1), 2*(1), (1), 9*(t))) = 0.
By the assumption (3.15)
a(t) = (a(®)Te)N (t). (3.23)

This gives a(t) # 0, since if.a(t) = 0, then by (4.24) and (4.18), 5(t) =
v(t) = 0 everywhere, contradicting the necessary condition (4.21). Equation

(3.23) with (3.24) and (3.25) now becomes

N () folt, 2" (1), (1), y7 (1), 57())

_%mm(t,:c*(t),ab*(t),y*(t),y*(t))) =0
and

s TINT () (falt, 2 (1), &7 (), y* (), §(1)) + w(t))
_%mm(t,x*<t>,ab*(t),y*(t),y*(t))} = 0.
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Equation (3.19) with (3.24) gives

y NI (fy (8, 27 (1), 2°(2), 5™ (8), §7(8) + (1))

=GN (O fy (8,27 (8), (1), (1), 57 (1))} = 0. (3.24)

By (3.26),(x*(t), y*(t), \*(t)) is feasible for (NMSD).From (3.26) and (3.27),
(NMSP) and (NMSD) have equal objective values. Therefore from (3.19),we
get y*(t) € Np,(2*(t);), (i = 1,2,-,p), so that y*(t)T2*(t); = s(y*|D;), (i =
1,2,-,p). Moreover,By Theorem (3.1),it follows that z*(¢), y*(t), \*(¢), 2*(¢))
is an efficient solution of (NMSP). O

A converse duality theorem may be stated: the proof would be analogous

to that of Theorem 3.2.

Theorem 3.3 (Converse Duality) Let (z*(t), y*(t), \*(£); w*(t)) be an ef-
ficient solution for (NMSD) . Suppose that the system

()" N ()" faa(t, 2™ (1), 27 (1), y7 (), 57(1))

d

- ()T foa(t, (1), 25 (), y* (), 5 (1))

d d

+§(P(t)Td—

N0 faa (2 (1), (1), 57 (1), 57(1))

+% (=) N () faa(t, (1), 2*(2), y* (), " (£)))]p(t) = 0.
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only has the solution p(t) = 0 for all t € [a,b], and the set

{fat, 2™ (8), 2" (1), y" (1), 5" (1)) +w] (t)

T (6,8 (), (0),57(0) = 1.2, )
18 linearly independent.
Assume that \*(t)T > 0, (fab(f + ()T2(t)) is invex in x(t) and i(t), and
—(f;(f — ()T2(t)) is invex_in-y(t) and j(t)-with n(x(t),u(t)) + u(t) = 0
and E(v(t),y(t)) + y(t) = O(except perhaps at corners_of (x(t),y(t), w(t))

or (u(t),o(t))).  Then (x*(t),y*(t), \(t), w*(t)) is an efficient solution for
(NMSP), and the optimal values of (NMSP) and (NMSD) are equal.

3.4 Special Case

As a special cases of our duality results between (NMSP) and (NMSD),

we give special case-of our duality.

If D; =40}, i=1,---,p, then our primal and dual models become dual

programs considered in Kim and Lee [20].
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Chapter 4

Multiobjective Control Problem
with Generalized V-p Invexity

4.1 Introduction

The following problem is-called a nondifferentiable multiobjective control

problem (NMCP):

(NMCP) - Minimide = ( / FM (8, 2, 0()) + s(2(8) D1 )},

b
o / {F2(8, (), u(t) + s(@()|D,) }dt)

subject to  x(a) = ty, z(b) = ty, (4.1)
gty x(t), u(®)) =0, tel, (4.2)
h(t,xz(t),u(t)) = (), tel, (4.3)

Here R"™ denotes an n-dimensional Euclidean space and I=a,b] is a real
interval. Each fi: I x R* x R™ — Rfor (i=1,---,p), g= (g% -+ ,4"),
¢ IXR'"XR"—R(j=1,---,k),and h= (h',--- [h"), h" : [ X R" X
R™ — R(r=1,---,n) is a continuously differentiable function.

Let z(t) : I — R"™ be differentiable with its derivative Z(¢), and let u(t) :
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I — R™ be a differentiable function. Denote the partial derivatives of f by
ft, f» and f,, that is,

) of of of of
f=0 5= (g ) o= (g )

where the superscripts denote the vector components.
Similarly,we have ¢, g.., gu, and hy, h,., h,,. X is the space of continuously dif-

ferentiable state functions z(t) : I — R" such that x(a) = t, and z(b) = t;

; and Y is the space

oo !

and is equipped with the-norm ||z||=|z|| . +[D=|
of piecewise continuous control functions u(t): I — R™, and has the uni-
form norm ||-]|, . The differential equation (4.3) with initial conditions ex-
pressed as z(t) = z(a) + fj h'(s,x(s),u(s))ds, t € I may be written as
#(t) = H (x,u), where H" : X X Y —C(I, R"),C(I, R") being the space of
continuous functions from I toR"defined as H" (z,u)(t)=h"(t, z(t), u(t)).

In this chapter, we will define generalized V -p-invex functions for opti-
mal control problems and consider a nondifferentiable multiobjective control
problem (NMCP). The sufficient-optimality conditions of the Kuhn-Tucker
type for (NMCP) are given under generalized invexity condition. More-
over, we formulate Wolfe type dua(NWMCD) and Mond-Weir type dual
(NMMCD) for (NMCP), and then establish their duality relations.

4.2 Definitions and Preliminaries

Definition 4.1  Let h' be a function from I x R x R* x R™ into R

and let H'(z,u) = f;(hi(t,x,ﬁr, w)dt. Let there exist differentiable vector
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functions n(t, z,z* &, * u,u*) € R" with n = 0 at t if x(t) = x*(t), and
(tyx, x*, &, 2% u,u*) € R™, ((t,x, 2%, &, %, u,u*) € R". Let||((x,z*, &,%, u,
u)|| = suprer||C(x, z*, &, &%, u, u*)|| and p; real numbers.

