










1. Introduction

Let H = H(U) denote the class of analytic functions in the open unit disk

U = {z ∈ C : |z| < 1}. For a ∈ C and n ∈ N = {1, 2, · · · }, let

H[a, n] = {f ∈ H : f(z) = a+ anz
n + an+1z

n+1 + · · · }.

Let f and F be members of H. The function f is said to be subordinate to F , or

F is said to be superordinate to f , if there exists a function w analytic in U, with

w(0) = 0 and |w(z)| < 1, and such that f(z) = F (w(z)). In such a case, we write

f ≺ F or f(z) ≺ F (z). If the function F is univalent in U, then f ≺ F if and only

if f(0) = F (0) and f(U) ⊂ F (U) (cf. [9,14]).

Definition 1.1 [8]. Let φ : C2 → C and let h be univalent in U. If p is analytic

in U and satisfies the differential subordination

φ(p(z), zp′(z)) ≺ h(z), (1.1)

then p is called a solution of the differential subordination. The univalent function

q is called a dominant of the solutions of the differential subordination, or more

simply a dominant if p ≺ q for all p satisfying (1.1). A dominant q̃ that satisfies

q̃ ≺ q for all dominants q of (1.1) is said to be the best dominant.

Definition 1.2 [9]. Let ϕ : C2 → C and let h be analytic in U. If p and

ϕ(p(z), zp′(z)) are univalent in U and satisfy the differential superordination

h(z) ≺ ϕ(p(z), zp′(z)), (1.2)

then p is called a solution of the differential superordination. An analytic function

q is called a subordinant of the solutions of the differential superordination, or more
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simply a subordinant if q ≺ p for all p satisfying (1.2). A univalent subordinant q̃

that satisfies q ≺ q̃ for all subordinants q of (1.2) is said to be the best subordinant.

Definition 1.3 [9]. We denote by Q the class of functions f that are analytic

and injective on U\E(f), where

E(f) =

{
ζ ∈ ∂U : lim

z→ζ
f(z) = ∞

}
,

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U\E(f).

Let M denote the class of functions of the form

f(z) =
1

z
+

∞∑
k=0

akz
k

which are analytic in the punctured open unit disk D = {z ∈ C : 0 < |z| < 1}. For

any n ∈ N0 = N∪{0}, we denote the multiplier transformations D(n, λ) of functions

f ∈M by

D(n, λ)f(z) =
1

z
+

∞∑
k=0

(
k + 1 + λ

λ

)n

akz
k (λ > 0; z ∈ U). (1.3)

Obviously, we have

D(s, λ)(D(t, λ)f(z)) = D(s+ t, λ)f(z)

for all nonnegative integers s and t. The operators D(n, λ) and D(n, 1) are the

multiplier transformations introduced and studied by Sarangi and Uraligaddi [13]

and Uralegaddi and Somanatha [15,16], respectively. It is easily verified from (1.3)

that
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z(D(n, λ)f(z))′ = λD(n+ 1, λ)f(z)− (λ+ 1)D(n, λ)f(z). (1.4)

By using of the principle of subordination, Miller et al. [10] obtained some

subordination theorems involving certain integral operators for analytic functions

in U. Also Owa and Srivastava [11] investigated the subordination properties of

certain integral operators (see also [1]). Moreover, Miller and Mocanu [9] considered

differential superordinations, as the dual problem of differential subordinations (see

also [2]). In the present paper, we investigate the subordination and superordination

preserving properties of the multiplier transformation D(n, λ) defined by (1.3) with

the sandwich-type theorems.

The following lemmas will be required in our present investigation.

Lemma 1.1 [6]. Suppose that the function H : C2 → C satisfies the condition:

Re{H(is, t)} ≤ 0,

for all real s and t ≤ −n(1 + s2)/2, where n is a positive integer. If the function

p(z) = 1 + pnz
n + · · · is analytic in U and

Re{H(p(z), zp′(z))} > 0 (z ∈ U),

then Re{p(z)} > 0 in U.

