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1 Introduction

Let C be a nonempty closed convex subset of a real Banach space X and let

T : C → C be a mapping. Then T is said to be a Lipschitzian mapping if, for

each n ≥ 1, there exists a constant kn > 0 such that

‖T nx− T ny‖ ≤ kn‖x− y‖ (1.1)

for all x, y ∈ C (we may assume that all kn ≥ 1). A Lipschitzian mapping

T is called uniformly k -Lipschitzian if kn = k for all n ≥ 1, nonexpansive if

kn = 1 for all n ≥ 1, and asymptotically nonexpansive [5] if limn→∞ kn = 1,

respectively. The class of asymptotically nonexpansive mappings was introduced

by Goebel and Kirk [5] as a generalization of the class of nonexpansive map-

pings. They proved that if C is a nonempty bounded closed convex subset of

a uniformly convex Banach space X , then every asymptotically nonexpanisve

mapping T : C → C has a fixed point.

On the other hand, as the classes of non-Lipschitzian mappings, there appear

in the literature two definitions, one is due to Kirk who says that T is a mapping

of asymptotically nonexpansive type [12] if for each x ∈ C ,

lim sup
n→∞

sup
y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0 (1.2)

and TN is continuous for some N ≥ 1. The other is the stronger concept due to

Bruck, Kuczumov and Reich [2]. They say that T is asymptotically nonexpansive

in the intermediate sense if T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0 (1.3)

Recently, Alber et al. [1] introduced the wider class of total asymptotically non-

expansive mappings to unify various definitions of classes of nonlinear mappings
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associated with the class of asymptotically nonexpansive mappings; see also Def-

inition 1 of [3]. They say that a mapping T : C → C is said to be total asymp-

totically nonexpansive (in brief, TAN) [1] (or [3]) if there exists two nonnegative

real sequences {cn} and {dn} with cn, dn → 0, φ ∈ Γ(R+) and n0 ∈ N such

that

‖T nx− T ny‖ ≤ ‖x− y‖+ cn φ(‖x− y‖) + dn, (1.4)

for all x, y ∈ C and n ≥ n0 , where R+ := [0,∞) and φ ∈ Γ(R+) means that φ

is strictly increasing, continuous on R+ and φ(0) = 0. In this case, T is often

said to be TAN on C with respect to {cn} , {dn} and φ .

Recently, motivated and stimulated by (1.4), Kim and Park [11] introduced a

discrete family = = {Tn : C → C} of non-Lipschitzian mappings, called TAN on

C , namely, = = {Tn : C → C} is said to be TAN on C with respect to {cn} ,

{dn} and φ if there exist nonnegative real sequences {cn} and {dn}, n ≥ 1 with

cn, dn → 0 and φ ∈ Γ(R+) such that

‖Tnx− Tny‖ ≤ ‖x− y‖+ cn φ(‖x− y‖) + dn, (1.5)

for all x, y ∈ C and n ≥ 1. Furthermore, we say that = is continuous on C

provided each Tn ∈ = is continuous on C ; see [11] for examples of continuous

TAN families. Then they established necessary and sufficient conditions for strong

convergence of the sequence {xn} defined recursively by the following explicit

algorithm

xn+1 = Tnxn, n ≥ 1, (1.6)

starting from an initial guess x1 ∈ C , to a common fixed point of = in Banach

spaces.

For a single mapping T of C into itself, we consider the following Ishikawa
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iterative scheme of the type (Kim-Kim [9], cf. Xu [19]) emphasizing the random-

ness of errors as follows:
x1 ∈ C chosen arbitrarily,

xn+1 = αnxn + βnT
nyn + γnun,

yn = α′nxn + β′nT
nxn + γ′nvn = (1− γ′n)

[
α′

n

1−γ′
n
xn + β′

n

1−γ′
n
T nxn

]
+ γ′nvn,

(1.7)

where {αn} , {βn} ,{γn} , {α′n} , {β′n} ,{γ′n} are real sequences in [0,1] and {un} ,

{vn} are two bounded sequences in C such that

(i) αn + βn + γn = α′n + β′n + γ′n = 1 for all n ≥ 1,

(ii)
∑∞

n=1 γn < ∞ and
∑∞

n=1 γ′n < ∞ .

