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1 Introduction

Let X be a real Banach space with norm ‖ · ‖ and let X∗ be the dual of X . Let

{xn} be a sequence in X , x ∈ X . We denote by xn → x the strong convergence

of {xn} to x and by xn ⇀ x the weak convergence of {xn} to x . Also, we denote

by ωw(xn) the weak ω -limit set of {xn} , that is,

ωw(xn) = {x : ∃xnk
⇀ x}.

Let C be a nonempty closed convex subset of X and let T : C → C be a

mapping. Now let Fix(T ) be the fixed point set of T ; namely,

Fix(T ) := {x ∈ C : Tx = x}.

Recall that T is a Lipschitzian mapping if, for each n ≥ 1, there exists a constant

kn > 0 such that

‖T nx− T ny‖ ≤ kn‖x− y‖ (1.1)

for all x, y ∈ C (we may assume that all kn ≥ 1). A Lipschitzian mapping T is

called uniformly k -Lipschitzian if kn = k for all n ≥ 1, nonexpansive if kn = 1 for

all n ≥ 1, and asymptotically nonexpansive if limn→∞ kn = 1, respectively. The

class of asymptotically nonexpansive mappings was introduced by Goebel and

Kirk [7] as a generalization of the class of nonexpansive mappings. They proved

that if C is a nonempty bounded closed convex subset of a uniformly convex

Banach space X , then every asymptotically nonexpanisve mapping T : C → C

has a fixed point.

On the other hand, as the classes of non-Lipschitzian mappings, there appear

in the literature two definitions, one is due to Kirk who says that T is a mapping
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of asymptotically nonexpansive type [14] if for each x ∈ C ,

lim sup
n→∞

sup
y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0 (1.2)

and TN is continuous for some N ≥ 1. The other is the stronger concept due to

Bruck, Kuczumov and Reich [2]. They say that T is asymptotically nonexpansive

in the intermediate sense if T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0 (1.3)

In this case, observe that if we define

δn := sup
x,y∈C

(‖T nx− T ny‖ − ‖x− y‖) ∨ 0, (1.4)

(here a ∨ b := max{a, b}), then δn ≥ 0 for all n ≥ 1, δn → 0 as n → ∞ , and

thus (1.3) immediately reduces to

‖T nx− T ny‖ ≤ ‖x− y‖+ δn (1.5)

for all x, y ∈ C and n ≥ 1.

Recently, Alber et al. [1] introduced the wider class of total asymptotically

nonexpansive mappings to unify various definitions of classes of nonlinear map-

pings associated with the class of asymptotically nonexpansive mappings; see

also Definition 1 of [3]. They say that a mapping T : C → C is total asymptoti-

cally nonexpansive (TAN, in brief) [1] (or [3]) if there exist two nonnegative real

sequences {cn} and {dn} with cn, dn → 0 and φ ∈ Γ(R+) such that

‖T nx− T ny‖ ≤ ‖x− y‖+ cn φ(‖x− y‖) + dn, (1.6)

for all x, y ∈ K and n ≥ 1, where R+ := [0,∞) and

φ ∈ Γ(R+) ⇔ φ is strictly increasing, continuous on R+ and φ(0) = 0.
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Remark 1.1. If ϕ(t) = t , then (1.6) reduces to

‖T nx− T ny‖ ≤ ‖x− y‖+ cn ‖x− y‖+ dn

for all x, y ∈ C and n ≥ 1. In addition, if dn = 0, kn = 1+cn for all n ≥ 1, then

the class of total asymptotically nonexpansive mappings coincides with the class

of asymptotically nonexpansive mappings. If cn = 0 and dn = 0 for all n ≥ 1,

then (1.6) reduces to the class of nonexpansive mappings. Also, if we take cn = 0

and dn = δn as in (1.4), then (1.6) reduces to (1.5); see [3] for more details.

