






CONTENTS

Abstract(Korean) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Chapter 1. Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2. Regularity for solutions of nonlinear second order evo-

lution equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Semilinear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. L2-regularity for solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

2.4. Applications for nonlinear evolution equations . . . . . . . . 28

Chapter 3. Regular problems for semilinear hyperbolic type equa-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

3.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3. Semilinear equations of hyperbolic type . . . . . . . . . . . . . . . .48

3.4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 4. Perturbation results for hyperbolic evolution systems

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

i



4.2. Perturbation for fundamental solutions . . . . . . . . . . . . . . . . 65

4.3. Mixed problem of hyperbolic equations . . . . . . . . . . . . . . . . 73

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ii



2계 준선형 발전 방정식에 대한 정규성과 섭동이론

김  한  글

부경대학교 대학원 응용수학과 

요    약

  본 논문에서는  Hilbert 공간상에서 다음과 같은 2계 준선형 발전 방정식에 대한 해의 

존재성, 정규성 그리고 섭동문제를 다룬다. 

    (SE)             ″          ′  
 여기서, 는 주 작용소로서 Garding 조건을 만족하는 미분연산자로부터 정의되었고 

비선형항  ․  은 일반화된 Lipschitz 연속성을 만족한다.

 먼저, 2장에서는 주 작용소가 시간 에 대하여 독립인 경우, 즉,   일 때, 비선형

항을 포함하지 않는 선형방정식의 결과들에 대하여 이러한 비선형 방정식에도 성립 가능

함을 증명한다.

 3장에서는 시간 에 대하여 변하는 비유계 작용소 에 대한 (SE)의 정규성을 함수적 

성질을 이용하여 고찰한다.

 마지막으로, 4장에서는 다음과 같이 섭동된 비동차 2계 함수미분방정식:    

    (PE)            ″       ′      

의 정규성과 기본성질을 증명하기 위해 작용소 의 충분조건을 유도한다.

iii



Chapter 1

Introduction and Preliminaries

By the 1930s, the basic theory of dynamical systems was well in place,

and the basic studies, which at a later time would lead to a theory of flows

and semiflows for the infinite dimensional evolutionary equations arising in

partial differential equations, had begun. During the period 1930 - 1970

there were many major developments in the study of the longtime dynam-

ics of systems of ordinary differential equations, including perturbation the-

ory for invariant manifolds, bifurcation theory, exponential dichotomies and

hyperbolic structures, the Pliss reduction principle (center manifold), the

Kolmogorov-Arnold-Moser theory, skew products flows for nonautonomous

problems, Morse-Smale dynamical systems, the structural stability program,

the role of symmetries, and index theory.

By the 1970s, the dynamical theories for dissipative partial differential

equations, such as reaction diffusion equations, the Navier-Stokes equations,

and the Cahn-Hilliard equation, were coming to fruition. In this area and

during the subsequent 30 years, one finds the development of existence the-

ories and dimension theories for global attractors and inertial manifolds, the

use of smooth and discrete-valued Lyapunov functions to find Morse-Smale

structures and Poincare-Bendixon theories, and the use of exponential tri-

chotomies and hyperbolic structures for the perturbation theory of invariant

manifolds, for example(see [20, 12, 13]).

The year 1970 is an approximate date of the merger of finite dimensional

and infinite dimensional dynamical systems. Since that time, this has become

1



a united subject, the Dynamics of Evolutionary Equations. Other major in-

clude the Melinikov method, singular perturbations, random dynamical sys-

tems, almost periodic and almost automorphic dynamics, and approximation

dynamics. The subject of the Dynamics of Evolutionary Equation is only at

its beginning. While it is not possible to predict the future, we sincerely hope

that this paper will be helpful for scholars working in these areas and in some

of the newer areas of dynamics, such as global climate modeling, numerical

simulation of longtime dynamics, and control theory in time-varying media

( see [16, 26, 19]).

In this paper, we consider the existence results, the regularity of the

solutions, and the hyperbolic structures for the perturbation theory for the

following semilinear wave equation: u′′(t) + A(t)u(t) = f(t, u(t)) + h(t)

u(0) = u0, u′(0) = u1

(SE)

in a Hilbert space H.

This dissertation is organized as follows;

In Chapter 2, we obtain the regularity for (SE) in the case that A(t) = A

is the operator associated with a sesquilinear form defined on V × V and

satisfying G̊arding’s inequality, where V is another Hilbert space such that

V ⊂ H ⊂ V ∗(the dual space of V ). The nonlinear term f(·, x), which is a

Lipschitz continuous operator with respect to x from V to H, is a semilinear

version of the quasilinear one considered in [6, 15, 25].
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As a consequence, our models for the equation (SE) are Volterra integrod-

ifferential equations of the hyperbolic type. These equations arise naturally

in the study of Viscoelasticity in Edelstein and Gurtin [5]. Our formulation

of the equation (SE) is a direct attempt to generalize some results of Webb

[25] and Heard [8], who studied problems similar to the equation (SE) in the

case when A(t) = A does not depend on t. By using the useful integral in-

equalities, we will show that there exists a solution for the class of nonlinear

second order evolution equations by a similar method to that for the linear

heat equations of [11].

In Chapter 3, we adhere to the construction of an evolution system for the

equation (SE) with unbounded operator A(t) constructed by Kato [12, 13].

For each t ≥ 0, A(t) is the infinitesimal generator of an analytic semigroup

together with some continuity conditions on the family of bounded operators

A(t)A(s)−1. Section 3.3 is devoted to the regularity for solutions of the linear

wave equations in Gelfand triple spaces. Subsequently, our construction of

a local solution of the nonlinear equation (SE) is essentially based on [10].

We will show the energy inequalities for the equation (SE) with the aid of

estimate of L2-type of the solutions, which is an important role in the proof

of the global solutions and in that of the regularity of solutions. Finally, a

possible extension of the given equation (SE) is discussed.

In Chapter 4, we consider the following perturbed inhomogeneous second

order hyperbolic equation:

{
u′′(t) + (A(t) + B(t))u(t) = f(t)

u(0) = u0, u′(0) = u1

(PE)
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where A(t) satisfies the conditions in Chapter 3. Let B(t) be defined on [0, T ]

as a strongly continuously differentiable operator satisfying

B(t)u ∈ C1((0, T ); H), |B(t)u| ≤ B|u| for all u ∈ H

for some constant B > 0. In order to give the construction of an evolution

system of A(t) + B(t), we will assume general conditions that A(t), for each

t ∈ [0, T ], is self adjoint and bounded and A(t)v for each v ∈ V is strongly

continuously differentiable on [0, T ]. Our problem can be applied to sec-

ond order time dependent equations by writing them as first order systems.

Consequently, we deal with constructing of the fundamental solution of the

linear equation explained the arguments in given in [14, 2]. In addition to

assumptions of A(t), Tanabe [23] dealt with a singular perturbation of evo-

lution systems in a Banach space X with conditions that B(t) is strongly

continuous and there exists a real number λ0 satisfying λ0 ∈ ρ(A(t)) for all

t ∈ [0, T ], such that

A(t)B(t)(A(t)− λ0)
−1 ∈ L(X),

where L(X) denotes the set of all bounded linear operators from X into

itself. But we will give a perturbation approach under the more general

conditions that X is a Hilbert space and B(t)v for each v ∈ V is strongly

continuously differentiable on [0, T ] instead of the above condition even in

special cases of second order equations. In the last section we give an example

of a partial functional equation as an application of the preceding result in
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a mixed problem for hyperbolic case that

A(t) = −
n∑

i,j=1

∂u

∂xj

(aij(t, x)
∂u

∂xi

), B(t) =
n∑

i=1

bi(t, x)
∂u

∂xi

+ c(t, x)u,

where the matrix (aij(t, x)) is uniformly positive definite.
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Chapter 2

Regularity for solutions of nonlinear

second order evolution equations

2.1. Introduction

In this chapter, we consider the existence and regularity of the solutions

for the following semilinear wave equation:

 u′′(t) + Au(t) = f(t, u(t)) + h(t)

u(0) = u0, u′(0) = u1

(2.1.1)

in a Hilbert space H. Here A is the operator associated with a sesquilinear

form defined on V ×V and satisfying G̊arding’s inequality, where V is another

Hilbert space such that V ⊂ H ⊂ V ∗(the dual space of V ). The nonlinear

term f(·, x), which is a Lipschitz continuous operator with respect to x from

V to H, is a semilinear version of the quasilinear one considered in [6, 15, 25].

Precise assumptions are given in the next section.

In the papers [6, 15], they investigated some results of existence and

uniqueness of solutions for some problems that are related to functional dif-

ferential inclusions of second order in time, containing some hereditary char-

acteristics. The existence and regularity for the linear heat equations, which

was first investigated by Brézis [3], has been developed as seen in section

4.3.1 of Barbu [1], and [11].
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As a consequence, our models for (2.1.1) are Volterra integrodifferential

equations of the hyperbolic type. These equations arise naturally in the

study of Viscoelasticity in Edelstein and Gurtin [5]. Our formulation of

(2.1.1) is a direct attempt to generalize some results of Webb [25] and Heard

[8], who studied problems similar to (2.1.1) in the case when A(t) = A does

not depend on t. By using the useful integral inequalities, we will show

that there exists a solution for the class of nonlinear second order evolution

equations by a similar method to that for the linear heat equations of [11].

Section 2.2 gives some basic results on existence, uniqueness, and a rep-

resentation formula of solutions for the given equation (2.1.1). In section

2.3, we will obtain the regularity for solutions of (2.1.1) by converting the

problem into the contraction mapping principle when the nonlinear mapping

f is Lipschitz continuous from R× V into H, and obtain the norm estimate

of a solution of the above nonlinear equation on L2(0, T ; V )∩W 1,2(0, T ; H)∩

W 2,2(0, T ; V ∗) by using the results of its corresponding the linear part as seen

in [20]. Finally a simple example to which our main result can be applied is

given in section 2.4.

2.2. Semilinear equations

Let H be a complex Hilbert space with inner product ( , ) and norm

| · |. Let V be embedded in H as a dense subspace with inner product and

norm by (( , )) and || · ||, respectively. By considering H = H∗, we may

write V ⊂ H ⊂ V ∗ where H∗ and V ∗ denote the dual spaces of H and V ,
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respectively . For l ∈ V ∗ we denoted (l, v) by the value l(v) of l at v ∈ V .

The norm of l as an element of V ∗ is given by

||l||∗ = sup
v∈V

|(l, v)|
||v||

.

Therefore, we assume that V has a stronger topology than H and, for the

brevity, we may regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V.

Definition 2.2.1. Let X and Y be complex Banach spaces. An operator S

from X to Y is called antilinear if S(u+v) = S(u)+S(v) and S(λu) = λ̄S(u)

for u, v ∈ X and for λ ∈ C.

Let a(u, v) be a quadratic form defined on V ×V which is linear in u and

antilinear in v.

We make the following assumptions:

i) a(u, v) is bounded, i.e., there exists c0 > 0 such that

|a(u, v)| ≤ c0||u|| · ||v|| ;

ii) a(u, v) is symmetric, i.e.,

a(u, v) = a(v, u) ;

iii) a(u, v) satisfies the G̊arding’s inequality, i.e.,

Re a(u, u) ≥ δ||u||2, δ > 0.
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Let A be the operator such that (Au, v) = a(u, v) u, v ∈ V . Then, as

seen in Theorem 2.2.3 of [23], the operator A is positive definite and self-

adjoint, D(A1/2) = V , and

a(u, v) = (A1/2u, A1/2v), u, v ∈ V.

It is also known that the operator A is a bounded linear operator from V to

V ∗. The realization of A in H which is the restriction of A to D(A) = {v ∈

V : Av ∈ H} is also denoted by A, which is structured as a Hilbert space

with the norm ||v||D(A) = |Av|. Then the operator A generates an analytic

semigroup in both of H and V ∗. Thus we have the following sequence

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗

where each space is dense in the next one, which is continuous injection.

If X is a Banach space and 1 < p < ∞, Lp(0, T ; X) is the collection

of all strongly measurable functions from (0, T ) into X the p-th powers

whose norms are integrable and Wm,p(0, T ; X) is the set of all functions

f whose derivatives Dαf up to degree m in the distribution sense belong to

Lp(0, T ; X). Cm([0, T ]; X) is the set of all m-times continuously differentiable

functions from [0, T ] into X.

We consider the initial value problem of the following semilinear equation

 u′′(t) + Au(t) = f(t, u(t))

u(0) = u0, u′(0) = u1.
(2.2.1)
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Definition 2.2.1. A function u : [0, T ] → H is called a solution of equation

(2.2.1) on [0, T ] if

i) u ∈ C([0, T ]; V ) ∩ C1((0, T ); H) ∩ C2((0, T ); V ∗),

ii) u satisfies (2.2.1) on [0, T ].

Assumption (F). Let f : [0, T ]× V → H (T > 0) be a nonlinear mapping

such that t 7→ f(t, ·) is continuous on [0, T ] and u 7→ f(·, u) is locally Lipschitz

continuous on V : for any C > 0, there exists a constant LC > 0 such that

|f(·, u)| ≤ LC , |f(·, u)− f(·, v)| ≤ LC ||u− v||

holds for ||u|| < C and ||v|| < C.

