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손 병 영

부경대학교 교육대학원 수학교육전공

 이 논문은 힐버트 공간상에서 방물형의 비선형 발전방정식의 최적제어문제를 다룬다. 먼저 

주어진 방정식에 의해 정의되는 비용함수에 대한 최적제어의 존재성을 밝힌 후, 최적제어의 

필요조건과 극대원리를 구하고자 하였다. 본 논문의 주요 결과는 다음과 같다.

 첫째로,  와  를 힐버트 공간으로 하고 가 조밀한 공간으로서  그의 공액공간을 

로 하자.    →  가 립쉬츠연속을 만족할 때, 다음과 같이 유계선형연산자

   ⊂  → 를 포함하는 초기치 문제:

             
′       ≤ 
  

       

에서, 조건    ×    이 주어지면, 위의 초기치 문제의 해는 유일하게 존재

하며,아울러         

                ∈  ∩  ⊂   이고

                   ∩    ≤       
    



임을 증명하였다.

둘째로, 제어 와 그 해 를 포함하는 비용함수 에 대하여 허용 가능한 제어집합   

상에서 in f  
  를 만족하는 최적제어 의 존재성을 증명하였다. 아울러 비선형 

제어계에 대해서도 비용함수에 포함된 작용소의 조건을 제시하여 최적제어의 유일성을 유도 

하였고, 최적제어의 특성을 규명할 수 있는 극대원리도 증명하였다.



1 Introduction

Let H and V be two complex Hilbert spaces such that V is a dense subspace

of H. Identifying the antidual of H with H we may consider V ⊂ H ⊂ V ∗.

Let Y be another Hilbert space and let Uad ⊂ L2(0, T ;Y )(T > 0) be a

admissible control set.

In this paper we study the optimal control problems finding a control

û ∈ Uad for a given cost function J governed by the semilinear parabolic

type equation in H such that


infu∈Uad

J(u) = J(û) satisfing

x′(t) = Ax(t) + f(x(t)) +Bu(t) + k(t), 0 < t ≤ T,

x(0) = x0.

(1.1)

Here, A is the operator associated with a sesquilinear form defined on V ×V

satisfying G̊arding’s inequality and B is a bounded linear operator from Y

to H.

Before considering a standard optimal control problems, namely, the av-

eraging observation cost problem for semilinear systems in Hilbert spaces,

we deal with the wellposedness and regularity for the semilinear equation.

This approach is close to the methods dealt with in [3, 4, 5] by considered

as equation in both H and V ∗. It is based on the interpolation space theory

and the contraction mapping principle.

The optimal control problems of linear systems have been so extensively

studied by [2, 7, 8, 10, 11] and the references cited there. In [11], Papageor-
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giou gives the existence of the optimal control for a broad class of nonlinear

evolution control systems and in [12], the author obtained necessary con-

ditions for optimality using the penalty method first introduced in [2] for

optimal control problems governed by nonlinear evolution equations with

nonmonotone nonlinearities in the state on condition of the Gateaux differ-

entiability of the nonlinear terms. However, to obtain the necessary condition

for optimal control, most studies have been devoted to the systems under the

rigorous conditions for the Gateaux derivative of the nonlinear term.

In this paper, our results overcome the limitations of the above works

combining techniques for the linear control problems and the properties of

solutions of semilinear systems in [6, 12]. Under the bounded condition of

the Frechet derivative of the nonlinear term(see [9, 13]), we can obtain the

optimal conditions and maximal principles for a given equation.

The paper is organized as follows. In section 2 we study the regularity

and a variational of constant formula for solutions of semilinear equations.