(1) A wector function H = (H',--- | H") is said to be V-p-invex in z*,i*,
and u* on I with respect to n, & ( and « if there exist differentiable vec-

tor functions n € R", £ € R™, ( € R", ay(z,x*,&,2*,u,u*) € Ry {0},and

pi € R,v=1,--- ,n such that, for each x,x* € X and u,u* €Y,
. . b . dnm .
H'(z,u)— H'(z*u") > / InToght (b2, 2%, - %aih;(t,z*,:’v*,u*)

€7 aghl (t, 25595, u*) Ydt +pi||CIJ17

(2) The vector function H = (H',- -+, H™) is said to be V-p-pseudo-invex
mn x*, %, and u* on I with respect to m, &, € and (3 if there exist n, &, ¢ as
above, Bi(x, x*, ¢, &% u,u*) € Ry{0}, and p; € R, i =1,--+ ,n such that, for
each x,x* € X andwu,u* €'Y,

dT
/Z{n ohl (t, ", &* u)—l—d—hl(tzv ¥ u")

+ETR(t, 2%, ) bt + Y pillC]P > 0

=1
:>/ Zﬁlhl (t,z, i, u dt>/ Zﬁihi(t,x*,jz*,u*)dt.
=1

(3) The vector function H = (H',---  H") is said to be V-p-quasi-invex
m x*, 2", and u* on I with respect to n, & (¢ and v if there emist n, &, (
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as above,the vector v;(x,z*, &, ", u,u*) € Ry {0}, andp; € R, i=1,---,n

such that, for each x,z* € X and u,u* €Y,

/Z% tx:vudt</2% (t, 2", 2", u*)dt

a

T

/ Z{nThi(t,:B*,i“*,u )+ dd—t RL(t, x*, &, u®)
@ =1

+ETR (¢, a7, &5 Y dE+ Y pille)® < 0.

=1

Lemma 1 of [32] states that (x*(t),uw*(t)) is an efficient solution for
(NMCP) if and only if (x*(t), u*(t)) solves

NMCP, (* (), u*(t))

Minimize / {F5 (¢t @ (t)gult)) + s(z(t)| D) }dt
subject to  z(a) = to, z(b) = ty,

gt z(t),u(?)) = 0,
h(t, (1), u(t)) = (1),

/ {F9 (b 2(t), u(®) + s(x(t) D)}t

/{fﬂm w(8)) + s(a* (1) | D)},

VjE{l,---,p}, ]7&]{:
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Chandra, Craven, and Husain [5] gave the Fritz John necessary optimality
conditions for the existence of an extremal solution for the single objective
control problem (NCP):

(NCP)

Minimize / (F(t (1), u()) + s(2(8)| D)Vt
subject to  x(a) = ty, z(b) = ty,

g(t, (), u(t)) < 0,

h(t, z(t), u(t)) = (t),

where f, g, h/are as defined earlier.
Mond and Hanson [28] pointed out that if the optimal solution for (CP) is

normal, then Friz John conditions reduce to Kuhn-Tucker conditions.

Lemma 4.1 (Kuhn-Tucker Necessary Optimality Condition).

Let (z*(t),u*(t)) € X XY be anefficient for(NMCP). If the Frechet deriva-
tives [D — HE(x*(t),u*(t))] is subjective-and (x*(t),u*(t)) is normal for
MCP(z*(t),u*(t)) at least one k € {1,--- ,p}, then there exist 77 € RP,
piecewise smooth function \*(t) : I — R* | and p*(t) : I — R™ satisfying the

following equalities; for allt € I ,

Zf{ftx u”(t) + wi(t) }+ZA* ()ga(t, 2" (1), u"(t))

7=1

+Zur YRt 2 (t), u'(t)) + i (t) = 0,
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Dl (0,00 (0) + X 0l (1), (1)

+ ) (OR(ta(t), u (1) = 0,

k
Y XDt (1), u' (1) = 0,
j=1
P
7 20, ZTi* ~ 3 A(t) =0

4.3 Formulation of Control Dual Problem

We formulate two pairs of the following nondifferentiable multiobjective

dual control problems.

The Wolfe type dual [38]:

(NWMCD)

Maximize

98



subject to

z(a) = to, x(b) =1y, (4.4)
gn(t){fi(t, o(8) u(t) + w0} + éwgz(t, o(0) u(t)
+ éur(t)hi(t,x(t),u(t)) +i(t) =0, tel, (4.5)
gn(t)fi(t,w(t)w(t)) ¥ Z A0 0, (0), u(t)

+im<t>hz<t,x<t>,u<t>> Y @)

Alt) >0, tek (4.8)
»

7; > 0, ZTi_l (4.9)
i=1

The Mond-Weir type dual [32]

(NMMCD)

Maximize

( / (M (), () + 27 (s (1)}t - |

/ (PPt (8), ult)) + 27 (£ ()} dt)
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subject to

z(a) = to, z(b) = tr, (4.10)
g T(O{ £t 2 (t), u(t) + wi(t)} + é Aj(D)ga(t (), u(t))

+ iur(t)hi(t, z(t),u(t)) + a(t) =0, tel, (4.11)
gn(t)fi(t, z(t), u(t)) + é Ni(t)gi(t, x(t), u(t))

+ i fir (O (), ut)) =0, tel, (4.12)

/ > @It () u(E) = £(t)dt > 0, tel, (4.13)

/ > At gllt, (1), w(t)dt = 0, " HET, (4.14)
7i 20, iﬂ' =L (4.16)

4.4 Sufficient Optimality Theorem for (NMCP)

We obtain a Kuhn-Tucker type sufficient optimality theorem of (NMCP)

as follows:
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Theorem 4.1 Suppose that (z

there exist 77 > 0, A\*(t) and p*(t) such that

Z’T {fi(t,a*(t

+Z,ur t)ho(t, z*

< wi(t), " (t) >= s(x* (@) Dy);i=1,---

fota:

D n (e ), u (e
r=1

3
Z)\;(t)g’(t:z t),u
j=1

u(t) + wilt }+ZA* )i (t, (1), u

Jj=

w (1) + i (t) =

7p7

—I—Z)\* (t) g2 (t; 2% (t

w(t))

*(t),u*(t)) is feasible for (NMCP) such that

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

hold through a <t <b (except that at t corresponding to discontinuities of
u*(t), (4.17) holds for right and left limits).