Let us introduce a new norm in V ∗ as follows. For g, k ∈ V ∗, putting

(g, k)−1 = a(A−1g, A−1k) = (AA−1g, A−1k) = (g, A−1k),

in virtue of the condition of a (g, k)−1, it satisfies the inner product properties

and its norm is given by

||g||−1 = a(A−1g, A−1g)1/2.

Lemma 2.2.1. The norm ||g||−1 is equivalent to || · ||∗ , i.e., we have

δ√
c0

||g||−1 ≤ ||g||∗ ≤
c0√
δ
||g||−1.

Proof. From the condition iii) and i) of a(·, ·) it follows

δ||A−1g||2 ≤ a(A−1g, A−1g) ≤ c0||A−1g||2
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and hence,
√

δ||A−1g|| ≤ ||g||−1 ≤
√

c0||A−1g||. (2.2.2)

Since

||Ag||∗ = sup
u∈V

|(Ag, u)|
||u||

= sup
u∈V

|a(g, u)|
||u||

≤ c0||g||

and

||Ag||∗ ≥
|(Ag, g)|
||g||

=
|a(g, g)|
||g||

≥ δ||g||,

we obtain that

δ||A−1g|| ≤ ||g||∗ ≤ c0||A−1g||. (2.2.3)

Combining (2.2.2) with (2.2.3), we obtain the inequality and hence || · ||∗

and || · ||−1 are equivalent norms. 2

If we set X = (V ×H)T with inner product and norm given by

((
u0

u1

)
,

(
v0

v1

))
= ((u0, v0)) + (u1, v1)

and ∥∥∥∥(u0

u1

)∥∥∥∥
X

= {||u0||2 + |u1|2}1/2,

respectively. Noting that a(u, v) is an inner product in V and a(u, u)1/2 is

equivalent to the norm ||u||, we can also rewrite an inner product and a norm

as ((u0

u1

)
,

(
v0

v1

))
= a(u0, v0) + (u1, v1)
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and ∥∥∥∥(u0

u1

)∥∥∥∥
X

= {a(u0, u0) + |u1|2}1/2,

respectively.

Putting X̃ = (H × V ∗)T , for every
(

g0

g1

)
,
(

k0

k1

)
∈ X̃, we define an inner

product and a norm by

((g0

g1

)
,

(
k0

k1

))
X̃

= (g0, k0) + (g1, k1)−1

and ∥∥∥∥(g0

g1

)∥∥∥∥
X̃

=
(
|g0|2 + |g1|2−1

)1/2
,

respectively. Let A be an operator defined by

D(A) = (D(A)× V )T ,

A
(

u0

u1

)
=

(
0 I

−A 0

)(
u0

u1

)
=

(
u1

−Au0

)
∈ (V ×H)T = X.

In virtue of Lax-Milgram theorem, we can also consider as

D(A) = (V ×H)T = X,

A
(

g0

g1

)
=

(
0 I

−A 0

)(
g0

g1

)
=

(
g1

−Ag0

)
∈ (H × V ∗)T = X̃.
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Theorem 2.2.1. The linear operator A as mentioned above is the infinites-

imal generator of a C0-group of unitary operators in both X and X̃.

Proof. For
(

u0

u1

)
,
(

v0

v1

)
∈ X,

(
A
(

u0

u1

)
,

(
v0

v1

))
X

=
(( u1

−Au0

)
,

(
v0

v1

))
X

= a(u1, v0) + (−Au0, v1)

= a(u1, v0)− a(u0, v1),

and

((u0

u1

)
,A
(

v0

v1

))
=
((u0

u1

)
,

(
v1

Av0

))
= a(u0, v1) + (u1,−Av0)

= a(u0, v1)− a(u1, v0),

Noting that A is symmetric, we have that

(
A
(

u0

u1

)
,

(
v0

v1

))
X

= −
((u0

u1

)
,A
(

v0

v1

))
,

which implies that A∗ = −A and therefore iA = (iA)∗ and iA is self ad-

joint(skew self adjoint). Hence, from Stone’s theorem, it follows that A is

the infinitesimal generator of a C0-group of unitary operators on X if and

only if iA is self adjoint.

If
(

u0

u1

)
,
(

v0

v1

)
∈ X̃, then
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(
A
(

u0

u1

)
,

(
v0

v1

))
X̃

=
(( u1

−Au0

)
,

(
v0

v1

))
X̃

= (u1, v0) + (−Au0, v1)−1

= (u1, v0)− a(u0, A
−1v1)

= (u1, v0)− a(A−1v1, u0) = (u1, v0)− (v1, u0)

= (u1, v0)− (u0, v1)

and((u0

u1

)
,A
(

v0

v1

))
X̃

=
((u0

u1

)
,

(
v1

Av0

))
X̃

= (u0, v1) + (u1,−Av0)−1

= (u0, v1)− a(A−1u1, v0) = (u0, v1)− (u1, v0).

Hence, we have that

(
A
(

u0

u1

)
,

(
v0

v1

))
X̃

= −
((u0

u1

)
,A
(

v0

v1

))
X̃

,

that is, A is also skew self adjoint on X̃. 2

Let x(t) =
(

u0(t)
u1(t)

)
and let F (x) =

(
0

f(·,u0(·))

)
. Then problem (2.2.1) are

equivalent to

 x′(t) = Ax(t) + F (x(t))

x(0) =
(

u0

u1

)
.

(2.2.4)
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Let U(t) be a C0-group generated by A. For a solution of (2.2.4) in the

wide sense, we are to find a solution of the integral equation

x(t) = U(t)x(0) +

∫ t

0

U(t− s)F (x(s))ds. (2.2.5)

Now, we consider the global existence of a solution of (2.2.5).

Theorem 2.2.2. Let us assume the Assumption (F). Then for every u0 ∈

V, u1 ∈ H, the equation (2.2.4) has a unique solution on [0, T ] for given

T > 0.

Proof. From Theorems 6.1.1 and 6.1.5 in [23], the equation (2.2.4) has a

unique local solution on interval [0, T0] for 0 < T0 ≤ T .

Now, we give a norm estimation of the solution of (2.2.4) and establish

the global existence of solutions with the aid of norm estimations. So, it is

enough to show that if u is a solution in 0 ≤ t ≤ T0, then u(t) is bounded in

0 ≤ t ≤ T0, i.e., there exists a constant C > 0 such that

||u(t)|| ≤ C, 0 ≤ t ≤ T0.

From ∥∥∥∥A(u0(t)

u1(t)

)∥∥∥∥
X̃

=

∥∥∥∥( u1(t)

−Au0(t)

)∥∥∥∥
X̃

≥ (δ2||u0(t)||2 + |u1(t)|2)
1
2

≥ min{δ, 1}(||u0(t)||2 + |u1(t)|2)
1
2

and ∥∥∥∥A(u0(t)

u1(t)

)∥∥∥∥
X̃

=

∥∥∥∥( u1(t)

−Au0(t)

)∥∥∥∥
X̃

= (|u1(t)|2 + ||Au0(t)||2∗)
1
2

≤ max{c0, 1}(||u0(t)||2 + |u1(t)|2)
1
2 ,
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it follows that

min{δ, 1}(||u0(t)||2 + |u1(t)|2)
1
2 ≤

∥∥∥∥A(u0(t)

u1(t)

)∥∥∥∥
X̃

(2.2.6)

≤ max{c0, 1}(||u0(t)||2 + |u1(t)|2)
1
2 .

Therefore, from (2.2.5) and (2.2.6) we obtain that

min{δ, 1}(||u0(t)||2 + |u1(t)|2)
1
2 ≤

∥∥∥∥A(u0(t)

u1(t)

)∥∥∥∥
X̃

≤
∥∥∥∥AU(t)

(
u0

u1

)∥∥∥∥
X̃

+

∥∥∥∥A ∫ t

0

U(t− s)

(
0

f(s, u(s))

)
ds

∥∥∥∥
X̃

.

Here, we can calculate from (2.2.6) that∥∥∥∥AU(t)

(
u0

u1

)∥∥∥∥
X̃

=

∥∥∥∥AU(t)A−1A
(

u0

u1

)∥∥∥∥
X̃

≤ c1

∥∥∥∥A(u0

u1

)∥∥∥∥
X̃

≤ c1 max{c0, 1}(||u0||2 + |u1|2)1/2

≤ c1 max{c0, 1}(||u0||+ |u1|),

where c1 = ||AU(t)A−1||B(X̃) and

∥∥∥∥A ∫ t

0

U(t− s)

(
0

f(s, u(s))

)
ds

∥∥∥∥
X̃

≤
∥∥∥∥∫ t

0

U(t− s)A
((

0

f(s, u(s))

)
−
(

0

f(s, 0)

))
ds

∥∥∥∥
X̃

+

∥∥∥∥∫ t

0

U(t− s)A
(

0

f(s, 0)

)
)ds

∥∥∥∥
X̃
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≤ c0LCMt + c0LCM

∫ t

0

||u(s)||ds

≤ c0LCMt + c0LCM

∫ t

0

(||u(s)||2 + |u(s)|2)1/2ds

where M = sup0≤t≤T ||U(t)||. Combining two inequalities above and (2.2.6),

it follows from Gronwall’s inequality that there exists a constant c1 such that

(||u0(t)||2 + |u1(t)|2)1/2 ≤ c1(1 + ||u0||+ |u1|). (2.2.7)

By the calculation similar to those in the proof of mentioned above, a solution

y of

(
v0(t)

v1(t)

)
= U(t− T0)

(
u0(T0)

u1(T0)

)
+

∫ t

T0

U(t− s)

(
0

f(s, v0(s))

)
ds

exists in some interval [T0, T1). By letting x̂(t) = x(t) for 0 ≤ t ≤ T0

and x̂(t) = y(t) for T0 ≤ t < T1, it is easy to see that x̂ is a solution in

0 ≤ t ≤ T1. Therefore, x can be extended to the interval [0, T1] as a solution

of (2.2.5). Let x be a bounded solution of (2.2.1): ||x(t)||X < C ′. Then,

since ||
(

0
f(t,u0(t))

)
||X ≤ LC′ for 0 ≤ t < T0 by Assumption (F), if we put

x(T0) = U(T0)x(0) +

∫ T0

0

U(T0 − s)F (x(s))ds,

x is continuous in 0 ≤ t ≤ T1 and, moreover, satisfies (2.2.5). Hence, x can

be extended to the interval [0, T1] as a solution and u0 is the desired solution.

So the proof is complete. 2
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2.3. L2-regularity for solutions

Let V and H be complex Hilbert spaces forming Gelfand triple V ⊂ H ⊂

V ∗ with pivot space H as mentioned in section 2.2.

Let T > 0. Define

WT = {u : u ∈ L2(0, T ; V ), u̇ ∈ L2(0, T ; H), ü ∈ L2(0, T ; V ∗)},

||u||WT
= ||u||L2(0,T ;V ) + ||u̇||L2(0,T ;H) + ||ü||L2(0,T ;V ∗),

where u̇ denote the derivative of u in the generalized sense.

First, consider the following L2-regularity for the abstract linear evolution

equation:

 u′′(t) + Au(t) = h(t), 0 < t ≤ T,

u(0) = u0, u′(0) = u1.
(2.3.1)

Let a(u, v) be a bounded sesquilinear form defined on V ×V and satisfying

G̊arding’s inequality:

Re a(u, u) ≥ δ||u||2 − κ|u|2, δ > 0, κ ≥ 0. (2.3.2)

Let A be the operator associated with the sesquilinear form a(u, v):

(Au, v) = a(u, v) u, v ∈ V.

We begin with the following existence result(see Chapter 4 of [7]).
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Proposition 2.3.1. Let (u0, u1) ∈ V × H and h ∈ L2(0, T ; H). Then the

evolution equation (2.3.1) has a unique solution u ∈ WT . Moreover, we have

||u||WT
≤ C1(1 + ||u0||+ |u1|+ ||h||L2(0,T ;H)),

where C1 is a constant depending on T .

Remark 2.3.1. From (2.3.1) it follows that

u′′(t) = h(t)− Au(t) ∈ L2(0, T ; V ∗),

hence it follows u′ ∈ C([0, T ]; V ∗) and u ∈ C([0, T ]; H)(cf. Theorem 1.1 of

Chapter 3 in [7]). Hence (u0, u1) ∈ V ×H makes sense.

This section is to investigate the regularity of solutions for the following

abstract semilinear second order initial value problem:

 u′′(t) + Au(t) = f(t, u(t)) + h(t)

u(0) = u0, u′(0) = u1.
(2.3.3)

We assume the following hypotheses on the nonlinear term.

Assumption (F1). Let f : [0, T ] × V → H be a nonlinear mapping such

that t 7→ f(t, ·) is measurable on [0, T ] and u 7→ f(·, u) is Lipschitz continuous

on V : there exists a constant L > 0 such that

|f(·, u)− f(·, v)| ≤ L||u− v||, u, v ∈ V.

The following lemma is from H. Brézis ([3]; Lemma A.5)
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Lemma 2.3.1. Let m ∈ L1(0, T ; R) satisfying m(t) ≥ 0 for all t ∈ (0, T ) and

a ≥ 0 be a constant. Let b be a continuous function on [0, T ] ⊂ R satisfying

the following inequality:

1

2
b2(t) ≤ 1

2
a2 +

∫ t

0

m(s)b(s)ds, t ∈ [0, T ].

Then,

|b(t)| ≤ a +

∫ t

0

m(s)ds, t ∈ [0, T ].