Thereafter, we prove the existence and the uniqueness of optimal control

for the problem (1.1) in Section 3. In the proofs of the main theorems, we

need some compactness hypothesis. So we make the natural assumption

that the embedding D(A) ⊂ V is compact. Then by using interpolation

theory, we show that the mapping which maps u to the mild solution of (1.1)

is a compact operator from L2(0, T ;Y ) to L2(0, T ;H)(see [1]). Moreover

in section 4, we give the maximal principle for a given cost function and

present the necessary conditions of optimality which are described by the

adjoint state corresponding to the given equation.
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2 On solutions of semilinear systems

Let H and V be Hilbert spaces whose norms will be denoted by | · | and

|| · ||, respectively. Let A be the operator associated with a sesquilinear form

b(u, v) which is defined G̊arding’s inequality

Re b(u, u) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0, for u ∈ V,

that is,

(v, Au) = −b(u, v), u, v ∈ V,

where ( ·, ·) denotes also the duality pairing between V and V ∗.

Then A is a bounded linear operator from V to V ∗ by the Lax-Milgram

theorem and its realization in H which is the restriction of A to

D(A) = {u ∈ V ;Au ∈ H}

is also denoted by A. Here, we note that D(A) is dense in V . Hence, it is

also dense in H. We endow the domain D(A) of A with graph norm, that is,

for u ∈ D(A), we define ||u||D(A) = |u| + |Au|. So, for the brevity, we may

regard that |u| ≤ ||u|| ≤ ||u||D(A) for all u ∈ V . It is known that A generates

an analytic semigroup S(t)(t ≥ 0) in both H and V ∗(see [14]).

From the following inequalities

c0||u||2 ≤ Re b(u, u) + c1|u|2 ≤ C|Au| |u|+ c1|u|2

≤ (C|Au|+ c1|u|)|u| ≤ max{C, c1}||u||D(A)|u|,
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it follows that there exists a constant C0 > 0 such that

||u|| ≤ C0||u||1/2
D(A)|u|

1/2. (2.1)

Thus we have the following sequence

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗ (2.2)

where each space is dense in the next one which continuous injection.

Lemma 2.1 With the notations (2.1), (2.2), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V.

If X is a Banach space and 1 < p < ∞, Lp(0, T ;X) is the collection

of all strongly measurable functions from (0, T ) into X the p-th powers

whose norms are integrable and Wm,p(0, T ;X) is the set of all functions

f whose derivatives Dαf up to degree m in the distribution sense belong

to Lp(0, T ;X). Cm([0, T ];X) is the set of all m-times continuously differen-

tiable functions from [0, T ] into X. Let X and Y be complex Banach spaces.

Denote by L(X, Y ) the set of all bounded linear operators from X and Y .

Let L(X) = L(X,X).

First, consider the following initial value problem for the abstract linear

parabolic equation

 x′(t) = Ax(t) + k(t), 0 < t ≤ T,

x(0) = x0.
(LE)
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By virtue of Lemma 2.1 and Theorem 3.3 of [3](or Theorem 3.1 of [5]),

we have the following result on the corresponding linear equation of (LE).

Lemma 2.2 Suppose that the assumptions for the principal operator A stated

above are satisfied. Then the following properties hold:

1) For x0 ∈ V and k ∈ L2(0, T ;H), T > 0, there exists a unique solution x

of (LE) belonging to

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V )

and satisfying

||x||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1(||x0||+ ||k||L2(0,T ;H)), (2.3)

where C1 is a constant depending on T .

2) Let x0 ∈ H and k ∈ L2(0, T ;V ∗), T > 0. Then there exists a unique

solution x of (LE) belonging to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|x0|+ ||k||L2(0,T ;V ∗)), (2.4)

where C1 is a constant depending on T .

From now on , we deal with the following semilinear control equation:

 x′(t) = Ax(t) + f(x(t)) +Bu(t) + k(t), 0 < t ≤ T,

x(0) = x0.
(SE)
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The mild solution x(t) = x(t; f, u) is represented by

x(t) = S(t)x0 +

∫ t

0

S(t− s){f(x(s)) +Bu(s) + k(s)}ds, t ≥ 0. (2.5)

The control space will be modeled by a Banach space Y . Let the controller

B is a bounded linear operator from Y to H.

