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Chapter 1

Introduction and Preliminaries

By the 1930s, the basic theory of dynamical systems was well in place,
and the basic studies, which at a later time would lead to a theory of flows
and semiflows for the infinite dimensional evolutionary equations arising in
partial differential equations, had begun. During the period 1930 - 1970
there were many major developments in the study of the longtime dynam-
ics of systems of ordinary differential equations, including perturbation the-
ory for invariant manifolds, bifurcation theory, exponential dichotomies and
hyperbolic structures, the Pliss reduction principle (center manifold), the
Kolmogorov-Arnold-Moser theory, skew products flows for nonautonomous
problems, Morse-Smale dynamical systems, the structural stability program,

the role of symmetries, and index theory.

By the 1970s, the dynamical theories for dissipative partial differential
equations, such as reaction diffusion equations, the Navier-Stokes equations,
and the Cahn-Hilliard equation, were coming to fruition. In this area and
during the subsequent 30 years, one finds the development of existence the-
ories and dimension theories for global attractors and inertial manifolds, the
use of smooth and discrete-valued Lyapunov functions to find Morse-Smale
structures and Poincare-Bendixon theories, and the use of exponential tri-
chotomies and hyperbolic structures for the perturbation theory of invariant

manifolds, for example(see [20, 12, 13]).

The year 1970 is an approximate date of the merger of finite dimensional

and infinite dimensional dynamical systems. Since that time, this has become



a united subject, the Dynamics of Evolutionary Equations. Other major in-
clude the Melinikov method, singular perturbations, random dynamical sys-
tems, almost periodic and almost automorphic dynamics, and approximation
dynamics. The subject of the Dynamics of Evolutionary Equation is only at
its beginning. While it is not possible to predict the future, we sincerely hope
that this paper will be helpful for scholars working in these areas and in some
of the newer areas of dynamics, such as global climate modeling, numerical
simulation of longtime dynamics, and control theory in time-varying media

( see [16, 26, 19]).

In this paper, we consider the existence results, the regularity of the
solutions, and the hyperbolic structures for the perturbation theory for the

following semilinear wave equation:

u’(t) + A(t)u(t) = f(E,u(t)) + h(t)
w(0) = ug, u(0) =1y

(SE)

in a Hilbert space H.
This dissertation-is organized as-follows;

In Chapter 2, we obtain the regularity for (SE) in the case that A(t) = A
is the operator associated with a sesquilinear form defined on V' x V and
satisfying Garding’s inequality, where V' is another Hilbert space such that
V C H C V*(the dual space of V). The nonlinear term f(-,x), which is a
Lipschitz continuous operator with respect to x from V to H, is a semilinear

version of the quasilinear one considered in [6, 15, 25].



As a consequence, our models for the equation (SE) are Volterra integrod-
ifferential equations of the hyperbolic type. These equations arise naturally
in the study of Viscoelasticity in Edelstein and Gurtin [5]. Our formulation
of the equation (SE) is a direct attempt to generalize some results of Webb
[25] and Heard [8], who studied problems similar to the equation (SE) in the
case when A(t) = A does not depend on t. By using the useful integral in-
equalities, we will show that there exists a solution for the class of nonlinear
second order evolution equations by a similar method to that for the linear

heat equations of [11].

In Chapter 3, we-adhere to the construction of anevolution system for the
equation (SE) with unbounded operator A(t) constructed by Kato [12, 13].
For each ¢ > 0, A(t) is the infinitesimal generator of an analytic semigroup
together with some continuity conditions on the family of bounded operators
A(t)A(s)™" Section 3.3 is devoted to the regularity for solutions of the linear
wave equations in Gelfand triple spaces. Subsequently, our construction of
a local solution of the nonlinear equation (SE) is essentially based on [10].
We will show the energy inequalities for thejequation (SE) with the aid of
estimate of L?-type of the solutions, which is-an important role in the proof
of the global solutions and in that of the regularity of solutions. Finally, a

possible extension of the given equation (SE) is discussed.

In Chapter 4, we consider the following perturbed inhomogeneous second

order hyperbolic equation:

{ u"(t) + (A(t) + B(t))u(t) = f(t)
u(0) = ug, u'(0) =y

3



where A(t) satisfies the conditions in Chapter 3. Let B(t) be defined on [0, T

as a strongly continuously differentiable operator satisfying
B(t)u € C*((0,T); H), |B(t)u| < Blu| for all ueH

for some constant B > 0. In order to give the construction of an evolution
system of A(t) + B(t), we will assume general conditions that A(t), for each
t € 10,7, is self adjoint and bounded and A(t)v for each v € V' is strongly
continuously differentiable on [0,7]. Our problem can be applied to sec-
ond order time dependent equations-by writing them as first order systems.
Consequently, we deal with constructing of the fundamental solution of the
linear equation explained the arguments in given in [14;.2]. In addition to
assumptions of A(t), Tanabe [23] dealt with a singular perturbation of evo-
lution systems in a Banach space X with conditions that B(t) is strongly
continuous and there exists a real number A\g satisfying Ao € p(A(t)) for all

t € [0, 7], such that
AW B()(A(D) — ho) ™ € LX),

where L£(X) denotes the set-of all bounded linear operators from X into
itself. But we will give a perturbation approach under the more general
conditions that X is a Hilbert space and B(t)v for each v € V is strongly
continuously differentiable on [0, 7] instead of the above condition even in
special cases of second order equations. In the last section we give an example

of a partial functional equation as an application of the preceding result in



a mixed problem for hyperbolic case that

“~ Ou ou a ou
A(t) = - ; o, (o)) Blt) = ; bilt, @) 5 + et T,

where the matrix (a;;(t,2)) is uniformly positive definite.




Chapter 2
Regularity for solutions of nonlinear

second order evolution equations

2.1. Introduction

In this chapter, we consider the existence and regularity of the solutions

for the following semilinear wave equation:

W) +Au(t) =F,u(t)) #£.L6)
uw(0) = ug, ' (0) =uy

(2.1.1)

in a Hilbert space H. Here A is the operator associated with a sesquilinear
form defined on V' x V' and satisfying Garding’s inequality, where V' is another
Hilbert space such that V.C H C V*(the dual space of V).’ The nonlinear
term f(-, x), which is a Lipschitz continuous operator with-respect to x from
V to H, is a semilinear version of the quasilinear one considered in [6, 15, 25].

Precise assumptions are given in the next seetion.

In the papers [6, 15], they investigated some results of existence and
uniqueness of solutions for some problems that are related to functional dif-
ferential inclusions of second order in time, containing some hereditary char-
acteristics. The existence and regularity for the linear heat equations, which
was first investigated by Brézis [3], has been developed as seen in section

4.3.1 of Barbu [1], and [11].



As a consequence, our models for (2.1.1) are Volterra integrodifferential
equations of the hyperbolic type. These equations arise naturally in the
study of Viscoelasticity in Edelstein and Gurtin [5]. Our formulation of
(2.1.1) is a direct attempt to generalize some results of Webb [25] and Heard
8], who studied problems similar to (2.1.1) in the case when A(t) = A does
not depend on t. By using the useful integral inequalities, we will show

that there exists a solution for the class of nonlinear second order evolution

equations by a similar method to that for the linear heat equations of [11].

Section 2.2 gives some basic results-on existence, uniqueness, and a rep-
resentation formula ef solutions for the given equation (2.1.1). In section
2.3, we will obtain the regularity for solutions of (2.1.1) by converting the
problem into the contraction mapping principle when the nonlinear mapping
f is Lipschitz continuous from R x V' into H, and obtain the norm estimate
of a solution of the above nonlinear equation on L?(0,T;V)NW™2(0,T; H)N
W22(0, T; V*) by using the results of its corresponding the linear part as seen
in [20]. Finally a simple example to which our main result-can be applied is

given in section 2:4.

2.2. Semilinear equations

Let H be a complex Hilbert space with inner product ( , ) and norm
| -|. Let V be embedded in H as a dense subspace with inner product and
norm by ((, )) and || - ||, respectively. By considering H = H*, we may
write V' C H C V* where H* and V* denote the dual spaces of H and V,



respectively . For | € V* we denoted (I,v) by the value [(v) of [ at v € V.

The norm of [ as an element of V* is given by

l
||ZH* — sup |( 7U)|

veV ||U||

Therefore, we assume that V' has a stronger topology than H and, for the

brevity, we may regard that

ulle < ful <|lull,  YueV.

Definition 2.2.1. Let X and Y be complex Banach-spaces. An operator S
from X to Y is-called antilinear if S(u+v) = S(u)+S(v) and S(\u) = A\S(u)

for u,v € X and for A € C.

Let a(u, v) be a quadratic form defined on V' x V' which is linear in u and

antilinear in v.

We make the following assumptions:
i) a(u,v) is bounded, i.e:; there exists ¢p-> 0 such that
|a(u, v)| < collul| - [[o]];

ii) a(u,v) is symmetric, i.e.,

a(u,v) = a(v,u) ;
iii) a(u,v) satisfies the Garding’s inequality, i.e.,

Rea(u,u) > d||u||?, 6 > 0.



Let A be the operator such that (Au,v) = a(u,v) w,v € V. Then, as
seen in Theorem 2.2.3 of [23], the operator A is positive definite and self-
adjoint, D(A'Y?) =V and

a(u,v) = (AY?u, AV%0), wu, veV.