Let C be a nonempty closed convex subset of a real Banach space X , and

let T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅ . Recall that the

following Mann [15] iterative method is extensively used for solving a fixed point

equation of the form Tx = x :

xn+1 = (1− αn)xn + αnTxn, n ≥ 0, (1.7)

where {an} is a sequence in [0, 1] and x0 ∈ C is arbitrarily chosen. In infinite-

dimensional spaces, Mann’s algorithm has generally only weak convergence. In

fact, it is known [18] that if the sequence {αn} is such that
∑∞

n=1 αn(1−αn) = ∞,

then Mann’s algorithm (1.7) converges weakly to a fixed point of T provided the

underlying space is a Hilbert space or more general, a uniformly convex Banach

space which has a Fréchet differentiable norm or satisfies Opial’s property. Fur-

thermore, Mann’s algorithm (1.7) also converges weakly to a fixed point of T if X

is a uniformly convex Banach space such that its dual X∗ enjoys the Kadec-Klee

property (KK-property, in brief), i.e., xn ⇀ x and ‖xn‖ → ‖x‖ ⇒ xn → x . It

is well known [5] that the duals of reflexive Banach spaces with a Frechet differen-

tiable norms have the KK-property. There exist uniformly convex spaces which
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have neither a Fréchet differentiable norm nor the Opial property but their duals

do have the KK-property; see Example 3.1 of [6].

What is the robustness of Mann’s algorithm? It means that convergence of

Mann’s algorithm (1.7) is still stable (or robust) for approximately small per-

turbations. The study of the robustness of Mann’s algorithm is initiated by

Combettes [4] where he considered a parallel projection method (PPM, in brief)

algorithm in signal synthesis (design and recovery) problems in a real Hilbert

space H as follows:

xn+1 = xn + λn

(
m∑

i=1

wi(Pixn + ci,n)− xn

)
, (1.8)

where for each i , Pi(x) is the (nearest point) projection of a signal x ∈ H onto

a closed convex subset Si of H [4] (Si is interpreted as the i-th constraint set

of the signals), {λn}n≥0 is a sequence of relaxation parameters in (0, 2), {wi}m
i=1

are strictly positive weights such that
∑m

i=1 wi = 1, and ci,n stands for the error

made in computing the projection onto Si at iteration n . Then he proved the

following robustness result of the PPM algorithm (1.8).

Theorem 1.2. ([4]) Assume G := ∩m
i=1Si 6= ∅. Assume also

(i)
∑∞

n=0 λn(2− λn) = ∞ and

(ii)
∑∞

n=0 λn ‖
∑m

i=1 wi ci,n‖ < ∞.

Then the sequence {xn} generated by the PPM algorithm (1.8) converges weakly

to a point in G.

It is well known [11] that Theorem 1.2 (Combettes’ robustness) can be easily

reformulated as follows.

4



Theorem 1.3. Let H be a real Hilbert space, T : H → H a nonexpansive

mapping with Fix(T ) 6= ∅, and let {xn} be generated by

xn+1 = (1− αn)xn + αn(Txn + en), n ≥ 0, (1.9)

starting from an initial guess x0 ∈ H . Assume also that two sequences {αn} in

(0, 1) and {en} in H satisfy the following properties:

(i) ′
∑∞

n=0 αn(1− αn) = ∞ and

(ii) ′
∑∞

n=0 αn‖en‖ < ∞.

Then the sequence {xn} converges weakly to a fixed point of T .

In 2007, Kim and Xu [11] established that Theorem 1.3 still remains true in

the framework of a special Banach space, namely, a uniformly convex Banach

space X whose either its dual X∗ has the KK-property or X enjoys Opial’s

property.

Let C be a nonempty closed convex subset of a real Banach space X . In this

paper, using the demiclosedness principle of continuous TAN mappings, we also

establish robustness of the following perturbed Mann’s algorithm

xn+1 = (1− αn)xn + αn(T nxn + en), n ≥ 0 (1.10)

for a continuous TAN self-mapping T in a uniformly convex Banach space X

which either X∗ has the Kadec Klee property or X satisfies Opial property,

under suitable conditions of parameters {αn}∞n=0 and errors {en}∞n=0 .

2 Preliminaries

Here we summarize the notations used in the sequel. The convex hull of a subset

A of a real Banach space X is denoted by co A , and the closed convex hull by
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co A . We put

4n−1 = {λ = (λ1, λ2, · · · , λn) : λi ≥ 0 (i = 1, 2, · · · , n) and
n∑

i=1

λi = 1}

and for r > 0

Br = {x ∈ X : ‖x‖ ≤ r}.

We start with the following recent result for continuous TAN mappings, called

the demiclosedness principle.