Lemma 1.2 [7]. Let β, γ ∈ C with β 6= 0 and let h ∈ H(U) with h(0) = c. If

Re{βh(z) + γ} > 0 for z ∈ U, then the solution of the differential equation:

q(z) +
zq′(z)

βq(z) + γ
= h(z) (z ∈ U)
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with q(0) = c is analytic in U and satisfies Re{βq(z) + γ} > 0 for z ∈ U.

Lemma 1.3 [8]. Let p ∈ Q with p(0) = a and let q(z) = a + anz
n + · · · be

analytic in U with q(z) 6≡ a and n ∈ N. If q is not subordinate to p, then there exist

points z0 = r0e
iθ ∈ U and ζ0 ∈ ∂U \ E(f), for which q(Ur0) ⊂ p(U),

q(z0) = p(ζ0) and z0q
′(z0) = mζ0p

′(ζ0) (m ≥ n).

A function L(z, t) defined on U× [0,∞) is the subordination chain (or Löwner

chain) if L(·, t) is analytic and univalent in U for all t ∈ [0,∞), L(z, ·) is continuously

differentiable on [0,∞) for all z ∈ U and L(z, s) ≺ L(z, t) for 0 ≤ s < t.

Lemma 1.4 [9]. Let q ∈ H[a, 1], let ϕ : C2 → C and set ϕ(q(z), zq′(z)) ≡ h(z).

If L(z, t) = ϕ(q(z), tzq′(z)) is a subordination chain and p ∈ H[a, 1] ∩Q, then

h(z) ≺ ϕ(p(z), zp′(z))

implies that

q(z) ≺ p(z).

Furthermore, if ϕ(q(z), zq′(z)) = h(z) has a univalent solution q ∈ Q, then q is the

best subordinant.

Lemma 1.5 [12]. The function L(z, t) = a1(t)z + · · · , with a1(t) 6= 0 and

limt→∞ |a1(t)| = ∞, is a subordination chain if and only if

Re

{
z∂L(z, t)/∂z

∂L(z, t)/∂t

}
> 0 (z ∈ U; 0 ≤ t <∞).
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2. Main Results

Firstly, we begin by proving the following subordination theorem involving the

multiplier transformation D(n, λ) defined by (1.3).

Theorem 2.1. Let f, g ∈M. Suppose that

Re

{
1 +

zφ′′(z)

φ′(z)

}
> −δ (2.1)(

φ(z) := (1− α)z2D(n+ 1, λ)g(z) + αz2D(n, λ)g(z); λ > 1− α; 0 ≤ α < 1; z ∈ U
)
,

where

δ =
(1− α)2 + ((λ− 1) + α)2 − |(1− α)2 − ((λ− 1) + α)2|

4((λ− 1) + α)(1− α)
. (2.2)

If f and g satisfy the following subordination condition :

(1− α)z2D(n+ 1, λ)f(z) + αz2D(n, λ)f(z) ≺ φ(z), (2.3)

then

z2D(n, λ)f(z) ≺ z2D(n, λ)g(z). (2.4)

Moreover, the function z2D(n, λ)g(z) is the best dominant.

Proof. Let us define the functions F and G, respectively, by

F (z) := z2D(n, λ)f(z) and G(z) := z2D(n, λ)g(z), (2.5)

We first show that, if the function q is defined by

q(z) := 1 +
zG′′(z)

G′(z)
(z ∈ U), (2.6)
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then

Re{q(z)} > 0 (z ∈ U).

Taking the logarithmic differentiation on both sides of the second equation in (2.5)

and using (1.4) for g ∈M, we obtain

λφ(z) = (λ− 1 + α)G(z) + (1− α)zG′(z). (2.7)

Now, by differentiating both sides of (2.7), we obtain the relationship:

1 +
zφ′′(z)

φ′(z)
= 1 +

zG′′(z)

G′(z)
+

zq′(z)

q(z) + (λ− 1 + α)/(1− α)

= q(z) +
zq′(z)

q(z) + (λ− 1 + α)/(1− α)
≡ h(z).

