creative
common

C O M O N § E E D
& X EAI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= F R0l 86tH HFSA
o Ol MHZE= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok §LICh

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. Adt= 0 &

o 7lot=, 0l M= MOISOILEBHES B2, 0l H&E=0 HE= 0
S Tt LIEHLHO10F S LICH
o HEZXNZRH EE2 oltE O 0leiet 2AE=2 HEBX E&LICHL

AEAH OHE olSXAt2 Heles 212 WS0ll 26t g&

712 (Legal Code)E Ololiotl| & £

olx2 0S5t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Thesis for the Degree of Master of Science

Strong Convergence Theorems of Total Asymptotically
Nonexpansive Families

by
Su Yeon Yi
Department of Applied Mathematics
The Graduate School

Pukyong National University

February 2012



Strong Convergence Theorems of Total Asymptotically
Nonexpansive Families
GEEE INE 1 E- = e B )

Advisor: Prof. Tae Hwa Kim

by
Su Yeon Yi

A thesis submitted in-partial fulfilment of the requirements

for the degree of
Master of Science

in Department of Applied Mathematics, The Graduate School,
Pukyong National University

February 2012



Strong Convergence Theorems of Total Asymptotically

Nonexpansive Families

A dissertation

by
Su Yeon Yi
Approved by:
(Chairman) Nak Eun Cho, Ph. D.
(Member) Jin Mun Jeong, Ph. D. (Member) Tae Hwa Kim, Ph. D.

February 24, 2012



CONTENTS

Abstract(Korean)

1. Introduction .....................

2. Preliminaries and some lemmas

3. Strong convergence theorems ..

References

1

16



BHZHR G S S drdE F

2 =24

e

TF £E (uniformly convex)Ql Banach FZISA] ojd =7 AE 3= AP ZHNFY
(total asymptotically nonexpansive(in brief, TAN)) Z¢d] tst <2=}(error) 3-8 2zt Ishikawa (and Mann)

iteration o B oH FFHEAHHE FF I



1 Introduction

Let C' be a nonempty closed convex subset of a real Banach space X and let
T : C — C be a mapping. Then T is said to be a Lipschitzian mapping if, for

each n > 1, there exists a constant k, > 0 such that
1Tz = Ty < knllz =y (1.1)

for all z,y € C (we may assume that all k, > 1). A Lipschitzian mapping
T is called uniformly k-Lipschitzian if k, = k for all n > 1, nonezxpansive if
k, = 1 for all n > 1, and asymptotically nonexpansive [5] if lim, . k, = 1,
respectively. The class of asymptotically nonexpansive mappings was introduced
by Goebel and Kirk [5] as a generalization of the class of nonexpansive map-
pings. They proved that if €' is a nonempty bounded closed convex subset of
a uniformly convex Banach space X', then every asymptotically nonexpanisve
mapping 7T : C' — C' has a fixed point.

On the other'hand, as the classes of non-Lipschitzian mappings, there appear
in the literature two. definitions, one is due to Kirk who'says that T is a mapping

of asymptotically nonexpansive-type [12] if for each » € C,

lim sup sup([|T"z = T"y|| — [lz — y|[) <0 (1.2)

n—oo yeC
and TV is continuous for some N > 1. The other is the stronger concept due to
Bruck, Kuczumov and Reich [2]. They say that T' is asymptotically nonexpansive

in the intermediate sense if T' is uniformly continuous and

timsup sup (|72 = T"y[| = [lz = yll) <0 (1.3)
n—oo  x,yc

Recently, Alber et al. [1] introduced the wider class of total asymptotically non-

expansive mappings to unify various definitions of classes of nonlinear mappings



associated with the class of asymptotically nonexpansive mappings; see also Def-
inition 1 of [3]. They say that a mapping 7' : C' — C is said to be total asymp-
totically nonexpansive (in brief, TAN) [1] (or [3]) if there exists two nonnegative
real sequences {c,} and {d,} with ¢,, d, — 0, ¢ € T(R") and ny € N such
that

[Tz = T"y[| < [lo =yl + cn o[z — yll) + dn, (1.4)

for all z, y € C" and n > ny, where R* :=[0,00) and ¢ € I'(R") means that ¢
is strictly increasing, continuous on R* and ¢(0) = 0. In this case, T is often
said to be TAN on C' withrespect to {¢,}, {d,} and.¢.