It is also known that the operator A is a bounded linear operator from V' to
V*. The realization of A in H which is the restriction of A to D(A) = {v €
V : Av € H} is also denoted by A, which is structured as a Hilbert space
with the norm ||v||pa) = |Av|. Then the operator A generates an analytic

semigroup in both of H and V*. Thus we have the following sequence
D(AlgF Va@ i gmel »¢ D(A);

where each space is dense in the next one, which is continuous injection.

If X is'a Banach space and 1 < p < oo, LP(0,7; X) is the collection
of all strongly measurable functions from (0,7") into X the p-th powers
whose norms are integrable and W™P(0,T; X) is'the set of all functions
f whose derivatives D f up-to degree m in the distribution sense belong to
LP(0,T; X). C™(]0,T]; X) is the set of all m-times continuously differentiable

functions from [0,7] into X.

We consider the initial value problem of the following semilinear equation

u”(t) + Au(t) = f(t, u(t))
w(0) = ug, ' (0) = uy.

(2.2.1)



Definition 2.2.1. A function u : [0,7] — H is called a solution of equation

(2.2.1) on [0, 77 if
i) e C([0, T} V) nC(0,T); H) 1 C2(0,T); V*),
ii) wu satisfies (2.2.1) on [0, 7.
Assumption (F). Let f:[0,7] x V — H (T > 0) be a nonlinear mapping

such that t — f(¢,-) is continuous on [0, 7] and u +— f(+, u) is locally Lipschitz

continuous on V: for any C' > 0, there exists a constant Lo > 0 such that

[fCu)l<Le, [f(u) = £ )< Lollu— v
holds for ||u|| < C and |jv|| < C.

Let us introduce a new norm in V* as follows. For g, k €' V*, putting
(9+k)=1 = a(AT'g, A™k) = AAg, A'k) = (¢;AT'k),

in virtue of the condition of a (g, k)_1, it satisfies the inner product properties

and its norm is given by

lgfl=i= a(AT g, A7) %
Lemma 2.2.1. The norm ||g||_; is equivalent to || - || , i.e., we have

O gl < Hlglle < 2pjgl
gll-1 > ||9||x > gll—-1-
Ve Vo

Proof. From the condition iii) and i) of a(-,-) it follows
3||AT gI]* < a(ATMg, A7) < oA g]?

10



and hence,

VollAT gl < lgll-1 < Veoll A gll- (2.2.2)

Since
gl = sup L0 g el )
wev |l ey ]
and
1Agll, > (Ag.9)| _ Jalg,9)| | sllgll
gl gl
we obtain that
ol| A= gll < Hlgll. < col A gl (2.2.3)

Combining (2.2.2) with (2.2.3), we.ebtain the inequality, and hence || - ||.

and || - ||—1 are equivalent norms. 0

If we set X = (V x H)T with inner product and norm given by

() X)) Pl s o)
()

respectively. Noting that a(u,v) is an inner product in V and a(u,u)"/? is

and

= {IJuol* + |ui P}V2,
X

equivalent to the norm ||u||, we can also rewrite an inner product and a norm

(i) () =t 0

11

as



and

= {a(uo, uo) + w1 [*}72,
X

()

respectively.

Putting X = (H x V*)T| for every (g‘;) , (:‘;) € )N(, we define an inner

product and a norm by

<(Z?)’(Z?>)x::(9mkb)+(ghkﬂ1

i)

respectively. Let A be an operator defined by

and

)1/2

=l qals g1 |
X

A1) (2 g (e -x

In virtue of Lax-Milgram theorem, we can also consider as

DA =V xH) =X

(@)= () (5,) -

12



Theorem 2.2.1. The linear operator A as mentioned above is the infinites-

imal generator of a Cp-group of unitary operators in both X and X.

Proof. For (Z?), (5‘;) € X,

(AG) G (L) ()= ety

= a(uy,vo) — a(ug, v1),

and

(Y2000 e (gl om0 4

= a(ug, v1) — a(ur,vo),

Noting that A is symmetric, we have that

() L) e @2) 200))

which implies that A* = —A and therefore i A = (i.A)* and iA4 is self ad-
joint(skew self adjoint). Hence, from Stone’s theorem, it follows that A is
the infinitesimal generator of a Cy-group of unitary operators on X if and

only if 7.4 is self adjoint.

If (;g) , (gg) € X, then

13



(A0 G () (o= o+

= (u1,v0) — a(ug, A vy)

= (u1,v9) — a(A vy, ug) = (ug,v9) — (v, up)

= (ulavO) - (u07U1>

() 405 = () (1)) = 00

= (Uo,?]l) o a(A_lul,vo) = (Uo,’Ul) - (ul,vo).

Hence, we have that

ARIWR Z@IPQA

that is, A is also skew self-adjoint on X . O

Let x(t) = (Z?gg) and let F(x) = (f(-ﬂ?o(-))> . Then problem (2.2.1) are

equivalent to

(2.2.4)



Let U(t) be a Cy-group generated by A. For a solution of (2.2.4) in the

wide sense, we are to find a solution of the integral equation
t
x(t) =U(t)x(0) + / U(t — s)F(x(s))ds. (2.2.5)
0

Now, we consider the global existence of a solution of (2.2.5).

Theorem 2.2.2. Let us assume the Assumption (F). Then for every uy €

Viu; € H, the equation (2.2.4) has a unique solution on [0, 7] for given
T >0.

Proof. From Theorems 6.1.1 and 6.1.5 in [23], the equation (2.2.4) has a

unique local solution on interval [0, Tp] for 0 < Ty < T

Now, we/give a norm estimation of the solution of (2.2.4) and establish
the global existence of solutions with the aid of norm estimations. So, it is
enough to show that if w is a solution in 0 < ¢ < Tj, then u(t) is bounded in

0 <t <Ty,ie., there exists a constant C' > 0 such that

lu)|] < C)y 0<t<T.

X:H< Auglt )

> min{d, 1} (| uo(6)|* + |ur (1) )2

X:H( Auot )

< max{co, 1}(|Juo(£)]|? + Jua (£)[?)?,

> (82[Juo(#)][* + ua (£)[?)2

= (|l (B)]? + || Auo(1)]?)?

15



it follows that

min{d, 1}(|Juo(t)|[* + [us (1)) < ‘

Al

< max{eo, 1}(|[uo(t)|[* + [us (1)) 2

X

Therefore, from (2.2.5) and (2.2.6) we obtain that

mmeHWM®W+hMﬂW5§‘A<$xD

X

AA%““‘$<f@Z@»)“ '

<o ()] +
ur /) || x X
Here, we can calculate from (2.2.6) that
HAL{(t) (“0) = |l AU A A (“0)
U1 X U X
L
U1 X
< e max{eg, 1} (|[uol|* + Juaf?)P?
< ey max{co, 1} (fuo[l + |u1]),
where ¢; = HAZ/I(t)A_lHB(;() and
4 / = (o)l
0
: 9A( (et _(f&U))dsx

aall
. A<f0




t
gcoLth+coLcM/ [|lu(s)||ds
0
t
< leMt+aloM [ ()| + fu()) ds
0

where M = supy,< ||[U(t)||. Combining two inequalities above and (2.2.6),

it follows from Gronwall’s inequality that there exists a constant ¢; such that

(luo()I1* + Jur (1)) < e (1 + [fuoll + [ual). (2.2.7)

By the calculation similar to these in the proof of mentioned above, a solution

(o) =4~ (i) +/T:”“ - (o)

exists in some interval [T,,77). By letting x(t) = x(¢) for 0 < t < Tj

y of

and x(t) ='y(t) for To <t < Tj, it is easy to see that X is a solution in
0 <t < Tj. Therefore, x can be extended to the interval [0;T}] as a solution

of (2.2.5). Let x be a bounded solution of (2.2.1): ||x(t)||x < C’. Then,

since || (f(tﬂv?o(t))) |x < Lev for-0- <t < Tyby Assumption (F), if we put

x(Ty) = U(To)x(0) + /0 0 U(Ty — s)F(x(s))ds,

x is continuous in 0 < ¢ < T and, moreover, satisfies (2.2.5). Hence, x can
be extended to the interval [0, 7}] as a solution and ug is the desired solution.

So the proof is complete. O

17



2.3. L2-regularity for solutions

Let V and H be complex Hilbert spaces forming Gelfand triple V C H C

V* with pivot space H as mentioned in section 2.2.

Let T > 0. Define

Wr={u:uec L*0,T;V), we L*0,T; H), it € L*(0,T;V*)},
ullwz = [l L20.rv) + (18l L2050 + (il 220,04,

where @ denote the derivative of u in the generalized sense.

First, consider the following L?-regularity for the abstract linear evolution

equation:

u'(t) + Aut) = h(t), 0<t<T, (2.3.1)

w(0) = wp, u(0)=wu;.

Let a(u, v) be a bounded sesquilinear form defined on V' x V' and satisfying

Garding’s inequality:

Rea(u,u) > §||ul|* — klu|®>, 6 >0, x>0. (2.3.2)

Let A be the operator associated with the sesquilinear form a(u,v):

(Au,v) = a(u,v) u,v € V.
We begin with the following existence result(see Chapter 4 of [7]).

18



Proposition 2.3.1. Let (ug,u;) € V x H and h € L?(0,T; H). Then the

evolution equation (2.3.1) has a unique solution u € Wp. Moreover, we have
[ullwy, < CL(L - luol] + |ua| + [IAl| 220,250 )

where (' is a constant depending on 7.

