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1 Introduction

Let X be a real Banach space with norm || - || and let X* be the dual of X . Let
{z,} be a sequence in X, z € X. We denote by x,, — x the strong convergence
of {z,} to z and by z,, = = the weak convergence of {z,} to z. Also, we denote

by wy(z,) the weak w-limit set of {z,}, that is,
wy(zn) ={z: Jx,, — x}.

Let C be a nonempty closed convex subset of X and let T": C' — C be a
mapping. Now let Fiz(T) be the fixed point set of T'; namely,

Fiz(T o= 4ol T =z}

Recall that T is a Lipschitzian mapping if, for each n > 1, there exists a constant
k, > 0 such that
[Tz = T"y||| < Kalle — vl (1.1)

for all z,y € C' (we may assume that all k, > 1). A Lipschitzian mapping 7" is
called uniformly k-Lipschitzian if-k, = k for allww > 17, nonezxpansive if k,, = 1 for
all n > 1, and asymptotically nonexpansive if lim,, . k, = 1, respectively. The
class of asymptotically nonexpansive mappings was introduced by Goebel and
Kirk [7] as a generalization of the class of nonexpansive mappings. They proved
that if C' is a nonempty bounded closed convex subset of a uniformly convex
Banach space X, then every asymptotically nonexpanisve mapping 7' : C' — C
has a fixed point.

On the other hand, as the classes of non-Lipschitzian mappings, there appear

in the literature two definitions, one is due to Kirk who says that T is a mapping



of asymptotically nonexpansive type [14] if for each x € C,

lim sup sup(|| 7"z — T"y|| -l — yll) < 0 (1.2
n—oo yeC
and TV is continuous for some N > 1. The other is the stronger concept due to
Bruck, Kuczumov and Reich [2]. They say that T' is asymptotically nonezpansive
in the intermediate sense if T' is uniformly continuous and
limsup sup (| 7" — T"y]| - ||z - yll) <0 (1.3)
n—oo x,yceC
In this case, observe that if we define

On i= sup (|T"z — T"y[| — flz —y[}) V0, (1.4)

z,yeC
(here a V b := max{a, b}), then ¢, > 0 forall n > 1, 4, — 0'as n — oo, and

thus (1.3) immediately reduces to
1% =T < llz =yl +on (1.5)

forall z, y e C and n > 1.

Recently, Alber et al--[1] introduced the wider elass of total asymptotically
nonexpansive mappings to-unify various definitions of classes of nonlinear map-
pings associated with the class of asymptotically nonexpansive mappings; see
also Definition 1 of [3]. They say that a mapping T : C' — C' is total asymptoti-
cally nonexpansive (TAN, in brief) [1] (or [3]) if there exist two nonnegative real

sequences {c,} and {d,} with ¢,, d, — 0 and ¢ € T'(R") such that
[Tz =Tyl < llz = yll + e o[z = yll) + da, (1.6)
for all x, y € K and n > 1, where R™ :=[0,00) and

¢ € T(RT) < ¢ is strictly increasing, continuous on R™ and ¢(0) = 0.



Remark 1.1. If ¢(t) =t, then (1.6) reduces to
17"z = T"y|| < ||z = yll + cn [z = yll + dn

forall x, y € C'and n > 1. In addition, if d, =0, k, = 1+¢, for all n > 1, then
the class of total asymptotically nonexpansive mappings coincides with the class
of asymptotically nonexpansive mappings. If ¢, =0 and d, = 0 for all n > 1,
then (1.6) reduces to the class of nonexpansive mappings. Also, if we take ¢, =0

and d, = 9, asin (1.4), then (1.6) reduces to (1.5); see [3] for more details.

Let C be a nonempty-closed convex subset of areal Banach space X, and
let T : C — C be a nonexpansive mapping with Fiz:(T) % (. Recall that the
following Mann [15] iterative method is extensively used for solving a fixed point

equation of the form Tz = x:
Tni1 = (1 — ap)x, + @Tx,, n >0, (1.7)

where {a,} is a sequence in [0,1] and zy € C is arbitrarily chosen. In infinite-
dimensional spaces, Mann’s algorithm has generally-only weak convergence. In
fact, it is known [18] that if the sequence {ay, } issuch that Y > o, (1—a,) = oo,
then Mann’s algorithm (1.7) converges weakly to a fixed point of T" provided the
underlying space is a Hilbert space or more general, a uniformly convex Banach
space which has a Fréchet differentiable norm or satisfies Opial’s property. Fur-
thermore, Mann’s algorithm (1.7) also converges weakly to a fixed point of 7" if X
is a uniformly convex Banach space such that its dual X* enjoys the Kadec-Klee
property (KK-property, in brief), i.e., x, — = and ||z, || — ||| = 2z, — . It
is well known [5] that the duals of reflexive Banach spaces with a Frechet differen-

tiable norms have the KK-property. There exist uniformly convex spaces which



have neither a Fréchet differentiable norm nor the Opial property but their duals
do have the KK-property; see Example 3.1 of [6].