Proposition 2.1. ([9]) Let C be a nonempty closed convex subset of a uniformly

convex Banach space X . Let T : C → C be a continuous TAN mapping. Then

I − T is demiclosed at zero in the sense that whenever {xn} is a sequence in C

such that xn ⇀ x (∈ C) and it satisfies

lim sup
k→∞

lim sup
n→∞

‖xn − T kxn‖ = 0.

Then x ∈ F (T ).

We first need an inequality characterizing the uniform convexity in real Banach

spaces.

Lemma 2.2. ([19]) Given a number r > 0. A real Banach space X is uni-

formly convex if and only if there exists a continuous strictly increasing function

ϕ : [0,∞) → [0,∞), ϕ(0) = 0, such that

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)ϕ(‖x− y‖)

for all λ ∈ [0, 1] and x, y ∈ Br .
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Lemma 2.3. ([21]) Let {an}, {αn} and {βn}be sequences of nonnegative real

numbers such that

an+1 ≤ (1 + αn)an + βn

for all n ≥ 1. Suppose that
∑∞

n=1 αn < ∞ and
∑∞

n=1 βn < ∞ . Then limn→∞ an

exists. Moreover, if in addition, lim infn→∞ an = 0, then limn→∞ an = 0.

Assume unless other specified that X is a real Banach space, and that

T : X → X is a continuous TAN mapping as in (1.6), equipped with F (T ) 6= ∅ .

Assume also that the following additional conditions (C1) and (C2) hold:

(C1) ∃α0, β > 0 such that φ(t) ≤ α0t for all t ≥ β .

(C2)
∑∞

n=1 cn < ∞ and
∑∞

n=1 dn < ∞ .

Consider a family S = {Sn : X → X, n ≥ 0} defined by

Sn = (1− αn)I + αnT
n, n ≥ 0,

where {αn} is a sequence in [0, 1]. It is not hard to see that

Fix(T ) ⊂ Fix(S) := ∩∞n=1Fix(Sn)

and the converse inclusion holds for all αn 6= 0. We now discuss the weak

convergence of the sequence {xn} in X defined recurrently by

xn+1 = Snxn + un, n ≥ 1, (2.1)

starting from an initial guess x1 ∈ X , where {un} is a sequence in X such that

(C3)
∑∞

n=0 ‖un‖ < ∞ .

We first discuss some useful properties of the algorithm (2.1).
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Lemma 2.4. Let {xn} be generated by the algorithm (2.1) and let p ∈ Fix(S).

Then limn→∞ ‖xn − p‖ exists. Furthermore, limn→∞ d(xn, F ix(S)) exists, where

d(x, A) denotes the distance from x to the set A.

Proof. Note firstly that, since φ is strictly increasing on R+ , φ(t) ≤ φ(β) when-

ever t ≤ β and condition (C1) also gives φ(t) ≤ α0t for t ≥ β . In either case, we

have

φ(‖xn − p‖) ≤ φ(β) + α0‖xn − p‖.

This implies that

‖xn+1 − p‖ = ‖Snxn + un − p‖

≤ ‖Snxn − p‖+ ‖un‖

≤ ‖xn − p‖+ cnφ(‖xn − p‖) + dn + ‖un‖

≤ (1 + α0cn)‖xn − p‖+ φ(β)cn + dn + ‖un‖.

On viewing the hypotheses (C2) and (C3), Lemma 2.3 is applicable with αn = α0cn

and βn = φ(β)cn + dn + ‖un‖ and so limn→∞ ‖xn − p‖ exists. Obviously,

limn→∞ d
(
xn, F ix(T )

)
exists because p ∈ Fix(T ) is arbitrarily given.

Now on mimicking Lemma 2.2 and 2.3 in [16] we have the following result.

For more detailed proof, see Lemma 2.2. of [13].

Lemma 2.5. ([13]) Let C be a nonempty closed convex subset of a uniformly

convex Banach space X . Let a family S = {Sn : C → C} be such that

‖Snx− Sny‖ ≤ ‖x− y‖+ cnφ(‖x− y‖) + dn, x, y ∈ C.

and that Fix(S) 6= ∅. Let K be a bounded closed convex subset of C con-

taining x∗ for some x∗ ∈ Fix(S). Then, for ε > 0 there exists an integers
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Nε ≥ 1 and δε with 0 < δε ≤ ε such that k ≥ Nε , x1, x2, · · · , xn ∈ K and if

‖xi − xj‖ − ‖Skxi − Skxj‖ ≤ δε for 1 ≤ i, j ≤ n, then∥∥∥∥∥Sk

(
n∑

i=1

λixi

)
−

n∑
i=1

λiSkxi

∥∥∥∥∥ < ε

for all λ = (λ1, λ2, · · · , λn) ∈ 4n−1 .