We will need the following hypotheses on the data of problem (SE).

(A) The embedding D(A) ⊂ V is compact.

(F) f : V −→ H be a nonlinear mapping such that

|f(x)− f(y)| ≤ L||x− y||.

for a positive constant L.

It is clear that under the condition (F) f : V → H is C1 with Fréchet

derivative f ′(·) such that

||f ′(x)||L(V,H) ≤ L, x ∈ V.

For x ∈ V we set

F (x) =

∫ 1

0

f ′(rx)dr, x ∈ V.

Then using the assumption (F) we see the following properties(see [9]):

f(x) = F (x)x+ f(0),

||F (x(t))||L(V,H) ≤ L, x ∈ C([0, T ];V ),

F (·) ∈ C(V,L(V,H)).
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Therefore, the problem (SE) can be rewritten as

x(t) = S(t)x0 +

∫ t

0

S(t− s)[F (x(s))x(s) +Bu(s) + f(0) + k(s)]ds,

or by perturbations of semigroup theory,

x(t) = Q(t;F )x0 +

∫ t

0

Q(t− s;F )[Bu(s) + f(0) + k(s)]ds,

where

Q(t−s;F )y = S(t−s)y+

∫ t

s

S(t−r)F (x(r))Q(r−s;F )ydr, 0 ≤ s ≤ t ≤ T.

Lemma 2.3 Let f ∈ L2(0, T ;H) and x(t) =
∫ t

0
S(t−s)f(s)ds for 0 ≤ t ≤ T .

Then there exists a constant C such that for 0 ≤ t ≤ T

||x||L2(0,T ;D(A)) ≤ C||f ||L2(0,T ;H), (2.6)

||x||L2(0,T ;H) ≤ CT ||f ||L2(0,T ;H), (2.7)

and

||x||L2(0,T ;V ) ≤ C0C
√
T ||f ||L2(0,T ;H). (2.8)
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Proof. The assertion (2.6) is immediately obtained by (2.3). Since

||x||2L2(0,T ;H) =

∫ T

0

|
∫ t

0

S(t− s)f(s)ds|2dt

≤ C

∫ T

0

(

∫ t

0

|f(s)|ds)2dt

≤ C

∫ T

0

t

∫ t

0

|f(s)|2dsdt

≤ C
T 2

2

∫ T

0

|f(s)|2ds

it follows that

||x||L2(0,T ;H) ≤ CT ||f ||L2(0,T ;H).

From (2.1), (2.6), and (2.7) it holds that

||x||L2(0,T ;V ) ≤ C0C
√
T ||f ||L2(0,T ;H).

2

Theorem 2.1 Under the assumption (F) for the nonlinear mapping f , for

each k ∈ L2(0, T ;V ∗) there exists a unique solution x of (SE) such that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

for any x0 ∈ H. Moreover, there exists a constant C1 such that

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|x0|+ ||u||L2(0,T ;Y ) + ||k||L2(0,T ;V ∗)). (2.9)
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Proof. Let us fix T0 > 0 satisfying

C0CL
√
T 0 < 1 (2.10)

with constants C, C0 in Lemma 2.3. For any fixed x ∈ L2(0, T0;V ), let y be

the solution of y′(t) = Ay(t) + f(x(t)) +Bu(t) + k(t), 0 < t ≤ T,

y(0) = x0.
(2.11)

Put

J(x)(t) = S(t)x0 +

∫ t

0

S(t− s){f(x(s)) +Bu(s) + k(s)}ds.

We are going to show that J(x) = y is strictly contractive from L2(0, T0;V )

to itself if the condition (2.10) is satisfied. From assumption (F), (2.8) and

J(x1)(t)− J(x2)(t) =

∫ t

0

S(t− s){f(x1(s))− f(x2(s))}ds

we have

||J(x1)− J(x2)||L2(0,T0;V ) ≤ C0C
√
T 0||f(x1(·))− f(x2(·))||L2(0,T0;H)

≤ C0CL
√
T 0||x1(·)− x2(·)||L2(0,T0;V ).