(2.8)

We see from (2.1) that

Re

{
h(z) +

(λ− 1 + α)

1− α

}
> 0 (z ∈ U),

holds true and by using Lemma 1.2, we conclude that the differential equation (2.8)

has a solution q ∈ H(U) with q(0) = h(0) = 1. Let us put

H(u, v) = u+
v

u+ (λ− 1 + α)/(1− α)
+ δ, (2.9)

where δ is given by (2.2). From (2.1), (2.8) and (2.9), we obtain

Re{H(q(z), zq′(z))} > 0 (z ∈ U).

Now we proceed to show that Re{H(is, t)} ≤ 0 for all real s and t ≤ −(1 + s2)/2.

From (2.9), we have
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Re{H(is, t)} = Re

{
is+

t

is+ (λ− 1 + α)/(1− α)
+ δ

}
=

t(λ− 1 + α)/(1− α)

|(λ− 1 + α)/(1− α) + is|2
+ δ

≤ − Eδ(s)

2|(λ− 1 + α)/(1− α) + is|2
,

(2.10)

where

Eδ(s) :=

(
λ− 1 + α

1− α
− 2δ

)
s2 − λ− 1 + α

1− α

(
2δ
λ− 1 + α

1− α
− 1

)
. (2.11)

For δ given by (2.2), we can prove easily that the expression Eδ(s) given by (2.11) is

positive or equal to zero. Hence from (2.9), we see that Re{H(is, t)} ≤ 0 for all real

s and t ≤ −(1 + s2)/2. Thus, by using Lemma 1.1, we conclude that Re{q(z)} > 0

for all z ∈ U. That is, q is convex in U.

Next, we prove that the subordination condition (2.3) implies that

F (z) ≺ G(z) (2.12)

for the functions F and G defined by (2.5). Without loss of generality, we can

assume that G is analytic and univalent on U and G′(ζ) 6= 0 for |ζ| = 1. For this

purpose, we consider the function L(z, t) given by

L(z, t) :=
λ− 1 + α

λ
G(z) +

(1− α)(1 + t)

λ
zG′(z) (z ∈ U; 0 ≤ t <∞).

We note that

∂L(z, t)

∂z

∣∣∣∣
z=0

= G′(0)

(
λ+ t(1− α)

λ

)
6= 0 (0 ≤ t <∞; λ > 0).
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This shows that the function

L(z, t) = a1(t)z + · · ·

satisfies the condition a1(t) 6= 0 for all t ∈ [0,∞). Furthermore, we have

Re

{
z∂L(z, t)/∂z

∂L(z, t)/∂t

}
= Re

{
λ− 1 + α

1− α
+ (1 + t)

(
1 +

zG′′(z)

G′(z)

)}
> 0,

since G is convex and (λ− 1 + α)/(1− α) > 0. Therefore, by virtue of Lemma 1.5,

L(z, t) is a subordination chain. We observe from the definition of a subordination

chain that

L(ζ, t) 6∈ L(U, 0) = φ(U) (ζ ∈ ∂U; 0 ≤ t <∞)

Now suppose that F is not subordinate to G, then by Lemma 1.3, there exists points

z0 ∈ U and ζ0 ∈ ∂U such that

F (z0) = G(ζ0) and z0F
′(z0) = (1 + t)ζ0G

′(ζ0) (0 ≤ t <∞).