If [2{fi(t, 2 (t

)?

u*(t)) + s(x

“(t)|Dy)Ydt, i =1,
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JEA (Ot (0, w (), § =1, b and [ S0 i () (0 (E (), w (1)~
#*(t)), r=1,--- ,n are all V-p-invex with respect to n(t),&(t), ((t), a(t) and

STt pi + D> pj + D pr >0, then (x*(t),u*(t)) is an efficient solution of
(NMCP).

Proof. Suppose that (x*(t),u*(t)) is not an efficient solution of (NMCP).

Then there exists (x(t),u(t)) # (x*(t),u*(t)) such that (x(t),u(t)) is feasible
for (NMCP) and

/ (F o (t) ut)) + s (1)] D) Y

< [ (g0, 0 ) hs(an(0) D) e,

Vi=1,-:,p
and
/ (ot 2t waith)) s DR

b
</{fi‘)(t,iv*(t)w*(t))+S(x*(t)|Dio)}dt,
for some ig=1,---p.

Since < w;(t), x*(t) >= s(z*(t)|D;), i=1,---,p,
/ {f'(t,2(t), ult) + " (t)wi(t))

_ / {Fi(t, (t), u(t)) + s((t)|D;) dt
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é/ {f1(t, 27 (), u" (1)) + s(z" ()| D;) ydt

_ / (£t 2(t), u* (1)) + o*Tuwy(t) }dt,
Vi=1,---,p

and
/ {F0(t, 2(t), u(t)) + o7 (t)w, (£)) ol

s / (o, (t), u(t)) + s(x(t)| Diy) belt

< / (i e *(8), 7 (2)) + (@) Dy, it

b
— [ o e o) T (1),
for some.“ig=1;--- | p.

Since fab{fi(t, z(t), u(t)) + s(=(t)|D;) }dt is V-p-inver,

/ " (#)au(w(), ult), o (t), w () falts 2™ (8), u™ (1)) + wi(t)}

+E0 (e (t), ult), x" (1), w ($) fult, 2™ (8), w*(8))]dt + pillCII* < 0,

Vi=1,---,p
and
/ [ () cxig (), u(t), z*(8), w* () { fi0 (¢, 2 (), u* () + wi (1)}
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+E ()i, (w(t), u(t), ™(8), u™(£)) i (¢, 2 (8), u” (1)) ]dt + pi [IC]1* < 0,

for some ip=1,---,p.

Since 77 > 0 for all i,
/ Z ai(w(t), u(t), a*(t), u" () " () (O{ fo(t, 2" (), u" (1)) + wi(t)}

+H (T () fu(t 2 dt+27 (Hpillcl* <0, (4.24)

From the feasibility conditions,

DX (g (@) u(®) £ 0 = DA (B)g’ (t 27(8), (1)

By the V-p-invexity-of fab X (B)g’ (t, z*(t), u*(t))dt, we have
/Zﬁj(fﬂ(t),U(t%f*(t%u*(t))[UT(t)/\;(t)gi(tI*(t%u*(t))

TN () ga(t, 2" (1), w'(1))]dt + Zpyllé’ll2 <0. (4.25)

From the feasibility conditions,

n

ZMT ("t (t), ut) = &(8) = D pr(E) (7 (82" (1), u" () — &7(1)) = 0.

r=1
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By the V-p-invezity off i) (R (¢, z*(t), u*(t)) — &*(t))dt, we have

|3t u0). 7000 O O 070,00 - T

+E (O (OR (2™ (8), w ($)]dE+ Y pr¢I < 0. (4.26)

r=1

By integrating d";t(t) wi(t) from a to b and applying the boundary condition,

we have

F Y0t~ [ wia (127

Using (4.27) in (4.206), we have
/ >l ®), ult), w (s (O) I @O g (8, 27 (1) (8)) + 0" (1) (1)
+ET () (R (¢, 2*(2), wie)ldt 4 ) 1 prllElIR < 0. (4.28)

Since (4.24), (4.25) and (4.28) hold the same a(t), we have

/ " (B (t), u(t) {ZT (Lt 2*(8), u () + wi(8))
+3 N O 20, +Zur OB (8, 2 (8), u? (1)) + (1))
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+€" (e (t), ult), z"(t), U*(t)){z T (fult, 27 (), u' (1))

+ 3N Ot (0.0 (0) + Zm OB (12 (1) ()Y
j=1
p k n

+ Y Tl + D pilIKP+ D peliCI? < 0. (4.29)
i=1 j=1 r=1

From (4.17), (4.19) and the fact-that > 1 pi+ > pj + > pr > 0,we have
/ [UT(t)Oéi(l“(t),U(t)>ZE*(t)ﬂ*(t)){Zﬁ*(fi(t’ZB*(t%U*(t))+wz’(t))

+> N (t)gi(t, 2" +Zur t)hg (1,2 (1), u* (1)) + 7" ()}

+eT (Do(itutt), 2 (0). w7 (Filha (#.0 (1)
£ 3N (gl (1) +Zur £ (8, (), w (1) Yl

+Zf oillCI® +Zpy||<||2 +Zpr||<||2 >0,

which contradicts the inequality (4.29). Hence (z*(t),u*(t)) is an efficient
solution of (NMCP). O
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4.5 Duality Theorems

Now we establish some duality theorems between the nondifferentiable
multiobjective control problem (NMCP) and its Wolfe type dual problem
(WMCD).

