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1 Introduction

Let H and V be two complex Hilbert spaces such that V' is a dense subspace
of H. Identifying the antidual of H with H we may consider V C H C V*.
Let Y be another Hilbert space and let U,y C L*(0,T;Y)(T > 0) be a

admissible control set.

In this paper we study the optimal control problems finding a control
U € Uy for a given cost function J governed by the semilinear parabolic

type equation in H such that

inf,ep,, J(u) = J(u) satisfing
2'(t) = Ax(t) + f(z(t)) + Bu(t) + k(t), 0<t<T, (1.1)
W) = xo.

Here, A is the operator associated with a sesquilinear form defined on V x V
satisfying Garding’s inequality and B is a bounded linear operator from Y

to H.

Before considering a:standard optimal control.problems, namely, the av-
eraging observation cost-problem for semilinear systems in Hilbert spaces,
we deal with the wellposedness and regularity for the semilinear equation.
This approach is close to the methods dealt with in [3, 4, 5] by considered
as equation in both H and V*. It is based on the interpolation space theory

and the contraction mapping principle.

The optimal control problems of linear systems have been so extensively

studied by [2, 7, 8, 10, 11] and the references cited there. In [11], Papageor-



giou gives the existence of the optimal control for a broad class of nonlinear
evolution control systems and in [12], the author obtained necessary con-
ditions for optimality using the penalty method first introduced in [2] for
optimal control problems governed by nonlinear evolution equations with
nonmonotone nonlinearities in the state on condition of the Gateaux differ-
entiability of the nonlinear terms. However, to obtain the necessary condition
for optimal control, most studies have been devoted to the systems under the

rigorous conditions for the Gateaux derivative of the nonlinear term.

In this paper, our results overcome the limitations of the above works
combining techniques forthe linear control problems and the properties of
solutions of semilinear systems in [6, 12]. Under the bounded condition of
the Frechet derivative of the nonlinear term(see [9, 13]), we can obtain the

optimal conditions and maximal principles for a given equation.

The paper is organized as follows. In section 2 we study the regularity
and a variational of constant formula for solutions of semilinear equations.
Thereafter, we prove the existence and the uniqueness of optimal control
for the problem (1.1)4in Section 3. In the proofs of the main theorems, we
need some compactness hypothesis. . So-we make the natural assumption
that the embedding D(A) <V is compact. Then by using interpolation
theory, we show that the mapping which maps u to the mild solution of (1.1)
is a compact operator from L?(0,7;Y) to L*(0,T; H)(see [1]). Moreover
in section 4, we give the maximal principle for a given cost function and
present the necessary conditions of optimality which are described by the

adjoint state corresponding to the given equation.



2  On solutions of semilinear systems

Let H and V' be Hilbert spaces whose norms will be denoted by | - | and
|| - ||, respectively. Let A be the operator associated with a sesquilinear form

b(u,v) which is defined Garding’s inequality
Reb(u,u) > collul|®* — c1ul?, ¢ >0, ¢, >0, foruecV,
that is,
(v, Au) = =b(u,v), u, veV,
where (-, -) denotes also the duality pairing between V' and V*.
Then A is a'bounded linear operator from V" to V* by the Lax-Milgram
theorem and its realization in H which is the restriction of A to

D(A) ={uec V;Au € H}

is also denoted by A. Here, we note that D(A) is dense in V. Hence, it is
also dense in H. We endow the domain D(A) of A with graph norm, that is,
for u € D(A), we-define ||uf|pa) = |u| + |Au|. So; for'the brevity, we may
regard that |u| < ||u|| <Hullpea) forall v € VIt is known that A generates
an analytic semigroup S(¢)(t > 0) in both H and V*(see [14]).

From the following inequalities

col|ul]* < Reb(u,u) + ¢ |ul* < ClAu| |u| + c;|ul?

< (ClAu| + erfu)u] < max{C, es}|ul|peay lul,



it follows that there exists a constant Cy > 0 such that

1/2
lull < Collullpiylul?. (2.1)

Thus we have the following sequence
D(A)cV CcHcCV*C D(A) (2.2)

where each space is dense in the next one which continuous injection.

Lemma 2.1 With the notations (2.1), (2.2), we have

(V7 V*)1/2,2 = H7

(D(A), H)1j22=V.