The following lemma is one of the useful integral inequalities.

Lemma 2.3.2. Let b, a, m ∈ C(R+, R+) and suppose that the following

inequality:

b(t) ≤ a(t) +

∫ t

t0

m(s)b(s)ds, t ≥ t0.

Then,

b(t) ≤ a(t) +

∫ t

t0

[a(s)m(s)]exp{
∫ t

s

m(τ)dτ}ds, t ≥ t0.

We establish the following results on the local solvability of the equation

(2.3.3)

Theorem 2.3.1. Let the Assumption (F1) be satisfied. Assume that h ∈

L2(0, T ; H) and (u0, u1) ∈ V ×H. Then, there exists a time T0 > 0 such that

the equation (2.3.3) admits a unique solution

u ∈ WT0 ∩ C([0, T0]; V ) ∩ C1((0, T0); H), 0 < T0 ≤ T.
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Proof. Let us fix T0 > 0 such that

{(1 + 2T0e
2T0)L}2(e2κT0 − 1)T0/(2κδ) < 1. (2.3.4)

The operator F is defined on L2(0, T0; V ) by letting Fu = w be a solution of

the following Cauchy problem:

 w′′(t) + Aw(t) = f(t, u(t)) + h(t), 0 < t ≤ T0,

w(0) = u0, w
′
(0) = u1.

(2.3.5)

Invoking Proposition 2.3.1, we obtain that the problem (2.3.5) has a

unique solution w ∈ WT0 ∩ C([0, T0]; V ) ∩ C1((0, T0); H). We will show that

the operator F is strictly contractive from L2(0, T0; V ) to itself if the condi-

tion (2.3.4) is satisfied. 2

To prove this theorem, we use the following lemma.

Lemma 2.3.3. Let w1, w2 be the solutions of (2.3.5) with u replaced by

u1, u2 ∈ L2(0, T0; V ), respectively. Then the following inequality holds:

|w1(t)− w2(t)| ≤ α(t)L

∫ t

0

eκ(t−s)||u1(t)− u2(t)||ds, (2.3.6)

where α(t) = 1 + 2te2t.

Proof. For i = 1, 2, we consider the following equation:

 w′′
i (t) + Awi(t) = f(t, ui(t)) + h(t), 0 < t ≤ T,

w(0) = u0, w
′
(0) = u1.

(2.3.7)
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Then, we have that

(w1(t)− w2(t))
′′ + A(w1(t)− w2(t)) = f(t, u1(t))− f(t, u2(t)) (2.3.8)

for t > 0. Acting on the both sides (2.3.8) by w
′
1(t)− w

′
2(t), we have

1

2

d

dt
|w′

1(t)− w
′

2(t)|2 + (A(w1(t)− w2(t)), w
′

1(t)− w
′

2(t))

= (f(t, u1(t))− f(t, u2(t)), w
′

1(t)− w
′

2(t)), (2.3.9)

noting that

2

∫ t

0

(Aw(s), w
′
(s))ds = Re(Aw(t), w(t))− Re(Aw(0), w(0))

and integrating (2.3.9) over (0, t), which implies that

|w′

1(t)− w
′

2(t)|2 + Re(A(w1(t)− w2(t)), w1(t)− w2(t))

≤ 2L

∫ t

0

||u1(s)− u2(s)|| · |w′

1(s)− w
′

2(s)|ds.

Putting

G(t) = 2L||u1(t)− u2(t)|| · |w
′

1(t)− w
′

2(t)|,

which yields that

|w′

1(t)− w
′

2(t)|2 + δ||w1(t)− w2(t)||2 (2.3.10)

≤ κ|w1(t)− w2(t)|2 +

∫ t

0

G(s)ds.
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From (2.3.10), it follows that

d

dt
{e−2κt|w1(t)− w2(t)|2} (2.3.11)

= 2e−2κt{1

2

d

dt
|w1(t)− w2(t)|2 − κ|w1(t)− w2(t)|2}

= 2e−2κt{Re(w
′

1(t)− w
′

2(t), w1(t)− w2(t))− κ|w1(t)− w2(t)|2}

≤ 2e−2κt(|w′

1(t)− w
′

2(t)|2 + |w1(t)− w2(t)|2 − κ|w1(t)− w2(t)|2)

≤ 2e−2κt{|w1(t)− w2(t)|2 +

∫ t

0

G(s)ds}.

Integrating (2.3.11) over (0, t), we have

e−2κt|w1(t)− w2(t)|2

≤ 2

∫ t

0

e−2κs|w1(s)− w2(s)|2ds + 2

∫ t

0

e−2κτ

∫ τ

0

G(s)dsdτ

= 2

∫ t

0

e−2κs|w1(s)− w2(s)|2ds +
1

κ

∫ t

0

(e−2κs − e−2κt)G(s)ds.

By Gronwall’s inequality of Lemma 2.3.2, we get

e−2κt|w1(t)− w2(t)|2 ≤
α(t)

κ

∫ t

0

(e−2κs − e−2κt)G(s)ds,
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where α(t) = 1 + 2te2t, that is,

κ|w1(t)− w2(t)|2 ≤ α(t)

∫ t

0

(e2κ(t−s) − 1)G(s)ds. (2.3.12)

From (2.3.10) and (2.3.12) it follows that

|w′

1(t)− w
′

2(t)|2 + δ||w1(t)− w2(t)||2 ≤ α(t)

∫ t

0

e2κ(t−s)G(s)ds, (2.3.13)

which implies

1

2
(e−κt|w′

1(t)− w
′

2(t)|)2 +
1

2
δe−2κt||w1(t)− w2(t)||2

≤ α(t)

∫ t

0

e−κsL||u1(s)− u2(s)|| · e−κs|w′

1(s)− w
′

2(s)|ds.

By using Lemma 2.3.1, we obtain that

e−κt|w′

1(t)− w
′

2(t)| ≤ α(t)L

∫ t

0

e−κs||u1(s)− u2(s)||ds. (2.3.14)

2

Now we are to begin proving this theorem. From (2.3.13) and (2.3.14) it

follows that

|w′

1(t)− w
′

2(t)|2 + δ||w1(t)− w2(t)||2 (2.3.15)

≤ 2(α(t)L)2

∫ t

0

e2κ(t−s)||u1(s)− u2(s)||
∫ s

0

eκ(s−τ)||u1(τ)− u2(τ)||dτds

= 2(α(t)L)2e2κt

∫ t

0

e−κs||u1(s)− u2(s)||
∫ s

0

e−κτ ||u1(τ)− u2(τ)||dτds
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= 2(α(t)L)2e2κt

∫ t

0

1

2

d

ds
{
∫ s

0

e−κτ ||u1(τ)− u2(τ)||dτ}2ds

= (α(t)L)2e2κt{
∫ t

0

e−κτ ||u1(τ)− u2(τ)||dτ}2

≤ (α(t)L)2e2κt

∫ t

0

e−2κτdτ

∫ t

0

||u1(τ)− u2(τ)||2dτ

= (α(t)L)2e2κt 1− e−2κt

2κ

∫ t

0

||u1(τ)− u2(τ)||2dτ

=
(α(t)L)2

2κ
(e2κt − 1)

∫ t

0

||u1(s)− u2(s)||2ds.

Starting from initial value u0(t) = u0, consider a sequence {un(·)} satis-

fying  u
′′
n+1(t) + Aun+1(t) = f(t, un(t)) + h(t), 0 < t ≤ T,

un+1(0) = u0, u
′
n+1(0) = u1.

Then from (2.3.15) it follows that

|u′

n+1(t)− u
′

n(t)|2 + δ||un+1(t)− un(t)||2 (2.3.16)

≤ (α(t)L)2

2κ
(e2κt − 1)

∫ t

0

||un(s)− un−1(s)||2ds.

Hence, we obtain that

||un+1−un||2L2(0,T0;V ) ≤
(α(T0)L)2

2κδ
(e2κT0−1)T0||un−un−1||2L2(0,T0;V ). (2.3.17)
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So by virtue of the condition (2.3.4) the contraction principle gives that there

exists u(·) ∈ L2(0, T0; V ) such that

un(·) → u(·) in L2(0, T0; V ),

and hence, from (2.3.16) there exists u(·) ∈ C([0, T0]; V )∩C1((0, T0); H) such

that

un(·) → u(·) in C([0, T0]; V ) ∩ C1((0, T0); H).

This completes the proof of Theorem. 2

Now, we give a norm estimation of the solution (2.3.3) and establish the

global existence of solutions with the aid of norm estimations.

Theorem 2.3.2. Let the Assumption (F1) be satisfied. Assume that h ∈

L2(0, T ; H)(T > 0) and (u0, u1) ∈ V × H. Then, the solution u of (2.3.3)

exists and is unique in

u ∈ WT ∩ C([0, T ]; V ) ∩ C1((0, T ); H), T > 0.

Furthermore, there exists a constant C2 depending on T such that

||u||WT
≤ C2(1 + ||u0||+ |u1|+ ||h||L2(0,T ;H)). (2.3.18)

Proof. We establish the estimates of solution. Let w be the solution of

 w′′(t) + Aw(t) = h(t), 0 < t ≤ T0,

w(0) = u0, w
′
(0) = u1.
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Then, since

(u(t)− w(t))′′ + A(u(t)− w(t)) = f(t, u(t)),

by multiplying u(t)− w(t) and using the monotonicity of A, we obtain

|u′
(t)− w

′
(t)|2 + δ||u(t)− w(t)||2 (2.3.19)

≤ κ|u(t)− w(t)|2 + 2L

∫ t

0

||u(t)|| · |u(t)− w(t)|dt.

By the procedure similar to (2.3.17) we have

||u− w||2L2(0,T0;V ) ≤
(α(T0)L)2

2κδ
(e2κT0 − 1)T0||u||2L2(0,T0;V ).

Put

N2 =
(α(T0)L)2

2κδ
(e2κT0 − 1)T0.

Then from Proposition 2.3.1, we have that

||u||L2(0,T0;V ) (2.3.20)

≤ 1

1−N
||w||L2(0,T0;V )

≤ C1

1−N
(1 + ||u0||+ |u1|+ ||h||L2(0,T0;H))

≤ C2(1 + ||u0||+ |u1|+ ||h||L2(0,T0;H))

for some positive constant C2. Noting that by Assumption (F1),

||f(·, u(·))||L2(0,T0;H) ≤ ||f(·, u(·))− f(·, 0)||L2(0,T0;H) + ||f(·, 0)||L2(0,T0;H)

≤ const.(1 + ||u||L2(0,T0;V ))
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and by Proposition 2.3.1,

||u||W 2,2(0,T0;V ∗) ≤ {1 + ||u0||+ |u1|+ ||f(·, u(·)) + h||L2(0,T0;H)}.

It is easy to obtain the norm estimate of u in W 2,2(0, T0; V
∗) satisfying

(2.3.18).

Now from (2.3.15), (2.3.20) it follows that

|u(T0)| ≤ ||u||C([0,T0],H) (2.3.21)

≤ C2(1 + ||u0||+ |u1|+ ||h||L2(0,T0;H)).

So, we can solve the equation in [T0, 2T0] and obtain an analogous estimate

to (2.3.19). Since the condition (2.3.4) is independent of initial values, the

solution of (2.3.3) can be extended to the internal [0, nT0] for natural number

n, i.e., for the initial u(nT0) in the interval [nT0, (n + 1)T0], as analogous

estimate (2.3.20) holds for the solution in [0, (n + 1)T0]. Furthermore, the

estimate (2.3.18) is easily obtained from (2.3.19) and (2.3.21). 2

2.4. Applications for nonlinear evolution equations

This section deals with the existence and uniqueness of the solutions to

the nonlinear Volterra integrodifferential equations of the form
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

∂2

∂t2
u(t, x)−∆u(t, x) =

∫ t

0

∑n
i=1

∂
∂xi

σi(s,∇u(s, x))ds + f(t),

0 ≤ t < ∞, x ∈ Ω,

u(t, x) = 0, 0 ≤ t < ∞, x ∈ ∂Ω,

u(0, x) = u0(x), ∂
∂t

u(0, x) = u1(x), x ∈ Ω,

(2.4.1)

where σi(s, ξ) are real-valued continuous functions defined in

{(s, ξ) : 0 ≤ s < ∞, ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn}.

Here, Ω is a bounded domain in Rn with smooth boundary ∂Ω. These types

of equations arise in the theory of viscoelasticity, and in the study of electro-

magnetism in rigid nonconducting material dielectrics(see [8, 4]). We study

the initial-boundary value problem (2.4.1) in  L2(Ω).

We define the following spaces:

H1(Ω) =

{
u : u,

∂u

∂xi

∈ L2(Ω), i = 1, 2, · · · , n

}
,

H2(Ω) =

{
u : u,

∂u

∂xi

,
∂2u

∂xi∂xj

∈ L2(Ω), i, j = 1, 2, · · · , n

}
,

where ∂u
∂xi

and ∂2u
∂xi∂xj

are the derivative of u in the distribution sense.

The norm of H1(Ω) is defined by

||u||1 =

{∫
Ω

(u(x)2 +
n∑

i=1

(
∂u(x)

∂xi

)2)dx

} 1
2

.
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Hence H1(Ω) is a Hilbert space.

H1
0 (Ω) = {u : u ∈ H1(Ω), u|∂Ω = 0}

= the closure of C∞
0 (Ω) in H1(Ω).