Theorem 4.2 (Weak Duality). Assume that, for all feasible (z*(t), u*(t))
for (NMCP) and all feasible (x(t), u(t), 7, A(t), u(t)) for (NWMCD),

/{ft:r /{fptx

+a7 (D, (t)}),

(i) (/ A (t)g (8 x(t), u(t))dt, - / ()" (8, 2(t), u(t))dt),

(iii) / (B (1, (1) ut)) — Bt - / (B (1, (), ()
i (t))dt),

are all V-p-inver with respect to the same functions n(t), £(t), ((t) and a(t)
and

(iv) dF Tipi+Z§:1 pi+ > n_ pr >0, then the following inequalities cannot
hold:

/ (f*(t,2*(t), w(t)) + s(="(t)| D)) dt

é/{(fi(t,ft(t),U(t))+93T(t)wi(t)+ij(t)gj(t,w(t)w(t))



Vi=1---p (4.30)

and

/ (Fo(t, 2 (8), u (1)) + s(a” (£)| Dyt
< / {(fo(t, w(8), u(t) oty &)+ 3 N (1, o(2), u(t))

+Zm (W (¢, 2(t), u(t) — (1))},

for some dg=1---,p. (4.31)

Proof. Suppose contrary to the result that (4.30) and (4.31) hold.

Then, since 7> 0 and > 7 7 =1,

/ Z 7i(t)(f* (627 (F), W) +sa(t)|Ds)) dt

+ 3 () (B (¢, (), ult)) — () . (4.32)
Since < w;(t), x*(t) >< s(z*(t)|D;), i=1---,p,

/Zﬂ (f1(t (), u (1) + 2™ ()wi(t))dt
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</{Zﬁ(t)(fi(tﬁv(t),U(t))+$T(t)wi(t))+2Aj(t)gj(t>fv(t),U(t))

i=1 j=1

+ () (E (), u(t)) — (1)) Y.

r=1

By (1), we have

b

/(fi(t,fﬂ*(t),u*(t))+I*T(t)wi(t))dt—/ (f'(t 2 (t), u(t) + 2" (wi(t))dt

a

> / {n" (t)ou(w(t), w(t), (), w* () (f(t, 2(t), u(t))+ w;(t))
+ET () ai (@ (t), ult), 2(@E), w* (b)) full, &(t), w(t) bt + pal| G|
Since 7; > 0 and Z‘Z’:l ;=1 we can get
/ Z i (t, 2%@), w(t) + &L (@) wi(t) }dt
_ / > (e, () £ 4" @) Vi

> /a Zl Tici(w(t), u(t), x (1), w ()" () (fa(t, 2(t), u(?))

+wi(t) + € (1) fult, x(t), u(t)) Yt + Z ()il ¢ (4.33)

By (ii), we have

b

/Aj(t)gj(t,ff*(t),u*(t))dt—/ Aj(t)g’ (¢, (t), u(t))dt

a
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/{77 Jaj(z (), u" (1)) A\ () g (t, 2 (t), u(t))

+€7 (o (w(t), u(t), 2 (8), u™(£)) A (£)ga(t, (1), u(t)) }dt

+pi¢I1% (4.34)

Using (4.2) and (4.8) from (4.34) we have
- [ Mg a0, ute)

2/{nT(t)Oéj(fE(t),U(t),év*(t),U*(t))Aj(t)gi(t,fv(t),U(t))

+E () o (2(8)su(E), 2*(8), u )N (D) gl (¢, 2(1), ult)) bt
+p;lICII%,

which implies;

_/ PIRVGLA G GRIGN

2/ Z%(I(t)w(t)w (8), w* () {n" ()N () ga(t (1), u(?))
+E (N () gh(t, 2 (t), u(t)) Yt + Z,OJIICII2 (4.35)

J=1
By (1ii), we have
b

/w@wwf@ww»~mmﬁ—/mwwwﬂmmm—ﬂmﬁ

a
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Using (4.3) we have
- [ O ¢t e =t
> [ trtdae(o), ule). (0w () () Bt alt) ()

D ) ). ). 0)) )

_I_
+€T (E)oum(@(6), u(B)yw(6), w' (6) Jur(E)(RG(L, (1), u(t)) Yt - i [ICI1%,

which tmplies

—— e (8) € (O () (R (1 (1), u(t)) Yt

+> el (4.37)
r=1
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dn™ (t)
i

By integration Wy (t) from a to b and applying the boundary condition,

we have

[ i = ot~ [ wica
- _ / 0t (t) fur(t)dt. (4.38)

Using (4.38) in (4.37),we have

4 / S @)W (1, o(0), u(t)) = #(E))dt

2/ > an(w(®)yult), () ws (O (8)pe () (R (8, (0), u(?))
0" () () + € (Oualt) (R (t @ (t), ()}t

+> pellCh?. (4.39)

Since (4.33), (4.35) and (4.39) hold the same a(t), we have
[ a0 o) + @
[ R0, u0) + 2 e

= [ O a0 w3 w0 (ko). utt)
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p Je n
3 nollolB S milicI2 4+ Sopeicl? > 0.
i=1 j=1 r=1
by (4.5), (4.6) and (iv). Hence
b P
/ ST AL (827 (1), W) + BB wi(h)
a =1

> / il B aln) ol (o(B))

which is a contradiction to (4.32)

Corollary 4.1 Assume that weak duality (Theorem 4.1) holds between
(NMCP) and (NWMCD). If (z(t),u(t)) is feasible for (NMCP),
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(x(t),u(t), 7, A\(t), u(t)) is feasible for (NWMCD) with

Zle () g7 (t, x(t), u(t))= 0, then (z(t),u(t)) is an efficient for
(NMCP), 27 (t)w;(t) = s(z(t)|D;) and (x(t),u(t), 7, \(t), u(t)) is an effi-
cient for (NWMCD).