Remark 2.3.1. From (2.3.1) it follows that
u’(t) = h(t) — Au(t) € L*(0,T;V*),

hence it follows v’ €-C([0,7];V*) and u € C([0,T};.H)(cf. Theorem 1.1 of

Chapter 3 in [7]). Hence (ug,u;) € V' x H makes sense.

This section is to investigate the regularity of solutions for the following

abstract semilinear second order initial value problem:

() + Au(t) = f(t, u(t)) + h(t)
uw(0) = up, w'(0) = u;.

(2.3.3)

We assume the following hypotheses on the nonlinear term.
Assumption (F1). Let f:[0,7] x V — H be a nonlinear mapping such
that t — f(t,-) is measurable on [0, 7] and u + f(-,u) is Lipschitz continuous

on V: there exists a constant L > 0 such that

lf(,u) = f(-,0)] < Llju—v||, u,veV.

The following lemma is from H. Brézis ([3]; Lemma A.5)

19



Lemma 2.3.1. Let m € L'(0, T;R) satisfying m(t) > 0 for all t € (0,T) and
a > 0 be a constant. Let b be a continuous function on [0, 7] C R satisfying

the following inequality:

Lot < St [ miaptons, 1€ o)

Then,

1b(t)] Sa—l—/otm(s)ds, t € [0, 7).

The following lemma-is one of the useful integral inequalities.
Lemma 2.3.2.  Let b,a,m € C(RT RT) and suppose.that the following

inequality:

b(t) < a(t)+ | m(s)b(s)ds, t>tp.

Then,

b(t) <.af(t) +/ [a(s)m(s)]ea:p{/ m(r)ydr}ds, t > to.

to

We establish the following results on the local solvability of the equation
(2.3.3)

Theorem 2.3.1. Let the Assumption (F1) be satisfied. Assume that h €
L?(0,T; H) and (ug,u;) € V x H. Then, there exists a time Ty > 0 such that

the equation (2.3.3) admits a unique solution
u € Wr, NC(0, To); V)N CH(0,Tp); H), 0<Ty<T.

20



Proof. Let us fix Ty > 0 such that
{(1 4+ 2Tpe*™) LY (>0 — )Ty /(260) < 1. (2.3.4)

The operator F is defined on L?(0,Tp; V') by letting Fu = w be a solution of

the following Cauchy problem:

W' (t) + Aw(t) = f(t,u(t) +h(t), 0<t<T, (2.3.5)

w(0) = ug, w(0) = uy.

Invoking Proposition 2.3.1, we obtain that the-problem (2.3.5) has a
unique solution w € Wy, N C([0,Tp); V) N CH((0,T5); H). We will show that
the operator F' is strictly contractive from L2(0, Ty; V) to itself if the condi-
tion (2.3.4) is satisfied. O

To prove this theorem, we use the following lemma.

Lemma 2.3.3. Let wy,ws be the solutions of (2.3.5) with u replaced by

uy, uy € L?(0, Ty; V), tespectively. Then the following inequality holds:

lwy () — wq(t)| < a(t)L/O ") |Juy (t) — ug(t)||ds, (2.3.6)

where a(t) = 1 + 2te*.

Proof. For i =1, 2, we consider the following equation:

w(t) + Aw;(t) = f(t,ui(t)) + h(t), 0<t<T, 23.7)
w(0) = ug, w(0) = uy. -

21



Then, we have that

(wi(t) —wo(t)" + Alwi(t) —wa(t)) = f(t,ua(t)) — f(t,ua(t))  (2.3.8)

for t > 0. Acting on the both sides (2.3.8) by w) () — wy(t), we have

1d, o , ,
5 71 (t) = wa(OF + (Awi(t) — ws(t)), wy (1) — wy(t))

= (F(twa(t) = f(tua(t)), wi(t) — wy(1)), (2.3.9)

noting that

2/0 (Aw(s), w'(s))ds = Re(Aw(t),w(t)) = Re(Aw(0), w(0))

and integrating (2.3.9) over (0,¢), which implies that

Jen () — wa () + Re(A(wn(#) = wa (1)), w1 (t) = ws(t))

= 2L/0 [ (5) =uz(s)]] 1wy (5) — wy(s)|ds.

Putting

G(t) = 2L||ur (8) = ua(O)]] - [y (£) — wy (1)),

which yields that

[y (8) = wa (1) 2 + 6w (1) — wa (1) (2.3.10)
< Klwy (t) — wo(t)]? +/0 G(s)ds.
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From (2.3.10), it follows that

d —2Kkt 2
E{e [wy (t) — wa(t)|"} (2.3.11)
= 2€2m{%%|w1(t) —wy(t)]* — w|wi(t) — wa(t)*}

— 26 {Re(w) (£) — wip(t), wi(t) — wa(t)) — wlwi (t) — wa(t)}

< 2672 (Ju (1) — wy(O) +Jeor(t) = wa(0)” — Kl (£) — wa(0)]?)

t
< 2e” g (t) = wo(t)? +/ G(s)ds}-
0
Integrating (2.3.11) over (0,t), we have

ey (t) — wa(t)?
t t T
< 2/ e~ 25 lwi(s) =awo(s)|*ds + 2/ 62’”/ G(s)dsdr
0 0 0
t 1 t
= 2/ e~ 25wy (s) — wo(s)[*ds + — / (7% — e 2")G(s)ds.
0 kJo

By Gronwall’s inequality of Lemma 2.3.2, we get

ey (1) — wa(t)? < 21 e =6
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where a(t) = 1+ 2te?, that is,

K|wi () — wa ()] < a(t)/o (=) — 1)G(s)ds. (2.3.12)

From (2.3.10) and (2.3.12) it follows that
! ! t
[w (1) — wy(1)|* 4 ||wi(t) — wa(t)||* < a(t)/ 62”(t_s)G(s)ds, (2.3.13)
0

which implies

Lo ey o R4 2
5 (€7 |wy (B —wa(t)[)" 5 0™ wa (8) —wa (2)]

¢
/o) [ e )= o)+l (o) = uh(s)lds
0
By using Lemma 2.3.1, we obtain that
/ ¢
e " lw, () —w,(t)| < a(t)L/ e "Nui(s) — ua(s)||ds. (2.3.14)
0
O

Now we are to begin proving this theorem. From (2.3.13) and (2.3.14) it

follows that

Jw () = wy ()] + 6] wa (£) — wa(t)|[? (2.3.15)
< 2L [ @ INfur(s) = w) [ () - ua(r)ards
— 2(a(t)L)262”t/0 e " |lur(s) — ua(s)|| /08 e "|uy (1) — ua(7)||drds
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= 2aLe [ 3 [ ) — ol

:4MMﬁ8%Ae*wawwMﬂwa2

IA

(Oz(t)L)ZeQ’“/O ezde/o ||uq(7) —UQ(T)HQdT
— (a(t)L)et ] _“/Hm )~ uy(r)| P

= (OOL s _ /nm ) — us(s)| P

Starting from initial value wug(t) = u, consider a sequence {u,(-)} satis-

fying

w,, 1 () HAupi1 (t) = f(tua(t)) +h(t), 0<t<T,

tn+1(0) = o, U;L+1(0) = e
Then from (2:3.15) it follows that

[t 31 (8= )2+ Ol () w (@ (2.3.16)

< COLF o /Hw ) — s (s) P

Hence, we obtain that

(a(Tp)L)? (e2To _

letnss =l B vy < 5 DTyt =t B g (2:3:17)
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So by virtue of the condition (2.3.4) the contraction principle gives that there
exists u(-) € L?(0,Tp; V') such that

un(-) = u(:) in L*0,Tp; V),

and hence, from (2.3.16) there exists u(-) € C([0, To]; V)NC'((0, Ty); H) such
that
u,(-) — u(-) in C([0,Tp]; V) NCH(0, Ty); H).

This completes the proof of Theorem. O

Now, we give a norm estimation of the solution (2.3.3) and establish the

global existence of solutions with the aid of norm estimations.

Theorem 2.3.2. Let the Assumption (F1) be satisfied. Assume that h €
L*(0,T; H)(T > 0) and (ug,u;) € V x H. Then, the solution u of (2.3.3)

exists and is unique in
u€ WrN O([0,T); V)C((0,T); H), T >0.
Furthermore, there exists a-constant Cs depending on 7" such that

[ullwy < Co(1 + [Juol| + lus| + |[B] 20/ )- (2.3.18)
Proof. We establish the estimates of solution. Let w be the solution of

w”(t) + Aw(t) = h(t), 0<t <Ty,
w(0) = uy, w (0) = uy.

26



Then, since
(u(t) —w(t)" + A(u(t) —w(t)) = f(t,u(t)),

by multiplying w(t) — w(t) and using the monotonicity of A, we obtain

' (t) — w' (£)|* + 6]|u(t) — w(t)||? (2.3.19)

< wlu(t) — w(t)? + 2L / a(®)]] - Ju(t) — w(t)]dt.

By the procedure similar to (2.3.17) we have

((T5) L)

2 26T,
|Ju — wHL?(O,TO;V) g 2kd fe

— 1)T0||U||%2(0,T0;V)'

Put

(a(T)L)*

N? =
2K0

(™1 1)T,.