The norm and inner product of H1
0 (Ω) are defined by

||u|| =

{∫
Ω

n∑
i=1

(
∂u(x)

∂xi

)2dx

} 1
2

= ||u||1,

((u, v)) =

∫
Ω

n∑
i=1

∂u(x)

∂xi

· ∂v(x)

∂xi

dx

for any u, v ∈ H1
0 (Ω).

We put ∇ = ( ∂
∂x1

, · · · , ∂
∂xn

). Define the operator A by

D(A) = domain of A

= {u : u ∈ H2(Ω) ∩H1
0 (Ω)}

= {u : u ∈ H2(Ω), u|∂Ω = 0},

Au = −4u for all u ∈ D(A).

The operator A in L2(Ω) define the following that for any v ∈ H1
0 (Ω)

there exists f ∈ L2(Ω) such that

((u, v)) = (f, v)

then, for any u ∈ D(A), Au = f and A is a positive definite self-adjoint

operator.
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Let H−1(Ω)=H1
0 (Ω)∗ be a dual space of H1

0 (Ω). For any l ∈ H−1(Ω) and

v ∈ H1
0 (Ω), the notation (l, v) denotes the value l at v. The norm of H−1(Ω)

is defined by

||l||−1 = sup
v∈H1

0 (Ω)

|(l, v)|
||v||

.

Let u be fixed if we consider the functional H1
0 (Ω) 3 v 7→ ((u, v)), this

function is continuous linear. For any l ∈ H−1(Ω), it follow that (l, v) =

((u, v)). We denote that for any u, v ∈ H1
0 (Ω)

((u, v)) = (Ãu, v),

that is, Ãu = l. The operator Ã is one to one mapping from H1
0 (Ω) to

H−1(Ω). The relation of operators A and Ã satisfy the following that

D(A) = {u ∈ H1
0 (Ω), Ãu ∈ L2(Ω)}

Au = Ãu for any u ∈ D(A).

From now on, both A and Ã are denoted simply by A. For any u ∈ D(A),

we define the following that

G(t, u(t, x)) =

∫ t

0

n∑
i=1

∂

∂xi

σi(s,∇u(s, x))ds.
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Then we treat it as the initial value problem for the abstract second order

equations  u′′(t) + Au(t) = f(t, u(t)) + h(t)

u(0) = u0, u′(0) = u1.
(2.4.2)

In (2.4.2), A is the positive definite self-adjoint operator in L2(Ω). We

consider the equation (2.4.1) in Hilbert spaces forming a Galfand triple

H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω). We have thus proved.

Theorem 2.4.1. We assume the following:

A) σi(s, ξ) satisfies an uniform Lipschitz condition with respect to ξ, that

is, there exists a constant L > 0 such that

|σi(s, ξ)− σi(s, ξ̂)| ≤ L|ξ − ξ̂|

where |·| denotes the norm of L2(Ω). Without loss of the generality, it follows

that σi(s, 0) = 0. Hence, there satisfies the following that

|σi(s, ξ)| ≤ L|ξ|.

Assume that h ∈ L2(0, T ; L2(Ω)) and (x0, x1) ∈ H1
0 (Ω) × L2(Ω). Then, the

solution x of (2.4.1) exists and is unique in

L2(0, T ; H1
0 (Ω)) ∩W 2,2(0, T ; H−1(Ω)) ∩C([0, T ]; H1

0 (Ω)) ∩C1((0, T ); L2(Ω)).

Furthermore, there exists a constant C2 depending on T such that

||x||L2(0,T ;H1
0 (Ω))∩W 2,2(0,T ;H−1(Ω)) ≤ C2(1 + ||x0||+ |x1|+ ||h||L2(0,T ;L2(Ω))).
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Proof. Put

g(s, u) =
n∑

i=1

∂

∂xi

σi(s,∇u).

Then we have g(s, u) ∈ H−1(Ω). For each w ∈ H1
0 (Ω), we satisfy the following

that

(g(s, u), w) = −
n∑

i=1

(σi(s,∇u),
∂

∂xi

w).

The nonlinear term is given by

f(t, u) =

∫ t

0

g(s, u)ds.

For any w ∈ H1
0 (Ω), if u and û belong to H1

0 (Ω), by the condition A) we

obtain

|(f(t, u)− f(t, û)), w| ≤ LT ||u− û|| ||w||.

Thus, we can apply the results of Theorem 2.3.2. 2

Remark 2.4.1. The condition A) in Theorem 2.4.1 guarantees that the

nonlinear term f given by

f(t, u) =

∫ t

0

g(s, u)ds

is Lipschitz continuous from L2(Ω) into H1
0 (Ω), which is essential to obtain

a strong solution of the case of a nonlinear partial differential equations. In

this chapter, we no longer require the uniform boundedness and the uniform

Lipschitz condition for σi(s, ξ) and ∂/∂ sσi(s, ξ) with respect to s in the
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study of [8], but instead we need L2-regularity properties and a variation

of solutions of semilinear retarded functional differential equations. So this

sufficient condition in Theorem 2.4.1 is more general than the previous ones.
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Chapter 3

Regular problems for semilinear

hyperbolic type equations

3.1. Introduction

This chapter is concerned with the regularity of solutions for an abstract

semilinear wave equation:

 u′′(t) + A(t)u(t) = G(t, u(t)) + f(t)

u(0) = u0, u′(0) = u1.
(3.1.1)

The problem (3.1.1) is formulated as the following



∂2

∂t2
u(t, x)−

∑n
i,j=1

∂
∂xj

(aij(t, x) ∂u
∂xi

) + c(t, x)u

=
∫ t

0

∑n
i=1

∂
∂xi

σi(s,∇u(s, x))ds + h(t), 0 ≤ t, x ∈ Ω,

u(t, x) = 0, 0 ≤ t, x ∈ ∂Ω,

u(0, x) = u0(x), ∂
∂t

u(0, x) = u1(x), x ∈ Ω.

(3.1.2)

Typical models can be found in the works of materials with biology, engi-

neering, population models, etc.(see, for instance, [27, 5] and the bibliography

therein). From the pioneering results as our linear case, the regularity for

solutions of Cauchy problems for linear hyperbolic equations of second order

with boundary conditions has been studied by Ikawa [9]. As the second order

nonlinear functional evolutions, Kalsatos and Markov in [15] have analyzed

some questions on existence of solutions for functional differential inclusions
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of second order in time and in [6] proved them in the case where a damp-

ing term is added. Kato [12, 13] was the first to make a successful attack

on the hyperbolic type problem. In recent papers, which generalize Kato’s

linear theory, Tanaka [24] has proved wellposedness of the first order nonau-

tonomous abstract Cauchy problems for strongly measurable families under

a new type of quasi-stability condition from the viewpoint of the theory of

finite difference approximations and Kobayashi [16] under strong continuity

of A.

An example of parabolic type problems in which the nonlinear term is

Lipschitz continuous but the mild solution of the equation is not a strong

solution can be found in Webb [26]. We note that Lipschitz continuity of

nonlinear term can be replaced by accretiveness and one still obtains, un-

der suitable conditions, global solutions of the parabolic type equation, see

Chapter 8 of Martin [19]. Recently, Kobayashi et al. [17] introduced the no-

tion of semigroups of locally Lipschitz operators which provide us with mild

solutions to the Cauchy problem for semilinear evolution equations. The

regularity for the semilinear heat equations has been developed as seen in

section 4.3.1 of Barbu [1] and [11].

In this chapter, we propose a different approach of the earlier works

(briefly introduced in [9, 26, 8]) about the mild, strong, and classical so-

lutions of Cauchy problems because we allow implicit arguments to occur in

terms which deal with the L2-regularity for solutions of semilinear hyperbolic

equations under more general hypotheses of nonlinear term G. We are going
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to study that results of the linear cases to those of [9] on the L2-regularity

remain valid under the above formulation of the equation (3.1.1).

In section 3.2, we treat some basic results with the main tools of our

scheme. We adhere to the construction of an evolution system for the equa-

tion (3.1.1) with unbounded operator A(t) constructed by Kato [12, 13]. For

each t ≥ 0, A(t) is the infinitesimal generator of an analytic semigroup to-

gether with some continuity conditions on the family of bounded operators

A(t)A(s)−1. Section 3.3 is devoted to the regularity for solutions of the linear

wave equations in Gelfand triple spaces. Subsequently, our construction of

a local solution of the nonlinear equation (3.1.1) is essentially based on [10].

We will show the energy inequalities for our problem (3.1.1) with the aid of

estimate of L2-type of the solutions, which is an important role in the proof

of the global solutions and in that of the regularity of solutions. Finally, in

section 3.4, a possible extension of the given equation (3.1.1) is discussed.

3.2. Preliminaries

Let V and H be complex Hilbert spaces forming Gelfand triple V ⊂ H ⊂

V ∗ with pivot space H as mentioned in Chapter 2.

Let a(t; u, v) be quadratic form defined on V × V and let us also make

the following assumptions:

i) a(t; u, v) is bounded and uniformly Lipschitz continuous and d/dt a(t; u, v)

is strong continuous with respect to t, i.e., there are some positive constants

c0, c1 such that
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|a(t; u, v)| ≤ c0||u|| ||v||,

|a(t; u, v)− a(s; u, v)| ≤ c1|t− s| ||u|| ||v||,

|d/dt a(t; u, v)| = |ȧ(t; u, v)| ≤ c1||u|| ||v||;

ii) a(t; u, v) is symmetric, i.e.,

a(t; u, v) = a(t; v, u);

iii) a(t; u, v) satisfies the G̊arding’s inequality, i.e.,

Re a(t; u, u) ≥ δ||u||2, δ > 0.

Lemma 3.2.1. Let us define A(t) as the operator determined by a(t; u, v),

i.e., we set

a(t; u, v) = (A(t)u, v), u, v ∈ V.

Then A(t) is an isomorphism V onto V ∗ and for u ∈ V , we have

δ||u|| ≤ ||A(t)u||∗ ≤ c0||u||. (3.2.1)

Proof. From assumtions i), ii) it follows that

||A(t)u||∗ = sup
v∈V

|(A(t)u, v)|
||v||

= sup
v∈V

|a(t; u, v)|
||v||

≤ c0||u||,

and

||A(t)u||∗ ≥
|(A(t)u, u)|

||u||
=
|a(t; u, u)|
||u||

≥ δ||u||,

which proves (3.2.1). 2
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The restriction of A(t) to

D(AH(t)) = {u ∈ V ; A(t)u ∈ H}

is denoted by AH(t). Then it is well known that D(AH(t)) is dense in H by

Lax-Milgram theorem and it is easy to see that

δ||u|| ≤ |AH(t)u| ≤ c0||u||D(AH(t)).

It is obvious that A(t) is an extension of the operator AH(t).

Here and in what follows we consider that D(A(t)) = V is independent

of t from Lemma 3.2.1.

Consider the initial-value problem of the inhomogeneous second hyper-

bolic equation {
u′′(t) + A(t)u(t) = f(t),

u(0) = u0, u′(0) = u1.
(3.2.2)

Put

A(t)

(
u0

u1

)
=

(
0 −I

A(t) 0

)(
u0

u1

)
=

(
−u1

A(t)u0

)
.

Let U(t) =
(

u0(t)
u1(t)

)
where u1(t) = u′0(t), and let F (t) =

(
0

f(t)

)
. Then the

equation (3.2.2) can be rewritten by

 U ′(t) +A(t)U(t) = F (t)

U(0) = U0,
(3.2.3)
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where U0 =
(

u0

u1

)
. We have known that AH(t) and A(t) generate analytic

semigroups in H and V ∗, respectively, so the equation (3.2.2) is considered

in the space both H and V ∗.

Let X be a Banach space. We denoted by G(X, M, β) the set of all linear

operators A in X such that A generates a C0-semigroup {etA} with

||etA||L(X) ≤ Meβt, 0 ≤ t ≤ ∞.

We write

G(X) ≡
⋃

M>0, β∈R

G(X, M, β).

Definition 3.2.1. Let {A(t) : 0 ≤ t ≤ T} be a family of operators in G(X).

{A(t)} is said to be “ stable” with “stability index” M and β if there are

M > 0 and β ∈ R suct that

||
k∏

j=1

(A(tj) + λ)−1||L(X) ≤ M(λ− β)−k, λ > β

for every finite family 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T, k ∈ N.

In the operator product on the left-hand side is time-ordered :

A(tj) is on the left of A(ti) if tj > ti.

Proposition 3.2.1. For each t ∈ [0, T ], let || · ||t be a new norm in X

equivalent to the original one, depending on t smoothly in the sense that

||x||t
||x||s

≤ exp(c|t− s|), x ∈ X, s, t ∈ [0, T ].

40



Assume that for each t, A(t) ∈ G(Xt, 1, β), where Xt means the space X

with norm || · ||t. Then {A(t)} is stable, with the stability index M ≡

exp(2cT ) and β with respect to || · ||t for any t ∈ [0, T ](cf. Proposition 4.3.2

of [23]).