If γn = γ′n = 0 for all n ≥ 1, then the iteration process (1.7) reduces to the

modified Ishikawa iteration process Schu [16] (cf. Ishikawa [8]), while setting

β′n = 0 and γ′n = 0 for all n ≥ 1, (1.7) reduces to the Mann iteration process

with errors which is a generalized case of the Mann iteration process [13].

Let a discrete family = = {Tn : C → C} be continuous TAN on C with

respect to {cn} , {dn} and φ and F := ∩∞n=1Fix(Tn). On replacing T n in (1.7)

by Tn and setting Sn := α′
n

1−γ′
n
I + β′

n

1−γ′
n
Tn for each n ≥ 1, the above algorithm

(1.7) can be modifies as follows:
x1 ∈ C chosen arbitrarily,

xn+1 = αnxn + βnTnyn + γnun,

yn = (1− γ′n)Snxn + γ′nvn.

(1.8)

Then notice that the family S := {Sn : C → C} is also TAN on C with respect

to the same {cn} , {dn} and φ because for each n ≥ 1,

‖Snx− Sny‖ ≤ α′n
1− γ′n

‖x− y‖+
β′n

1− γ′n
‖Tnx− Tny‖

≤ ‖x− y‖+ cnφ(‖x− y‖) + dn (1.9)
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for all x, y ∈ C and F ⊂ ∩∞n=1Fix(Sn) in general even if the equality holds for

all β′n > 0.

In 1994, Rhoades [15] proved that if X is a uniformly convex Banach space, C

is a nonempty bounded closed convex subset of X , and T : C → C is a completely

continuous asymptotically nonexpansive mapping with {kn} satisfying kn ≥ 1,∑∞
n=1(k

r
n − 1) < ∞ , r ≥ 2, then for any x1 ∈ C , the sequence {xn} defined by

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1,

where {αn} satisfy a ≤ αn ≤ 1 − a for all n ≥ 1 and some a > 0, converges

strongly to some fixed point of T . This result extended the result of Schu [16]

to uniformly convex Banach spaces. In 1999, Huang [7] generalized the results

due to Rhoades [15] to a more general Ishikawa (and Mann) iteration scheme. In

2001, Kim and Kim generalized the results due to Huang [7] to a more general

Ishikawa (and Mann) type scheme for non-Lipschitzian self mapping.

In this paper, we prove that the Ishikawa (and Mann) iteration process (1.8)

with errors converges strongly to some common fixed point of = under some

additional conditions whenever X is a real uniformly convex Banach space and

= = {Tn : C → C} is a continuous TAN family on C with respect to {cn} , {dn}

and φ and F := ∩∞n=1Fix(Tn) 6= ∅ .

2 Preliminaries and some lemmas

Throughout this paper we denote by X a real Banach space. Let C be a

nonempty closed convex subset of X and let T be a mapping from C into itself.

Then we denote by Fix(T ) the set of all fixed points of T , namely,

Fix(T ) = {x ∈ C : Tx = x}.
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A Banach space X is said to be uniformly convex if the modulus of convexity

δX = δX(ε), 0 < ε ≤ 2, of X defined by

δX(ε) = inf{1− ‖x + y‖
2

: x, y ∈ E, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}

satisfies the inequality δX(ε) > 0 for every ε ∈ (0, 2]; see [17] for more details.

When {xn} is a sequence in X , then xn → x will denote strong convergence of

the sequence {xn} to x .

Let T be a single TAN mapping on C with respect to {cn} , {dn} and φ . At

first let us mention the following remarks.

Remark 2.1. Note firstly that the property (1.4) with cn = 0 for all n ≥ 1 is

equivalent to (1.3). Indeed, taking cn ≡ 0 in (1.4) firstly, we have

sup
x,y∈C

{‖T nx− T ny‖ − ‖x− y‖} ≤ dn

for each n ≥ 1, and next taking the lim sup on both sides as n →∞ immediately

gives the property (1.3) because dn → 0 as n →∞ . Conversely, taking

dn := max{0, sup
x,y∈C

{‖T nx− T ny‖ − ‖x− y‖}}

for each n ≥ 1, (1.3) immediately implies dn → 0 as n → ∞ ; see also [3] for

more details. Note also that a mapping of asymptotically nonexpansive in the

intermediate sense is non-Lipschitzian; see [9]. Also, if we take φ(t) = t for all

t ≥ 0 and dn = 0 for all n ≥ 1 in (1.4), it can be reduced to the asymptotically

nonexpansive mapping. Furthermore, in addition, taking cn = 0 for all n ≥ 1, it

is nonexpansive.