Recently, motivated and stimulated by (1.4), Kim and Park [11] introduced a
discrete family S'={T,, : C' — C} of nonsLipschitzian mappings, called TAN on
C', namely, & = {1, : C — C} is said to be TAN on C" with respect to {c,},
{d,} and ¢ if there exist nonnegative real sequences {c,} and {d,}, n > 1 with

Cn, d — 0 and ¢ € I'(R™) 'such that
1oz = Tayll <l = yll+ ca d(llz —yl) + du, (1.5)

for all x, y € C' and n > 1. Furthermore, we say that & is continuous on C
provided each T,, € S is continuous on C'; see [11] for examples of continuous
TAN families. Then they established necessary and sufficient conditions for strong
convergence of the sequence {z,} defined recursively by the following explicit
algorithm

Tpi1 = Thy, n>1, (1.6)

starting from an initial guess x; € ', to a common fixed point of & in Banach
spaces.

For a single mapping 7" of C' into itself, we consider the following Ishikawa



iterative scheme of the type (Kim-Kim [9], c¢f. Xu [19]) emphasizing the random-
ness of errors as follows:

x1 € C chosen arbitrarily,

Tpi1l = QpTy + ﬁnTnyn + YnUn, (17)

o = A+ BT + Y0 = (1= ) 127+ 22T + 200,

where {a,}, {Bn},{m}, {a.}, {B.}.{7.} are real sequences in [0,1] and {u,},

{v,} are two bounded sequences in C' such that

i) an+futvm=0a, +5 +~, =1forall n>1,

(i) D2 v < 0o and Y520 4l < oo.

A

If v, =), = 0 for all n > 1, then the iteration process (1.7) reduces to the
modified Ishikawa iteration process Schu [16] (cf. Ishikawa [8]), while setting
B, =0 and +, =0 for all n > 1, (1.7) reduces to the Mann iteration process
with errors which is a generalized case of the Mann iteration process [13].

Let a discrete family & = {7}, : C — C} be continuous TAN on C with
respect to {c,}, {d,} and ¢ and F := N>, Fiz(T,).«On replacing 7" in (1.7)

by T, and setting S, = 1?2‘, I+ %Tn for'each n.>1, the above algorithm

(1.7) can be modifies as follows:

x1 € C' chosen arbitrarily,
Tni1 = Qnn + B ToYn + Yl (1.8)
Yn = (1= 7)Snn + 73,00

Then notice that the family S := {S,, : C'— C} is also TAN on C' with respect

to the same {c,}, {d,} and ¢ because for each n > 1,

/ /

(0%
Spx — 5 < || — " || Tz — T,

< lz =yl + enolllz —yl) + dn (1.9)

3



for all x,y € C and F C N2, Fiz(S,) in general even if the equality holds for
all g/, > 0.

In 1994, Rhoades [15] proved that if X is a uniformly convex Banach space, C'
is a nonempty bounded closed convex subset of X, and T : C' — (' is a completely
continuous asymptotically nonexpansive mapping with {k,} satisfying k, > 1,

Yo (ki —1) < oo, r> 2, then for any x; € C, the sequence {z,} defined by
Tpi1 = (1 —ap)x, + a0, Tz, n>1,

where {«a,} satisfy a < «a,, < 1 —a for all'n-> 1 and some a > 0, converges
strongly to some fixed point of 7'. This result extended. the result of Schu [16]
to uniformly convex Banach spaces. In 1999, Huang [7] generalized the results
due to Rhoades [15] to a more general Ishikawa (and Mann) iteration scheme. In
2001, Kim and Kim generalized the results due to Huang [7] to a more general
Ishikawa (and Mann) type scheme for non-Lipschitzian self mapping.