So by virtue of the condition (2.10) the contraction mapping principle gives

that the solution of (SE) exists uniquely in [0, T0]. Let x be a solution of

(SE) and x0 ∈ H. Then there exists a constant C such that

||S(t)x0||L2(0,T0;V ) ≤ C|x0| (2.12)
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in view of Lemma 2.2. Let

y(t) =

∫ t

0

S(t− s){f(x(s)) +Bu(s) + k(s)}ds.

Then from (2.8), it follows

||y||L2(0,T0;V ) ≤ C0C
√
T 0||f(x(·)) +Bu+ k||L2(0,T0;H) (2.13)

≤ C0C
√
T 0(L||x||L2(0,T0;V ) + ||f(·, 0) +Bu+ k||L2(0,T0;H)).

Thus, combining (2.12) with (2.13) we have

||x||L2(0,T0;V ) ≤(1− C0CL
√
T 0)

−1C(|x0| (2.14)

+ C0

√
T 0||f(·, 0) +Bu+ k||L2(0,T0;H)).

Now from

|x(T0)| = |S(T0)x0 +

∫ T0

0

S(T0 − s){f(s, x(s)) +Bu(s) + k(s)}ds|

≤M |x0|+ML
√
T0||x||L2(0,T0;V ) +M

√
T0||f(0) +Bu+ k||L2(0,T0;H)

we can solve the equation in [T0, 2T0] with the initial value x(T0) and obtain

an analogous estimate to (2.14). Since the condition (2.10) is independent

of initial values, the solution can be extended to the interval [0, nT0] for any

natural number n, and so the proof is complete. 2

Let xu be the solution of (SE) corresponding to u ∈ L2(0, T ;Y ). We

define the nonlinear operator F from L2(0, T ;Y ) to L2(0, T ;H) defined by

(Fu)(t) = f(xu(t)), u ∈ L2(0, T ;Y ). (2.15)
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Theorem 2.2 Let Assumptions (A) and (F) hold. Then the nonlinear op-

erator F from L2(0, T ;Y ) to L2(0, T ;H) defined by (2.15) is compact.

Proof. If u ∈ L2(0, T ;Y ) we have f(xu) ∈ L2(0, T ;H), and so xu ∈ L2(0, T ;D(A))∩

W 1,2(0, T ;H) by (2.6)(cf. Theorem 3.2 in [3]),

||xu||L2(0,T ;D(A))∩W 1,2(0,T ;H) (2.16)

≤ C{||x0||+ ||f(xu) +Bu+ k||L2(0,T ;H)}

≤ C{L||xu||L2(0,T ;V ) + ||x0||+ ||Bu+ f(0) + k||L2(0,T ;H)}

≤ CLC1{||x0||+ ||Bu+ k||L2(0,T ;H)}+ C{||x0||+ ||Bu+ f(·, 0) + k||L2(0,T ;H)}.

By virtue of Theorem 2 in [1], we know that the embedding

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ L2(0, T ;V )

is compact since the embedding D(A) ⊂ V is compact. If u belongs to

a bounded set of L2(0, T ;Y ), then from (2.16) it follows that xu is also

bounded in L2(0, T ;D(A))∩W 1,2(0, T ;H), and hence it is relatively compact

in L2(0, T ;V ). Thus, the mapping u 7→ xu is a compact operator from

L2(0, T ;Y ) to L2(0, T ;V ). Noting that

||(Fu)||L2(0,T ;H) ≤ L||xu||L2(0,T ;V ) ≤ L||xu||L2(0,T ;D(A))∩W 1,2(0,T ;H)

we have that F is a compact operator from L2(0, T ;Y ) to L2(0, T ;H). 2
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3 Optimal control for semilinear equations