Proposition 3.2.2. (Corollary in section 4.4 of [23]) Suppose that A(t) is

stable, its domain D(A(t))(t ≥ 0) = V is independent of t and A(t)v for each

v ∈ V is strongly continuously differentiable on [0, T ]. Then there exists a

unique function U(t, s) ∈ L(X) such that U(t, s) maps V into V , U(t, s)v

for each v ∈ V is strongly continuously differentiable in t and s, and the

following results holds :

(a) U(t, s) is strongly continuous in s and t,

U(s, s) = I and ||U(t, s)||L(X) ≤ Meβ(t−s),

(b) U(t, s) = U(t, r)U(r, s) for s ≤ r ≤ t,

(c) ∂/∂t U(t, s)v = −A(t)U(t, s)v,

(d) ∂/∂s U(t, s)v = U(t, s)A(s)v.

Put X = (V ×H)T , X̃ = (H × V ∗)T . We define inner product of X and

X̃ by (((u0

u1

)
,

(
v0

v1

)))
X

= ((u0, v0)) + (u1, v1),

and ((f0

f1

)
,

(
g0

g1

))
X̃

= (f0, g0) + (f1, g1)∗,
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respectively.

We introduce a new inner product (( , ))t and norm || · ||t into X as

(((u0

u1

)
,

(
v0

v1

)))
t

= a(t; u0, v0) + (u1, v1)

and ∥∥∥∥(u0

u1

)∥∥∥∥
t

= {a(t; u0, u0) + (u1, u1)}
1
2

for
(

u0

u1

)
,
(

v0

v1

)
∈ X, respectively. Let us introduce a new norm in V ∗ as

follows. For f1, g1 ∈ V ∗, putting

(f1, g1)∗,t = a(t; A(t)−1f1, A(t)−1g1) = (f1, A(t)−1g1),

it satisfies the inner product properties and its norm is given by

||f1||∗,t = (f1, f1)
1/2
∗,t = a(t; A(t)−1f1, A(t)−1f1)

1/2 = (f1, A(t)−1f1)
1/2.

It is easily seen that the norm || · ||∗,t is equivalent to || · ||∗ , i.e, we have

δ√
c0

|| · ||∗,t ≤ || · ||∗ ≤
c0√
δ
|| · ||∗,t. (3.2.4)

We also introduce an inner product ( , )t and norm | · |t into X̃ as((f0

f1

)
,

(
g0

g1

))
t

= (f0, g0) + a(t; A(t)−1f1, A(t)−1g1)

= (f0, g0) + (f1, A(t)−1g1)∗,t
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and ∣∣∣∣(f0

f1

)∣∣∣∣
t

=
(
|f0|2 + ||f1||2∗,t

)1/2
.

The Hilbert spaces defined by the inner products mentioned above denote

by Xt and X̃t, respectively.

Let AX(t) be an operator defined by

D(AX(t)) = (D(AH(t))× V )T ,

AX(t)

(
u0

u1

)
=

(
0 −I

AH(t) 0

)(
u0

u1

)
=

(
−u1

AH(t)u0

)
∈ (V ×H)T = X.

In virtue of Lax-Milgram theorem we can also consider as

D(A(t)) = (V ×H)T = X,

A(t)

(
g0

g1

)
=

(
0 −I

A(t) 0

)(
g0

g1

)
=

(
−g1

A(t)g0

)
∈ (H × V ∗)T = X̃.

Theorem 3.2.1. The linear operators AX(t) and A(t) mentioned above are

the infinitesimal generators of C0-groups of unitary operators in Xt and X̃t,

respectively.

Proof. First, we shall prove that AX(t) and A(t) are skew self-adjoint op-

erators on Xt and X̃t, respectively. For every
(

u0

u1

)
,
(

v0

v1

)
∈ D(AX(t)) =
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D(AH(t))× V , then we have((
AX(t)

(
u0

u1

)
,

(
v0

v1

)))
t

=
((( −u1

AH(t)u0

)
,

(
v0

v1

)))
t

= a(t;−u1, v0) + (AH(t)u0, v1)

= −(AH(t)u1, v0) + (AH(t)u0, v1),

and (((u0

u1

)
,AX(t)

(
v0

v1

)))
t

=
(((u0

u1

)
,

(
−v1

AH(t)v0

)))
t

= −a(t; u0, v1) + (u1, AH(t)v0)

= −(AH(t)u0, v1) + (u1, AH(t)v0).

Noting that AX(t) is symmetric, we have that which implies that A∗
X(t) =

−AX(t), i.e., iAX(t) = (iAX(t))∗, therefore, iAX(t) is self adjoint(skew self

adjoint). Hence, from Stone’s theorem, it follows that AX(t) is the infinites-

imal generator of a C0-group of unitary operators on X if and only if iAX(t)

is self adjoint.

For every
(

u0

u1

)
,
(

v0

v1

)
∈ X̃ = V ×H, we have also obtained that(

A(t)

(
u0

u1

)
,

(
v0

v1

))
t

=
(( −u1

A(t)u0

)
,

(
v0

v1

))
t

= (−u1, v0) + (A(t)u0, v1)∗

= −(u1, v0) + a(t; A(t)−1A(t)u0, A(t)−1v1)
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= −(u1, v0) + a(t; u0, A(t)−1v1)

= −(u1, v0) + a(t; A(t)−1v1, u0)

= −(u1, v0) + (v1, u0) = −(u1, v0) + (u0, v1)

and((u0

u1

)
,A(t)

(
v0

v1

))
t

=
((u0

u1

)
,

(
−v1

A(t)v0

))
t

= (u0,−v1) + (u1, A(t)v0)∗

= −(u0, v1) + a(t; A(t)−1u1, A(t)−1A(t)v0)

= −(u0, v1) + a(t; A(t)−1u1, v0) = −(u0, v1) + (u1, v0).

Hence, (
A(t)

(
u0

u1

)
,

(
v0

v1

))
t

= −
((u0

u1

)
,A(t)

(
v0

v1

))
t
,

so, A(t) is skew self-adjoint operator on X̃t. 2

Theorem 3.2.2. Assume the hypotheses as in Theorem 3.2.1. Then AX(t)

and A(t) are stable on X and X̃, respectively.

Proof. In virtue of Theorem 3.2.1, we may consider that

AX(t) ∈ G(Xt, 1, β) (orA(t) ∈ G(X̃t, 1, β)).

For every
(

u0

u1

)
∈ X, we have
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∣∣∣ ||
(

u0

u1

)
||2t

||
(

u0

u1

)
||2s
− 1
∣∣∣ =

∣∣∣a(t; u0, u0) + |u1|2

a(s; u0, u0) + |u1|2
− 1
∣∣∣

=
∣∣∣a(t; u0, u0)− a(s; u0, u0)

a(s; u0, u0) + |u1|2
∣∣∣

≤ c1(t− s)||u0||2

δ||u0||2
=

c1

δ
|t− s|,

so that

||
(

u0

u1

)
||2t

||
(

u0

u1

)
||2s
≤ 1 +

c1

δ
|t− s| ≤ ec1|t−s|/δ.

Therefore {AX(t)} is stable with the stability index M = e2c1T/δ and β = 0

on X. For f ∈ V ∗, we have

||f ||2∗,t − ||f ||2∗,s = (f, A(t)−1f)− (f, A(s)−1f)

= (f, A(t)−1f − A(s)−1f).

Put v = A(t)−1f − A(s)−1f . From

δ||v||2 ≤ a(t; v, v) = a(t; A(t)−1f − A(s)−1f, v)

= a(t; A(t)−1f, v)− a(t; A(s)−1f, v) + a(s; A(s)−1f, v)− a(s; A(s)−1f, v)

= (f, v)− a(t; A(s)−1f, v) + a(s; A(s)−1f, v)− (f, v)

= −a(t; A(s)−1f, v) + a(s; A(s)−1f, v)

≤ c1|t− s| · ||A(s)−1f || · ||v||,
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we have

δ||v|| ≤ c1|t− s| · ||A(s)−1f || ≤ c1√
δ
|t− s| · a(s; A(s)−1f, A(s)−1f)1/2

=
c1√
δ
|t− s| · ||f ||∗,s.

Therefore, from (3.2.4), it holds that∣∣∣||f ||2∗,t − ||f ||2∗,s∣∣∣ = |(f, v)| ≤ ||f ||∗||v||

≤ c0√
δ
||f ||∗,s

c1

δ
√

δ
|t− s| · ||f ||∗,s

=
c0c1

δ2
|t− s| · ||f ||2∗,s.

Finally, we have∣∣∣ |
(

f0

f1

)
|2t

|
(

f0

f1

)
|2s
− 1
∣∣∣ =

∣∣∣ |f0|2 + ||f1||2∗,t
|f0|2 + ||f1||2∗,s

− 1
∣∣∣

=
∣∣∣ ||f1||2∗,t − ||f1||2∗,s
|f0|2 + ||f1||2∗,s

∣∣∣
≤

c0c1|t− s|/δ2 · ||f1||2∗,s
||f1||2∗,s

= c0c1|t− s|/δ2,

so {A(t)} is stable with index M = exp(2c0c1T/δ2) and β = 0 on X̃. 2

In virtue of Theorems 3.2.1 and 3.2.2, we obtain follows the following

results from Propositions 3.2.1 and 3.2.2.

Theorem 3.2.3. Let AX(t) and A(t) be the operators mentioned above.

Then there exist fundamental solutions UX(t, s) and U(t, s) satisfying (a),

(b), (c), and (d) in Proposition 3.2.2 in X and X̃, respectively.
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Proof. For every
(

u0

u1

)
∈ D(AX(t)) = D(AH(t))× V , we have

d

dt
AX(t)

(
u0

u1

)
=

d

dt

(
−u1

AH(t)u0

)
=

(
0

d/dtAH(t)u0

)
.

From which and d/dt (AH(t)u, v) = ȧ(t; u, v), it follows that d/dtAX(t)
(

u0

u1

)
is strongly continuous with respect to t, that is, for each

(
u0

u1

)
∈ D(AX(t)) =

D(AH(t)) × V (or
(

u0

u1

)
∈ X), AX(t)

(
u0

u1

)
(or A(t)

(
u0

u1

)
, respectively) is

strongly continuously differentiable on [0, T ]. Thus this theorem is from

Theorems 3.2.1 and 3.2.2, and Proposition 3.2.2. 2

3.3. Semilinear equations of hyperbolic type

First, we consider the existence and regularity of solutions for the follow-

ing linear inhomogeneous wave equation:

 u′′(t) + A(t)u(t) = f(t)

u(0) = u0, u′(0) = u1,
(3.3.1)

where A(t) satisfies the conditions of the preceding section.

Let x(t) =
(

u(t)
u′(t)

)
and F (t) =

(
0

f(t)

)
. We can show that a solution x(t)

of (3.3.1) is represented by

x(t) = U(t, 0)x(0) +

∫ t

0

U(t, s)F (s)ds (3.3.2)
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using the fundamental solution U(t, s) constructed in Theorem 3.2.3 and

Proposition 3.2.2. Indeed, by Proposition 3.2.2, we have

(∂/∂s)U(t, s)x(s) = U(t, s)x′(s) + U(t, s)A(s)x(s)

= U(t, s)(x′(s) +A(s)x(s))

= U(t, s)F (s),

which, being integrated from 0 to t, yields (3.3.2). Let T > 0. Define

WT = {u : u ∈ L2(0, T ; D(AH)), u̇ ∈ L2(0, T ; V ), ü ∈ L2(0, T ; H)},

||u||WT
= ||u||L2(0,T ;D(AH)) + ||u̇||L2(0,T ;V ) + ||ü||L2(0,T ;H)

and

W̃T = {u : u ∈ L2(0, T ; V ), u̇ ∈ L2(0, T ; H), ü ∈ L2(0, T ; V ∗)},

||u||W̃T
= ||u||L2(0,T ;V ) + ||u̇||L2(0,T ;H) + ||ü||L2(0,T ;V ∗),

where u̇ denote the derivative of u in the generalized sense. Since

A(t)−1 =

(
0 A(t)−1

−I 0

)
: X̃ → X

is a bounded operator. It holds A(t)U(t, s)A(t)−1 : X̃ → X̃ is bounded and

strong continuous jointly in s, t. Therefore, there is a constant M > 0 such

that

||U(t, s)||L(X̃) ≤ M, ||A(t)U(t, s)A(s)−1||L(X̃) ≤ M. (3.3.3)
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By the assumption i) of a(s; u, v), it holds that for every u, v ∈ V ,

|d/ds (A(s)u, v)| = |ȧ(s; u, v)| ≤ c1||u|| ||v||,

that is, we have that for every u ∈ V , s 7→ d/dsA(s)u is strongly continuous

in V ∗ and so, ||d/dsA(s)||L(V,V ∗) is bounded on [0, T ]. Hence, noting that for

every
(

u0

u1

)
∈ X,

d

dt
A(s)

(
u0

u1

)
=

d

dt

(
−u1

A(s)u0

)
=

(
0

d/dtA(s)u0

)
,

it follows that d/dsA(s)
(

u0

u1

)
is strongly continuous with respect to t in X̃

and so, ||d/dsA(s)||L(X,X̃) is bounded on [0, T ]. Therefore, we may assume

that

|| d

ds
A(s)A(s)−1||L(X̃) ≤ M. (3.3.4)

Now we show the energy inequalities for our problem (3.3.1), which is an

important role in the proof of the existence of solution and in that of the

regularity of solutions.

Theorem 3.3.1. Assume that f ∈ C([0, T ]; V ∗) ∩ W 1,2(0, T ; V ∗)(T > 0)

and the initial data (u0, u1) ∈ V ×H. Then the solution u of (3.3.1) exists

and is unique in

u ∈ W̃T ∩ C([0, T ]; V ) ∩ C1((0, T ); H).