In this paper, we prove that the Ishikawa (and Mann) iteration process (1.8)
with errors converges strongly to some common fixed point of & under some
additional conditions-whenever X is a real uniformlyconvex Banach space and
S ={T,: C — C} is a continuous TAN family on € with respect to {c,}, {d,}
and ¢ and F := N Fiz(T,) # 0.

2 Preliminaries and some lemmas

Throughout this paper we denote by X a real Banach space. Let C' be a
nonempty closed convex subset of X and let T" be a mapping from C' into itself.

Then we denote by Fixz(T) the set of all fixed points of 7', namely,
Fiz(T)={zx € C: Tz = x}.

4



A Banach space X is said to be uniformly convez if the modulus of convexity

dx =0x(€e), 0 <e<2, of X defined by

. Tty
v = inf(L~ U0y e g ol < Lyl < 1.l il 2 0

satisfies the inequality dx(e) > 0 for every € € (0,2]; see [17] for more details.
When {z,} is a sequence in X, then x,, — x will denote strong convergence of
the sequence {z,} to z.

Let T be a single TAN mapping on C' with respect to {¢,}, {d,} and ¢. At

first let us mention the following remarks.

Remark 2.1. Note firstly that the property (1.4) with ¢, = 0 for all n > 1 is
equivalent to (1.3). Indeed, taking ¢, = Ovin (1.4) firstly, we have
sup {7 =T =y} < .
for each n > 1, and next taking the lim sup on both sides as n — oo immediately
gives the property (1.3) because:d,, — 0 as n — co. Conversely, taking
dy, :=max{0, “sup {[|T"z — Tyl — ==yl }}
zyeC

for each n > 1, (1.3) immediately implies d,, — 0 as n — oo; see also [3] for
more details. Note also that a mapping of asymptotically nonexpansive in the
intermediate sense is non-Lipschitzian; see [9]. Also, if we take ¢(t) = ¢ for all
t >0 and d, =0 for all n > 1 in (1.4), it can be reduced to the asymptotically
nonexpansive mapping. Furthermore, in addition, taking ¢, =0 for all n > 1, it

is nonexpansive.

Next, let & = {7}, : C — C} be continuous be a continuous TAN family on

C' with respect to {c,}, {d,} and ¢. Let us introduce one example given in [11].



Example 2.2. [11] Let X =R, C =[0,00) and, for each n > 1, define

1 1
T,x = <1+ —>x+—tan_1x, xeC.
n n

Then the family S = {T,, : C — C} is continuous TAN on C with respect to

¢ =2, dy:=72 and ¢(t) =t. In fact, use [tan"' x| < 5 to get
1 T
|Thx — Tyl < <1—|——>]a:—y! +—
n n
forall x,y € C and n > 1.
We first review the following result due to [11].

Theorem 2.3. [11} Let X be a real Banach space, Ca nonempty closed convex
subset of X . Let a discrete family S = {T,, +C — C} be continuous TAN on C
w.r.t. {c,}, {d.} and ¢ with F := N2, Fia(T,) # 0. Assume that {c,}, {d,}

and ¢ satisfy the following two conditions:

(C1) Ja, B >0 such that ¢(t). < at forall t > 3;
(C2) Y02 cn <00y > olidy < 0.

Then the sequence {x,} defined-by the explicit iteration method (1.6) converges
strongly to a common fized point of & if and only if liminf, . d(z,, F) = 0,

where d(z,, F') = inf ,cp ||z, — 2] .

It is natural to ask whether Theorem 2.3 still remains true or not for the

following algorithm with errors instead of (1.6).
Ln+1 = (1 - ’Vn)Tnxn + TnUn, n Z 1. (21)

Note that taking 8/, =0, v, =0 and o/, =0 in (1.8) reduces quickly to (2.1).

For our argument, we need the following two subsequent lemmas.

6



Lemma 2.4. [14] Let {a,}, {b,} and {c,} be sequences of nonnegative real

numbers such that Y oo b, < oo, > .07 ¢, < oo and

An+41 S (1 + bn)an +cn

forall n > 1. Then lim a, exists.

n—oo

Lemma 2.5. [6, 17] Let X be a uniformly conver Banach space. Let x,y € X . If
lzll <1, [lyll <1 and [lz—y|| = € >0, then [[Az+(1-A)y|| < 1-2\(1—X)dx((e)
for 0 < A< 1.