Let Z be a real Hilbert space and let C(t) be bounded from H to Z for each

t and be continuous in t ∈ [0, T ]. Let y ∈ L2(0, T ;Z). Suppose that there

exists no admissible control which satisfies C(t)x(t; f, u) = y(t) for almost all

t. Choose a bounded subset U of Y and call it a control set. Let us define

an admissible control Uad as

Uad = {u ∈ L2(0, T ;Y ) : u is strongly measurable function satisfying

u(t) ∈ U for almost all t}

and let x(t; f, u) be a solution of (SE) associated with the nonlinear term f

and a control u at time t. The solution x(t; f, u) of (SE) for each admissible

control u is called a trajectory corresponding to u. Then, as in section 2, it

is represented by

x(t; f, u) = Q(t;F )x0 +

∫ t

0

Q(t− s;F ){Bu(s) + f(0) + k(s)}ds, (3.1)

So we consider the following cost functional as a averaging observation control

given by

J(u) =
1

2

∫ T

0

|C(t)x(t; f, u)− y(t)|2dt+

∫ T

0

(Nu(t), u(t))dt, (3.2)

where N is a self adjoint and positive definite:

N ∈ L(Z), and (Nu, u) ≥ c0||u||2, c0 > 0. (3.3)
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We study the control problems finding a control û ∈ L1(0, T ;U) such that


infu∈Uad

J(u) = J(û) satisfing

x′(t) = Ax(t) + f(x(t)) +Bu(t) + k(t), 0 < t ≤ T,

x(0) = x0.

Let u ∈ L1(0, T ;Y ). Then it is well known that

lim
h→0

h−1

∫ h

0

||u(t+ s)− u(t)||Y ds = 0 (3.4)

for almost all point of t ∈ (0, T ).

Definition 3.1 The point t which permits (3.4) to hold is called the Lebesgue

point of u.

Theorem 3.1 Let U be a bounded closed convex subset of Y . Then, there

exists an optimal control for the cost functional (3.1).

Proof. Let {un} be a minimizing sequence of J such that

inf
u∈Uad

J(u) = lim
n→∞

J(un).

Since U is bounded and weakly closed, there exists a subsequence, which we

write again by {un}, of {un} and a û ∈ U such that

un → û weakly in L2(0, T ;Y ).
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Now we show that û is admissible as follows. Since U is a closed convex set

of Y , by Mazur theorem as an important consequence of the Hahn-Banach

theorem, there exists an f0 ∈ Y ∗ and c ∈ (−∞,∞) be such that f0(u) ≤ c

for all u ∈ U . Let s be a Lebesgue point of û and put

wε,n =
1

ε

∫ s+ε

s

un(t)dt

for each ε > 0 and n. Then, f0(wε,n) ≤ c and we have

wε,n→wε =
1

ε

∫ s+ε

s

û(t)dt weakly as n→∞.

By letting ε → 0, it holds that wε → û(s) and f0(û) ≤ c, so that û(s) ∈ U .

From Theorem 2.1 it follows that {x(t; f, un)} is also bounded and hence

weakly sequentially compact. Hence, as seen in the prove of Theorem 2.1,

we have

x(t; f, un) → x(t; f, û) weakly in H.

Therefore, we have

inf J(u) ≤ J(û) ≤ lim inf J(un) = inf J(u).

Thus, this û is an optimal control. 2

For the sake of simplicity we assume that Q(t;F ) is uniformly bounded:

then

|Q(t;F )| ≤M(t ≥ 0)

for some M > 0(e.g. [11, 14]).
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Lemma 3.1 ( Lemma 7.2.1 of [14]) If x ∈ L1(0, T ;H) and

∫ t

0

Q(t− s;F )x(s)ds = 0, 0 ≤ t ≤ T,

then x(t) = 0 for almost all t ∈ [0, T ].