Next, let = = {Tn : C → C} be continuous be a continuous TAN family on

C with respect to {cn} , {dn} and φ . Let us introduce one example given in [11].
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Example 2.2. [11] Let X = R, C = [0,∞) and, for each n ≥ 1, define

Tnx =
(
1 +

1

n

)
x +

1

n
tan−1 x, x ∈ C.

Then the family = = {Tn : C → C} is continuous TAN on C with respect to

cn := 1
n
, dn := π

n
and φ(t) = t. In fact, use | tan−1 x| < π

2
to get

|Tnx− Tny| ≤
(
1 +

1

n

)
|x− y|+ π

n

for all x, y ∈ C and n ≥ 1.

We first review the following result due to [11].

Theorem 2.3. [11] Let X be a real Banach space, C a nonempty closed convex

subset of X . Let a discrete family = = {Tn : C → C} be continuous TAN on C

w.r.t. {cn}, {dn} and φ with F := ∩∞n=1Fix(Tn) 6= ∅. Assume that {cn}, {dn}

and φ satisfy the following two conditions:

(C1) ∃α, β > 0 such that φ(t) ≤ αt for all t ≥ β ;

(C2)
∑∞

n=1 cn < ∞,
∑∞

n=1 dn < ∞.

Then the sequence {xn} defined by the explicit iteration method (1.6) converges

strongly to a common fixed point of = if and only if lim infn→∞ d(xn, F ) = 0,

where d(xn, F ) = infz∈F ‖xn − z‖.

It is natural to ask whether Theorem 2.3 still remains true or not for the

following algorithm with errors instead of (1.6).

xn+1 = (1− γn)Tnxn + γnun, n ≥ 1. (2.1)

Note that taking β′n ≡ 0, γ′n ≡ 0 and α′n ≡ 0 in (1.8) reduces quickly to (2.1).

For our argument, we need the following two subsequent lemmas.
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Lemma 2.4. [14] Let {an}, {bn} and {cn} be sequences of nonnegative real

numbers such that
∑∞

n=1 bn < ∞,
∑∞

n=1 cn < ∞ and

an+1 ≤ (1 + bn)an + cn

for all n ≥ 1. Then lim
n→∞

an exists.

Lemma 2.5. [6, 17] Let X be a uniformly convex Banach space. Let x, y ∈ X . If

‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x−y‖ ≥ ε > 0, then ‖λx+(1−λ)y‖ ≤ 1−2λ(1−λ)δX(ε)

for 0 ≤ λ ≤ 1.

Lemma 2.6. Let C be a nonempty closed convex subset of a uniformly convex

Banach space X and let a discrete family = = {Tn : C → C} be TAN on C

with respect to {cn}, {dn} and φ with F := ∩∞n=1Fix(Tn) 6= ∅. Suppose also that

{cn}, {dn} and φ satisfy two conditions (C1) and (C2) in Theorem 2.3. Let the

sequence {xn} be defined by (1.8). Then limn→∞ ‖xn − z‖ exists for any z ∈ F .

Proof. Let yn := (1− γ′n)Snxn + γ′nvn . Then for any z ∈ F , since {un} and {vn}

are bounded, let

M := 1 ∨ φ(β) ∨ sup
n≥1

‖un − z‖ ∨ sup
n≥1

‖vn − z‖ < ∞.

From (I) and strict increasing of φ , we obtain

φ(t) ≤ φ(β) + αt, t ≥ 0. (2.2)
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By using (2.2) and (1.9), we obtain