Then from 'Proposition 2.3.1, we have that

|l £2(00:79 (2.3.20)
1

= meHLZ(o,TmV)
Cy

< 7w (L Hlwoll + fua| + 1] 207:m)

< oL+ fuol| + [ur] + (1] 2(0.70:))

for some positive constant Cy. Noting that by Assumption (F1),

FCrulD ez < NFC () = FC O e20mm + I1F G5 0) |2 0.m:m)

< const.(1 + HUHL2(0,TO;V))
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and by Proposition 2.3.1,
ullw220,mmv+) < A1+ [Juol| + [ut] + [ f (-, u(-)) + Al| 20,200 } -

It is easy to obtain the norm estimate of w in W22(0,Ty; V*) satisfying

(2.3.18).

Now from (2.3.15), (2.3.20) it follows that

lu(To)| < [|ulleqo,m,m (2.3.21)

< Co(1+ ol + Jurl = ||| 23 10,10;8) ) -

So, we can solve the equation in [Tj, 27p].and obtain an analogous estimate
to (2.3.19). Since the condition (2.3.4) is independent of initial values, the
solution of (2.3.3) can be extended to the internal [0, n7}] for natural number
n, i.e., for the initial u(ndy) in the interval [nTy, (n + 1)T;], as analogous
estimate (2.3.20) holds for the solution in [0, (n 4+ 1)7p]. Furthermore, the
estimate (2.3.18) is-easily obtained from (2.3:19) and (2.3.21). O

2.4. Applications for nonlinear evolution equations

This section deals with the existence and uniqueness of the solutions to

the nonlinear Volterra integrodifferential equations of the form
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g—;u(t,a:) Au(t,x) = fo Zlaaccr, s, Vu(s,z))ds + f(t),
0<t<oo, z€,

u(t,z) =0, 0<t<oo, x€d,

u(0,7) = wo(@),  Lul0,7) = ur(x), reQ,
where o0;(s, £) are real-valued continuous functions defined in

{(87€>:0 < 5.<00, f: (517527"' 7£n) ERH}

(2.4.1)

Here, Q is a bounded domain in R™ with smooth boundary 9€2. These types

of equations arise in the theory of visceelasticity, and in the.study of electro-

magnetism in rigid nonconducting material diclectrics(sec [8, 4]). We study

the initial-boundary value problem (2.4.1) in L.%(€).

We define the following spaces:

HY(Q) = {u:u, g;i c L*(), i=1,2, ,n},
Ou P
2 _ . 2 i —
H*(Q) = {u S, N o v eL*(Q), i,7=1,2, ,n},

where 2 8:17 and f 81; are the derivative of u in the distribution sense.

The norm of H'() is defined by

falh = { [ @i+ i@g;f))z)dx}%_

i=1
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Hence H'(Q) is a Hilbert space.

HY Q) = {u:uec H(Q), ulsq =0}
= the closure of Cg°(Q) in H' ().

The norm and inner product of H}(f2) are defined by

= { [ éa;‘g))?dx};: hul,

(u,v)) = /ﬂ; 8;2:) : G;S)dx

for any u,v € Hj ().
We put V = (8%17 e ,%). Define the operator A by
D(A) = domain of A
= {u:uc H Q)N H(Q)}
= {u:uc H*(Q), ulpa=0},
Au="=Au"Horall_ue€ D(A).

The operator A in L?(Q2) define the following that for any v € H}(Q)

there exists f € L*(Q) such that

((u,0)) = (f,0)

then, for any v € D(A), Au = f and A is a positive definite self-adjoint

operator.

30



Let HY(Q)=H}(Q)* be a dual space of H}(Q). For any [ € H~*(Q2) and
v € H}(Q), the notation (I,v) denotes the value [ at v. The norm of H ()
is defined by

[|l]]-1 = sup
veHL(Q) [ v]]

Let u be fixed if we consider the functional H}(Q) 3 v +— ((u,v)), this
function is continuous linear. For any [ € H'(Q), it follow that (I,v) =

((u,v)). We denote that for any u,v € Hy ()

((w,0)) = (Au,2),

that is, Au = I. The operator A is 6ne to one mapping. from HZ () to

H=Y(€). The relation of operators A and A satisfy the following that

D(A)= {u € H\Q), Aue L*(Q)}

Avi=Au for any u € D(A):

From now on, both A and A are denoted simply by A. For any u € D(A),
we define the following that
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Then we treat it as the initial value problem for the abstract second order

equations

uw’(t) + Au(t) = f(t,u(t)) + h(t)
u(0) = wo, uw'(0) = uy.

(2.4.2)

In (2.4.2), A is the positive definite self-adjoint operator in L?(Q). We
consider the equation (2.4.1) in Hilbert spaces forming a Galfand triple
Hi(Q) C L*(2) € H'(Q2). We have thus proved.

Theorem 2.4.1. We assume the following:

A) o,(s, ) satisfies an uniform Lipschitz condition with respect to £, that

is, there exists‘a constant L > 0 such that

1655, €) — ouls, I =E|E ~ €|

where |-| denotes the norm of L*(£2). Without loss of the generality, it follows
that o;(s,0) = 0. Hence, there satisfies the following that

|2i(s,§)] < LI}

Assume that h € L*(0,7T; L*(Q)) and (xg,z1) € H}(2) x L*(Q). Then, the

solution x of (2.4.1) exists and is unique in
L*(0, T Hy () N W*%(0, T; H~(Q)) N C([0, T]; Hy (2)) N C((0,T); L*(42)).
Furthermore, there exists a constant C5 depending on 7" such that

]| L2005 (@) yrw22 01 () < Co(1 4 [|2ol| + [z1] + [|B]| 22 0,7:22(0)))-
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Proof. Put

gls,u) =Y

i=1

0
a—xiO'i(S, VU)

Then we have g(s,u) € H~1(Q). For each w € H}(), we satisfy the following
that

(9o ), 1) = = 3 (oo, V), ).

i=1 i

The nonlinear term is given by

Nt )= /Otg(s,u)ds.

For any w € Hg(Q), if wand @ belong to. (), by the condition A) we

obtain
|(f(tw) — f(t,a)), w| < LLf|u — 4| [|w]]-

Thus, we can apply the results of Theorem 2.3.2. O

Remark 2.4.1. The condition A) in Theorem+2.4.1 guarantees that the

nonlinear term f given by

is Lipschitz continuous from L?(2) into HJ(€2), which is essential to obtain
a strong solution of the case of a nonlinear partial differential equations. In
this chapter, we no longer require the uniform boundedness and the uniform

Lipschitz condition for o;(s,&) and 0/0 so;(s,£) with respect to s in the
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study of [8], but instead we need L?-regularity properties and a variation
of solutions of semilinear retarded functional differential equations. So this

sufficient condition in Theorem 2.4.1 is more general than the previous ones.
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Chapter 3
Regular problems for semilinear

hyperbolic type equations

3.1. Introduction

This chapter is concerned with the regularity of solutions for an abstract

semilinear wave equation:

u”(t) + A(t)u(t) = G(t, u(t))=+ f(t)

(3.1.1)
u(0) = ug, u'(0) = u.
The problem (3.1.1) is formulated as the following
( n -
ult, x) - Z” ) 70 (i (t, B gg0) + c(t x)u
= f§ Sor 520, (M s, ) ) HERINL )4 0 < £, 2'd/Q,
2 (3.1.2)
u(t, z).= 0, 0<t, '€,
L U(O,.CE) = Uo(x)a %U(O,.I) = U,l(.fl?), s, = A

Typical models can be found in the works of materials with biology, engi-
neering, population models, etc.(see, for instance, [27, 5] and the bibliography
therein). From the pioneering results as our linear case, the regularity for
solutions of Cauchy problems for linear hyperbolic equations of second order
with boundary conditions has been studied by Tkawa [9]. As the second order
nonlinear functional evolutions, Kalsatos and Markov in [15] have analyzed

some questions on existence of solutions for functional differential inclusions
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of second order in time and in [6] proved them in the case where a damp-
ing term is added. Kato [12, 13] was the first to make a successful attack
on the hyperbolic type problem. In recent papers, which generalize Kato’s
linear theory, Tanaka [24] has proved wellposedness of the first order nonau-
tonomous abstract Cauchy problems for strongly measurable families under
a new type of quasi-stability condition from the viewpoint of the theory of
finite difference approximations and Kobayashi [16] under strong continuity

of A.

An example of parabolic type problems in which the nonlinear term is
Lipschitz continuous-but the mild solution of the equation is not a strong
solution can befound in Webb [26]. We note that Lipschitz continuity of
nonlinear term can be replaced by aceretiveness and one still obtains, un-
der suitable conditions, ‘global solutions of the parabolic type equation, see
Chapter 8 of Martin [19]. Recently, Kobayashi et al. [17] introduced the no-
tion of semigroups.of locally Lipschitz operators which provide us with mild
solutions to the Cauchy problem for semilinear evolution equations. The
regularity for the semilinear heat equations has been developed as seen in

section 4.3.1 of Barbu [1] and[11].

In this chapter, we propose a different approach of the earlier works
(briefly introduced in [9, 26, 8]) about the mild, strong, and classical so-
lutions of Cauchy problems because we allow implicit arguments to occur in
terms which deal with the L2-regularity for solutions of semilinear hyperbolic

equations under more general hypotheses of nonlinear term G. We are going
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to study that results of the linear cases to those of [9] on the L*regularity

remain valid under the above formulation of the equation (3.1.1).