Proof. Suppose (z(t),u(t)) is not an efficient for (NMCP).
Then there exists some feasible (z*(t),u*(t)) for (NMCP) such that

/ [Fi(t, 2 (@) (8)) - s(a(8)| D)t < / £ (1 (t), ()
+s(z(t)|D;) }dt, Vi = 1= Np
and
/ {02 (E), (Ot s(a™(2) [Dig) et < / {Fo(ta(t) u(t))
+s(x(t)| Dy,) }t, for .some “ig=1,---,p.

Since < w;(t), x(t) >= s(x=(t)[D;) i = 1,+-- sp,

/ {F(t (), (1)) + s(a" ()| Dy) bt < / (Fi(t (), u(t))
+a T (t)w;(t) }dt, Vi=1,--,p
and
/ (F0(t 2 (8), u(£)) + s(a* ()| D) Yt < / {Fo(t, (1), u(t))

+aT (t)w;, (t) }dt, for some ig=1,---p.
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Since Y5 \j(t)g7 (t, x(t), u(t)) =0
and 377 pur (E) (BT (8, 2(t), u(t)) — () = 0, we get

/{fi(t,w*(t),U*(t))+$(x*(t)|Di)}dtS/{fi(t,w(t),U(t))

and

r=1

for some 1w=1,---,p.

This contradicts the weak duality. Hence (x(t),u(t)) is an efficient for (NMCP).
Now suppose (x(t),u(t), r,u(t)) is not an efficient for (NWMCD). Then
there exists some (x*(t),u*(t), 7", u*(t)) feasible for (NWMCD) such that

k

/ {F1(, 27 (), w™ () + T (Dwilt) + ) N () (¢, (t), ' (1))

j=1
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n

) () (T (8 27 (), w (1) — &7 (1) bt = / {f'(t,2(t), u(t))

+a (Owi(t) + > N0 (& w(t), w(t) + Y () (W (¢, 2 (t), u(t))
(t))}ydt,
Vi=1,---,p

and

+al (Ewig () + > A0 (6 w(@)sul)) + > (R ( 2 (8), u(t))
(t)) ydt,
for—some—ig=1,--- ,p.

Since Y5 \()g7 (t, (1), u(t)) =0
and 305 pe(B)(R7 (8, 2(t), u(t)) — &(t) =0,

/ {Fi(t, 2™ (), (1) + 2T (Owilt) + ) N ()9 (8 (), u" (1)

+Zﬂr V(R (t, 2*(t), u*(t)) — i*(t)) }dt
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> [{rate) u(o) + " Oui)
Vi=1,---,p,

and
/ {f(t 2" (), u(t) + 2T (F)wiy (8) + Y N (0)g7 (t, 27(1), w*(¢)
+ Zﬂr )(h" (¢, a4 (t),u* (t)) — ¥ (¢)) Ydt

> / (ot (t), u(t))+ o (@)l Yt

for some 1pw=1,---,p.

Since < w;(t), x1(t) >= s’ (t)|D;)

/ {1 (t, 2 (s (t)) + ™" (wi(t) + Z Xi(B)g (¢t 2" (t), v (1))

and



+ ) () (7 (827 (8), w(£) — &7 (1) bt

> [ {fo(t, x(t),ut) + s(z(t)| D) }dt, for someig=1,---,p.

This contradicts the weak duality. Hence (z(t),u(t), 7, A(t), u(t)) is an effi-
cient for (NWMCD).

Theorem 4.3 (Strong Duality) Let (x*(t),u*(t)) be-an efficient for
(NMCP) and assume that (x*(t), u*(t)) satisfies the constraint qualification
for NMCPy(z*(t),u*(t)) for at least one k€ {1,--- ,p}. Then there exist
7 € RP and piecewise smooth functions X(t) : [ — R*, u*(t): [ — R"
such that (x*(t),w*(t), 75, X (t), u*(t)) is feasible for (NWMCD).

and S, 2 (04t 7(1), i) = 0.

If weak duality also holds between (NMCP) and (NWMCD), then

(x*(t), u*(t), 7%, X*(t), (1)) is-an efficient for (NWMCD).

Proof. If follows from Lemma 4.1 that there exist 77 € RP, and piecewise
smooth functions N*(t) : I — R* | and p*(t) : I — R™ satisfying the following

relations, for allt € I:

Zf{ftl“ u'(t)) + wi(t) }+ZA* (O)ga(t, 2" (t), u" (1))

+Zur Y(B(E, 2™ (1), u* (1)) + 1 (t) = 0,
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Z’T {Fi(t, a*(t +ZA* )G (L, (1), u*(t))

+§)% )t (), w7 (8) = 0,

k
D NG (1 (t), (1) =0,
j=1
p
20 W 3T ST Y0
=1

As (x*(t),u*(t)) is feasible for (NMCP), &*(t) = h"(t, a*(t),u*(t))

and [} S0 et (R (¢, ai(8), u(t)) — & ()t > 0.
therefore (x*(t), u*(t), 7", N (t), p*(t)) is feasible for (NWMCD).

The result now follows from Corollary 4.1.

O

Now we establish weak, strong-duality theorems between the nondifferen-
tiable multiobjective control problem (NMCP) and its Mond-Weir type
dual problem (NMMCD).