Hence we have

L(ζ0, t) =
λ− 1 + α

λ
G(ζ0) +

(1− α)(1 + t)

λ
ζ0G

′(ζ0)

=
λ− 1 + α

λ
F (z0) +

1− α

λ
z0F

′(z0)

= (1− α)z2
0D(n+ 1, λ)f(z0) + αz2

0D(n, λ)f(z0) ∈ φ(U),

by virtue of the subordination condition (2.3). This contracts the above observation

that L(ζ0, t) 6∈ φ(U). Therefore, the subordination condition (2.3) must imply the

subordination given by (2.12). This evidently completes the proof of Theorem 2.1.
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We next prove a dual problem of Theorem 2.1, in the sense that the subordina-

tions are replaced by superordinations.

Theorem 2.2. Let f, g ∈M. Suppose that

Re

{
1 +

zφ′′(z)

φ′(z)

}
> −δ

(
φ(z) := (1− α)z2D(n+ 1, λ)g(z) + αz2D(n, λ)g(z); λ > (1− α); 0 ≤ α < 1; z ∈ U

)
,

where δ is given by (2.2). If (1−α)z2D(n+ 1, λ)f(z) +αz2D(n, λ)f(z) is univalent

in U and z2D(n, λ)f(z) ∈ H[0, 1] ∩Q, then

φ(z) ≺ (1− α)z2D(n+ 1, λ)f(z) + αz2D(n, λ)f(z) (2.13)

implies that

z2D(n, λ)g(z) ≺ z2D(n, λ)f(z).

Moreover, the function z2D(n, λ)g(z) is the best subordinant.

Proof. Let us define the functions F and G, respectively, by (2.5). We first

note that, if the function q is defined by (2.6), by using (2.7), then we obtain

φ(z) =
λ− 1 + α

λ
G(z) +

(1− α)(1 + t)

λ
zG′(z)

=: ϕ(G(z), zG′(z)).

(2.14)

After a simple calculation, the equation (2.13) yields the relationship:

1 +
zφ′′(z)

φ′(z)
= q(z) +

zq′(z)

q(z) + (λ− 1 + α)/(1− α)
.

9



Then by using the same method as in the proof of Theorem 2.1, we can prove that

Re{q(z)} > 0 for all z ∈ U. That is, G defined by (2.5) is convex(univalent) in U.

Next, we prove that the subordination condition (2.13) implies that

F (z) ≺ G(z) (2.15)

for the functions F and G defined by (2.5). Now considering the function L(z, t)

defined by

L(z, t) :=
λ− 1 + α

λ
G(z) +

(1− α)t

λ
zG′(z) (z ∈ U; 0 ≤ t <∞).

we can prove easily that L(z, t) is a subordination chain as in the proof of Theorem

2.1. Therefore according to Lemma 1.4, we conclude that the superordination condi-

tion (2.13) must imply the superordination given by (2.15). Furthermore, since the

differential equation (2.14) has the univalent solution G, it is the best subordinant of

the given differential superordination. Therefore we complete the proof of Theorem

2.2.

If we combine this Theorem 2.1 and Theorem 2.2, then we obtain the following

sandwich-type theorem.

Theorem 2.3. Let f, gk ∈M(k = 1, 2). Suppose that

Re

{
1 +

zφ′′k(z)

φ′k(z)

}
> −δ

(
φk(z) := (1− α)z2D(n + 1, λ)gk(z) + αz2D(n, λ)gk(z); k = 1, 2; λ > (1− α); 0 ≤ α < 1; z ∈ U

)
,

(2.16)
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where δ is given by (2.2). If (1−α)z2D(n+ 1, λ)f(z) +αz2D(n, λ)f(z) is univalent

in U and z2D(n, λ)f(z) ∈ H[0, 1] ∩Q, then

φ1(z) ≺ (1− α)z2D(n+ 1, λ)f(z) + αz2D(n, λ)f(z) ≺ φ2(z)

implies that

z2D(n, λ)g1(z) ≺ z2D(n, λ)f(z) ≺ z2D(n, λ)g2(z).

Moreover, the functions z2D(n, λ)g1(z) and z2D(n+ 1, λ)g2(z) are the best subordi-

nant and the best dominant, respectively.