In section 3.2, we treat some basic results with the main tools of our
scheme. We adhere to the construction of an evolution system for the equa-
tion (3.1.1) with unbounded operator A(t) constructed by Kato [12, 13]. For
each ¢t > 0, A(t) is the infinitesimal generator of an analytic semigroup to-
gether with some continuity conditions on the family of bounded operators
A(t)A(s)~!. Section 3.3 is devoted to the regularity for solutions of the linear
wave equations in Gelfand triple spaces.—Subsequently, our construction of
a local solution of the nonlinear equation (3.1.1) is essentially based on [10].
We will show the energy inequalities for our problem (3.1.1) with the aid of
estimate of L?type of thesolutions, which is an important role in the proof
of the global solutions and in that of the regularity of solutions. Finally, in

section 3.4, a possible extension of the given equation (3.1.1) is discussed.

3.2. Preliminaries

Let V and H be complex-Hilbert spaces forming Gelfand triple V. C H C
V* with pivot space H as mentioned in Chapter 2.

Let a(t;u,v) be quadratic form defined on V' x V and let us also make

the following assumptions:

i) a(t;u,v)is bounded and uniformly Lipschitz continuous and d/dt a(t; u, v)
is strong continuous with respect to ¢, i.e., there are some positive constants

Co, €1 such that
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|a(t; u, v)| < col [ull [[v]],
|a(t; u,v) = a(s;u,v)] < it = s [|ul||v]],
|d/dt a(t;u,v)| = |at; u, v)| < erlful] [[v]];

ii) a(t;u,v) is symmetric, i.e.,
a(t;u,v) = a(t;v, u);

iii) a(t;u,v) satisfies the Garding’s inequality, i.e.,
Re a(t;u,u) > d||ul|?, §>0.

Lemma 3.2.1. Let us define A(t) as the operator determined by a(t;u,v),

i.e., we set

a(t; )= (A(H)u, vy u,v € V.

Then A(t) is an isomorphism V' onto V* and for v € V| we have
Olfull < [[A@ulls < colful- (3.2.1)

Proof. From assumtions i), ii) it follows that

A u;v a(t;u,v
[A@)ul]« ZSUP—’( (Ehe o) ZSUP—’ (. 0) < col[ull,
vev V]| vev 0]l

and

A .
S [ O 7 s B
] I

which proves (3.2.1). O
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The restriction of A(%) to
D(Ag(t) ={ueV; At)u € H}

is denoted by Ag(t). Then it is well known that D(Ag(t)) is dense in H by

Lax-Milgram theorem and it is easy to see that
Oful < [Aut)u] < collullpiagw):

It is obvious that A(t) is an extension of the operator Ay (t).
Here and in what follows we consider that-D(A(t)) = V is independent
of ¢ from Lemma 3.2.1.

Consider the initial-value _problem.of the inhomogeneous second hyper-

bolic equation

{ u"(t) + Alult) = (), (32.2)
u(0) = vl — v,
Put
o™\ | 0 == Ug\ —Uu
A) (Ul) %, (A(t) 0) (Ul) - <A(t)U0) .

Let U(t) = (gggg) where u,(t) = u)(t), and let F(t) = ( f?t)). Then the
equation (3.2.2) can be rewritten by

U'(t)+ AU (t) = F(t) (32.3)

U(O) = U07
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u1

where Uy = (”O) We have known that Ay (t) and A(t) generate analytic

semigroups in H and V*, respectively, so the equation (3.2.2) is considered

in the space both H and V*.
Let X be a Banach space. We denoted by G(X, M, 3) the set of all linear
operators A in X such that A generates a Cyp-semigroup {e1} with

HetAHz:(X) < MeP', 0<t< oo

We write

&= (U G, 9).

M>0,6eR

Definition 3.2.1. Let {A(#): 0 <t < T} be a family of operators in G(X).
{A(t)} is said to be “ stable” with “stability index” M and 3 if there are
M > 0 and 8 € R suct that

IIH )+ AR — 8)F, N8

for every finite family 0< 73ty < -+ <4, <T, ke N.
In the operator product on the left-hand side is time-ordered :

A(t;) is on the left of A(t;) if t; > t,.

Proposition 3.2.1. For each t € [0,7], let || - || be a new norm in X

equivalent to the original one, depending on ¢ smoothly in the sense that

L<exp(dt—s]), e X, stel0,T).
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Assume that for each t, A(t) € G(Xy,1,3), where X; means the space X
with norm || - ||;. Then {A(t)} is stable, with the stability index M =
exp(2¢T") and § with respect to || - || for any ¢ € [0, T)(cf. Proposition 4.3.2
of [23]).

Proposition 3.2.2. (Corollary in section 4.4 of [23]) Suppose that A(t) is
stable, its domain D(A(¢))(t > 0) = V is independent of ¢ and A(t)v for each
v € V is strongly continuously differentiable on [0,7]. Then there exists a
unique function U(t,s) € L£(X) such that U(t,s) maps V into V, U(t, s)v
for each v € V is strongly continuously differentiable in ¢ and s, and the

following results holds :
(a) U(t, s) is strongly continuous in's.and ¢,
U(s{s)= I and [|U(t, 8)|lcx) < MebE ),
(b) U(tys) =U(t,r)U(r,s) for s <r < t,
(c) 0/otU(t, s)v = —ABOU(t, s)v,

(d) 9/0sU(t,s)v =U(t,s)A(s)v.

Put X = (Vx H)T, X = (H x V*)T. We define inner product of X and

X by
() (). = oy e

and

<<§[1)) ’ (?1)))5( = (fo,90) + (f1,91)+,
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respectively.

We introduce a new inner product (( , )); and norm || - ||; into X as

() ()
()

for (“°> , (v°> € X, respectively. Let us-introduce a new norm in V* as

ul U1

)t = a(t; ug, vo) + (u1,v1)

and

N

= {a(t; up, uo) + (u1,u1)}

t

follows. For f1, g1 € V*, putting

(f1,01)1 = altz A" fr, A@) " 91) = (fi, A() gn),

it satisfies the inner product properties and its norm is given by

1 fillee = (1, f) =t A@) Vs A@) 1) = (fi A 1)

It is easily seen thatthemorm || - ||.; is equivalent to ||.<|. , i.e, we have

(3.2.4)

)
T%H'H*,tSH'H \/—H [t

We also introduce an inner product ( , ); and norm | - |, into X as

() (), = o st e

= (fo. 90) + (f1, A(t) " g1)us
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and

1/2

= (Ifol* + Il A11122)

(%)

The Hilbert spaces defined by the inner products mentioned above denote

t

by X, and )?t, respectively.

Let Ax(t) be an operator defined by

D(Ax(t)) = (D(An(t)) x V)",

() L ) CY Al et = -

In virtue of Lax-Milgram theorem we can also consider as

D(A(®) = (V x H)F = X,

0 (N (g ) G )< o -

Theorem 3.2.1. The linear operators Ax (t)-and .A(t) mentioned above are

the infinitesimal generators of Cy-groups of unitary operators in X; and )?t,

respectively.

Proof. First, we shall prove that Ax(t) and A(t) are skew self-adjoint op-

v1

erators on X; and X, respectively. For every (Z‘;) , (U(’) € D(Ax(t)) =
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D(Ag(t)) x V, then we have
(s ()G~ ((Capin)- G
= a(t; —uy,vo) + (Ap(t)ug, v1)
= —(An(tyur,vo) + (As(tuo,v0)
and
() (D, = () Canrn)),
= —a(t; up, v1) =+ (u1, Ag(t)vy)

= —(Ag(t)ug, v1) + (w13 A (t)vo).

Noting that Ax(¢) is symmetric, we have that which implies that A% (%)
—Ax(t), i.e.;iAx(t) = (iAx(t))*, therefore, i.Ax(t) is self adjoint(skew self

adjoint). Hence, from Stone’s theorem, it follows that Ax(¢) is the infinites-

imal generator of a Cy-group of unitary operators on X if and only if 7.4 x ()

is self adjoint.

For every (Zi’) : (f}‘f) € X =V x H, we have also obtained that

(A0 () G D)= () GO,

= (—ur.v0) + (A(t)uo, 1),

— —(ur,v0) + alt; A8 A(t)uo, A(t) o)
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= —(u,v0) + a(t;ug, A(t)  vy)

= —(u1,v0) + a(t; A(t) Tvr, ug)

= —(ul,U()) + (Uhuo) = —(Ul,Uo) + (uO’U1>

()40 ()= () Cai).

= (ug, —v1) + (u1, A(t)vg)«
= —(ug, v1) + a(t; At) " ur, A#) " A(t)vo)

= —(ug; v1) + altpA ) ur, vo) == (ug, v1) + (u1,vp).

(e (G G 0 (3):

so, A(t) is skew self-adjoint operator on X,. a

Hence,

Theorem 3.2.2. Assume the hypotheses as-in Theorem 3.2.1. Then Ax ()

and A(t) are stable on X and X, respectively.

Proof. In virtue of Theorem 3.2.1, we may consider that
Ax(t) € G(X,,1,8) (orA(t) € G(X,,1,8)).

For every <Z?> € X, we have
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uo \ (12
I et s up
a(s; ug, ug) + |uq|?