50



Furthermore, the following energy inequality holds: there exists a constant

CT depending on T such that

||u||W̃T
≤ CT (||u0||+ |u1|+ ||f(0)||∗ + ||f ||W 1,2(0,T ;V ∗)). (3.3.5)

If f ∈ C([0, T ]; H) ∩W 1,2(0, T ; H) and (u0, u1) ∈ D(AH) × V , then the

solution u of (3.3.1) exists and is unique in

u ∈ WT ∩ C([0, T ]; D(AH)) ∩ C1((0, T ); V ),

satisfying

||u||WT
≤ CT (||u0||D(AH) + ||u1||+ |f(0)|+ ||f ||W 1,2(0,T ;H)). (3.3.6)

Proof. Regarding that the equation (3.3.1) may be considered as an equation

in both H and V ∗, so now we investigate the consequences of the equation

as in X̃. Since {AX(t) : 0 ≤ t ≤ T} and {A(t) : 0 ≤ t ≤ T} are stable on X

and X̃, respectively, in virtue of Theorem 3.2.3, there exists a fundamental

solution U(t, s) of

d

dt

(
w0(t)

w1(t)

)
+A(t)

(
w0(t)

w1(t)

)
=

(
0

f(t)

)
.

Let u(t) be the solution of the equation

 u′′(t) + A(t)u(t) = f(t)

u(0) = u0, u′(0) = u1.
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Then we put w0(t) = u(t), w1(t) = u′(t) and hence obtain

(
w0(t)

w1(t)

)
= U(t, 0)

(
w0(0)

w1(0)

)
+

∫ t

0

U(t, s)

(
0

f(s)

)
ds. (3.3.7)

From the property (d) in Proposition 3.2.2 , it follows∫ t

0

U(t, s)

(
0

f(s)

)
ds =

∫ t

0

U(t, s)A(s)A(s)−1

(
0

f(s)

)
ds

=

∫ t

0

∂

∂s
U(t, s)A(s)−1

(
0

f(s)

)
ds

= A(t)−1

(
0

f(t)

)
− U(t, 0)A(0)−1

(
0

f(0)

)

−
∫ t

0

U(t, s)A(s)−1

{
− d

ds
A(s)A(s)−1

(
0

f(s)

)
+

(
0

f ′(s)

)}
ds.

From which and (3.3.7) we have

A(t)

(
w0(t)

w1(t)

)
= A(t)U(t, 0)A(0)−1A(0)

(
w0(0)

w1(0)

)
(3.3.8)

+

(
0

f(t)

)
−A(t)U(t, 0)A(0)−1

(
0

f(0)

)

−
∫ t

0

A(t)U(t, s)A(s)−1

{
− d

ds
A(s)A(s)−1

(
0

f(s)

)
+

(
0

f ′(s)

)}
ds.

Therefore, by (3.3.3) we have that there exists a constant c1 such that

||A(t)

(
w0(t)

w1(t)

)
||X̃ ≤ c1

{
||A(0)

(
w0(0)

w1(0)

)
||+ ||

(
0

f(t)

)
|| (3.3.9)

+ ||
(

0

f(0)

)
||+

∫ t

0

||
(

0

f(s)

)
||+ ||

(
0

f ′(s)

)
||ds

}
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= c1

{
||
(

−w1(0)

A(0)w0(0)

)
||+ ||f(t)||∗ + ||f(0)||∗

+

∫ t

0

(||f(s)||∗ + ||f ′(s)||∗) ds

}
,

where c1 = max{M, 1, M2}. Here, we remark that∥∥∥∥A(0)

(
w0(0)

w1(0)

)∥∥∥∥
X̃

=

∥∥∥∥( −w1(0)

A(0)w0(0)

)∥∥∥∥
X̃

(3.3.10)

= (|w1(0)|2 + ||A(0)w0(0)||2∗)
1
2 ≤ max{1, c0}(||w0(0)||+ |w1(0)|),

||f(t)||∗ = ||f(0) +

∫ t

0

f ′(s)ds||∗ ≤ ||f0||∗ +

∫ t

0

||f ′(s)||∗ds (3.3.11)

and∫ t

0

||f(s)||∗ds =

∫ t

0

||f(0) +

∫ s

0

f ′(σ)dσ||∗ds (3.3.12)

≤ t||f(0)||∗ +

∫ t

0

∫ s

0

||f ′(σ)||∗dσds = t||f(0)||∗ +

∫ t

0

(t− σ)||f ′(σ)||∗dσ.

We recall that

∥∥∥∥A(t)

(
w0(t)

w1(t)

)∥∥∥∥
X̃

≥ min{1, δ}(||w0(t)||2 + |w1(t)|2)
1
2 . (3.3.13)

Hence, from (3.3.7)-(3.3.13), it follows that

(||w0(t)||2 + |w1(t)|2)1/2 (3.3.14)

≤ c1/ min{1, δ}{max{1, c0}(||w0(0)||+ |w1(0)|) + ||f(0)||∗ +

∫ t

0

||f ′(s)||∗ds}.
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Therefore, we see that u ∈ C([0, T ]; V ) ∩ C1((0, T ); H)( or the continuity of

solutions for the equation (3.3.1) is also obtained by using an application

of the theory of intermediate spaces(see [18], Vol. I, Theorem 3.1)). Since

w0(t) = u(t), w1(t) = u′(t) and u′′(t) = −A(t)u(t) + f(t), it holds

||u′′(t)||∗ = || − A(t)u(t) + f(t)||∗ ≤ c0||u(t)||+ ||f(t)||∗.

By this and (3.3.14), there exists a constant CT such that

||u||W̃T
≤ CT (||u0||+ |u1|+ ||f(0)||∗ + ||f ||W 1,2(0,T ;V ∗)).

Let f ∈ C([0, T ]; H) ∩ W 1,2(0, T ; H)(T > 0) and (u0, u1) ∈ D(AH) × V .

Regarding that the equation (3.3.1) is considered as in X. The proof of

(3.3.6) on WT is completely analogous to the situation on W̃T as in X̃. 2

From now on, by using the properties of the linear inhomogeneous equa-

tions, we investigate the regularity of solutions for abstract semilinear second

order initial value problem:

 u′′(t) + A(t)u(t) = G(t, u(t)) + f(t)

u(0) = u0, u′(0) = u1.
(3.3.15)

We assume the following hypotheses on the nonlinear term.

Assumption (G). Let G : [0, T ] × V → H be a nonlinear mapping such

that t 7→ G(t, ·) is continuously differentiable on [0, T ] and u 7→ G(·, u) be

Lipschitz continuous on V : there exists constant L > 0 such that

sup
0≤t≤T

|∂/∂tG(t, u)| ≤ L,
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|G(·, u)−G(·, v)| ≤ L||u− v||, u, v ∈ V.

In case where A(t) = A, by Theorem 2.3.1 ( or [23]; Theorem 6.1.3), the

equation (3.3.15) has a unique local solution on some interval [0, Tc) for some

Tc ≤ T . Even if A(t) depend on t, similar results to that above still hold

when the equation (3.3.15) has a fundamental solution, see Remark 6.1.1 of

[23]. We shall see that the solution can be extended to [0, T ] for T > 0. To

see this, it is enough to show that u is a solution in 0 < Tc ≤ T < ∞, then

u(t) is bounded in 0 ≤ t < Tc. We start with the following results.

Theorem 3.3.2. Let Assumption (G) be satisfied. Assume that f ∈

C([0, T ]; V ∗)∩W 1,2(0, T ; V ∗)(T > 0) and (u0, u1) ∈ V ×H. Then the solution

u of the equation (3.3.15) exists and is unique in

u ∈ W̃T ∩ C([0, T ]; V ) ∩ C1((0, T ); H), T > 0.

Furthermore, the following energy inequality holds: there exists a constant

CT depending on T such that

||u||W̃T
≤ CT (1 + ||u0||+ |u1|+ ||f(0)||∗ + ||f ||W 1,2(0,T ;V ∗)). (3.3.16)

Proof. Let u(t) be the solution of the following equation:


u′′(t) + A(t)u(t) = G(t, u(t)) + f(t)

u(0) = u0, u′(0) = u1.
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Put w0 = u(t), w1(t) = u′(t). Then, by Theorem 3.2.3, there exists a funda-

mental solution U(t, s) of

d

dt

(
w0(t)

w1(t)

)
+A(t)

(
w0(t)

w1(t)

)
=

(
0

G(t, w0(t)) + f(t)

)
,

and hence obtain(
w0(t)

w1(t)

)
= U(t, 0)

(
w0(0)

w1(0)

)
+

∫ t

0

U(t, s)

(
0

G(t, w0(t)) + f(t)

)
ds. (3.3.17)

For the estimate of the semilinear case for (3.3.7), from (3.3.17), we have

A(t)

(
w0(t)

w1(t)

)
= A(t)U(t, 0)A(0)−1A(0)

(
w0(t)

w1(t)

)
(3.3.18)

+

(
0

G(t, w0(t)) + f(t)

)
−A(t)U(t, 0)A(0)−1

(
0

G(0, w0(0)) + f(0)

)

−
∫ t

0

A(t)U(t, s)A(s)−1

{
− d

ds
A(s)A(s)−1

(
0

G(s, w0(s)) + f(s)

)

+

(
0

d
ds

(G(s, w0(s)) + f(s)

)}
ds.

Furthermore, by the similar way to (3.3.9) there exists a constant c1 such

that

||A(t)

(
w0(t)

w1(t)

)
|| ≤ (3.3.19)

c1

{
||
(

−w1(0)

A(0)w0(0)

)
||+ |G(t, w0(t)) + f(t)|∗ + |G(0, w0(0)) + f(0)|∗

+

∫ t

0

(
||G(s, w0(s)) + f(s)‖∗ + || d

ds
G(s, w0(s)) + f(s)||∗

)
ds

}
.
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Now, noting that

||d/dsG(s, w0(s))||∗ = ||G1(s, w0(s)) + G2(s, w0(s))u′(s)||∗

≤ ||G1(s, w0(s))||∗ + L||w′
0(s)||

where Gi(i = 1, 2) is the partial derivative of G, we have

||G(t, w0(t)||∗ = ||G(0, w0(0)) +

∫ t

0

d

ds
G(s, w0(s))ds||∗ (3.3.20)

≤ (|G(0, w0(0))−G(0, 0)|+ |G(0, 0)|+
∫ t

0

(|G1(s, w0(s))|+ L||w′
0(s)||ds)

≤ L||w0(0)||+ |G(0, 0)|+ L

∫ t

0

(1 + ||w′
0(s)||)ds

and ∫ t

0

‖G(s, w0(s)‖∗ds

=

∫ t

0

∥∥∥∥G(0, w0(0)) +

∫ s

0

d

dσ
G(σ, w0(σ))dσ

∥∥∥∥
∗
ds (3.3.21)

≤ t||G(0, w0(0))||∗ +

∫ t

0

(t− σ)

∥∥∥∥ d

dσ
G(σ, w0(σ))

∥∥∥∥
∗
ds

≤ t||G(0, w0(0))||∗ + L

∫ t

0

(t− σ)(1 + ||w′
0(σ)||)dσ.

Thus, from (3.3.10), (3.3.12), (3.3.18) - (3.3.21) we have that there exists a

constant C ′ depending on T such that

(||w0(t)||2 + |w1(t)|2)1/2 ≤C ′(1 + ||w0||+ |w1|+ ||f(0)||∗

+ ||f ||W 1,2(0,T ;V ∗) +

∫ t

0

(1 + ||w′
0(s)||)ds),
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noting that w1(t) = u′(t), which by Gronwall’s inequality implies (3.3.16)

2

3.4. Applications

For each t ∈ [0, T ] and u, v ∈ H1(Ω), let us consider the following

sesquilinear form:

a(t; u, v) =
n∑

i,j=1

∫
Ω

(aij(t, x)
∂u

∂xi

∂v

∂xj

+ c(t, x)uv̄)dx

where the matrix (aij(t, x)) is uniformly positive definite, i.e., there exists a

positive constant δ such that

n∑
i,j=1

aij(t, x)ξiξ̄j ≥ δ|ξ|2

for all x ∈ Ω, t ∈ [0, T ] and for all real vectors ξ. Let

aij,
∂

∂xj

aij,
∂

∂t
aij,

∂2

∂t∂xj

aij, c ≥ 0,
∂

∂t
c

be all continuous and bounded on Ω× [0, T ], and

aij,
∂

∂xj

aij, c
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satisfy uniformly Lipschitz continuity with respect to t. Then there exist

constants c0, c1 > 0 such that

|a(t, u, v)| ≤ c0||u||||v||∣∣∣∣ ddt
a(t, u, v)

∣∣∣∣ =
∣∣∣∫

Ω

(
n∑

i,j=1

ȧij(t, x)
∂u

∂xi

∂v

∂xj

+ ċ(t, x)uv̄)dx
∣∣∣≤ c1||u|| · ||v||

and it holds G̊arding’s inequality ;

a(t; u, u) =

∫
Ω

(
n∑

i,j=1

aij(t, x)
∂u

∂xi

∂u

∂xj

+ c(t, x)uū)dx

≥ δ

∫
Ω

∣∣∣ ∂u

∂xi

∣∣∣2dx = δ||u||2.