Lemma 2.6. Let C be a nonempty closed conver subset-of a uniformly convex
Banach space X -and let a discrete family S = {T,,: C — C} be TAN on C
with respect to {c,}, {d,} and ¢ with F = N, Fix(T,) # 0. Suppose also that
{cn}, {d,} and ¢ satisfy two conditions (C1) and (C2) in Theorem 2.3. Let the
sequence {x,} be defined by (1.8). Then lim, .o ||z, — z|| exists for any z € F'.

Proof. Let y,, :=(1 —=~.)Snxn +2,0,. Then for any z € F, since {u,} and {v,}

are bounded, let
M =1V ¢(8) Vvsup ||lu, — z|| V-sup ||v, — z|| < 0.
n>1 n>1
From () and strict increasing of ¢, we obtain

o(t) < o(B) +at, t>0. (2.2)



By using (2.2) and (1.9), we obtain

lyn — 2 = (1 = 7)Snxn + 700 — 2|
< [1Shan = 2l + llv. — 2
< len = 2l + cad(llzn — =) + dn + 7 M
< lzn = 2l + calo(B) + allz, — 2[] + dn + 7, M
< (14 acy)||wn — 2] + cnd(B) + dn + v, M
< (L ac)||zn — 2] + na M,

where 1, = ¢, +d, + 74 and Y7, 1, < oo. Thus

N

Ol =2l)) < o(B) +allgm=~|

£ #(8) + a1 Fac)||zn — 2| +amM
< ol + achllEn = 2| + (1 + an) M,
and hence
||Tnyn - ZH
< lyn = 2l + en@(lyn — 24 dn
< (I +acy)|len — 2| + M + cula(l + acy) ||z, — 2|| + (1 + an,) M| + d,
< (14 2ac, + ) ||z, — 2| + (9 + ¢ + acann + d)) M
< (T4 pa)llwn — 2| + puM,

where g, = 2ac, + a2, pn = N + o + acyy + dy, Zfil Wy < oo and



> pn < 00. Hence

[2ni1 =2l = llanzn + B Toyn + yntn — 2||
< apllen = 2l + Bul Tayn — 2l + nllun — 2|]
< apllen = 2] + Be{ (L + pn)llen — 2[ + pu M} +7u M
= (L=y)llzn = 2l + Bopnllzn — 2] + BupnM + M
< (U pa)llzn = 21+ (o + ) M.
By Lemma 2.4, we see that lim,, o {jz, = 2|} exists. O

3 Strong convergence theorems

Now we shall present the following strong convergence for a continuous TAN

family as our main result.

Theorem 3.1. Let X be a uniformly conver Banach space and let C' be a
nonempty closed convex subset of X and let a discrete family S = {T,, : C — C'}
be continuous TAN on -C with respect to {c,},{dn} and ¢ with F # (. Suppose
that {c,},{d,} and ¢ satisfy two-conditions (C1) and (C2) in Theorem 2.3, and
that 0 < a < B, <b< 1, limsupf, <b<1 foralln >1 and some a,b € (0,1).

For the sequence defined by (1.8), assume also that there exists a nondecreasing

function f:[0,00) — [0,00) with f(0) =0 and f(r) >0 for all r > 0 such that
Then {x,} converges strongly to some common fized point of .

Proof. For any z € F, by Lemma 2.6, {x,} is bounded. Since {u,} and {v,}



are bounded in C', we set

W = sup|lu, — 2| Vsup [z, — 2| Vsup|[v, — 2]
n>1 n>1 n>1
Vsup ||, — upl|| Vsup ||z, — vl
n>1 n>1

and M =1V ¢(f) VIW < co. By Lemma 2.6, we see that lim ||z, — z||[(= r)
exists. Without loss of generality, we assume r > 0. As in the proof of Lemma

2.6, we obtain

[ Toyn =2l < (1 pn)l[2n — 2] + pu M

IA

|en = 2|l 4 pnM+ pp M

= ||zn— 2| Frd

where 7, := p, + ppand Y g, < oo. Thus

1Ty 2+ v (@ s @)l < WRGRS- 2]l + 7ol Lar ]
GRS | + 7. M £ M
= |z — 2l + (74 + ) M,
and hence
[0 = 2 4t =) | TS 2w =2l 4 Yn [ un — 2l
< len =2l + M
<l = 2l 4 (70 + ) M.