()12

ja(t; u, ug) — a(s; ug, uo) )
N a(s; ug, ug) + |uq|?
ca(t —s)|wll* _ a

— L=
Mul? 5

so that

[JE zuTe); 5
1 pi S gfift=sl/s,
I ()i

Therefore {Ax(t)} is stable with the stability index M = ¢*17/% and 3 =0

on X. For f € V* we have

/112 S 1R = (AT - (f, A(s)74f)
= (1, 4@ f - A(s)' /).

Put v = A(t)"'f —A(s)™" f« From

ol[v]* < at; v,0) = alt; A() " f = A(s) " f,0)

= alt; A(t) 7 f,v) — a(t; A(s) "1 f,0) + a(s; A(s) 7 f,v) — als; A(s) 7L f,0)
= (f,v) —alt; A(s) ' f,0) + a(s; A(s) " f,0) = (£,0)

= —a(t; A(s)" f,v) + a(s; A(s) 7 f,0)

< aft = sl [JAG) T Holl,
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we have

olloll < erlt —s| - [JA(s) " fIl < %It — sl -a(s; A(s) "', Als) 71 )Y

(&1
= —|t— 5| w5
ﬁ| |- {1 f [,

Therefore, from (3.2.4), it holds that
115 = 12| = 1 o)l < T1fIl]

Co C1
< — *S—t—S : *,8
< ez gl = Ul
CoC
e R

Finally, we haye

fo ) |2
B LA I

ALY ) ELTReEE 1‘
| (fo) 2 | fol? + |1 1112
f1 s
L (1AL, IAIE,
| fol2 + [LfellE s
coc|t — s]/6% - || fll 4 2
& Si=coCe|t — s|/67,
[Tf2lE
so {A(t)} is stable with index M = exp(2coc;T/62) and =0 on X. O

In virtue of Theorems 3.2.1 and 3.2.2, we obtain follows the following

results from Propositions 3.2.1 and 3.2.2.

Theorem 3.2.3. Let Ax(t) and A(t) be the operators mentioned above.

Then there exist fundamental solutions Ux (¢, s) and U(t, s) satisfying (a),

(b), (c), and (d) in Proposition 3.2.2 in X and X, respectively.
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Proof. For every <ZS> € D(Ax(t)) = D(Ay(t)) x V, we have

40 () =5 o) = (o)

From which and d/dt (Ag(t)u, v) = a(t;u,v), it follows that d/dt Ax(t) (g)

1

is strongly continuous with respect to ¢, that is, for each (Zi’) € D(Ax(t)) =

D(Ap(t) x V (or () € X), Ax(t) (gg) (or A(#) (gg), respectively) is
strongly continuously differentiable on [0, 7]~ Thus this theorem is from

Theorems 3.2.1 and 3.2.2, and Proposition 3.2.2. O

3.3. Semilinear equations of hyperbolic type

First, we consider the existence and regularity of solutions for the follow-

ing linear inhomogeneous wave equation:

u(t) + Ault) = f@&)
u(0) =wup, u'(0)=uy,

(3.3.1)

where A(t) satisfies the conditions of the preceding section.

Let x(t) = (5,%) and F(t) = <f?t)> . We can show that a solution x(t)

of (3.3.1) is represented by

x(t) = U(t, 0)x(0) + /0 tZ/{(t,s)F(s)ds (3.3.2)
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using the fundamental solution U(¢,s) constructed in Theorem 3.2.3 and

Proposition 3.2.2. Indeed, by Proposition 3.2.2, we have

(0/0s)U(t, s)x(s) =U(t, s)X'(s) +U(t, s)A(s)x(s)
= U(t, 5)(x'(s) + A(s)x(s))
=U(t,s)F(s),

which, being integrated from 0 to ¢, yields (3.3.2). Let 7" > 0. Define

Wr ={u:ue L*0,T;D(Ag)), e L*0,T;V), i€ L*(0,T; H)},
ullwy = llullz20.0a0)) + 19| L20,75v) + |1l | 220,73

and

Wr ={u:u e L30,T;V), w € L2(0,T; H), ii € L*0,T:V*)},
|l = |l z20my) + al| 2emm) + [l 2207v+:

where « denote the derivative of u in the generalized sense. Since

A = (_OI A%“) Yo x

is a bounded operator. It holds A()U(t, s)A(t)™' : X — X is bounded and
strong continuous jointly in s,¢. Therefore, there is a constant M > 0 such
that

I 9y < Mo MA@ 5)AG) gy < M. (333)
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By the assumption i) of a(s;u,v), it holds that for every u,v € V,

ds (AGs)u, )] = liCsi,0)] < el o],
that is, we have that for every u € V, s — d/dsA(s)u is strongly continuous
in V* and so, ||d/dsA(s)||zqv,v+) is bounded on [0, T]. Hence, noting that for

every (Z?) € X,

749 (1) = Caom) = Capt o)

it follows that d/ds.A(s) (Zf) is strongly continuous with respect to ¢ in X

and so, ||d/dsA(s)||z(x ) i8"bounded on. [0, T]. Therefore, we may assume

that

15 AGA ey < M (334

Now we show the energy inequalities for our problem (3:3.1), which is an
important role in-the proof of the existence_of ‘solution and in that of the

regularity of solutions.

Theorem 3.3.1. Assume that f € C([0,T];V*) N W20, T;V*)(T > 0)
and the initial data (ug,u1) € V' x H. Then the solution u of (3.3.1) exists

and is unique in

uwe WrnC(0,T); V)N CH(0,T); H).
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Furthermore, the following energy inequality holds: there exists a constant

Cr depending on T' such that

ulls, < Cr([luoll + [ua] + [[FO)+ + [Ifllwr201v+))- (3.3.5)

If feC(0,T);H)NnWY(0,T; H) and (ug,u;) € D(Ag) x V, then the

solution u of (3.3.1) exists and is unique in
u € Wr N C((0,T); D(Ar)) N CH(0,T): V),
satisfying
[lullwy < Cn(lluollpag + [lwll + [F O +{[fllwszoz:m)- (3.3.6)

Proof. Regarding that the equation (3.3.1) may be considered as an equation

in both H land V™, so now we investigate the consequences of the equation
as in X. Since {Ax(t): 0< t < T} and {A(t) : 0 < ¢+ < T} are stable on X

and X , respectively, in virtue of Theorem 3.2.3, there exists a fundamental

solution U(t, s) of

£ () -(5)
Let u(t) be the solution of the equation

W(t) + Atyult) = £(1
uw(0) = ug, u'(0) =uy.
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Then we put wy(t) = u(t), wy(t) = v/(t) and hence obtain

(Z?Eg) U0 (ZTEBD i /otu(t’s) (f&)) ds. (3.3.7)

From the property (d) in Proposition 3.2.2 | it follows

/0 Ut s) ( f&)) ds — /0 Ut 5)Als) Als) ( f&)) ds

A() (Z‘IZD — A[®)U(t,0).A(0)"LA(0) <ZZ’E8;) (3.3.8)

Therefore, by (3.3.3) we have that there exists a consta

e (2000 )1l < c1{||A<o> (o

o)1 L1 )1 ”ds}
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— —wl(O)
- l{n () N+ @+ 17O

n / <Hf<s>u*+|\f’<s>u*>ds},

where ¢; = max{M, 1, M?}. Here, we remark that

40 (o) = Caomn)

= (Jw1 (0)* + ||A(0)wo(0)[2)2 < max{1, co}([[wo(0)]| + w1 (0)]),

(3.3.10)

51 A0 + [ sl < Il + [ slas @31

and
/0 17(5)] e = / 1£(0) + / " f(@)do]|uds (3.3.12)

< H1£(0)[s / / 1/ (). dods = 1]| F(0) | + / ()| (0)|.do.
We recall that

4o (o).

X

> min{1, 6}(|[wo(t)|* + [wi (£)]?)7. (3.3.13)

Hence, from (3.3.7)-(3.3.13), it follows that

([lwo (B> + | (£)[)"/2 (3.3.14)
< cr/ min{1, § H{max{1, co}(||wo(0)[| + w1 (0)]) + (| £ (0[] +/0 1 ()]s}
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Therefore, we see that v € C([0,7];V) N CY((0,T); H)( or the continuity of
solutions for the equation (3.3.1) is also obtained by using an application

of the theory of intermediate spaces(see [18], Vol. I, Theorem 3.1)). Since
wo(t) = u(t), wi(t) =u'(t) and u”’(t) = —A(t)u(t) + f(¢), it holds

" (O] = || = A()u(t) + fO)|« < col[u@)I] + [ (Bl
By this and (3.3.14), there exists a constant C7 such that
ulli, < Cr(lluoll + ur| + [[£ O« + [Lfllwr20z+)-

Let f € C([0,T); H) nW2(0,T; H)(T > 0) and (ug,u;) € D(Ag) x V.
Regarding that the equation (3.3.1) is considered as in X. The proof of

(3.3.6) on Wy is completely-analogous to.the situation on Wrasin X. O

From now on, by using the properties of the linear inhomogeneous equa-
tions, we investigate the regularity of solutions for abstract semilinear second

order initial\value problem:

wi(t)+ A(t)u(t) = Gt u))pt-f(t)
u(0).=arp, ‘w(0) =u;.

(3.3.15)

We assume the following hypotheses on the nonlinear term.

Assumption (G). Let G : [0,7] x V — H be a nonlinear mapping such
that ¢ — G(t,-) is continuously differentiable on [0,7] and u +— G(-,u) be

Lipschitz continuous on V: there exists constant L > 0 such that

sup |0/0tG(t,u)| < L,

0<t<T
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G(u) = GCo)l < Llfu =, wveV.