Lemma 2.6. Let X be uniformly convex. Then limn→∞ ‖λ1xn + λ2p− q‖ exists

for all p, q ∈ Fix(S) and λ = (λ1, λ2) ∈ 41 .

Proof. For integers n,m ≥ 1 and all x ∈ X , define the mappings Un and Sn,m

by

Unx = Snx + un

and

Sn,mx = Un+m−1Un+m−2 · · ·Unx.

Obviously, xn+m = Sn,mxn . From Lemma 2.4, it suffices to show that the con-

clusion remains true for 0 < λ1, λ2 < 1. By Lemma 2.4, since the sequence {xn}

is bounded, let K be a bounded closed convex subset of X containing p , q and

{xn} for applying for Lemma 2.5 again. Put D := supx,y∈K φ(‖x − y‖) < ∞ .

Then, notice that

‖Unx− Uny‖ = ‖Snx− Sny‖ ≤ ‖x− y‖+ Dcn + dn

and

‖Sn,mx− Sn,my‖ ≤ ‖x− y‖+ D

n+m−1∑
i=n

ci +
n+m−1∑

i=n

di

≤ ‖x− y‖+ d̃n (2.2)
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for all x, y ∈ K , where d̃n := D
∑∞

i=n ci +
∑∞

i=n di → 0. Similarly, we can prove

that the conclusion of Lemma 2.5 still remains true with Sn,m instead of T n ,

by mimicking the processes of the proof of Lemma 2.5 with Sn,m instead of T n .

Given ε > 0, take Nε ≥ 1 and δ2,ε with 0 < δ2,ε ≤ ε as in Lemma 2.5. Set

an = ‖λ1xn + λ2p− q‖

and

bn,m = ‖Sn,m(λ1xn + λ2p)− (λ1xn+m + λ2p)‖.

Noticing that, for all n, m ≥ 1,

‖Sn,mz − z‖ = ‖Un+m−1Un+m−2 · · ·Unz − Un+m−1z‖+ ‖Un+m−1z − z‖

≤ ‖Un+m−2 · · ·Unz − z‖+ Dcn+m−1 + dn+m−1 + ‖un+m−1‖
...

≤ D
n+m−1∑
i=n+1

ci +
n+m−1∑
i=n+1

di +
n+m−1∑

i=n

‖ui‖

≤ D
∞∑

i=n+1

ci +
∞∑

i=n+1

di +
∞∑

i=n

‖ui‖ := gn (2.3)

for either z = p or z = q and gn → 0 as n →∞ , we deduce that

‖xn − p‖ − ‖Sn,mxn − Sn,mp‖

≤ ‖xn − p‖ − ‖xn+m − p‖+ ‖Sn,mp− p‖ → 0 as n →∞

and we can choose n0 ≥ Nε such that

‖xn − p‖ − ‖Sn,mxn − Sn,mp‖ ≤ δ2,ε

for all n ≥ n0 and m ≥ 1. As a direct consequence of Lemma 2.5, we obtain

‖Sn,m(λ1xn + λ2p)− (λ1Sn,mxn + λ2Sn,mp)‖ < ε
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for λ = (λ1, λ2) ∈ 41 , n ≥ n0 and m ≥ 1. Thus we have

bn,m ≤ ‖Sn,m(λ1xn + λ2p)− (λ1Sn,mxn + λ2Sn,mp)‖

+λ2‖Sn,mp− p‖ ≤ ε + gn

for all n ≥ n0 and m ≥ 1. This, since ε > 0 is arbitrarily given and gn → 0,

implies that

lim
n→∞

sup
m≥1

bn,m = 0. (2.4)

On the other hand, by the help of (2.2) and (2.3), we have

an+m = ‖λ1xn+m + λ2p− q‖

≤ bn,m + ‖Sn,m(λ1xn + λ2p)− Sn,mq‖+ ‖Sn,mq − q‖

≤ bn,m + an + d̃n + gn

for all n, m ≥ 1. Taking the lim sup as m → ∞ at first and next the lim inf as

n →∞ , this together with (2.4) and d̃n, gn → 0 yields that limn→∞ an exists.