What is the robustness of Mann’s algorithm? It means that convergence of
Mann’s algorithm (1.7) is still stable (or robust) for approximately small per-
turbations. The study of the robustness of Mann’s algorithm is initiated by
Combettes [4] where he considered a parallel projection method (PPM, in brief)
algorithm in signal synthesis (design and recovery) problems in a real Hilbert

space H as follows:

Tpi1= Ln+ )\n (Z wz(szn m Ci,n) = xn) s (18)

i=1
where for each i, Pi(x) is the (nearest point) projection of a signal z € H onto
a closed convex subset S; of H [4] (S; is interpreted as the i-th constraint set
of the signals), {\,}.>0 is & sequence of relaxation parameters in (0,2), {w;}7,
are strictly positive weights such that Zzzl w; = 1, and ¢;,, stands for the error
made in computing the projection onto|S; at iteration n. Then he proved the

following robustness.result-of the PPM algorithm (1.8).
Theorem 1.2. ([4]) Assume-G== NLy.S; # 0. Assume also
(i) ZZ‘LO An(2 —A) =00 and
(i) Doz An 12250, wi cinl| < o0

Then the sequence {x,} generated by the PPM algorithm (1.8) converges weakly

to a point in G.

It is well known [11] that Theorem 1.2 (Combettes’ robustness) can be easily

reformulated as follows.



Theorem 1.3. Let H be a real Hilbert space, T : H — H a nonexpansive
mapping with Fiz(T) # 0, and let {z,} be generated by

Tp+1 = (1 - an)xn + O‘n(Txn + en)a n Z 07 (19)

starting from an initial guess xo € H. Assume also that two sequences {ay,} in

(0,1) and {e,} in H satisfy the following properties:
(i) > gan(l —ay,) =00 and

(i) 3o Onllen]| < oo
Then the sequence {x,} converges weakly to a fized point of T .

In 2007, Kim and Xu [11] established that Theorem 1.3 still remains true in
the framework of a special Banach space, namely, a uniformly convex Banach
space X whose either its dual X* has the KK-property or X' enjoys Opial’s
property.

Let C' be a nonempty closed convex subset of a real Banach space X . In this
paper, using the demiclosedness principle of continuous TAN mappings, we also

establish robustness of the following perturbed Mann’s algorithm
Tpt1 = (I=a)x, Fan@™z, +€,), n>0 (1.10)

for a continuous TAN self-mapping 7' in a uniformly convex Banach space X
which either X* has the Kadec Klee property or X satisfies Opial property,

under suitable conditions of parameters {a,}7°, and errors {e,}>°,.

2 Preliminaries

Here we summarize the notations used in the sequel. The convex hull of a subset

A of a real Banach space X is denoted by co A, and the closed convex hull by

5



co A. We put
AT == (A A M) s A > 0(i=1,2,-- n) and Y\ =1}
=1

and for » > 0
B, ={zeX:|z| <r}.

We start with the following recent result for continuous TAN mappings, called

the demiclosedness principle.

Proposition 2.1. ([9]) Let C be a nonempty closed-convex subset of a uniformly
convex Banach space X . Let T : C — C' be a continuous - TAN mapping. Then
I — T is demiclosed at zero in the sense that whenever {x,} is a sequence in C
such that x, — x (€ C) and it satisfies

limsup lim sup || 2, — T2, || = 0.
k—o0o n—00

Then x € F(T).

We first need an inequality characterizing the uniform eonvexity in real Banach

spaces.

Lemma 2.2. ([19]) Given a number r > 0. A real Banach space X is uni-
formly convex if and only if there exists a continuous strictly increasing function

¢ :[0,00) — [0,00), ¢(0) =0, such that
Az + (1= N)yl* < Al ]l* + (1 = Nyl = A1 = Ne(llz = yll)

for all A € [0,1] and z,y € B,.