In case where A(t) = A, by Theorem 2.3.1 ( or [23]; Theorem 6.1.3), the
equation (3.3.15) has a unique local solution on some interval [0, T;.) for some
T. < T. Even if A(t) depend on t, similar results to that above still hold
when the equation (3.3.15) has a fundamental solution, see Remark 6.1.1 of
[23]. We shall see that the solution can be extended to [0,7] for "> 0. To
see this, it is enough to show that u is a solution in 0 < 7T, < T < oo, then

u(t) is bounded in 0 < ¢ < T,. We start with the following results.

Theorem 3.3.2. Let Assumption (G) be satisfied. Assume that f €
C([0,T); V)NWL2(0, T; V*)(T > 0) and (ug, u1) € V x H.. Then the solution

u of the equation (3.3.15).exists and is unigue in

we WrnC([0,7):V)ac (0,7); H), T >0.

Furthermore, the following energy inequality holds: there exists a constant

C7r depending on T such that

[lullsp, < Cr(1 +Huol <l [+ L O+ WA Twr20,2v4). (3.3.16)

Proof. Let u(t) be the solution of the following equation:

u"(t) + At)ult) = G(t, u(t)) + f (1)

u(0) = ug, u'(0) =uy.
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Put wy = u(t), wy(t) = «/(t). Then, by Theorem 3.2.3, there exists a funda-

mental solution U(t, s) of

g (iZEii) AL (ZE@ - (G(t,wooso)) +f(t)> ’

and hence obtain

(338) =u(t,0) (Z?Egi) +/Otu(t»8) (G(t7w0<f))+f(t)) ds. (3.3.17)

For the estimate of the semilinear case for (3.3.7), from (3.3.17), we have

A(®) (wO(”) — AU 0)A®0)A®) (‘UO(”) (3.3.18)

wi (1) wy(t)

0 _3 0
! (G<t,w0<t>> { f(t)> A ) (G<o, wo(0)) + f(O))

t )@, D 0
- /0 AU, 5)Als) { 3~ <G(s,wo<s>>+f(8>)

! (%@(s,wis» o) }ds'

Furthermore, by the similar way to (3.3.9) there exists a constant ¢; such

that

A1) (wo<t>> | < (3.3.19)

w1 (t)

C _wl(O) w w
1{|| (ot VI 166 () + 0. + G0 1(0) + 10

' d
+/0 (||G(S,wo(8)) + f )l + 117G s, wols)) + f(8)||*) dS}.
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Now, noting that

|d/dsG(s, wo(s))[« = ||G1(s, wo(s)) + Ga(s, wo(s))u'(s)|["
< [1G1(s, wo ()]« + Ll [wo(s)]]
where G;(i = 1,2) is the partial derivative of G, we have

Gt wo(®)]]. = G0, ws(0)) + / (s, wols))ds. (3.3.20)

< (IG(0,w0(0)) = G(0,0)[ +1G(0,0)] +/O (1G1(s, wo(s))| + Ll|wy(s)|lds)

< Llfwo(0)|] +1G(0,0)] + L/O (I + [fwo(s)l])ds

and

/0 1G (s, wdle) s

:/Ot

< GO0 w0 + / (t - o)

d 3.3.21
= s (3.3.21)

G(0,we(0)) + /08 iG(a, wo(o))do

*

L e N5))

d
do iy

*

< ]G0, wo(0))]]« + L/O (t = o) (1 + [[wp(a)|])do-

Thus, from (3.3.10), (3.3.12), (3.3.18) - (3.3.21) we have that there exists a
constant C” depending on 7" such that

(lwn(®)| + [un ()2 <C'(1+ ol | + [un] + 17 (O)]].
1wz + / (1+ [Jwl(s)]1)ds).
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noting that wy (t) = v/(t), which by Gronwall’s inequality implies (3.3.16)

3.4. Applications

For each t € [0,7] and u,v € H'(Q), let us consider the following

sesquilinear form:
& ou v _
a(t;u,v) = ;jzl/g(aij(t’x)(?_fvia_xj + ¢(t, z)uv)dz

where the matrix (a;;(¢,z)) is uniformly positive definite,i.e., there exists a

positive constant 6 such that
Z ai(t, B)&&5 = 91¢°
i, j=1
for all z € Q, t.€ [0, T] and for all real vectors &. Lt

0 0 9* 0
Qij, 5 Qijs

— O >
T TR T T A
be all continuous and bounded on Q x [0, 7], and

0

8xj 7

aij7
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satisfy uniformly Lipschitz continuity with respect to ¢. Then there exist

constants ¢y, ¢c; > 0 such that

la(t, u, v)] < cof lul[|]v]]

‘/ it )08 00 it wyum)dz|< eallul] - o]

‘ tuv 88;5]

and it holds Garding’s inequality ;

& ou Ou
a(t;u,u) = /Q(Z aij(t’x)ﬁ_xza_zj + c(t, r)un)dz

et
Ou |2
> R — = 2_
_5/9‘&%] dz = 8|lul]

Consider the Cauchy problem for the hyperbolic equation:

3722“(75 $> - Z?j—l a?g . x) ) + c(t, r)u
= JZSVusx ds+h 0<t, xe€q

= Nogha (s,2)) (®), (3.4.1
u(t,z) =0, 0<t, xe o,

w(0,z) = uo(x), Zu(0,z)=u (=), z-€ (.

Define the operator A(t) by

(A(t)u,v) = a(t;u,v) = /Q(Z ai(t,x) 5—5— +ct, v)uv)dz,

ij=1

D(A®) ={u:ue€ H* Q) NHy(V)} = {u:uec H* (), ulsgq =0}
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The operator A(t) in L?(f2) is defined as the following that for any v € H} ()

there exists f € L*(2) such that

a(t;u,v) = (f,v)

then, for any u € D(A(t)), A(t)u = f and A(t) is a positive definite self-
adjoint operator. Let u be fixed if we consider the functional Hj(Q2) 3 v —
a(t;u,v), this function is a continuous linear. For any [ € H1(Q), it follow

that (I,v) = a(t;u,v). We denote that for any u,v € H}(Q)

at;u, v) = (A{D)usv),

that is, A(t)u =1. The operator A(t) is one to one mapping from H}(Q) to
H=Y(Q). The relation of opérators A(t) and A(t) satisfy the following that

D(A()) = {u € H (), Alt)ue L*(Q)}
A(t)u'= A(t)u for any u € D(A(t)).

From now on, both A(¢) and A(t) are denoted simply by A(t). For any
u € D(A(t)), we define the following that

G(t,u(t, ) / Z 8% (s, Vu(s,x))ds.

Then we treat (3.4.1) as the initial value problem for the abstract second

order equations:

u'(t) + Alt)u(t) = G(t,u(t) + f(t)
u(0) = up, ' (0) = uy.

(3.4.2)
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We assume the following:

Assumption (G1). The partial derivatives o;(s, ), 9/0t 0,(s, &) and 9/0€; 0:(s, )
exist and continuous for i = 1,2, j = 1,2,--+ ,n, and 0;(s, ) satisfies an uni-

form Lipschitz condition with respect to &, that is, there exists a constant

L > 0 such that
j04(s,€) — 0i(s,€)| < L¢ €]

where | - | denotes the norm of L?(2).

Lemma 3.4.1. If Assumption (G1) is satisfied, then the mapping t — G(t, -)

is continuously differentiable on [0, 7] and w — G(-,u)is Lipschitz continuous

on V.

Proof. Put

g(s,u) = Z ;01'(8, Vu).

i=1 £

Then we have g(s,u) € H~(€). For éach w € H} (), we satisfy the following
that

n

(9(s,u), w)y =—> (o3(s, Vu), 0

- ox;
=1

w).

The nonlinear term is given by

G(t,u) = /Otg(s,u)ds.
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For any w € H} (), if w and @ belong to Hj(€2), by Assumption (G1) we
obtain
(Gt u) = G(t, ), w| < LT[|u —al| |Jw]].

O

Now in virtue of Lemma 3.4.1, we can apply the results of Theorem 3.3.2

as follows.

Theorem 3.4.1. Let Assumption (G1) be satisfied. Assume that f €
C([0,T); HY(Q)NWL2(0,T; H(Q))(T > 0) and (ug, u1) € Hy(Q) x L2(£2).

Then the solution u of (3.4.1) exists and is unique-in
u eWpnC([0, T): HA(Q) n.C (0, T); L2(Q)), “T > 0
where
Wy = L2(0, T; HAQ)) n Wh2(0,T; L2(Q)) N W20, T; H1(2)).

Furthermore, the following energy inequality holds: there exists a constant

Cr depending on 1’ such that

lulli, < Cr(1+ [Juol| + Turl F (O] + [[flwr20m:m-1(0)-
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Chapter 4

Perturbation results for
hyperbolic evolution systems

4.1. Introduction

The purpose of this chapter is to derive a perturbation theory of the
following perturbed inhomogeneous second order hyperbolic equation:
u”(t)+(A(L) + B{t)u(t) = f(1)
b(BM="207—1"(0) ey, .

(4.1.1)

Phillips [22] started the study of properties of Cyp-semigroups which are con-
served under bounded perturbations, and perturbations of infinitesimal gen-
erators of analytic semigroups by a bounded operator is due to Kato [14].
Recently, Belarbi and Benchohra [2] proved the existence of solutions for
a perturbed impulsive hyperbolic differential inclusion with variable times

under the mixed generalized Lipschitz and Carathéodory’s conditions.