Consider the Cauchy problem for the hyperbolic equation:



∂2

∂t2
u(t, x)−

∑n
i,j=1

∂
∂xj

(aij(t, x) ∂u
∂xi

) + c(t, x)u

=
∫ t

0

∑n
i=1

∂
∂xi

σi(s,∇u(s, x))ds + h(t), 0 ≤ t, x ∈ Ω,

u(t, x) = 0, 0 ≤ t, x ∈ ∂Ω,

u(0, x) = u0(x), ∂
∂t

u(0, x) = u1(x), x ∈ Ω.

(3.4.1)

Define the operator A(t) by

(A(t)u, v) = a(t; u, v) =

∫
Ω

(
n∑

i,j=1

aij(t, x)
∂u

∂xi

∂v

∂xj

+ c(t, x)uv̄)dx,

D(A(t)) = {u : u ∈ H2(Ω) ∩H1
0 (Ω)} = {u : u ∈ H2(Ω), u|∂Ω = 0}.

59



The operator A(t) in L2(Ω) is defined as the following that for any v ∈ H1
0 (Ω)

there exists f ∈ L2(Ω) such that

a(t; u, v) = (f, v)

then, for any u ∈ D(A(t)), A(t)u = f and A(t) is a positive definite self-

adjoint operator. Let u be fixed if we consider the functional H1
0 (Ω) 3 v 7→

a(t; u, v), this function is a continuous linear. For any l ∈ H−1(Ω), it follow

that (l, v) = a(t; u, v). We denote that for any u, v ∈ H1
0 (Ω)

a(t; u, v) = (Ã(t)u, v),

that is, Ã(t)u = l. The operator Ã(t) is one to one mapping from H1
0 (Ω) to

H−1(Ω). The relation of operators A(t) and Ã(t) satisfy the following that

D(A(t)) = {u ∈ H1
0 (Ω), Ã(t)u ∈ L2(Ω)}

A(t)u = Ã(t)u for any u ∈ D(A(t)).

From now on, both A(t) and Ã(t) are denoted simply by A(t). For any

u ∈ D(A(t)), we define the following that

G(t, u(t, x)) =

∫ t

0

n∑
i=1

∂

∂xi

σi(s,∇u(s, x))ds.

Then we treat (3.4.1) as the initial value problem for the abstract second

order equations:

 u′′(t) + A(t)u(t) = G(t, u(t)) + f(t)

u(0) = u0, u′(0) = u1.
(3.4.2)
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We assume the following:

Assumption (G1). The partial derivatives σi(s, ξ), ∂/∂t σi(s, ξ) and ∂/∂ξj σi(s, ξ)

exist and continuous for i = 1, 2, j = 1, 2, · · · , n, and σi(s, ξ) satisfies an uni-

form Lipschitz condition with respect to ξ, that is, there exists a constant

L > 0 such that

|σi(s, ξ)− σi(s, ξ̂)| ≤ L|ξ − ξ̂|

where | · | denotes the norm of L2(Ω).

Lemma 3.4.1. If Assumption (G1) is satisfied, then the mapping t 7→ G(t, ·)

is continuously differentiable on [0, T ] and u 7→ G(·, u) is Lipschitz continuous

on V .

Proof. Put

g(s, u) =
n∑

i=1

∂

∂xi

σi(s,∇u).

Then we have g(s, u) ∈ H−1(Ω). For each w ∈ H1
0 (Ω), we satisfy the following

that

(g(s, u), w) = −
n∑

i=1

(σi(s,∇u),
∂

∂xi

w).

The nonlinear term is given by

G(t, u) =

∫ t

0

g(s, u)ds.
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For any w ∈ H1
0 (Ω), if u and û belong to H1

0 (Ω), by Assumption (G1) we

obtain

|(G(t, u)−G(t, û)), w| ≤ LT ||u− û|| ||w||.

2

Now in virtue of Lemma 3.4.1, we can apply the results of Theorem 3.3.2

as follows.

Theorem 3.4.1. Let Assumption (G1) be satisfied. Assume that f ∈

C([0, T ]; H−1(Ω))∩W 1,2(0, T ; H−1(Ω))(T > 0) and (u0, u1) ∈ H1
0 (Ω)×L2(Ω).

Then the solution u of (3.4.1) exists and is unique in

u ∈ W̃T ∩ C([0, T ]; H1
0 (Ω)) ∩ C1((0, T ); L2(Ω)), T > 0

where

W̃T = L2(0, T ; H1
0 (Ω)) ∩W 1,2(0, T ; L2(Ω)) ∩W 2,2(0, T ; H−1(Ω)).

Furthermore, the following energy inequality holds: there exists a constant

CT depending on T such that

||u||W̃T
≤ CT (1 + ||u0||+ |u1|+ ||f(0)||∗ + ||f ||W 1,2(0,T ;H−1(Ω))).
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Chapter 4

Perturbation results for

hyperbolic evolution systems

4.1. Introduction

The purpose of this chapter is to derive a perturbation theory of the

following perturbed inhomogeneous second order hyperbolic equation: u′′(t) + (A(t) + B(t))u(t) = f(t)

u(0) = u0, u′(0) = u1.
(4.1.1)

Phillips [22] started the study of properties of C0-semigroups which are con-

served under bounded perturbations, and perturbations of infinitesimal gen-

erators of analytic semigroups by a bounded operator is due to Kato [14].

Recently, Belarbi and Benchohra [2] proved the existence of solutions for

a perturbed impulsive hyperbolic differential inclusion with variable times

under the mixed generalized Lipschitz and Carathéodory’s conditions.

Kato [12] was the first to succeed in constructing the fundamental solution

of temporally inhomogeneous second hyperbolic equation:

{
u′′(t) + A(t)u(t) = f(t)

u(0) = u0, u′(0) = u1

(4.1.2)

in a Hilbert space H. For more general results see any of a number of

source, including [14] and Tanabe [23]. Applications to initial value problem
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of hyperbolic equations have been referred to Goldstein [7] and Yosida [28]

in addition [23]. Typical models can be found in the works of materials

with biology, engineering, population models, etc.(see e.t., [27, 5] and the

bibliography therein). As the second order nonlinear functional evolutions,

Kalsatos and Markov in [15] have analyzed some questions on existence of

solutions for functional differential inclusions of second order in time, and in

[6] proved them in the case where a damping term is added. In [11] they

have studied the wellposedness of solutions and the regularity properties

of solutions for the mixed problems for semilinear hyperbolic equations of

second order with unbounded principal operators.

In this chapter, in order to give a construction of an evolution system of

A(t) + B(t), we will assume general conditions that A(t), for each t ∈ [0, T ],

is self adjoint and bounded and A(t)v for each v ∈ V is strongly continuously

differentiable on [0, T ].

Let V be a Hilbert space forming a Gelfand triple V ⊂ H ⊂ V ∗ with

pivot space H. Recall that

A(t) =

(
0 −I

A(t) 0

)(
u0

u1

)
=

(
−u1

A(t)u0

)
, (4.1.3)

B(t) =

(
0 0

B(t) 0

)(
u0

u1

)
=

(
0

B(t)u0

)
,

for any
(

u0

u1

)
∈ X = (V × H)T (or X̃ = (H × V ∗)T ), our problem can be

applied to second order time dependent equations by writing them as first
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order systems. Consequently, we deal with constructing of the fundamental

solution of (4.1.2) explained the arguments in given in [1, 14]. In addition

to assumptions of A(t), Tanabe [23] dealt with a singular perturbation of

evolution systems in a Banach space X with conditions that B(t) is strongly

continuous and there exists a real number λ0 satisfying λ0 ∈ ρ(A(t)) for all

t ∈ [0, T ], such that

A(t)B(t)(A(t)− λ0)
−1 ∈ L(X), (4.1.4)

where L(X) denotes the set of all bounded linear operators from X into

itself. But in section 4.2, we will give a perturbation approach under the

more general conditions that X is a Hilbert space and B(t)v for each v ∈ V is

strongly continuously differentiable on [0, T ] instead of (4.1.4) even in special

cases of second order equations. In the last section we give an example of

a partial functional equation as an application of the preceding result in a

mixed problem for hyperbolic case that

A(t) = −
n∑

i,j=1

∂u

∂xj

(aij(t, x)
∂u

∂xi

), B(t) =
n∑

i=1

bi(t, x)
∂u

∂xi

+ c(t, x)u,

where the matrix (aij(t, x)) is uniformly positive definite.

4.2. Perturbation for fundamental solutions

Consider the following perturbed inhomogeneous second order hyperbolic

equation: {
u′′(t) + (A(t) + B(t))u(t) = f(t)

u(0) = u0, u′(0) = u1

(4.2.1)
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where A(t) satisfies the conditions in section 3.2. From now on, both AH(t)

and A(t) are denoted simply by A(t) without the risk of confusing. Let

B(t) be defined on [0, T ] as a strongly continuously differentiable operator

satisfying

B(t)u ∈ C1((0, T ); H), |B(t)u| ≤ B|u| for all u ∈ H (4.2.2)

for some constant B > 0. For

(
u0

u1

)
∈ (V ×H)T = X, let B(t) be an operator

defined by

B(t)

(
u0

u1

)
=

(
0 0

−B(t) 0

)(
u0

u1

)
=

(
0

−B(t)u0

)
∈ X.

Then we have that B(t) : H1
0 (Ω) × L2(Ω) → H1

0 (Ω) × L2(Ω) is a bounded

and strongly continuously differentiable operator with respect to t.

Theorem 4.2.1. Assume that {A(t) : 0 ≤ t ≤ T} satisfies the conditions

in section 3.2. Assume also that B(t) is defined on [0, T ] as a strongly con-

tinuously differentiable operator with values in B(X). Then there exists a

fundamental solution W(t, s) of (4.2.1) satisfying the following results: for

each x ∈ D(A(t)) = (D(A(t))× V )T ,

(a) W(t, s) is strongly continuously in s and t, and ||W(t, s)|| ≤ Meβ(t−s),

(b) W(s, s) = I, and W(t, s) = W(t, r)W(r, s) for s ≤ r ≤ t,

(c) ∂/∂tW(t, s)x = −(A(t) + B(t))W(t, s)x,
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(d) ∂/∂sW(t, s)x = W(t, s)(A(t) + B(t))x.

Proof. Let us denote U(t, s) the evolution fundamental system of x′(t) +

A(t)x(t) = F (t) whose existence is proved by Theorem 3.2.3 and 3.3.1. For

the sake of simplicity in sense of (3.3.3), we assume that there are constants

M0, M1 such that

||U(t, s)|| ≤ M0, ||A(t)U(t, s)A(s)−1|| ≤ M1. (4.2.3)

Put

W0(t, s) = U(t, s), Wm(t, s) = −
∫ t

s

U(t, τ)B(τ)Wm−1(τ, s)dτ, (4.2.4)

W(t, s) =
∞∑

m=0

Wm(t, s), (4.2.5)

for m = 1, 2 · · · . Then we have

W(t, s) = U(t, s)−
∫ t

s

U(t, τ)B(τ)W(τ, s)dτ (4.2.6)

and the series on the right hand side of (4.2.5) is strongly convergent uni-

formly in 0 ≤ s ≤ t ≤ T . Indeed, by (4.2.5)∫ t

s

U(t, τ)B(τ)W(τ, s)dτ =

∫ t

s

U(t, τ)B(τ)
∞∑

m=0

Wm(τ, s)dτ

=
∞∑

m=0

∫ t

s

U(t, τ)B(τ)Wm(τ, s)dτ = −
∞∑

m=0

Wm+1(t, s) = −
∞∑

m=0

Wm(t, s) + U(t, s),
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which yields (4.2.6). From (4.2.2), (4.2.3), it follows, by mathematical in-

duction, that

||U(t, s)|| ≤ M0,

||Wm(t, s)|| ≤ || −
∫ t

s

U(t, τ)B(τ)Wm−1(τ, s)dτ || ≤ Mm+1
0 Bm (t− s)m

m!
.

Hence
∑∞

0 Wm(t, s) is uniformly convergence.

First, we will show that ∂/∂tWm(t, s)A(s)−1 exists and is strongly con-

tinuous on B(X) for all m = 1, 2, · · ·. From (d) of Theorem 3.2.3 and 3.3.1,

we have

U(t, s) =
∂

∂s
U(t, s)A(s)−1 (4.2.7)

and

Wm(t, s)A(s)−1 = −
∫ t

s

U(t, τ)B(τ)Wm−1(τ, s)A(s)−1dτ (4.2.8)

= −
∫ t

s

∂

∂τ
U(t, τ)A(τ)−1B(τ)Wm−1(τ, s)A(s)−1dτ

= −A(t)−1B(t)Wm−1(t, s)A(s)−1 + U(t, s)A(s)−1B(s)Wm−1(s, s)A(s)−1

+

∫ t

s

U(t, τ)
∂

∂τ
(A(τ)−1B(τ)Wm−1(τ, s)A(s)−1)dτ.