Lemma 2.3. ([21]) Let {a,}, {an} and {5,}be sequences of nonnegative real
numbers such that

An+1 S (1 + an)an + Bn

for all n > 1. Suppose that Y " | a, < 00 and Y " B, < 0o . Then lim, o ap

exists. Moreover, if in addition, liminf,, .. a, =0, then lim, ., a, = 0.

Assume unless other specified that X is a real Banach space, and that
T : X — X is a continuous TAN mapping as in (1.6), equipped with F(T) # 0.
Assume also that the following additional conditions (C1) and (C2) hold:

(C1) Jap, B> 0 such that ¢(t) < aopt for all t > 3.
(C2) Y= ¢, <fooand 'y > dh <oo.
Consider a family S = {S,, : X — X, n' > 0} defined by
Sn =1 —ap)] +a,T" n>0,
where {a,} is a sequence in [0, 1]. It is not hard to see that

Fie(T) &l B B g ict,)

and the converse inclusion holds for all «,, # 0. We now discuss the weak

convergence of the sequence {z,} in X defined recurrently by
Tpil = SpZp + Up, n>1, (2.1)
starting from an initial guess x; € X, where {u,} is a sequence in X such that

(C3) T2 luall < oo.

We first discuss some useful properties of the algorithm (2.1).

7



Lemma 2.4. Let {x,} be generated by the algorithm (2.1) and let p € Fiz(S).
Then lim, . ||z, — p|| ezists. Furthermore, lim, . d(x,, Fiz(S)) exists, where

d(xz, A) denotes the distance from x to the set A.

Proof. Note firstly that, since ¢ is strictly increasing on RT, ¢(t) < ¢(3) when-
ever t < (3 and condition (C1) also gives ¢(t) < oot for t > 3. In either case, we

have
¢([|xn —pll) < &(B) + aollzn — pl|-

This implies that

n 1 =PIl = (| S + un = pl|

IA

[1Snan — Pl |

IA

12 =PIl + end(ll€n = I+ dn + [|ua]]

< (1 +aoca)llen — ol SB)e, +d + llul

On viewing the hypotheses (C2).and (C3), Lemma 2.3 is applicable with «,, = agc,
and [, = o(B)cn+ dp it |lunl and so lim, .o ||z, — p|| exists. Obviously,
limy, o0 d(2,, Fiz(T)) exists because p-€ Fiz(T) is arbitrarily given. O

Now on mimicking Lemma 2.2 and 2.3 in [16] we have the following result.

For more detailed proof, see Lemma 2.2. of [13].

Lemma 2.5. ([13]) Let C' be a nonempty closed convex subset of a uniformly

conver Banach space X . Let a family S = {S, : C' — C} be such that
1Snz = Spyll < [lz —yll + cd(llz —yll) + dn, =,y €C.

and that Fix(S) # 0. Let K be a bounded closed convexr subset of C  con-

taining x* for some x* € Fix(S). Then, for € > 0 there exists an integers

8



N, > 1 and 6. with 0 < 6. < € such that k > N, x1, 9, -+ ,x, € K and if

Hl’z — SC]H — HSk:cl - Skx]H S 55 fO?“ 1 S ’l,j S n, then

=1 =1

for all X = (A, Mg, , \p) € AL,

<€

Lemma 2.6. Let X be uniformly convexr. Then lim, . [[A\2, + Xop — q|| exists

for all p, g € Fiz(S) and A = (A1, \y) € AL.

Proof. For integers n,m > 1 and all x € X, define the mappings U,, and S, ,,
by
= 2=35 W T

and

Sn,mx — Un+m—1Un+m—2 . Unx

Obviously, Zpm = Spm®,. From Lemma 2.4, it suffices to show that the con-
clusion remains true for 0.< A\, Ay < 1. By Lemma 2.4, since the sequence {z,}
is bounded, let K be a.bounded closed convex subset of X containing p, ¢ and
{x,} for applying for Lemma 2.5 again. Put. D= sup, ,r ¢(||lz — y|) < oo.
Then, notice that

[Un = Unyll = 1Snx = Snyll < ||z = yll + Den + dy,

and

n+m—1 n+m—1

IS0t = Sumyl < Nz —yl+D Y at+ > d

< lz =yl +d, (2.2)



for all z,y € K, where d,, := D Yo ci+ Yo di — 0. Similarly, we can prove
that the conclusion of Lemma 2.5 still remains true with S,,,, instead of 7™,
by mimicking the processes of the proof of Lemma 2.5 with S, ,, instead of T™.