Theorem 4.4 (Weak Duality) Assume that, for all feasible (z*(t), u*(t))
for (NMCP) and all feasible (x(t),u(t), , A\(t), u(t)) for (NMMCD),
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O ([ Cao.u0)+ " Ouiv)dr, - [, u)
+:BT(t)wp(t)}dt)

is V-p-pseudo-inver with respect to n(t),&(t), ((t) and a(t),

b

i) ([ 2@ @it 201500, 0001

a

is V-p-quasi-invex with respect-to n(t),£(t),¢(t) and (1),

b

(i) ( / 1 () (Rt z (), u(t)) — o(0))dt, - - , / L (O (B (t, 2(8), u(t))

a

—j:(t))dt)

is V-p-quasi-invex with respect to n(t), £(t)sC(t) and y(t), and

p k n
(iv) Zn(t)pi + ij + Zpr > 0.
i1 j=1 =1

P

k n
= D mithoi+ Y Nipi+ Y me(t)or = 0.

i=1 j=1 r=1

Then the following relations cannot hold:

/ {f1(t, 2" (1), w (1)) + (2" ()| Dy) bt
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= [{rau®) + o Ouit),
Vi=1,--,p (4.40)

and

/ (F0 (8, 2 (8), u” (1)) + s(a" (£)| D) Yt

< / {50 (b, (t), u(t)) + 7 (i (1),
for some ig =1,--- ,p. (4.41)

Proof. Suppose’ contrary to the result that (4.40) and (4.41) hold. Since
(1), 2 (1) a0), (), (@) (8) > 0.

/Zai(fﬂ(t),w*(t),fb(t),é‘f*(t),U(t),u*(t)){fi(t,fv*(t),U*(t))

i=1

+2T () w;(t) }dt.

Since < w;(t), x*t) >= s(z*(t)|D;) i=1,--- ,p.
Then (i) yields

/ Z{HT(t)(fi(t, (), u(t)) + wilt)) + € () fo(t, 2 (t), u(t)) bt

P
+>_ nill¢l* <o.
i=1
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Since 1; > 0, we have

/ Z{HT(t)ﬂ'(t)(fi(t,w(t),U(t)) +wit)) + & (OT() fi(t, 2 (1), u(t)) Yt

p
+> m(t)pllClI* < 0. (4.42)
i=1
Form the feasibility conditions,

b

//\j(t)gj(t,ﬂf*(t),u*(t))dtS/ (1) (t,x(t), u(t))dt,

a

for each j = 1,24+ | k.
Since B; > 0,V =1,--- 'k we have

b~k

/Zﬁj(t)kj(t)gj(t,f*(t),U*(t))dtS/ D OO (g (¢, 2(t), ult))dt.

=t

It now follows from (ii) that

/ Z{n t)gi(t, 2(t), u(t)) + € (1) A;(t)gn(t, x(t), u(t)) }t

k
3 N0l <. (4.43)
j=1
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From (4.3) and (4.13),we have

|3 w000 (0) — a0

< [ 3wt o), u(e) - oo
Since v,.(t) >0, Vr=1,--- ,n, we-have

[l w0l 0.0 0) < # )i

< [ OGO @) - (1)

a =

From (iii) it follows that

/ S0 (D (DREE(5u ()

S 4 € O 0 0, w0+ D D P

<0. (4.44)

dn™ (t)
i

By integrating wr(t) from a to b and applying the boundary condition

(4.1) we have

/ d"dt(t)u(t)dtz— / 0" (t)js(t)dt (4.45)



Using (4.45) in (4.44),we have

/ S U (O (O (E, 2(t), u(t)) + 1 (£)ji (1)

+ET () ()P (8, 2(t), u(t)) Yt + Zur JorllCI* < 0. (4.46)

r=1

Adding (4.42), (4.43) and (4.46), we have

+ D (Rt () u®) + ()b E D 7 f2 (8,2 (0), u(t))

=1

+3 N (g, alt +Zu,~ t)hn (¢, (1), u() b+ Y Tipill¢)?

=1 i=1
k n
+ Y AOplICP + D e < 0.

j=1 r=1
which is a contradiction to (4.11), (4.12) and (iv).
Corollary 4.2 Assume that weak duality theorem (4.4) holds between
(NMCP) and (NMMCD). If (z(t),u(t)) is feasible for (NMCP) and
(x(t), u(t), 7(t), M(t), u(t)) is feasible for (NMMCD) and < 2T (t), w;(t) >=
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s(z(t)|D;) then (x(t),u(t)) is an efficient for (NMCP) and
(x(t),u(t), 7, A(t), u(t)) is an efficient for (NMMCD).

Proof. Suppose (z(t),u(t)) is not an efficient for (NMCP).
Then there exists some feasible (z*(t),u*(t)) for (NMCP) such that

/ (F(t e (8), u*(8)) + (2 (8)| D) Yt
é/{fi(t,x(t),u(t))+xT(t)wi(t)}dt,‘v’z':1,--- P
and
/ {7 (1 2 (1), 4800)) + (™ (1) D) Yl

< / {0t z(t), u(t) )= 27 (t)ws, (t) }dt, for someiog=1,---

Since < w;(t), x*(t) >= s(z*)D;) i=1,--- . p,
/ {Fi(t,a(t), u™(t)) + ™ (H)wi(t)) bt
< / (Pt (), u() + 2T (Dws() Y, Vi =1, -, p,

and

/ (F0 (8, 27 (8), u () + 2T (£ (1)) Yt
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< / {fo(t,z(t),u(t)) + xT(t)in(t)}dt, for someig=1,---,p.