If X is a Banach space and 1 < p < o0, LP(0,7;X) is the collection
of all strongly measurable functions from (0,7") into X the p-th powers
whose norms are integrable and W™®(0,T;X) is the set of all functions
f whose derivatives D*f up to degree m in the distribution sense belong
to LP(0,T; X). C™([0,T]; X) is the set of all m-times continuously differen-
tiable functions from [0, 7] into X. Let X and Y be complex Banach spaces.
Denote by £(X,Y) the set of all bounded linear operators from X and Y.
Let £L(X) = L(X, X).

First, consider the following initial value problem for the abstract linear

parabolic equation

2(t) = Ax(t) + k(t), 0<t<T, (LE)
z(0) = .



By virtue of Lemma 2.1 and Theorem 3.3 of [3](or Theorem 3.1 of [5]),

we have the following result on the corresponding linear equation of (LE).

Lemma 2.2 Suppose that the assumptions for the principal operator A stated

above are satisfied. Then the following properties hold:
1) Forxzg € V and k € L*(0,T; H), T > 0, there erists a unique solution x
of (LE) belonging to

L*(0,T; D(A)) N W(0,T; H) € C([0,T}; V)
and satisfying
||x"LQ(O,T;D(A))OWLQ(O,T;H) < Ch([fwo| “kHLQ(O,T;H))a (2.3)

where C is a constant depending on T.
2) Let vy € H and k € L*(0,T;V*), T > 0. Then there erists a unique

solution x of (LE) belonging to
L2(0, T; VhQ W52 (3™ < C([0,T)s.H)
and satisfying
|’x||L2(0,T;V)QW112(O,T;V*) < Ci(Jwol + ||k||L2(0,T;V*))a (2.4)
where C is a constant depending on T

From now on , we deal with the following semilinear control equation:

o' (t) = Ax(t) + f(z(t)) + Bu(t) + k(t), 0<t<T, (SE)
z(0) = .



The mild solution x(t) = z(t; f, ) is represented by

x(t) = S(t)xo +/U S(t—s){f(z(s)) + Bu(s) + k(s)}ds, t>0. (2.5)

The control space will be modeled by a Banach space Y. Let the controller

B is a bounded linear operator from Y to H.

We will need the following hypotheses on the data of problem (SE).
(A) The embedding D(A) C V is compact.

(F) f:V — H be a nonlinear mapping such that

|f(2) = f(y)| < Lilz -yl

for a positive constant L.

It is clear that under the condition (F) f : V — H is C'! with Fréchet
derivative f’(+) such that

[F@ew,my =L, zeV.

For x € V we set
1
P / o) dr, e V.
0

Then using the assumption (F) we see the following properties(see [9]):

f(x) = F(z)x + (0),
1E @) e < L,z e C(0,TV),

F(:) € C(V,L(V, H)).



Therefore, the problem (SE) can be rewritten as

x(t) = S(t)xo + /0 S(t — s)[F(x(s))z(s) + Bu(s) + f(0) + k(s)]ds,

or by perturbations of semigroup theory,

() = Qs Py + [ QU — 5 F)[Bu(s) + £(0) + k(s))ds,

where

Qt—s; Fy = S(t—s)y+/tS(t—r)F(x(r))Q(r—s; Flydr, 0<s<t<T.

Lemma 2.3 Let f € L*(0,T; H) and x(t fo s)ds for0 <t <T.

Then there exists a constant C' such that for 0<t<T

[l z20,m:4)) = Cllfll 20,7 )5 (2.6)
|20,y <ICT| fll 20,8 (2.7)

and
12|20,y < CoCVT|| | 200, m0)- (2.8)



Proof. The assertion (2.6) is immediately obtained by (2.3). Since

T t
[ / | / S(t — s)f(s)ds|dt

<o ['([ ieaspa

<o Y IR

2 T
<l [ 1p(s)ps
2 0

it follows that
Nzl 20,0 < CT| f]|20,7;0)-

From (2.1), (2.6), and (2.7) it holds that

2lez0,mv) < COC\/TH]C”L?(O,T;H)-

Theorem 2.1 Under the assumption (F) for the nonlinear mapping f, for
each k € L*(0,T;V*) there exists-a-unique solution x of (SE) such that

x € L*(0,T;V)NW2(0,T;V*) c C([0,T); H)
for any xy € H. Moreover, there exists a constant Cy such that