Since Tpi1 — 2 = BulTotn — 2 + Y (tn — 20)] + (1 = B)[2n — 2 + Yo (U — x,)] is
easily computed, by using Lemma 2.5, we obtain
[ 2041 — 2]
= ||BulTnyn — 2 + n(tn — )] + (1 = Bu)[Tn — 2 + Yu(un — 24)]||

< (e = =+ (2000 [t = 2800 = g (e )

10



Hence we obtain

2601 = ) (= 2l + (- 2)M )0 (o 2w )

< lzn = 2l = [lenta = 2l + (70 + ) M.

Since

1T yn — 0|
|20 — 2l + (70 + )M

2a(1 — b) i(”xn — 2l + (7 + )M ) dx (

n=1

) <

and Jg is strictly increasing and continuous, we obtain

hm |75y, — Zo{="0. (3.1)

. o /
Since Sy, = 2271 + f—%Tn, we have

etk N (s K %8
< (1_7;)||xn_snxn” +’7;z||xn_vn”
< DTS TRt M (3.2)

we obtain

gb(ﬁ) + O‘”In - yn”
M + af || Thx, — x| + @y, M

¢(ll2n = ynll)

IN A

IN

M + of{||Town = 2l + |2 = 2l } + av, M

IN

M + od||zn, — 2| + cnd(|xn — 2||) + dn + ||z — 2al|} + @), M

IN

M + of2M + ¢,[¢(0) + al|zn — 2] + dn} + vy, M

IN

M + o{2M + ¢, M + ac, M + d,} + oy, M

IN

M+ a2+ ¢, + ac, + d,, +7.,) M. (3.3)

11



By using (3.2) and (3.3), we obtain

[T — |
< NTazn — Taynll + 1 Tayn — @al|
< Nlwn = yall + cad(|2n = ynll) + dn + | Toyn — all
< BNTnzn — ol + VM + cu[M + (2 + ¢, + ac, + dp + 7)) M] + d,
+Toyn — @all,
and thus

(1- ﬁ%)HTnmn 7 5m|| A ’Y;LM + cn[M + a2+ + ey + dn + %/z)M]

gl Ll e | (3.4)

Since limsup,,_, ., B, < b <1, it easily follows from (3.1) and (3.4) that

lim ||Tx, — @,|| = 0. (3.5)
N~—00
Since
S 511”Tnyn - xn“ + ’Yn”un - xn“
S bHTnyn - xn” 'I' ’YnM
and by (3.1), we get
lim ||zp41 — 2| = 0.

Then it is not hard to see that

lim ||z — x,]| =0 (3.6)

12



for fixed k > n. Also, since

HTkxn - an
< NTwwy — Trae|| + [ Thar — ]| + || — 20|
< 2wk — wal| + crd(||or — wul]) + di + (| Thwr — 21|

< (2 + OéCk)HLCk — SL’nH + Mck + dk + HTkxk — QZkH
for fixed k > n. Taking the limsup as n — oo on both sides at first, we have

limsup || T — @, || < Mcg + dp = Thxr — x|

n—oo

by virtue of (3.6). Next taking the limsup as k — o0, since the right side con-
verges to 0 by (3.5), we obtain
limsup lim sup || T}z, — @,|| = 0. (3.7)
k—o0 n—00

By (III), we have lim,", f(d(2,, F)) = 0. On the other hand, as in the proof of

Lemma 2.6, we obtain
@01 =z|] EF pa)llwn <=+t (on+ )M (3.8)
for all z € F'. Thus
. < . B
inf |z = zll < (14 p) nf flan = 2l + (o +70) M.