But (x(t),u(t), 7, \(t), u(t)) is feasible for (NMMCD), hence the result of
weak duality theorem is contradict. Therefore (x(t),u(t)) is an efficient
for (NMCP). Now suppose (x(t),u(t), 7, A(t), u(t)) is not an efficient for
(NMMCD). Then there exist some feasible (z*(t),u*(t), 7, A(t), u(t)) for
(NMMCD) such that

/ {£°(t,2%(1),w (1)) + s(2" ()| Di) bt

= / {Fi(t, 2t),u(t)) + 2" @)wi(t) ydt, Vi =1, - -, p,

and

/ {0 (b (BSut) + s(a” (£)| D)yt

> / {fo(t,z(t),u(t)) + xT(t)in(t)}dt, for someig=1,---,p.

Since < w;(t), x*(t) >= s(z*(t)|D;) i=1,--- ,p,
/ {2 (1), u (1) + 2™ (thwi(t)) ydt

2/{fi(tﬂf(t%u(t))+£ET(t)wi(t)}dt,Vz':1,--- D,
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and

/{f“)tx W () + 27 (£ (1))

> / {fioo(t, 2(t), u(t)) + 27 ()w;, () }dt, for some ig=1,---,p.

This contradicts weak duality. Hence (x(t),u(t), 7, A(t), u(t)) is an efficient
for (NMMCD).

Theorem 4.5 (Strong Duality) Let («*(t),u*(t)) be an efficient for
(NMCP) and assume that (x*(t),u*(t)) satisfies the constraint qualification
for NMCPy(z*(t),u*(t)) for at least one k € {1,--- ,p}. Then there exist
7" € RP and piecewise smooth functions X*(t) : [ — R and pu*(t) : [ — R"
such that (z*(t), u*(t), ", X*(£);u*(t)) is feasible for (NMMCD).

If also weak duality holds between (NMCP) and (NMMCD), then

(x*(t), u*(t), 7%, X*(t), u*(¢))_is_an efficient for (NMMCD).

Proof. Proceeding on the same lines as in Theorem 4.3 it follows that
there exist T* € RP, and piecewise smooth functions \*(t) : I — RF and

w (t) : I — R™, satisfying for all t € I the following relations:
ZT{f t, (1), u' () + wi(t) }+ZA* (H)ga(t, (), u*(t))
J=1

+Zur Y(hip(t, ¥ (8), w'(£)) + i (t) = 0,
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k
D X(t)g (t, 2" (1), u(t) =0,
j=1
p
>0, D ow=1 A®)>0
1=k
The relations
b k ]
[ xwgie #@u @) o
a ,7:1

and

are obvious.
The above relations imply that (x*(t),u*(t), 7%, X (t), u*(t)) is feasible for

(MMCD). The result now follows from Corollary 4.2.

References

[1] B. Aghezzaf and M. Hachimi, Generalized inexity and dalit in multiob-
jectie programming, J. Global Optim. 18 (2000)91-101.

128



2]

[10]

[11]

B. Beavis and I. M. Dobbs, Optimization and stability theory for
economic analysis, Cambridge University Press, Cambridge University

Press, Cambridge, (1990).

C. R. Bector and I. Husain, Duality for multiobjective variational prob-

lems, J. Math. Anal. Appl. 166 (1992), 214-229.

D. Bhatia and P. Kumar , Multiobjective control problem with general-

ized invexity, J. Math. Anal. Appl. 189 (1995), 676 -692.

S. Chandra, B.'D. Craven and I. Husain, A class of non-differentiable
control problems, J. Optim. Theory Appl. 56 (1988), 227-243.

V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: The-
ory and Methodology, North-Holland, New York, (1983).

B. D. Craven, Invex functions and constrained local minima, Bull. Aus-

tral Math. Soc. 24°(1981), 357-366.

G. B. Dantzig, E. Eisenberg, and R. W. Cottle, Symmetric dual non-
linear programs, Pacific J. Math. 19 (1961), 239-244.

G. B. Dantzig, E. Eisenberg, and R. W. Cottle, Symmetric dual non-
linear programs, Pacific J. Math. 15 (1965), 809-812.

W. S. Dorn, A symmetric dual theorem for quadratic programs, J. Oper.

Res. Soc. Japan 2 (1960), 93-97.

M.Dresher, Games of strategy, Dover Publications, New York, 1981.

129



[12] A. M. Geoffrion, Proper efficiency and the theory of vector maximiza-

[13]

[14]

[15]

[16]

[17]

[18]

[19]

tion, J. Math. Anal. Appl. 22 (1968), 618-630.

M. A. Hanson and B. Mond, Necessary and sufficient conditions in con-

strained optimization, Math. Programming 37 (1987), 51-58.

M. A. Hanson, R. Pini and C. Singh, Multiobjectie programming under
generalized type I invexity, J. Math. Anal. Appl. 261 (2001), 562-577.

V. Jeyakumar and B. Mond, On generalized.convex mathematical pro-

gramming, J. Austral Math. Soc. Ser. B 34 (1992),43-53.

R. N. Kaul, S. K. Suneja and M. K. Srivastava, Optimality criteria and
duality in multiple objective optimization involving generalized invexity,

J. Optim. Theory Appl. 80 (1994), 465-482.

D. S. Kim and G. M. Lee, Symmetric duality with pseudo-invexity in
variational problems, Optimization 28 (1993), 9-16.

D. S. Kim, G. M. Lee, and W. J. Lee, Symmetric duality for multiob-
jective variational problems with pseudo-invexity, in Nonlinear Analysis
and Convex Analysis, RIMS Kokyuroku, 985 (1997), 106-117, RIMS of

Kyoto University, Kyoto, Japan.

D. S. Kim, G. M. Lee, J. Y. Park, and K. H. Son, Control problems
with generalized invexity, Math. Japon. 38(2) (1993), 263-269.