‖yn − z‖ = ‖(1− γ′n)Snxn + γ′nvn − z‖

≤ ‖Snxn − z‖+ γ′n‖vn − z‖

≤ ‖xn − z‖+ cnφ(‖xn − z‖) + dn + γ′nM

≤ ‖xn − z‖+ cn[φ(β) + α‖xn − z‖] + dn + γ′nM

≤ (1 + αcn)‖xn − z‖+ cnφ(β) + dn + γ′nM

≤ (1 + αcn)‖xn − z‖+ ηnM,

where ηn = cn + dn + γ′n and
∑∞

n=1 ηn < ∞ . Thus

φ(‖yn − z‖) ≤ φ(β) + α‖yn − z‖

≤ φ(β) + α(1 + αcn)‖xn − z‖+ αηnM

≤ α(1 + αcn)‖xn − z‖+ (1 + αηn)M,

and hence

‖Tnyn − z‖

≤ ‖yn − z‖+ cnφ(‖yn − z‖) + dn

≤ (1 + αcn)‖xn − z‖+ ηnM + cn[α(1 + αcn)‖xn − z‖+ (1 + αηn)M ] + dn

≤ (1 + 2αcn + α2c2
n)‖xn − z‖+ (ηn + cn + αcnηn + dn)M

≤ (1 + µn)‖xn − z‖+ ρnM,

where µn = 2αcn + α2c2
n , ρn = ηn + cn + αcnηn + dn ,

∑∞
n=1 µn < ∞ and
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∑∞
n=1 ρn < ∞ . Hence

‖xn+1 − z‖ = ‖αnxn + βnTnyn + γnun − z‖

≤ αn‖xn − z‖+ βn‖Tnyn − z‖+ γn‖un − z‖

≤ αn‖xn − z‖+ βn{(1 + µn)‖xn − z‖+ ρnM}+ γnM

= (1− γn)‖xn − z‖+ βnµn‖xn − z‖+ βnρnM + γnM

≤ (1 + µn)‖xn − z‖+ (ρn + γn)M.

By Lemma 2.4, we see that limn→∞ ‖xn − z‖ exists.

3 Strong convergence theorems

Now we shall present the following strong convergence for a continuous TAN

family as our main result.

Theorem 3.1. Let X be a uniformly convex Banach space and let C be a

nonempty closed convex subset of X and let a discrete family = = {Tn : C → C}

be continuous TAN on C with respect to {cn}, {dn} and φ with F 6= ∅. Suppose

that {cn}, {dn} and φ satisfy two conditions (C1) and (C2) in Theorem 2.3, and

that 0 < a ≤ βn ≤ b < 1, lim sup
n→∞

β′n ≤ b < 1 for all n ≥ 1 and some a, b ∈ (0, 1).

For the sequence defined by (1.8), assume also that there exists a nondecreasing

function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r > 0 such that

(C3) lim supn→∞ f(d(xn, F )) ≤ lim supk→∞ lim supn→∞ ‖xn − Tkxn‖.

Then {xn} converges strongly to some common fixed point of =.

Proof. For any z ∈ F , by Lemma 2.6, {xn} is bounded. Since {un} and {vn}
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are bounded in C , we set

W := sup
n≥1

‖un − z‖ ∨ sup
n≥1

‖xn − z‖ ∨ sup
n≥1

‖vn − z‖

∨ sup
n≥1

‖xn − un‖ ∨ sup
n≥1

‖xn − vn‖

and M := 1 ∨ φ(β) ∨ W < ∞. By Lemma 2.6, we see that lim
n→∞

‖xn − z‖(≡ r)

exists. Without loss of generality, we assume r > 0. As in the proof of Lemma

2.6, we obtain

‖Tnyn − z‖ ≤ (1 + µn)‖xn − z‖+ ρnM

≤ ‖xn − z‖+ µnM + ρnM

= ‖xn − z‖+ τnM,

where τn := µn + ρn and
∑∞

n=1 τn < ∞ . Thus

‖Tnyn − z + γn(un − xn)‖ ≤ ‖Tnyn − z‖+ γn‖un − xn‖

≤ ‖xn − z‖+ τnM + γnM

= ‖xn − z‖+ (τn + γn)M,

and hence

‖xn − z + γn(un − xn)‖ ≤ ‖xn − z‖+ γn‖un − xn‖

≤ ‖xn − z‖+ γnM

≤ ‖xn − z‖+ (τn + γn)M.

Since xn+1 − z = βn[Tnyn − z + γn(un − xn)] + (1− βn)[xn − z + γn(un − xn)] is

easily computed, by using Lemma 2.5, we obtain

‖xn+1 − z‖

= ‖βn[Tnyn − z + γn(un − xn)] + (1− βn)[xn − z + γn(un − xn)]‖

≤
(
‖xn − z‖+ (τn + γn)M

)[
1− 2βn(1− βn)δX

( ‖Tnyn − xn‖
‖xn − z‖+ (τn + γn)M

)]
.
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Hence we obtain

2βn(1− βn)
(
‖xn − z‖+ (τn + γn)M

)
δX

(
‖Tnyn−xn‖

‖xn−z‖+(τn+γn)M

)
≤ ‖xn − z‖ − ‖xn+1 − z‖+ (τn + γn)M.