Given € > 0, take N, > 1 and 4y with 0 < 3 < € as in Lemma 2.5. Set
an = || Mxn + Xop — 4|

and

bnm = HSn,m()‘lxn + A2p) — (Mingm + A2p)]|.

Noticing that, for all n, m >1,

H‘S’n,mz - ZH = ”Un+mflUn+mf2 -t Unz — Un+m~lz|‘ o HUn+mflz - Z“

IA

||Un+m—2 r . Unz s Z” S Dcn+m—1 = dn—i—m—l - ||un+m—1||

n+m—1 n+m—1 n+m—1

D Yoa+ > d+t > |l

i=n—+1 i=n-+1 =

< D Z ¢+ Z dz+ZHqu = n (2.3)

1=n41 i=n-+1

IA

for either z = p or z = ¢ and ¢,~— 0 as n — oo, we-deduce that

< lwn = pll = [#ngm — Pl + [1S0mp —pll = 0 asn— o0
and we can choose ng > N, such that
[0 = Il = 1Snm@n — Snmpl| < d2.c
for all n > ng and m > 1. As a direct consequence of Lemma 2.5, we obtain
| Snm (M1 + Aap) — (A1Snm@n + A2Snmp)|| < €

10



for A= (A, o) € A, n > ng and m > 1. Thus we have

bn,m S ”Sn,m()\lajn + >\2p> - (Alsn,mxn + )\QSn,mp)H

+)‘2||Sn,mp _pH <€+ 0n

for all n > ng and m > 1. This, since € > 0 is arbitrarily given and ¢, — 0,
implies that
lim sup by, ., = 0. (2.4)

n—00 1y >1

On the other hand, by the help of (2.2) and (2.3), we have

Apt+m = H)‘lxn—ﬁ-m ERAIp— QH
S bn,m o ||Sn,m(>\1xn + )\2]7) JE= Sn,qu ar ||Sn,mq - q”

€500 + ol dh g

for all n,m > 1. Taking the limsup as i — oo at first and next the liminf as

n — 00, this together with (2.4) and cin, gn — 0 yields that lim,, .. a, exists. [

The following lemma is also very useful to establish the robustness of Mann’s

algorithm.

Lemma 2.7. (see Lemma 3.2 of {6]). Let X -be-a uniformly convex Banach space
such that its dual X* has the KK-property. Suppose that {z,} is a bounded
sequence such that lim, . ||az, + (1 — a)p — q|| ewxists for all o € [0,1] and

D, q € wy(xy). Then wy(z,) is a singleton.

As applying for Lemma 2.6 combined with Lemma 2.7, we immediately have

the following result.

Proposition 2.8. Let X be a uniformly convexr Banach space such that its dual

X* has the KK-property. If wy(z,) C Fix(S), then wy(z,) is a singleton.

11



3 Robustness of Mann’s algorithm

In this section we now present the robustness result of Mann’s algorithm for

continuous TAN mappings.

Theorem 3.1. Assume X is a uniformly conver Banach space. Assume, in
addition, that either X* has the KK-property or X satisfies Opial property. Let
T : X — X be a continuous TAN mapping satisfying (C1) and (C2) together
with Fiz(T) #0 and Y07 [|T" = T™|| < 0co. Given an initial guess xg € X ,
let {z,} be generated by the perturbed Mann's algorithm (1.10). Assume that
{an}ey € (0,1) and{e,}o2, C X satisfy control conditions (i)' and (ii)" in

Theorem 1.3. Then the sequence {x,} converges weakly to a fized point of T .

Proof. Put S,,/:= (1 — a,)I + o, T" for each n > 0 and w, = aze, € X.
Since Fiz(T) C Fix(S) := M2, Fiz(Sy); it is clear that Fiz(S) # (. Then
the algorithm (1.10) reduces to (2.1) and (C3) is clearly fulfilled by (ii)’. For
applying the demiclosedness at 0. of I — 7" in the sense of Proposition 2.1, we
first show the following equation holds, that is,

lim sup limsup ||z,, — T*,| = 0.

k—oo n—oo

Indeed, fix a p € Fiz(T) and select a number r > 0 big enough so that
|z, — p|| < r for all n. Since ¢ is a strictly increasing function on RT,

o(||zn — pll) < @(r) for all n > 1. Since T': X — X is TAN,

[T"2n = pll < Nlwn = pll + cag(llzn = pll) + dn

[0 = pll + S(r)en + d (3.1)

IN

for all n > 1. Now let M > 0 satisty M > 2(r 4+ ¢(r)c, + dn) + anllen]| for all

12



n > 1. By Lemma 2.2 and (3.1), we have

s —pl? =

IN

IN

VAN

<

(1 = ea) (@ = p) + (T 20 — ) + ctnen|?