2|20, mv )20,y < Ci(lwol + [[ullz2oryy + [EllL20rv)- (2:9)



Proof. Let us fix Ty > 0 satisfying
CoCLVTy < 1 (2.10)

with constants C', Cy in Lemma 2.3. For any fixed z € L?(0,Ty; V), let y be

the solution of

y(t) = Ay(t) + f(x(t)) + Bu(t) + k(t), 0<t<T,

(2.11)

Put

J(z)(t) =S(t)mo + /0 S(t=s){f(xz(s)) + Bu(s) + k(s)}ds.

We are going to show that.J(z) = y is strictly contractive from L?(0,Tp; V)
to itself if the condition'(2.10) is satisfied. From assumption (F), (2.8) and

J(@1)(t) — J(z9)(t) = /0 S(t=s){f(21(s)) — f(x2(s))}ds
we have
17 (x1) = J(z2) 20,199 € CoCVTME (s ()Y = F(@2())l| 20,705

< CoCLVT ||z (-) — T2 ()| z20,10:v)-

So by virtue of the condition (2.10) the contraction mapping principle gives
that the solution of (SE) exists uniquely in [0,75]. Let x be a solution of
(SE) and 2y € H. Then there exists a constant C' such that

1S ()zol| 20,10 < Clao) (2.12)

9



in view of Lemma 2.2. Let
y(t) = /0 S(t = s){f(z(s)) + Bu(s) + k(s)}ds.

Then from (2.8), it follows
19l]220m) < CoCVTo|| f((-) + Bu + k|| 20,1 (2.13)

< CoCVTo(L|||| 2 0mpvy + || £ (- 0) + Bu + k|| 20 m.0))-

Thus, combining (2.12) with (2.13) we have

12| 22 0.1,v) S = CoC LV To) 6yl (2.14)
+ CoVTol|f(-,0) + Bu + kl|20.10.11))-
Now from
To
|z(T0)| =15 (To)xo + / S(To — s){f(s,z(s)) + Bu(s) + k(s)}ds|
0
S M|.7)0| #* ML\/ TOHxHL?(O,To;V) aF M\/ To”f(O) + BU - k||L2(O,TO;H)

we can solve the equation in [Ty, 27p] with the initial value z(7p) and obtain
an analogous estimate-to (2:14). Since the eondition (2.10) is independent
of initial values, the solution can be extended to the interval [0, nTp] for any

natural number n, and so the proof is complete. O

Let x, be the solution of (SE) corresponding to v € L*(0,7;Y). We
define the nonlinear operator F from L?*(0,T;Y) to L*(0,T; H) defined by

(Fu)(t) = f(zy(t)), ueL*0,T;Y). (2.15)

10



Theorem 2.2 Let Assumptions (A) and (F) hold. Then the nonlinear op-
erator F from L*(0,T;Y) to L*(0,T; H) defined by (2.15) is compact.

Proof. Ifu € L*(0,T;Y) we have f(x,) € L*(0,T; H), and so x, € L*(0,T; D(A))N
Wh2(0,T; H) by (2.6)(cf. Theorem 3.2 in [3]),
@l 22 (0,1 D0A) W 20,7:m) (2.16)
< Clllzol| + [1.f (2u) + Bu + k120,01 }
< C{L||zullL2(0,r:v) + [|wol| + || Bu+ f(0) + K[| £2(0,7:m) }
< CLC|wol| + W Bu + k|| 1207 } + C{Hwol| 4 || But f(-,0) + Kl 20,73 }-
By virtue of Theorem 2 in [1], we know that the embedding
L0, Ty D(A)) n W2 (0,75 H) C L*(0,T;V)

is compact ‘since the embedding D(A) € V is compact. If u belongs to
a bounded set, of L*(0,7;Y), then from (2.16) it follows that z, is also
bounded in L?(0, T; D(A)) M 12(0, T; H), and henge it is relatively compact
in L?(0,T;V). Thus, the-mapping u +— ®, is a compact operator from