Since

2a(1− b)
∞∑

n=1

(
‖xn − z‖+ (τn + γn)M

)
δX

( ‖Tnyn − xn‖
‖xn − z‖+ (τn + γn)M

)
< ∞,

and δE is strictly increasing and continuous, we obtain

lim
n→∞

‖Tnyn − xn‖ = 0. (3.1)

Since Sn := α′
n

1−γ′
n
I + β′

n

1−γ′
n
Tn , we have

‖xn − yn‖ = ‖xn − [(1− γ′n)Snxn + γ′nxn]‖

≤ (1− γ′n)‖xn − Snxn‖+ γ′n‖xn − vn‖

≤ β′n‖xn − Tnxn‖+ γ′nM, (3.2)

we obtain

φ(‖xn − yn‖) ≤ φ(β) + α‖xn − yn‖

≤ M + αβ′n‖Tnxn − xn‖+ αγ′nM

≤ M + α{‖Tnxn − z‖+ ‖z − xn‖}+ αγ′nM

≤ M + α{‖xn − z‖+ cnφ(‖xn − z‖) + dn + ‖z − xn‖}+ αγ′nM

≤ M + α{2M + cn[φ(β) + α‖xn − z‖] + dn}+ αγ′nM

≤ M + α{2M + cnM + αcnM + dn}+ αγ′nM

≤ M + α(2 + cn + αcn + dn + γ′n)M. (3.3)
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By using (3.2) and (3.3), we obtain

‖Tnxn − xn‖

≤ ‖Tnxn − Tnyn‖+ ‖Tnyn − xn‖

≤ ‖xn − yn‖+ cnφ(‖xn − yn‖) + dn + ‖Tnyn − xn‖

≤ β′n‖Tnxn − xn‖+ γ′nM + cn[M + α(2 + cn + αcn + dn + γ′n)M ] + dn

+‖Tnyn − xn‖,

and thus

(1− β′n)‖Tnxn − xn‖ ≤ γ′nM + cn[M + α(2 + cn + αcn + dn + γ′n)M ]

+dn + ‖Tnyn − xn‖. (3.4)

Since lim supn→∞ β′n ≤ b < 1, it easily follows from (3.1) and (3.4) that

lim
n→∞

‖Tnxn − xn‖ = 0. (3.5)

Since

‖xn+1 − xn‖ = ‖αnxn + βnTnyn + γnun − xn‖

≤ βn‖Tnyn − xn‖+ γn‖un − xn‖

≤ b‖Tnyn − xn‖+ γnM

and by (3.1), we get

lim
n→∞

‖xn+1 − xn‖ = 0.

Then it is not hard to see that

lim
n→∞

‖xk − xn‖ = 0 (3.6)
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for fixed k ≥ n . Also, since

‖Tkxn − xn‖

≤ ‖Tkxn − Tkxk‖+ ‖Tkxk − xk‖+ ‖xk − xn‖

≤ 2‖xk − xn‖+ ckφ(‖xk − xn‖) + dk + ‖Tkxk − xk‖

≤ (2 + αck)‖xk − xn‖+ Mck + dk + ‖Tkxk − xk‖

for fixed k ≥ n . Taking the lim sup as n →∞ on both sides at first, we have

lim sup
n→∞

‖Tkxn − xn‖ ≤ Mck + dk + ‖Tkxk − xk‖

by virtue of (3.6). Next taking the lim sup as k →∞ , since the right side con-

verges to 0 by (3.5), we obtain

lim sup
k→∞

lim sup
n→∞

‖Tkxn − xn‖ = 0. (3.7)

By (III), we have limn→∞ f(d(xn, F )) = 0. On the other hand, as in the proof of

Lemma 2.6, we obtain

‖xn+1 − z‖ ≤ (1 + µn)‖xn − z‖+ (ρn + γn)M (3.8)

for all z ∈ F . Thus

inf
z∈F

‖xn+1 − z‖ ≤ (1 + µn) inf
z∈F

‖xn − z‖+ (ρn + γn)M.