By using Lemma 2.4, we see that lim d(z,, F')(= ¢) exists. We first claim that

n—oo

lim d(z,, F) = 0. In fact, assume that ¢ = lim d(z,, F) > 0. Then we can

n—oo n—oo

choose ng € N such that 0 < § < d(z,, F') for all n > ny. Then we obtain

0 < f(3) < f(d(x,, F)) =0

13



as n — oo. This is a contradiction. So, it must be ¢ = 0. We can choose a

subsequence {x,,} of {x,} such that

2, — will <277 (3.9)
for all i > 1 and some sequence {w;} in F'. Next, we claim that {w;} is a Cauchy
sequence by using the idea of [18]. Substituting n; and w; for n and z in (3.8),
respectively, we obtain
On setting n;11 := n; + [y for each ¢ > 1 and repeating this inequality continu-
ously, we arrive at

||xm+1 T wl“ “u ||xni+li o wl“

< (1 + Mni+li_1)||xni+li_1 N wl” + (pni+li_1 + ,yni+li_1)M

S ......
l; l; k—1
< JIA + it lan, — sl + M DT 12 (Pnidte—k + Vmit—i)
=1 =1 j=1

Since > 07 pn, < 00, we can set-[[°7, (1 4+ pp,):= K < oo-and so this with (3.9)
implies

l;

||xni+1 - wl” < KH‘T’M - wl” + MK Z(pni+li_k + ’ani-li—k)
k=1
l;
< K[Q_z + M Z(pmﬂz'*k + Pynin‘*k)}' (310)
k=1

Then it follows from (3.9) and (3.10) that

||wi+1 - wl” S ||wi+1 - xni+1|| + ||xni+l - wl”
l;

< 2_(i+1) + K[Q_Z +M Z(pni—i-li—k + ryni“‘li_k)]'
k=1

14



This implies that {w;} is a Cauchy sequence. Since F' is closed, we obtain
w; — w € F. We also obtain z,, — w. By using Lemma 2.6, we obtain

lim |z, —w| = 0. O

As a direct consequence, taking ), =0 and ~/, =0 for all n > 1 in Theorem

3.1, we immediately have the following result.

Theorem 3.2. Let X be a uniformly convexr Banach space and let C' be a
nonempty closed conver subset of X and let a discrete family S ={T,, : C — C'}
be continuous TAN on C' with-respect to {cp}, {dn} and ¢ with F # (). Suppose
that {c,},{d,} and ¢ satisfy two conditions (C1) and (C2) in Theorem 2.5. For
xy in C, the sequence {x,} defined by

Tn41 = QpTy o ﬁnTnmn + YnUn,

where {a,}, {Gn}, {7n} are sequences in [0,1] satisfying 0 < a < 3, <b< 1,
n+ B +9n = 1 for all n > 1 and some a,b € (0,1), >, v, < oo and {u,} is
bounded sequence in C'. Suppose also that there exists_a nondecreasing function
f:]0,00) = [0,00) with f(0) =0.and f(r) >0 for all 7€ (0,00) satisfying the
condition (C3) in Theorem 3.1 Then {x,} converges strongly to some common

fixed point of .

Finally, we shall give an example of a continuous family & = {7, : C — C,n > 1}

with F # () which is not Lipschitzian but satisfies the property (C3).

Example 3.3. Let X :=R and C :=[0,1]. For each n > 2, define T,,: C — C

by
3, r € [0,1/2];

(1—=2) /o —1+1 ze[1/2,1].



Obuviously, F(T) = {1/2}. At first we prove that the property (C3) holds for any
sequence {x,} in C. Indeed, note at first that if x, € [0,1/2], then Tyx, = 5
for any k > 2 and so d(x,, F(T)) = |z, — 1/2| = |z, — Tyx,| for k > 2. Next,
if x, € [1/2,1] then

1
|ty — Thwy| = xp —Thwp =2, —1/24+ —(1 — =)\ /zp — =

V2

> 2y —1/2 = |z, — 1/2]

for k> 2. Hence (Ill) is easily satisfied. Finally, it is not hard to show that T,

18 non-Lipschitzian on C.
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