L*(0,T;Y) to L*(0,T;V). Noting that
|[(Fu)|| 20,0y < Ll|wul|20,0vy < Ll|wul| 20,7004 0wr20,5m)

we have that F is a compact operator from L*(0,7;Y) to L*(0,T; H). O

11



3 Optimal control for semilinear equations

Let Z be a real Hilbert space and let C(t) be bounded from H to Z for each
t and be continuous in ¢t € [0,7]. Let y € L*(0,T;Z). Suppose that there
exists no admissible control which satisfies C'(t)z(¢; f,u) = y(t) for almost all

t. Choose a bounded subset U of Y and call it a control set. Let us define

an admissible control U,y as

Uga = {u € L*(0,T;Y) : u is strongly measurable function satisfying

u(t) € U for almost-all t}

and let z(t; f,u) be a solution of (SE) associated with the nonlinear term f
and a control u at time ¢. The solution @ (¢; f,u) of (SE) for each admissible
control u is called a trajectory corresponding to u. Then, as in section 2, it

is represented by

2(t; f,u)'= Qt; F)zo / Qt — s BY{Bu(s) + £(0)+ K(s)}ds,  (3.1)

So we consider the following-cost functional as a averaging observation control

given by

T T
I =5 [ 10@ate £ =P+ [ Nt uo)ar 32
0 0
where N is a self adjoint and positive definite:
N € L(Z), and (Nu,u) > collul]®>, co > 0. (3.3)

12



We study the control problems finding a control @ € L'(0,T;U) such that

infyep,, J(u) = J(u) satisfing
2(t) = Ax(t) + f(x(t)) + Bu(t) + k(t), 0<t<T,
z(0) = xp.

Let u € L*(0,7;Y). Then it is well known that

lim /-1 /0 u(t + 5) — u(#)|[yds = 0 (3.4)

h—0

for almost all point of ¢ € (0,T).

Definition 3.1 The pointt which permits (3.4) to hold is called the Lebesque
point of u.

Theorem 3.1 Let U be a bounded closed convex subset of Y. Then, there

exists an optimal control for the cost functional (3.1).

Proof. Let {u,} be a minimizing sequence ofJ such that

inf J(u) = lim J(u,).

u€Ugyq n— oo

Since U is bounded and weakly closed, there exists a subsequence, which we

write again by {u,}, of {u,} and a u € U such that
u, — 4 weakly in L*(0,T;Y).

13



Now we show that @ is admissible as follows. Since U is a closed convex set

of Y, by Mazur theorem as an important consequence of the Hahn-Banach
theorem, there exists an fy € Y* and ¢ € (—00,00) be such that fy(u) < ¢

for all u € U. Let s be a Lebesgue point of 4 and put

for each € > 0 and n. Then, fy(w.,) < ¢ and we have

1 s+e€
We s We = —/ u(t)dt —weakly as n — oo.
€ S

By letting € — 0, it holds that w. — 4(s) and fo(@) < ¢, so that a(s) € U.
From Theorem 2.1 it follows that {z(¢; f,u,)} is also bounded and hence
weakly sequentially compact. Hence, as seen in the prove of Theorem 2.1,

we have

x(t; fyun) — x(t; f, @) weakly in H.
Therefore, we have
infJ(u) < J(@) <liminfJd(u,) =infJ(u).
Thus, this u is an optimal control. O
For the sake of simplicity we assume that Q(¢; F') is uniformly bounded:

then
Q(t; F)| < M(t > 0)

for some M > 0(e.g. [11, 14]).

14



Lemma 3.1 ( Lemma 7.2.1 of [1/]) If v € L'(0,T; H) and
t
/ Q(t —s; Fa(s)ds=0, 0<t<T,
0
then x(t) = 0 for almost all t € [0,T].

The optimality condition J is often used to derive the uniqueness of opti-
mal control. So, we give the conditions for the uniqueness of optimal control

as follows.

Theorem 3.2 Let B defined by (Bu)(-) = Bu(-). Let B and C(t)(t > 0) be
one to one mappings. Then the optimal control for the cost function (3.2) is

unique.