The optimality condition J is often used to derive the uniqueness of opti-

mal control. So, we give the conditions for the uniqueness of optimal control

as follows.

Theorem 3.2 Let B defined by (Bu)(·) = Bu(·). Let B and C(t)(t ≥ 0) be

one to one mappings. Then the optimal control for the cost function (3.2) is

unique.

Proof. Let û be an optimal control in terms of Theorem 3.1 and v ∈ U . Let

t0 be a Lebesgue point of û, v and F(v − û). For t0 ≤ t0 + ε < T , put

u(t) =

 v if t0 ≤ t < t0 + ε

û(t) otherwise.
(3.5)

Then u is an admissible control. Since x(t; f, u)−x(t; f, û) = 0 for 0 ≤ t ≤ t0

and by (3.1),

x(t; f, u)− x(t; f, û) =


0, 0 ≤ t ≤ t0,∫ t

t0
Q(t− s;F )B(v − û(s))ds, t0 < t < t0 + ε,∫ t0+ε

t0
Q(t− s;F )B(v − û(s))ds, t0 + ε ≤ t ≤ T.

(3.6)
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Noting that v− û is admissible and t0 is Lebesgue point of v− û, there exists

a constant c > 0 such that

||v − û(t)||Y ≤ c, for t0 ≤ t ≤ t0 + ε.

Thus, we obtain

|x(t; f, u)− x(t; f, û)| ≤ εcM ||B||. (3.7)

Since û is optimal, we have

0 ≤ 1

ε
(J(u)− J(û)) (3.8)

=
1

2ε
[C(t)(x(t; f, u)− y(t), C(t)x(t; f, u)− y(t))

− (C(t)x(t; f, û)− y(t), C(t)x(t; f, û)− y(t))]

+
1

ε

∫ T

0

{(Nu(t), u(t))− (Nû(t), û(t))}dt

=
1

ε

∫ T

0

(C(t)(x(t; f, u)− x(t; f, û)), C(t)x(t; f, û)− y(t))dt

+
1

2ε

∫ T

0

|C(t)(x(t; f, u)− x(t; f, û))|2dt

+
1

ε

∫ T

0

{(Nu(t), u(t))− (Nû(t), û(t))}dt

= I + II + III.

From (3.7) it follows that

lim
ε→0

II = 0. (3.9)
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The first term of (3.8) can be represented as

I =
1

ε

∫ T

t0

(C(t)(x(t; f, u)− x(t; f, û)), C(t)x(t; f, û)− y(t))dt

=
1

ε

∫ t0+ε

t0

+
1

ε

∫ T

t0+ε

= I1 + I2.

On account of (3.7), it holds that

lim
ε→0

I1 = 0. (3.10)

Let t > t0 and ε→ 0. Then, we obtain

lim
ε→0

1

ε
(x(t; f, u)− x(t; f, û)) = lim

ε→0

1

ε

∫ t0+ε

t0

Q(t− s;F )B(v − û)(s)ds

= Q(t− t0;F )B(v − û)(t0).

Hence,

lim
ε→0

I2 = lim
ε→0

1

ε

∫ T

t0+ε

(C(t)(x(t; f, u)− x(t; f, û)), C(t)x(t; f, û)− y(t))dt

=

∫ T

t0

(C(t)Q(t− t0;F )B(v − û)(t0), C(t)x(t; f, û)− y(t))dt. (3.11)

By (3.8)-(3.11), the inequality∫ T

0

(C(t)Q(t− s;F )B(v − û)(s), C(t)x(t; f, û)− y(t))dt

+ lim
ε→0

1

ε

∫ T

0

{(Nu(t), u(t))− (Nû(t), û(t))}dt ≥ 0

17



holds for every v ∈ U . Let us denote two optimal controls by u1 and u2 and

their corresponding by x1 and x2. Then, by the similar procedure mentioned

above, the inequalities

∫ T

0

(C(t)Q(t− s;F )B(u2 − u1)(s), C(t)x1(t)− y(t))dt ≥ 0

and ∫ T

0

(C(t)Q(t− s;F )B(u1 − u2)(s), C(t)x2(t)− y(t))dt ≥ 0

hold. Adding both inequalities we have

∫ T

0

(C(t)Q(t− s;F )B(u2 − u1)(s), C(t)(x2(t)− x1(t)) ≤ 0.