The following lemma is also very useful to establish the robustness of Mann’s

algorithm.

Lemma 2.7. (see Lemma 3.2 of [6]) Let X be a uniformly convex Banach space

such that its dual X∗ has the KK-property. Suppose that {xn} is a bounded

sequence such that limn→∞ ‖αxn + (1 − α)p − q‖ exists for all α ∈ [0, 1] and

p, q ∈ ωw(xn). Then ωw(xn) is a singleton.

As applying for Lemma 2.6 combined with Lemma 2.7, we immediately have

the following result.

Proposition 2.8. Let X be a uniformly convex Banach space such that its dual

X∗ has the KK-property. If ωw(xn) ⊂ Fix(S), then ωw(xn) is a singleton.
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3 Robustness of Mann’s algorithm

In this section we now present the robustness result of Mann’s algorithm for

continuous TAN mappings.

Theorem 3.1. Assume X is a uniformly convex Banach space. Assume, in

addition, that either X∗ has the KK-property or X satisfies Opial property. Let

T : X → X be a continuous TAN mapping satisfying (C1) and (C2) together

with Fix(T ) 6= ∅ and
∑∞

n=1 ‖T n+1 − T n‖ < ∞. Given an initial guess x0 ∈ X ,

let {xn} be generated by the perturbed Mann’s algorithm (1.10). Assume that

{αn}∞n=0 ⊂ (0, 1) and {en}∞n=0 ⊂ X satisfy control conditions (i) ′ and (ii) ′ in

Theorem 1.3. Then the sequence {xn} converges weakly to a fixed point of T .

Proof. Put Sn := (1 − αn)I + αnT
n for each n ≥ 0 and un := αnen ∈ X .

Since Fix(T ) ⊂ Fix(S) := ∩∞n=1Fix(Sn), it is clear that Fix(S) 6= ∅ . Then

the algorithm (1.10) reduces to (2.1) and (C3) is clearly fulfilled by (ii) ′ . For

applying the demiclosedness at 0 of I − T in the sense of Proposition 2.1, we

first show the following equation holds, that is,

lim sup
k→∞

lim sup
n→∞

‖xn − T kxn‖ = 0.

Indeed, fix a p ∈ Fix(T ) and select a number r > 0 big enough so that

‖xn − p‖ ≤ r for all n . Since φ is a strictly increasing function on R+ ,

φ(‖xn − p‖) ≤ φ(r) for all n ≥ 1. Since T : X → X is TAN,

‖T nxn − p‖ ≤ ‖xn − p‖+ cnφ(‖xn − p‖) + dn

≤ ‖xn − p‖+ φ(r)cn + dn (3.1)

for all n ≥ 1. Now let M > 0 satisfy M > 2(r + φ(r)cn + dn) + αn‖en‖ for all

12



n ≥ 1. By Lemma 2.2 and (3.1), we have

‖xn+1 − p‖2 = ‖(1− αn)(xn − p) + αn(T nxn − p) + αnen‖2

≤ ‖(1− αn)(xn − p) + αn(T nxn − p)‖2

+2αn‖en‖‖(1− αn)(xn − p) + αn(T nxn − p)‖+ α2
n‖en‖2

≤ (1− αn)‖xn − p‖2 + αn‖T nxn − p‖2

−αn(1− αn)ϕ(‖xn − T nxn‖) + Mαn‖en‖

≤ (1− αn)‖xn − p‖2 + αn

(
‖xn − p‖+ φ(r)cn + dn

)2
−αn(1− αn)ϕ(‖xn − T nxn‖) + Mαn‖en‖

≤ ‖xn − p‖2 − αn(1− αn)ϕ(‖xn − T nxn‖) + β̃n,

where β̃n :=
[(

r + φ(r)cn + dn

)2 − r2
]
+ Mαn‖en‖ . It follows that

αn(1− αn)ϕ(‖xn − T nxn‖) ≤ ‖xn+1 − p‖2 − ‖xn − p‖2 + β̃n.