Proof. Let & be an optimal control in terms of Theorem 3.1 and v € U. Let

to be a Lebesgue point of 4, v and F (v — @). For to <ty +e€ < T, put

2 = to <t<ty+e

u(t) otherwise.
Then u is an admissible eontrol. Since x(t; f, u)—x(t; f,u) =0 for 0 <t <+t

and by (3.1),

0, 0 <t <t
x(t; f,u) — x(t; f,a) = ftl; Q(t — s; F)B(v —u(s))ds, to <t <ty+e,
S Q(t — 5 F)B(v —i(s))ds, to+e<t<T.

to

(3.6)

15



Noting that v — 4 is admissible and ¢, is Lebesgue point of v — 4, there exists

a constant ¢ > 0 such that
llo —a(t)|ly <e¢, for tog<t<ty+e.
Thus, we obtain
[2(t; fu) — 2(t; f,4)| < ecM||B]].

Since 4 is optimal, we have

0 < 27w — (@)

— SeCO @t f) = ). Calt £, = y(0)

—A(C@)2(t; f,0) —y(1), CDx(t; f,a) —y(t))]

+% /O {(Nu), ult)) — (Nae), ()}t

if
€

+ 5o Tt o) - ot 0P

+ ! {(Nu(t),u(t)) — (Na(t), u(t))}dt

€ Jo

=I+I11+1I1.

From (3.7) it follows that
lim I = 0.

e—0

16

= —/0 (C)(2t; fru) = = fr @), C()x(t; f, @) —y(t))dt

(3.9)



The first term of (3.8) can be represented as

]:%[(a@@@ﬁm—xmﬁmycwﬂaﬁm—ywwt

to+e€ 1 T
/ / — L4
€ to+e

On account of (3.7), it holds that
lim I = 0. (3.10)

Let t > ty and € — 0. Then, we obtain

to+e

iy = (ot ) = ot £,0) = lim = [ QU< s PYB(w — d)(s)ds

e—0 € to

= Q(t = to; ) B(v — 1) (to).

Hence,

T

gg&zgg%t+KWMﬂuﬁw—wWﬂw%C@Mtﬂ®—y®Mt
::j<O@Qu—mJWMv—mwacanwfﬁ»—mmﬁ. (3.11)
By (3.8)-(3.11), the inequality

/<cm@u—stw—ux> C(bye(t: f.a) — y(t))dt

ﬂ%E/{Nu Na(t), ()}t > 0

17



holds for every v € U. Let us denote two optimal controls by u; and us and
their corresponding by z; and z3. Then, by the similar procedure mentioned

above, the inequalities

/0 (CH)Q(t — 3 F)B(ug —up)(s), C(t)a1(t) — y(t))dt > 0
and

/0 (COQE — 55 F)B(uy — us)(s), C(t)xa(t) — y(t))dt = 0
hold. Adding both inequalities we have

| (0@~ Bl ~un)(s), Co)alt) = n(e) < 0.

Noting that
t
it~ 21l8) = | Qb= s BB ~ ui)(s)ds,
0
integrating the resultant.inequality from 0 to 7" with respect to s, it holds

/0 CE @) — ()P <.

Since C(t) is one to one, we have that z5(t) — z1(¢t) = 0. Hence, by the
property of semigroup Q(¢; F') in Lemma 3.1, it holds that B(u; —us)(t) =0
almost everywhere. From that B is one to one, u(t) = uy(t) holds for almost

all ¢. O

18



4  Optimal conditions

In order to derive necessary optimality conditions for the optimal control
for J, we will establish the maximum principle, which is derived from the

optimal condition as follows.

Theorem 4.1 Let the admissible set U,q be a closed convex subset of L*(0,T;Y).

Let u be an optimal control. Then the integral inequality

/O (_A;/lBE;Z(S) + Nau(s),v(s)— u(s))ds >0

holds, where z(t) is a solution of the following transposed. system.:

Z(s) =1 A 2(s) = Fr(2(s))2(s) + € (s)(y(s) — C(5)y(s)), (AS)

in the weak sense. Here, the operator Ay (resp. Ayz) is the canonical isomor-

phism of Y (resp. Z ) onto Y *(resp. Z*).
Proof. Let z(t) = z(t; g;0)-and let @, (t) stand for solution of (SE) asso-
ciated with the control v € L*(0,7;Y"). Then it holds that
T T
J(v) = / 1C(#)o(t) — y(t)][*dt +/ (Nu(t), v(t))dt
0 0

T

: / CO(t) = 2(0) + Catt) — ylo Pt + [ (No(),v(e)