Noting that

x2(t)− x1(t) =

∫ t

0

Q(t− s;F )B(u2 − u1)(s)ds,

integrating the resultant inequality from 0 to T with respect to s, it holds

∫ T

0

|C(t)(x2(t)− x1(t))|2 ≤ 0.

Since C(t) is one to one, we have that x2(t) − x1(t) ≡ 0. Hence, by the

property of semigroup Q(t;F ) in Lemma 3.1, it holds that B(u1− u2)(t) = 0

almost everywhere. From that B is one to one, u1(t) = u2(t) holds for almost

all t. 2
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4 Optimal conditions

In order to derive necessary optimality conditions for the optimal control

for J , we will establish the maximum principle, which is derived from the

optimal condition as follows.

Theorem 4.1 Let the admissible set Uad be a closed convex subset of L2(0, T ;Y ).

Let û be an optimal control. Then the integral inequality

∫ T

0

(−Λ−1
Y B∗

0z(s) +Nû(s), v(s)− û(s))ds ≥ 0

holds, where z(t) is a solution of the following transposed system:z′(s) = −A∗z(s)− F ∗(z(s))z(s) + C∗(s)(y(s)− C(s)ŷ(s)),

z(T ) = 0
(AS)

in the weak sense. Here, the operator ΛY (resp. ΛZ) is the canonical isomor-

phism of Y (resp. Z) onto Y ∗(resp. Z∗).

Proof. Let x(t) = x(t; g, 0) and let xv(t) stand for solution of (SE) asso-

ciated with the control v ∈ L2(0, T ;Y ). Then it holds that

J(v) =

∫ T

0

||C(t)xv(t)− y(t)||2dt+

∫ T

0

(Nv(t), v(t))dt

=

∫ T

0

||C(t)(xv(t)− x(t)) + C(t)x(t)− y(t)||2dt+

∫ T

0

(Nv(t), v(t))dt

= π(v, v)− 2L(v) +

∫ T

0

||y(t)− Cx(t)||2dt
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where

π(u, v) =

∫ T

0

(C(t)(xu(t)− x(t)), C(t)(xv(t)− x(t)))dt

+

∫ T

0

(Nu(t), v(t))dt

L(v) =

∫ T

0

(y(t)− C(t)x(t), C(t)(xv(t)− x(t)))dt.

The form π(u, v) is a continuous bilinear form in L2(0, T ;Y ) and from as-

sumption of the positive definite of the operator N we have

π(v, v) ≥ c||v||2 v ∈ L2(0, T ;Y ).

Therefore in virtue of Theorem 1.1 of Chapter 1 in [8](or see Remark 1.5 amd

Remark 1.6 in case where the admissible set Uad = L2(0, T ;Y and Uad=Cone

with vertex at the origin, respectively) there exists a unique u ∈ Uad such

that (1.1). If u is an optimal control (cf. Theorem 1.4. Chapter 1 in [8]),

then

J
′
(û)(v − û) ≥ 0 v ∈ Uad, (4.1)

where J
′
(û)v means the Fréchet derivative of J at û, applied to v. It is easily

seen that

x
′

û(t)(v − û) = (v − û, x
′

û(t))

= lim
ε→0

1

ε
{x(t; f, û+ ε(v − û))− x(t; f, û)}

= xv(t)− xû(t).
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Therefore, (3.12) is equivalent to∫ T

0

(C(t)xû(t)− y(t), C(t)(xv(t)− xû(t)))dt+

∫ T

0

(Nû, v − û)dt =

∫ T

0

(C∗(t)ΛZ(C(t)xû(t)− y(t), xv(t)− xû(t))dt+

∫ T

0

(Nû, v − û)dt ≥ 0.