The assumption of Theorem 2.3, that the functions (1− α)z2D(n+ 1, λ)f(z) +

αz2D(n, λ)f(z) and z2D(n, λ)f(z) need to be univalent in U, may be replaced an-

other condition in the following result.

Corollary 2.1. Let f, gk ∈ M(k = 1, 2). Suppose that the condition (2.16) is

satisfied and

Re

{
1 +

zψ′′(z)

ψ′(z)

}
> −δ (2.17)(

ψ(z) := (1− α)z2D(n+ 1, λ)f(z) + αz2D(n, λ)f(z); z ∈ U
)
,

where δ is given by (2.2). Then

φ1(z) ≺ (1− α)z2D(n+ 1, λ)f(z) + αz2D(n, λ)f(z) ≺ φ2(z)

implies that
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z2D(n, λ)g1(z) ≺ z2D(n, λ)f(z) ≺ z2D(n, λ)g2(z).

Moreover, the functions z2D(n, λ)g1(z) and z2D(n, λ)g2(z) are the best subordinant

and the best dominant, respectively.

Proof. In order to prove Corollary 2.1, we have to show that the condition

(2.17) implies the univalence of ψ(z) and F (z) := z2D(n, λ)f(z). Since δ given by

(2.2) in Theorem 2.1 satisfies the inequality 0 < δ ≤ 1/2, the condition (2.17) means

that ψ is a close-to-convex function in U (see [4]) and hence ψ is univalent in U.

Furthermore, by using the same techniques as in the proof of Theorem 2.1, we can

prove the convexity(univalence) of F and so the details may be omitted. Therefore,

from Theorem 2.3, we obtain Corollary 2.1.

Setting n = 0, λ = 2 and α = 0 in Theorem 2.3, we have the following result.

Corollary 2.2. Let f, gk ∈M(k = 1, 2). Suppose that

Re

{
1 +

zφ′′k(z)

φ′k(z)

}
> −1

2(
φk(z) :=

z2g′′k(z) + 3z2gk(z)

2
; k = 1, 2; z ∈ U

)
.

If (z2f ′′(z) + 3z2f(z))/2 is univalent in U and z2f(z) ∈ H[0, 1] ∩Q, then

φ1(z) ≺
z2f ′′(z) + 3z2f(z)

2
≺ φ2(z)

implies that

z2g1 ≺ z2f(z) ≺ z2g2(z).
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Moreover, the functions z2g1(z) and z2g2(z) are the best subordinant and the best

dominant, respectively.

By using the same method as in the proof of Theorem 2.3, we have the following

sandwich-type theorem.

Theorem 2.4. Let f, gk ∈M(k = 1, 2). Suppose that

Re

{
1 +

zφ′′k(z)

φ′k(z)

}
> −δ

(φk(z) := (1− α)zD(n + 1, λ)gk(z) + αzD(n, λ)gk(z); k = 1, 2; λ > 0; 0 ≤ α < 1; z ∈ U) ,

where

δ =
(1− α)2 + λ2 − |(1− α)2 − λ2|

4λ(1− α)
.

If (1 − α)zD(n + 1, λ)f(z) + αzD(n, λ)f(z) is univalent in U and zD(n, λ)f(z) ∈

H[1, 1] ∩Q, then

φ1(z) ≺ (1− α)zD(n+ 1, λ)f(z) + αzD(n, λ)f(z) ≺ φ2(z)

implies that

zD(n, λ)g1(z) ≺ zD(n, λ)f(z) ≺ zD(n, λ)g2(z).

Moreover, the functions zD(n, λ)g1(z) and zD(n, λ)g2(z) are the best subordinant

and the best dominant, respectively.