0

— m(v,v) — 2L(v /uy o(t)|Pdt

19



where

m(u, ) :/0 (CO)(zu(t) — (1)), C(1)(2y(t) — x(t)))dt

+ /0 (Nu(t), v(t))dt

The form 7(u,v) is a continuous bilinear form in L?(0,7;Y) and from as-

sumption of the positive definite of the operator N we have
Ty v) >cl|o|> ve LX0,T5Y):

Therefore in virtue of Theorem 1.1 of Chapter 1 in [8](or see Remark 1.5 amd
Remark 1.6 in case where the admissible set U,y = L*(0,T;Y and U,;=Cone
with vertex at the origin, respectively) there exists a unique u € U,4 such
that (1.1). If uw is an optimal control (c¢f. Theorem 1.4. Chapter 1 in [8]),
then

/

J(@w—1)>0 vela (4.1)

where J' (@)v means the Fréchet derivative of J at u, applied to v. It is easily

seen that



Therefore, (3.12) is equivalent to
/OT(C(t)a:a(t) —y(t), O(t) (2, (t) — za(t)))dt + /0T<Na, v—)dt =
/OT(C*(t)AZ(C(t)xﬁ(t) —y(t), x(t) — 24 (t))dt + /OT(Nﬁ, v —d)dt > 0.
Note that C*(t) € B(Z*, H*) and for ¢ and ¢ in H we have (C*(£)AzC(t)¢, )

= (C(t)y,C(t)¢) where duality pairing is also denoted by (-,-). From Fu-

bini’s theorem and

2(t) — (D)= / QUL s{FYB(i(s)— (s))ds

we have

/0 ' /0 t(A;lB*Q*(t “ s YO () AgO@)za (1) — y(t)) + Ni(s),
v(s).— a(s))ds dt

- /OT(/STWB*Q* (t =8 F)C (DA ACTEa(t) — y(1)))dt + Nias),
v(s) — a(s))ds

_ /0 (=Ay 1 B*2(s) + Na(s), v(s) — a(s)))ds > 0
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where z(s) is given by (AS), that is, z(s) is following form:

9=~ [ Q= s FICWACHR() - y(®)i.

Remark 4.1 Identifying the antidual Y with Y ( and also in case Z) we
need not use the canonical isomorphism Ay . But in case where Y C V* this

leads to difficulties since H has already been identified with its dual.

Corollary 4.1 (Mazimal principle) Let U,q be bounded and N = 0. If u be

an optimal solution for J then

max (vl 25 ) el " ' B* 2(4Y)

vEUq

where z(s) is giwen by in Theorem 4.1.

Proof. We note that if U,y is bounded then the set of elements u € U,y
such that (3.1) is a nenempty, closed and convex set in'U,;. Let t be a

Lebesque point of w, v € U g-and t < t +€ <. Further, put

v, if t<s<t+e

u(s), otherwise.

Then Substituting v, for v in (3.12) and dividing the resulting inequality by
€, we obtain

1/t E(—A{/lB*z(s),U(s) —u(s))ds > 0.

€
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Thus by letting ¢ — 0, the proof is complete. O

Theorem 4.2 (Bang-Bang Principle) Let Uyq be bounded and N = 0. Let
B} and C(-) be one to one mappings. If there is not the control u such that
C(t)xy(t) = 24(t) a.e, then the optimal control u(t) is a bang-bang control, i.e,
u(t) satisfies u(t) € OUuq for almost all t where OU,q denotes the boundary
of Upq.

Proof. On account of Corollary 4.1 it is enough to show that
A B (t)y(t) # 0 for almost all t. If Bg(t)y(t) = 0;-then since

v == | Q= sEICBAZCOn0 = yl0)i

it follows that
€ (t)z,(t) — e a.e..

It is a contraction. O

Remark 4.2 From (3.8)-and (3.11), it is directly obtained that

/ (COQ — 5 F)B(w — i)(s), C(t)x(t: f.a) — y(t))dt > 0

holds for every v € U and for all Lebesgue points s of u. Hence, we have

(v —a(s), Ay B*2(s)) <0
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where
2(s) = — / Q(t — $)C* ()AL(C(0)a(t: f.) — y(t))dt.

Here, z(s) is a solution of the equation (AS) in some sense Theorem 4.1.

O
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