Note that C∗(t) ∈ B(Z∗, H∗) and for φ and ψ inH we have (C∗(t)ΛZC(t)ψ, φ)

= (C(t)ψ,C(t)φ) where duality pairing is also denoted by (·, ·). From Fu-

bini’s theorem and

xv(t)− xû(t) =

∫ t

0

Q(t− s;F )B(v(s)− û(s))ds

we have

∫ T

0

∫ t

0

(Λ−1
Y B∗Q∗(t− s;F )C∗(t)ΛZ(C(t)xû(t)− y(t)) +Nû(s),

v(s)− û(s))ds dt

=

∫ T

0

(

∫ T

s

(Λ−1
Y B∗Q∗(t− s;F )C∗(t)ΛZ(C(t)xû(t)− y(t)))dt+Nû(s),

v(s)− û(s))ds

=

∫ T

0

(−ΛY
−1B∗z(s) +Nû(s), v(s)− û(s)))ds ≥ 0
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where z(s) is given by (AS), that is, z(s) is following form:

z(s) = −
∫ T

s

Q∗(t− s;F )C∗(t)ΛZ(C(t)xû(t)− y(t))dt.

2

Remark 4.1 Identifying the antidual Y with Y ( and also in case Z) we

need not use the canonical isomorphism ΛY . But in case where Y ⊂ V ∗ this

leads to difficulties since H has already been identified with its dual.

Corollary 4.1 (Maximal principle) Let Uad be bounded and N = 0. If u be

an optimal solution for J then

max
v∈Uad

(v,Λ−1
Y B∗z(s)) = (u,Λ−1

Y B∗z(s))

where z(s) is given by in Theorem 4.1.

Proof. We note that if Uad is bounded then the set of elements u ∈ Uad

such that (3.1) is a nonempty, closed and convex set in Uad. Let t be a

Lebesque point of u, v ∈ Uad and t < t+ ε < T . Further, put

vε(s) =

v, if t < s < t+ ε

u(s), otherwise.

Then Substituting vε for v in (3.12) and dividing the resulting inequality by

ε, we obtain

1

ε

∫ t+ε

t

(−Λ−1
Y B∗z(s), v(s)− û(s))ds ≥ 0.

22



Thus by letting ε→ 0, the proof is complete. 2

Theorem 4.2 (Bang-Bang Principle) Let Uad be bounded and N = 0. Let

B∗
0 and C(·) be one to one mappings. If there is not the control u such that

C(t)xu(t) = zd(t) a.e, then the optimal control u(t) is a bang-bang control, i.e,

u(t) satisfies u(t) ∈ ∂Uad for almost all t where ∂Uad denotes the boundary

of Uad.

Proof. On account of Corollary 4.1 it is enough to show that

Λ−1
U B∗

0(t)y(t) 6= 0 for almost all t. If B∗
0(t)y(t) = 0, then since

y(s) = −
∫ T

s

Q∗(t− s;F )C∗(t)ΛZ(C(t)xu(t)− y(t))dt,

it follows that

C(t)xu(t)− y(t) = 0 a.e..

It is a contraction. 2

Remark 4.2 From (3.8) and (3.11), it is directly obtained that

∫ T

s

(C(t)Q(t− s;F )B(v − û)(s), C(t)x(t; f, û)− y(t))dt ≥ 0

holds for every v ∈ U and for all Lebesgue points s of û. Hence, we have

(v − û(s),Λ−1
Y B∗z(s)) ≤ 0
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where

z(s) = −
∫ T

s

Q∗(t− s)C∗(t)ΛZ(C(t)x(t; f, û)− y(t))dt.

Here, z(s) is a solution of the equation (AS) in some sense Theorem 4.1.

2
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