Since
∑∞

n=1 β̃n < ∞ by (C2) and (ii) ′ , this implies that

∞∑
n=0

αn(1− αn)ϕ(‖xn − T nxn‖) < ∞.

Due to condition (i) ′ , we must have that lim infn→∞ ϕ(‖xn−T nxn‖) = 0. Hence

lim inf
n→∞

‖xn − T nxn‖ = 0. (3.2)

However, since

T nxn+1 − xn+1 = (T nxn+1 − T nxn) + (1− αn)(T nxn − xn)− αnen
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and xn+1 − xn = αn(T nxn − xn) + αnen , we have

‖T nxn+1 − xn+1‖ ≤ ‖T nxn+1 − T nxn‖+ (1− αn)‖T nxn − xn‖+ αn‖en‖

≤ ‖xn+1 − xn‖+ cnφ(‖xn+1 − xn‖) + dn

+(1− αn)‖T nxn − xn‖+ αn‖en‖

≤ ‖T nxn − xn‖+ Ccn + dn + 2αn‖en‖,

where C := φ(2 supn≥0 ‖xn‖) < ∞ . Since {xn} is bounded, there exists L > 0

such that ‖xn‖ ≤ L for all n , and so we have

‖T n+1xn+1 − xn+1‖

≤ ‖T n+1xn+1 − T nxn+1‖+ ‖T nxn+1 − xn+1‖

≤ L‖T n+1 − T n‖+ ‖T nxn − xn‖+ Ccn + dn + 2αn‖en‖.

Since
∑∞

n=1 ‖T n+1−T n‖ < ∞ , by Lemma 2.3 with βn := L‖T n+1−T n‖+Ccn+dn+2αn‖en‖ ,

limn→∞ ‖T nxn − xn‖ exists and hence, by (3.2)

lim
n→∞

‖T nxn − xn‖ = 0. (3.3)

By virtue of (3.3), since

‖xn+1 − xn‖ ≤ αn‖T nxn − xn‖+ αn‖en‖ → 0, (3.4)

it immediately follows that

‖xn−k − xn‖ → 0 (3.5)

for any fixed positive integer k . Thus we claim that

lim
n→∞

‖T n−kxn − xn‖ = 0 (3.6)
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for any fixed k ≥ 1. Indeed, since {xn} is bounded, using (3.5) and cn, dn → 0,

we have

‖T n−kxn − T n−kxn−k‖ ≤ ‖xn − xn−k‖+ cn−kφ(‖xn − xn−k‖) + dn−k → 0

as n →∞ and hence, this fact combined with (3.3) and (3.5) also gives

‖T n−kxn − xn‖ ≤ ‖T n−kxn − T n−kxn−k‖+ ‖T n−kxn−k − xn−k‖

+‖xn−k − xn‖ → 0

as n →∞ for any fixed k ≥ 1. Hence (3.6) is required. Using (3.6) and properties

of φ , it is not hard to claim that

lim sup
n→∞

‖xn − T nxn‖ ≤ dk (3.7)

for any fixed k ≥ 1 because

‖xn − T kxn‖ ≤ ‖xn − T nxn‖+ ‖T kT n−kxn − T kxn‖

≤ ‖xn − T nxn‖+ ‖T n−kxn − xn‖+ ckφ(‖T n−kxn − xn‖) + dk

for sufficiently large n ≥ k . Thus we obtain

lim sup
k→∞

lim sup
n→∞

‖xn − T kxn‖ = 0.

Hence, by Proposition 2.1, we have

ωw(xn) ⊂ Fix(T ).

Now to prove that {xn} weakly converges to a fixed point of T , it suffices to

show that ωw(xn) is a singleton. First, if X∗ has KK-property, it is clear from

Proposition 2.8.
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Next assume that X satisfies Opial’s property. Take subsequences {xni
} and

{xmj
} of {xn} such that xni

⇀ p1 and xmj
⇀ p2 , respectively. If p1 6= p2 , we

reach the following contradiction:

lim
n→∞

‖xn − p1‖ = lim
j→∞

‖xni
− p1‖

< lim
i→∞

‖xni
− p2‖ = lim

j→∞
‖xnj

− p2‖

< lim
i→∞

‖xnj
− p1‖

= lim
i→∞

‖xn − p1‖.

In any case, we have shown that ωw(xn) is a singleton set and hence the proof is

complete.
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