By using Lemma 2.4, we see that lim
n→∞

d(xn, F )(≡ c) exists. We first claim that

lim
n→∞

d(xn, F ) = 0. In fact, assume that c = lim
n→∞

d(xn, F ) > 0. Then we can

choose n0 ∈ N such that 0 < c
2

< d(xn, F ) for all n ≥ n0 . Then we obtain

0 < f(
c

2
) ≤ f(d(xn, F )) → 0
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as n → ∞ . This is a contradiction. So, it must be c = 0. We can choose a

subsequence {xni
} of {xn} such that

‖xni
− wi‖ ≤ 2−i (3.9)

for all i ≥ 1 and some sequence {wi} in F . Next, we claim that {wi} is a Cauchy

sequence by using the idea of [18]. Substituting ni and wi for n and z in (3.8),

respectively, we obtain

‖xni+1 − wi‖ ≤ (1 + µni
)‖xni

− wi‖+ (ρni
+ γni

)M

On setting ni+1 := ni + li for each i ≥ 1 and repeating this inequality continu-

ously, we arrive at

‖xni+1
− wi‖ = ‖xni+li − wi‖

≤ (1 + µni+li−1)‖xni+li−1 − wi‖+ (ρni+li−1 + γni+li−1)M

≤ · · · · · ·

≤
li∏

j=1

(1 + µni+li−j)‖xni
− wi‖+ M

li∑
k=1

k−1∏
j=1

(1 + µni+li−j)(ρni+li−k + γni+li−k)

Since
∑∞

n=1 µn < ∞ , we can set
∏∞

n=1(1 + µn) := K < ∞ and so this with (3.9)

implies

‖xni+1
− wi‖ ≤ K‖xni

− wi‖+ MK

li∑
k=1

(ρni+li−k + γni+li−k)

≤ K[2−i + M

li∑
k=1

(ρni+li−k + γni+li−k)]. (3.10)

Then it follows from (3.9) and (3.10) that

‖wi+1 − wi‖ ≤ ‖wi+1 − xni+1
‖+ ‖xni+1

− wi‖

≤ 2−(i+1) + K[2−i + M

li∑
k=1

(ρni+li−k + γni+li−k)].

14



This implies that {wi} is a Cauchy sequence. Since F is closed, we obtain

wi → w ∈ F . We also obtain xni
→ w . By using Lemma 2.6, we obtain

lim
n→∞

‖xn − w‖ = 0.

As a direct consequence, taking β′n = 0 and γ′n = 0 for all n ≥ 1 in Theorem

3.1, we immediately have the following result.

Theorem 3.2. Let X be a uniformly convex Banach space and let C be a

nonempty closed convex subset of X and let a discrete family = = {Tn : C → C}

be continuous TAN on C with respect to {cn}, {dn} and φ with F 6= ∅. Suppose

that {cn}, {dn} and φ satisfy two conditions (C1) and (C2) in Theorem 2.3. For

x1 in C , the sequence {xn} defined by

xn+1 = αnxn + βnTnxn + γnun,

where {αn}, {βn}, {γn} are sequences in [0, 1] satisfying 0 < a ≤ βn ≤ b < 1,

αn +βn +γn = 1 for all n ≥ 1 and some a, b ∈ (0, 1),
∑∞

n=1 γn < ∞ and {un} is

bounded sequence in C . Suppose also that there exists a nondecreasing function

f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) satisfying the

condition (C3) in Theorem 3.1. Then {xn} converges strongly to some common

fixed point of =.

Finally, we shall give an example of a continuous family = = {Tn : C → C, n ≥ 1}

with F 6= ∅ which is not Lipschitzian but satisfies the property (C3).

Example 3.3. Let X := R and C := [0, 1]. For each n ≥ 2, define Tn : C → C

by

Tnx =


1
2
, x ∈ [0, 1/2];

− 1√
2
(1− 2

n
)
√

x− 1
2

+ 1
2
, x ∈ [1/2, 1].
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Obviously, F (T ) = {1/2}. At first we prove that the property (C3) holds for any

sequence {xn} in C . Indeed, note at first that if xn ∈ [0, 1/2], then Tkxn = 1
2

for any k ≥ 2 and so d(xn, F (T )) = |xn − 1/2| = |xn − Tkxn| for k ≥ 2. Next,

if xn ∈ [1/2, 1] then

|xn − Tkxn| = xn − Tkxn = xn − 1/2 +
1√
2
(1− 2

k
)

√
xn −

1

2

≥ xn − 1/2 = |xn − 1/2|

for k ≥ 2. Hence (III) is easily satisfied. Finally, it is not hard to show that Tn

is non-Lipschitzian on C .
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