130



[20] D. S. Kim, and W. J. Lee, Generalized symmetric duality for Multi-
objective variational problems with invexity, J. Math. Anal. Appl. 234
(1999), 147-164.

[21] S.N. Lal, B. Nath and A. Kumar, Duality for some nondifferentiable
static multiobjective programming problems, J. Math. Anal. Appl. 186
(1994), 862-867.

[22] G. M. Lee, D S. Kim and B. S. Lee, Multiobjective control problems
with invexity problems, J. Inform. Opti. Sci. 17-(1996), 151 - 160.

[23] O.L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York,
(1969).

[24] S. K. Mishra and R. N. Mukherjee ;Multiobjective control problems with
V-invexity, J. Math. Anal. Appl. 235 (1999), 1-12.

[25] S. K. Mishra and R. H. Mukherjee, On efficiency and duality for multi-
objective variational problems, J. Math. Anal. Appl. 187 (1994), 40-54.

[26] B. Mond, A class of nondifferentiable mathematical programming prob-

lems, J. Math. Anal. Appl. 46 (1985), 65-76.

[27] B. Mond and M. A. Hanson, Duality for control problems, SIAM J.
Control 6 (1968), 114-120.

[28] B. Mond and M. A. Hanson, Symmetric duality for variational problems,
J. Math. Anal. Appl. 23 (1968), 161-172.

131



[29]

[30]

[31]

[32]

[33]

[34]

B. Mond and I. Husain, Sufficient optimality criteria and duality for
variational problems with generalized invexity, J. Austral Math. Soc.

Ser. B 31 (1989), 108-121.

B. Mond and M. Schechter, Nondifferentiable symmetric duality, Bull.
Austral. Math. Soc. 53 (1996), 177-188

B. Mond and I. Smart, Duality and sufficiency in control problems with

invexity J. Math. Anal. Appl. 136.-(1988), 326 - 333.

B. Mond and T. Weir, Generalized concavity and-dualityin ”General-
ized Concavity in Optimization and Economics™ (S. Schaible and W. T.

Ziemba,eds.), Academic Press, New York, (1981), 263-279.

B. Mond and T. Weir, Symmetri¢c duality for nonlinear multiobjec-
tive programming, in Recent Developments in Mathematical Program-

ming(S. Kumar, Eds.), 137-153, Gordon and Breach, New York, (1991).

R. N. Mukherjee-and S.-K: Mishra, Sufficient optimality criteria and
duality for multiob- jective variational problems with V-invexity, Indian

J. Pure Appl. Math. 25(8) (1994), 801-813.

[. Smart and B. Mond, Symmetric duality with invexity in variational

problems, J. Math. Anal. Appl. 152 (1990), 536-545.

F. A. Valentine, The problem of Lagrange with differential inequalities
as added side conditions, in Contributions to the Calculus of Variations

1933-37, 407-448, Univ. of Chicago Press, Chicago, (1937).

132



[37] T. Weir and B. Mond, Symmetric and self duality in multiple objective
programming, Asia-Pacific J. Oper. Res. 5 (1988), 124-133.

[38] P. Wolfe, A duality theorem for nonlinear programming, Quart. Appl.
Math 19 (1961), 239-244.

[39] X.M. Yang, K.L. Teo and X.Q. Yang, Duality for a class of nondifferen-
tiable multiobjective programming problem, J. Math. Anal. Appl. 252
(2000), 999-1005.

[40] J. Zhang and B. Mond, Duality for a non-differentiable programming
problem, Bull. Austral. Math. Soc. 55 (1997), 29-44.

[41] L. Zhian and Y. Qingkai, Duality for a class of multiobjective control
problems with generalized invexity, J. Math. Anal. Appl. 256 (2001),
446-461.

133



	1. Introduction and Preliminaries
	2. Nondifferentiable Multiobjective Variation Problem with Generalized Type I Invexity 
	2.1 Introduction
	2.2 Definitions and Preliminaries
	2.3 Sufficient Optimality Theorem for Nondifferent Multiobjective Variational Problem
	2.4 Formulations of Four Pairs of Variational Dual Problem
	2.5 Duality Theorems
	2.6 Special Cases

	3. Nondifferentiable symmetric Duality for Multiobjective Variational Problems with V-invexty 
	3.1 Introduction
	3.2 Definitions and  Preliminaries
	3.3 Symmetric Duality
	3.4 Special Cases

	4. Multiobjective Control Problem with generalized V-Invexity 
	4.1 Introduction
	4.2 Definitions and Preliminaries
	4.3 Formulation of Control Dual Problem
	4.4 Sufficient Optimality Theorem for Nondifferentiable Multiobjective Control problem
	4.5 Duality Theorems

	References


<startpage>9
1. Introduction and Preliminaries 1
2. Nondifferentiable Multiobjective Variation Problem with Generalized Type I Invexity  12
 2.1 Introduction 12
 2.2 Definitions and Preliminaries 14
 2.3 Sufficient Optimality Theorem for Nondifferent Multiobjective Variational Problem 24
 2.4 Formulations of Four Pairs of Variational Dual Problem 28
 2.5 Duality Theorems 33
 2.6 Special Cases 67
3. Nondifferentiable symmetric Duality for Multiobjective Variational Problems with V-invexty  74
 3.1 Introduction 74
 3.2 Definitions and  Preliminaries 76
 3.3 Symmetric Duality 77
 3.4 Special Cases 92
4. Multiobjective Control Problem with generalized V-Invexity  93
 4.1 Introduction 93
 4.2 Definitions and Preliminaries 94
 4.3 Formulation of Control Dual Problem 98
 4.4 Sufficient Optimality Theorem for Nondifferentiable Multiobjective Control problem 100
 4.5 Duality Theorems 107
References 128
</body>