Next, we consider the integral operator Fc (c > 0) defined by (cf. [3,5,15,16])
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Fc(f)(z) :=
c

zc+1

∫ z

0

tcf(t)dt (f ∈M; c > 0). (2.18)

Now, we obtain the following sandwich-type result involving the integral opera-

tor defined by (2.18).

Theorem 2.5. Let f, gk ∈M(k = 1, 2). Suppose that

Re

{
1 +

zφ′′k(z)

φ′k(z)

}
> −δ (2.19)(

φk(z) := z2D(n, λ)gk(z); k = 1, 2; λ > 0; c > 1; z ∈ U
)
,

where

δ =
1 + (c− 1)2 − |1− (c− 1)2|

4(c− 1)
(c > 1). (2.20)

If z2D(n, λ)f(z) is univalent in U and z2D(n, λ)Fc(f)(z) ∈ H[0, 1] ∩Q, then

z2D(n, λ)g1(z) ≺ z2D(n, λ)f(z) ≺ z2D(n, λ)g2(z)

implies that

z2D(n, λ)Fc(g1)(z) ≺ z2D(n, λ)Fc(f)(z) ≺ z2D(n, λ)Fc(g2)(z).

Moreover, the functions z2D(n, λ)Fc(g1)(z) and z2D(n, λ)Fc(g2)(z) are the best sub-

ordinant and the best dominant, respectively.

Proof. Let us define the functions F and Gk (k = 1, 2) by

F (z) := z2D(n, λ)Fc(f)(z) and Gk(z) := z2D(n, λ)Fc(gk)(z),
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respectively. From the definition of the integral operator Fc defined by (2.18), we

obtain

z(D(n, λ)Fc(f)(z))′ = cD(n, λ)f(z)− (c+ 1)D(n, λ)Fc(f)(z) (2.21)

Then from (2.19) and (2.21), we have

cφk(z) = (c− 1)Gk(z) + zG′k(z). (2.22)

Setting

qk(z) = 1 +
zG′′k(z)

G′k(z)
(k = 1, 2; z ∈ U),

and differentiating both sides of (2.22), we obtain

1 +
zφ′′k(z)

φ′k(z)
= qk(z) +

zq′k(z)

qk(z) + c− 1
.

The remaining part of the proof is similar to that of Theorem 2.1 and so we may

omit for the proof involved.

By using the same methods as in the proof of Corollary 2,1, we have the following

result.

Corollary 2.3. Let f, gk ∈ M(k = 1, 2). Suppose that the condition (2.19) is

satisfied and

Re

{
1 +

zψ′′(z)

ψ′(z)

}
> −δ(

ψ(z) := z2D(n, λ)f(z); λ > 0; z ∈ U
)
,
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where δ is given by (2.20). Then

z2D(n, λ)g1(z) ≺ z2D(n, λ)f(z) ≺ z2D(n, λ)g2(z)

implies that

z2D(n, λ)Fc(g1)(z) ≺ z2D(n, λ)Fc(f)(z) ≺ z2D(n, λ)Fc(g2)(z).

Moreover, the functions z2D(n, λ)Fc(g1)(z) and z2D(n, λ)Fc(g2)(z) are the best sub-

ordinant and the best dominant, respectively.

Taking n = 0 in Theorem 2.5, we have the following result.

Corollary 2.4. Let f, gk ∈M(k = 1, 2). Suppose that

Re

{
1 +

zφ′′k(z)

φ′k(z)

}
> −δ(

φk(z) := z2gk(z); k = 1, 2; λ > 0; c > 1; z ∈ U
)
,

where δ is given by (2.20). If z2f(z) is univalent in U and z2Fc(f)(z) ∈ H[0, 1]∩Q,

then

z2g1(z) ≺ z2f(z) ≺ z2g2(z)

implies that

z2Fc(g1)(z) ≺ z2Fc(f)(z) ≺ z2Fc(g2)(z).

Moreover, the functions z2Fc(g1)(z) and z2Fc(g2)(z) are the best subordinant and

the best dominant, respectively.
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