(1 = o) (@ = p) + (T, — p)?

+20lealll(1 = an)(@n — ) + n(T"@ — p)|| + a2fen]?
(1 = o)l — plI? + anl| Tz, — p|?

—aa(1 = a)@(||70 — T )) + Moy |en

(1 — o)z — Pl + an (20 — pll + 6(r)en + dn)

— (= )|l — T ) + Maylen

ez — plf* — (1 + an)o(llen =T zull)<+ Ba,

where (3, := [(7 + o(r)en + dn)2 — 12| + Maylle, ||. It follows that

an(1| = an)¢(l|z= Teall) < @i = 8l" = lzn ~ Bl + 5.

Since 32°°, (3, < oo by (C2) and (ii)’, this implies that

> sl =) (|2 — T ) 00
n=0

Due to condition (i), we must have that liminf, . ¢(||z, —T"x,||) = 0. Hence

However, since

liminf ||z, — T"x,| = 0. (3.2)

T"p1 — Tpyr = (T — Trxy) + (1 — o) (T"x — ) — ey,

13



and T, — xp = ap (T2, — ) + ane,, we have

IT"%n 41 = ]l < T 201 = T 2l + (1= an) | T2 — 0|l + an|lenl]

AN

< znsr — 2ol + cnd([|[Tngr — zal) + dn
+(1 - an)HT"xn - an + an||€n||

< |T"xy — || + Cop + di + 200 ||ex]|,

where C := ¢(2sup,,5 ||2n|]) < co. Since {z,} is bounded, there exists L > 0

such that ||z,|| < L for all n, and so we have

||Tn+1$n+1 - 5Un+1||

IN

T 1 — T aimall N Trs — T

<[ DN — T Sl — WA COCh + )% 200 |l en .

Since 27 |7 =T"|| < o0, by Lemma 2.3 with 5, := L| T —T"||+Cc,+d,+2ay]en] ,

limy, oo || 7" 2, = x| exists and hence, by (3.2)

nhi& | T"x, | — || =0: (3.3)
By virtue of (3.3), since
[2ns1 = Zall < @nl[T" w0 — @l + anllen] — 0, (3.4)
it immediately follows that
20— = zn]l — 0 (3:5)

for any fixed positive integer k. Thus we claim that

lim |T" %z, — .|| =0 (3.6)

n—

14



for any fixed k£ > 1. Indeed, since {z,} is bounded, using (3.5) and ¢,,d,, — 0,

we have
HTnikxn - Tnikxnfk:H S H«Tn - xnfk” + Cnfk(b(Hmn - 'Tnka) + dnfk — 0
as n — oo and hence, this fact combined with (3.3) and (3.5) also gives

||Tn_kxn - an < ||Tn_kxn - Tn_kxn—kH + HTn_kxn—k - xn—kH
|k — x|l — 0

as n — oo for any fixed k> 1. Hence (3.6) is required:-Using (3.6) and properties
of ¢, it is not hard to claim that

limsup ||z, — T"@,||. < di (3.7)

n— oo

for any fixed k > 1 because

l2n — Tz, || \Rl|zn — T Ry T R <. |

<N|zn Tznll + HTn_kxn — Ty || + Ck¢(||Tn_k5En — xy||) + d
for sufficiently large n > k.~ Thus'we obtain

lim sup limsup ||z, — 7%z, | = 0.

k—oo n—oo

Hence, by Proposition 2.1, we have
Wy (x,) C Fix(T).

Now to prove that {z,} weakly converges to a fixed point of 7', it suffices to
show that w,(z,) is a singleton. First, if X* has KK-property, it is clear from

Proposition 2.8.

15



Next assume that X satisfies Opial’s property. Take subsequences {x,,} and
{2y, } of {z,} such that z,, — p, and z,,, — p2, respectively. If p; # py, we

reach the following contradiction:

im [lz, —pi|| = lim [[z,, —p|
< lim [z, — pof| = lim Hxn] — 2|
i—00 j—o0

< lim [lz,, —pa]
i—00

= lim [lz, —pa.
i—00

In any case, we have shown that w,(x,) is a singleton.set and hence the proof is

complete. O
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