Here,

∂

∂τ
(A(τ)−1B(τ)Wm−1(τ, s)A(s)−1) (4.2.9)

= A(τ)−1(−Ȧ(τ)A(τ)−1B(τ) + Ḃ(τ))Wm−1(τ, s)A(s)−1

+A(τ)−1B(τ)
∂

∂τ
Wm−1(τ, s)A(s)−1.
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Now we shall show that the right side of (4.2.8) is differentiable with respect

to t and therfore W(t, s)A(s)−1 is differentiable. Noting that

∂

∂t
U(t, s) = −AU(t, s),

consider that

∂

∂t
Wm(t, s)A(s)−1 = − ∂

∂t
(A(t)−1B(t)Wm−1(t, s)A(s)−1) (4.2.10)

−A(t)U(t, s)A(s)−1B(s)Wm−1(s, s)A(s)−1 +
∂

∂t
(A(t)−1B(t)Wm−1(τ, s)A(s)−1)

−
∫ t

s

A(t)U(t, τ)
∂

∂τ
(A(τ)−1B(τ)Wm−1(τ, s)A(s)−1)dτ

= −A(t)U(t, s)A(s)−1B(s)Wm−1(s, s)A(s)−1

−
∫ t

s

A(t)U(t, τ)
∂

∂τ
(A(τ)−1B(τ)Wm−1(τ, s)A(s)−1)dτ

= −A(t)U(t, s)A(s)−1B(s)Wm−1(s, s)A(s)−1

−
∫ t

s

A(t)U(t, τ)A(τ)−1{−Ȧ(τ)A(τ)−1B(τ) + Ḃ(τ)}Wm−1(τ, s)A(s)−1dτ

−
∫ t

s

A(t)U(t, τ)A(τ)−1B(τ)
∂

∂τ
Wm−1(τ, s)A(s)−1dτ.

From (3.3.4) and (4.2.2), we know that −Ȧ(τ)A(τ)−1B(τ)+Ḃ(τ) is uniformly

bounded, and so there exists a contant M2 such that

||Ȧ(τ)A(τ)−1B(τ) + Ḃ(τ)|| ≤ M2. (4.2.11)
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If m = 1 in (4.2.10), then

|| ∂
∂t
W1(t, s)A(s)−1||

≤ M1B||A(s)−1||+
∫ t

s

M1M2M0||A(s)−1||dτ +

∫ t

s

M1B||
∂

∂τ
U(τ, s)A(s)−1||dτ

≤ M1B||A(s)−1||+ M1M2M0||A(s)−1||(t− s) + M2
1 B(t− s).

If m ≥ 2, then Wm−1(s, s) = 0 by (4.2.4) and hence

|| ∂
∂t
Wm(t, s)A(s)−1|| ≤

∫ t

s

M1M2M
m
0 Bm−1 (τ − s)m−1

(m− 1)!
||A(s)−1||dτ

+

∫ t

s

M1B||
∂

∂τ
Wm−1(τ, s)A(s)−1||dτ

≤ M1M2M
m
0 Bm−1||A(s)−1||(t− s)m

m!
+ M1B

∫ t

s

|| ∂

∂τ
Wm−1(τ, s)A(s)−1||dτ.

By mathematical induction, it satisfies the following that

|| ∂
∂t
Wm(t, s)A(s)−1|| ≤ Mm

1 Bm||A(s)−1||(t− s)m−1

(m− 1)!

+ M1M2M0B
m−1

m−1∑
i=0

Mm−1−i
0 M i

1||A(s)−1||(t− s)m

m!
+ Mm+1

1 Bm (t− s)m

m!
.

Hence, we have

|| ∂
∂t
Wm(t, s)A(s)−1|| ≤ Mm

1 Bmm||A(s)−1||(t− s)m−1

m!

+ M1M2M0B
m−1m{max{M0, M1}}m−1||A(s)−1||(t− s)m

m!
+ Mm+1

1 Bm (t− s)m

m!
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for all m, so that
∑∞

m=0 ||∂/∂tWm(t, s)A(s)−1|| is uniformly convergence.

Therefore

∂

∂t
W(t, s)A(s)−1 =

∂

∂t

∞∑
m=0

Wm(t, s)A(s)−1

exists and is strongly continuous. Noting that

W(t, s) = U(t, s)−
∫ t

s

U(t, s)B(τ)W(τ, s)dτ

and U(t, s) = ∂/∂sU(t, s)A(s)−1, it holds

W(t, s)A(s)−1 = U(t, s)A(s)−1 −
∫ t

s

∂

∂τ
U(t, τ)A(τ)−1B(τ)W(τ, s)A(s)−1dτ

(4.2.12)

= U(t, s)A(s)−1 −A(t)−1B(t)W(t, s)A(s)−1 + U(t, s)A(s)−1B(s)A(s)−1

+

∫ t

s

U(t, τ)
∂

∂τ
(A(τ)−1B(τ)W(τ, s)A(s)−1)dτ.

from which it follows
∂

∂t
W(t, s)A(s)−1 = −A(t)U(t, s)A(s)−1 − ∂

∂t
A(t)−1B(t)W(t, s)A(s)−1

(4.2.13)

−A(t)U(t, s)A(s)−1B(s)A(s)−1 +
∂

∂t
(A(t)−1B(t)W(t, s)A(s)−1)

−
∫ t

s

A(t)U(t, τ)
∂

∂τ
(A(τ)−1B(τ)W(τ, s)A(s)−1)dτ

= −A(t)U(t, s)A(t)−1 −A(t)U(t, s)A(s)−1B(s)A(s)−1

−
∫ t

s

A(t)U(t, τ)
∂

∂τ
(A(τ)−1B(τ)W(τ, s)A(s)−1)dτ.
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Put Ã(t) = A(t) + B(t), Then from (4.2.12) we obtain that

Ã(t)W(t, s)A(s)−1 (4.2.14)

= A(t)U(t, s)A(s)−1 + B(t)U(t, s)A(s)−1 − B(t)W(t, s)A(s)−1

− B(t)A(t)−1B(t)W(t, s)A(s)−1 +A(t)U(t, s)A(s)−1B(s)A(s)−1

+ B(t)U(t, s)A(s)−1B(s)A(s)−1 +

∫ t

s

A(t)U(t, τ)
∂

∂τ
(A(τ)−1B(τ)W(τ, s)A(s)−1)dτ

+ B(t)

∫ t

s

U(t, τ)
∂

∂τ
(A(τ)−1B(τ)W(τ, s)A(s)−1)dτ.

Therefore from which and (4.2.13) it follows that

∂

∂t
W(t, s)A(s)−1 + Ã(t)W(t, s)A(s)−1

= B(t){U(t, s)A(s)−1 −W(t, s)A(s)−1 −A(t)−1B(t)W(t, s)A(s)−1

+ U(t, s)A(s)−1B(s)A(s)−1 +

∫ t

s

U(t, τ)
∂

∂τ
(A(τ)−1B(τ)W(τ, s)A(s)−1)dτ}.

By (4.2.12), the right side of (4.2.14) equals zero. Thus, it is evident that

W(t, s)x is differentiable in s and t and satisfies

∂

∂t
W (t, s)x = −(A(t) + B(t))W (t, s)x,

∂

∂s
W (t, s)x = W (t, s)(A(t) + B(t))x

for each x ∈ D(A(t)) = (D(A(t)) × V )T (or x ∈ (V × H)T = X). Hence

such an operator valued function W(t, s) is the fundamental solution of
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∂/∂tx(t) + (A(t) + B(t))x(t) = 0. 2

Remark 4.2.1. Let us assume also that B(t) is defined on [0, T ] as a strongly

continuously differentiable with values in B(X̃). Then for each x ∈ (V ×

H)T = X, there exists a fundamental solution W(t, s) of (4.3.1) satisfying

(a), (b), (c), and (d) in Theorem 4.2.1 in X̃.

4.3. Mixed problem of hyperbolic equations

Consider the mixed problem for the hyperbolic equation:

∂2

∂t2
u(t, x)−

∑n
i,j=1

∂
∂xj

(aij(t, x) ∂u
∂xi

) +
∑n

i=1 bi(t, x) ∂u
∂xi

+ c(t, x)u

= f(t), 0 ≤ t < ∞, x ∈ Ω,

u(t, x) = 0, 0 ≤ t < ∞, x ∈ ∂Ω,

u(0, x) = u0(x), ∂
∂t

u(0, x) = u1(x), x ∈ Ω.

(4.3.1)

We deal with the Dirichlet condition’s case as follows. The matrix (aij(x, t))

is uniformly positive definite, i.e., there exists a positive constant δ such that

n∑
i,j=1

aij(x, t)ξiξ̄j ≥ δ|ξ|2

for all x ∈ Ω, t ∈ [0, T ] and for all real vectors ξ. Let

aij,
∂

∂xj

aij,
∂

∂t
aij,

∂2

∂t∂xj

aij, c ≥ 0,
∂

∂t
c
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be all continuous and bounded on Ω× [0, T ], and

aij,
∂

∂xj

aij, c

satisfy uniformly Lipschitz’s condition with respect to t.

For each t ∈ [0, T ] and u, v ∈ H1
0 (Ω), let us consider the following

sesquilinear form:

a(t; u, v) =
n∑

i,j=1

∫
Ω

aij(t, x)
∂u

∂xi

∂v

∂xj

dx

Then there exist constants c0, c1 > 0 such that

|a(t, u, v)| ≤ c0||u||||v||∣∣∣∣ ddt
a(t, u, v)

∣∣∣∣ =
∣∣∣∫

Ω

n∑
i,j=1

ȧij(t, x)
∂u

∂xi

∂v

∂xj

dx
∣∣∣≤ c1||u|| · ||v||

and it holds G̊arding’s inequality ;

a(t; u, u) =

∫
Ω

n∑
i,j=1

aij(t, x)
∂u

∂xi

∂u

∂xj

dx ≥ δ

∫
Ω

∣∣∣ ∂u

∂xi

∣∣∣2dx = δ||u||2.

Define the operator A(t) by

(A(t)u, v) = a(t; u, v) =

∫
Ω

n∑
i,j=1

aij(t, x)
∂u

∂xi

∂v

∂xj

dx,

D(A(t)) = {u : u ∈ H2(Ω) ∩H1
0 (Ω)} = {u : u ∈ H2(Ω), u|∂Ω = 0}.
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The operator A(t) in L2(Ω) is defined as the following that for any v ∈ H1
0 (Ω)

there exists f ∈ L2(Ω) such that

a(t; u, v) = (f, v)

then, for any u ∈ D(A(t)), A(t)u = f and A(t) is a positive definite self-

adjoint operator. Let u be fixed if we consider the functional H1
0 (Ω) 3 v 7→

a(t; u, v), this function is a continuous linear. For any l ∈ H−1(Ω), it follow

that (l, v) = a(t; u, v). We denote that for any u, v ∈ H1
0 (Ω)

a(t; u, v) = (Ã(t)u, v),

that is, Ã(t)u = l. The operator Ã(t) is one to one mapping from H1
0 (Ω) to

H−1(Ω). The relation of operators A(t) and Ã(t) satisfy the following that

for any u ∈ D(A(t))

D(A(t)) = {u ∈ H1
0 (Ω), Ã(t)u ∈ L2(Ω)}, A(t)u = Ã(t)u.

From now on, both A(t) and Ã(t) are denoted simply by A. Put

D(B(t)) = H1
0 (Ω), B(t)u =

n∑
i,j=1

bi(x, t)
∂u

∂xi

+ c(x, t)u,

and for
(

u0

u1

)
∈ H1

0 (Ω)× L2(Ω),

A(t)

(
u0

u1

)
=

(
0 −I

A(t) 0

)(
u0

u1

)
,

B(t)

(
u0

u1

)
=

(
0 0

B(t) 0

)(
u0

u1

)
=

(
0

B(t)u0

)
.
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Then B(t) is a bounded operatror from X = (H1
0 (Ω)× L2(Ω))T to itself and

strongly continuously differentiable with respect to t. Since

|B(t)u0| ≤ max{(|b1|, |b2|, · · ·, |bn|, |c|}(
∑

|∂u0

∂xi

|2 + |u0|2)
1
2 ≤ c||u0||H1

0 (Ω),

we have ∥∥∥∥∥B(t)

(
u0

u1

)∥∥∥∥∥
X

≤ c

∣∣∣∣∣
(

u0

u1

)∣∣∣∣∣
X

(B(t) ∈ L(X)).

Then we treat (4.3.1) as the initial value problem for the abstract second

order equations  u′′(t) + (A(t) + B(t))u(t) = f(t)

u(0) = u0, u′(0) = u1.
(4.3.2)

Now we can apply the results of Theorem 4.2.1 and Remark 4.2.1 as

follows.

Theorem 4.3.1. Assume that {A(t) : 0 ≤ t ≤ T} is defined as men-

tioned above and B(t) is defined on [0, T ] as a strongly continuously differen-

tiable with values in L(L2(Ω)). Let us assume that f ∈ C([0, T ]; H−1(Ω)) ∩

W 1,2(0, T ; H−1(Ω))(T > 0) and (u0, u1) ∈ H1
0 (Ω)×L2(Ω). Then, there exists

a fundamental solution W(t, s) of (4.3.2) satisfying (a), (b), (c), and (d) in

Theorem 4.2.1 and the solution u of (4.3.1) exists and is unique in

u ∈ W̃T ∩ C([0, T ]; H1
0 (Ω)) ∩ C1((0, T ); L2(Ω)), T > 0
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where

W̃T = L2(0, T ; H1
0 (Ω)) ∩W 1,2(0, T ; L2(Ω)) ∩W 2,2(0, T ; H−1(Ω)).

Furthermore, the following energy inequality holds: there exists a constant

CT depending on T such that

||u||W̃T
≤ CT (1 + ||u0||+ |u1|+ ||f(0)||∗ + ||f ||W 1,2(0,T ;H−1(Ω))).
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