Kato [12] was the first to-succeed in constructing the fundamental solution

of temporally inhomogeneous second hyperbolic equation:

(4.1.2)

in a Hilbert space H. For more general results see any of a number of

source, including [14] and Tanabe [23]. Applications to initial value problem
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of hyperbolic equations have been referred to Goldstein [7] and Yosida [28]
in addition [23]. Typical models can be found in the works of materials
with biology, engineering, population models, etc.(see e.t., [27, 5] and the
bibliography therein). As the second order nonlinear functional evolutions,
Kalsatos and Markov in [15] have analyzed some questions on existence of
solutions for functional differential inclusions of second order in time, and in
[6] proved them in the case where a damping term is added. In [11] they
have studied the wellposedness of solutions and the regularity properties
of solutions for the mixed problems for semilinear hyperbolic equations of

second order with unbounded principal operators.

In this chapter, in order to give a construction of an evolution system of
A(t) + B(t), we will assume general conditions that A(t), for each ¢t € [0, 77,
is self adjoint and bounded and A(t)v for each v € V' is strongly continuously

differentiable on [0, T7.

Let V be a Hilbert space forming a Gelfand triple V-.¢ H C V* with
pivot space H. Recall that

a0 )= Ca)
SO (B((]t) 00) (ZD - (B(S)UO) 7

for any (“O> € X =(VxH?T (or X =(Hx VT, our problem can be

ul

applied to second order time dependent equations by writing them as first
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order systems. Consequently, we deal with constructing of the fundamental
solution of (4.1.2) explained the arguments in given in [1, 14]. In addition
to assumptions of A(t), Tanabe [23] dealt with a singular perturbation of
evolution systems in a Banach space X with conditions that B(t) is strongly
continuous and there exists a real number Ay satisfying Ao € p(A(t)) for all

t € [0, 7], such that
A)B(t)(A(t) — Xo) ! € L(X), (4.1.4)

where L£(X) denotes the set of all bounded linear operators from X into
itself. But in section 4.2, we will give a perturbation approach under the
more general conditions that X is a Hilbert space and B(t)v for each v € V' is
strongly continuously differentiable on [0, 7] instead of (4.1.4) even in special
cases of second order equations. In the last section we give 'an example of
a partial functional equation as an application of the preceding result in a
mixed problem for hyperbolic case that
Alt) = — %(aij(t,x)g—“), B(t) = Zbi(t,m)% + c(t, 2)u,

! or; X e Ox;

where the matrix (a;;(t,x)) is unifermly positive definite.

4.2. Perturbation for fundamental solutions

Consider the following perturbed inhomogeneous second order hyperbolic

equation:

{ u"(t) + (A(t) + B(t))u(t) = f(t) (4.2.1)

u(0) = up, u'(0) =1y
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where A(t) satisfies the conditions in section 3.2. From now on, both Ag(t)
and A(t) are denoted simply by A(t) without the risk of confusing. Let
B(t) be defined on [0,7] as a strongly continuously differentiable operator

satisfying

B(t)yu e C*((0,T);H), |B(t)u| < Blu| for all ueH (4.2.2)

for some constant B > 0. For (
Uy

u0> € (VxH)T = X, let B(t) be an operator

defined by

B(t) Uo . 0 0 Uo " 0 c X

Then we have that B(t) : Hj(Q) x L2() — Hi(Q) x L*(Q) is a bounded

and strongly continuously differentiable operator with respect to .

Theorem 4.2.1. Assume that {A(f) : 0 < ¢t < T} satisfies the conditions
in section 3.2. Assume also that B(t) is defined en{0; 7] as a strongly con-
tinuously differentiable operator with values-in B(X). Then there exists a
fundamental solution W(t, s) of (4.2.1) satisfying the following results: for
each x € D(A(t)) = (D(A(t)) x V)T,

(a) W(t, s) is strongly continuously in s and ¢, and ||[W(t, s)|| < MeSt=9),

(b) W(s,s) = I, and W(t,s) = W(t,r)W(r,s) for s <r <t,

(c) 0JOtW(t, s)x = —(A(t) + B(t))W(t, s)x,
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(d) 9/0sW(t, s)x = WI(t, s)(A(t) + B(t))x.

Proof. Let us denote U(t,s) the evolution fundamental system of x'(t) +
A(t)x(t) = F(t) whose existence is proved by Theorem 3.2.3 and 3.3.1. For
the sake of simplicity in sense of (3.3.3), we assume that there are constants

My, My such that
Ut s)l| < Mo, [JA@U(L, 5)A(s) | < M. (4.2.3)

Put

Wo(t,s) =U(t, s), Wi(t,s) = —/ U(t, T)BTI W1 (1, s)dr,  (4.2.4)

W(t,s) = i Win(t, s), (4.2.5)
for m =1,2---. Then we have
W(t,s) =U(t;s) — / U(t, )B(r)W(r, s)dr (4.2.6)

and the series on the right hand side of (4.2:5).is strongly convergent uni-

formly in 0 < s <t <T. Indeed, by (4.2.5)

/L{(t,T)B(T)W(T, s)dT:/ u<t7T)B(T)ZWm(T, s)dr

m=0

-y / U DB, 5)dr = =S Winia(tis) = — S Walt, s) + Ut ),
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which yields (4.2.6). From (4.2.2), (4.2.3), it follows, by mathematical in-
duction, that
leA(t, s)|| < Mo,
s)"

t
t —
Wnlts ) < 1= [ U B Wir ()i < w2

Hence )" ° W,,(t, s) is uniformly convergence.

First, we will show that 9/0t W,,(t, s).A(s)~! exists and is strongly con-
tinuous on B(X) for all m =1,2,---. From (d) of Theorem 3.2.3 and 3.3.1,

we have
U(t,s) = %L{(t, s)A(s)™" (4.2.7)
and
Win(t, s)A(5)" ! = —/ U(t, T)B(T) Wi (T, s)A(s) Hdr (4.2.8)

- —/ %L{(t,T)A(T)_lB(T)Wm_l(T, s)A(s) tdr

= —A@) T BOWpealt, $)A(s) "+ U(t, 8)A(S) 1 B(s)Win-1(s,5)A(s)
+/ U(t,T)%(A(T)_IB(T)Wm_l(T, 5)A(s)"Hdr.

Here,
0

5 (AT B Wi (7, 9)Als) ™) (4.2.9)

= A(T) (AT AT) T B(T) + B(1)) Wi (7, 5) A(s) ™!

+ A(T)_IB(T)agTWm_l(T, s)A(s)t.
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Now we shall show that the right side of (4.2.8) is differentiable with respect

to t and therfore W(t, s).A(s)~! is differentiable. Noting that

0
au@? 8) - —AZ/[(t, S)v

consider that

9 40 1 1
an(t, s)A(s)™ = —a(A(t) B(t)Wi-1(t, s)A(s)™) (4.2.10)
— AUt 5)A(s) T B(s)Wp_1(s,5)A(s) " + %(A(t)_lB(t)Wm_l(T, s)A(s)™)

— / AU, T)A(T)_lB(T)(%_Wm_l (7,8)A(s) " dr.

From (3.3.4) and (4.2.2), we know that —A(7).A(7)"'B(7)+B(r) is uniformly

bounded, and so there exists a contant M, such that

JA(TAT)'B(r) + B(1)|| < M. (4.2.11)
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If m =11in (4.2.10), then

|!—W1(t s).A(s) 7|

t t a
< MlBHA(s)*lH +/ MleMOHA(s)”HdT +/ MlBHEZ/{(T, s)A(s)*1|
< My BJ||A(s) 7| + My My Mo||A(s)7H|(t — s) + MPB(t — s).

If m > 2, then W,,_1(s,s) = 0 by (4.2.4) and hence

0

-1 ! m m—1(7'_5)m71 1
15 VWi, s)A(s) ||§/ My My Mg B™ " ~——————||A(s) " [|dT

(m —1)!
K 3}
+/ MlB||§Wm_1(T,S)A(s)_1||d7

< 30 g A I 0B [ D (5,140

By mathematical induction, it satisfies the following that

0 (t—s)m !

gV, 8) AG) | € M B AG I

m—1 m
+M1M2M0Bm_1 ZM[;TL—l—ZM{HA( ) 1“( ) +Mm+le(

=0

m)!

Hence, we have

0 1 m pm -1 (t_s)m_l
Wi 5)AGs) ) < Ml AG) |2

+ My Mo Mo B™ 'm{max{ Moy, M, } }™ | A(s) ™| + MlTn+le(

(t—s)"
m!
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for all m, so that Y o ||0/9t W,,(t,s)A(s)"| is uniformly convergence.
Therefore

O Wit A(s) = %;O% $)A(s)™

exists and is strongly continuous. Noting that
t
W(t,s) =U(t,s) — / U(t,s)B(T)W(T, s)dr

and U(t,s) = 9/0sUt, s).A(s)"!, it holds
W(t,s)A(s) ' =U(t,s)A(s) —/ %U(t,T}A(T>_lB(7)W(T, s)A(s) " tdr

(4.2.12)

=U(t,s)A(s)"" — A@t) BOW(t, s)A(s) " +U(t,s)A(s) 'B(s)A(s) ™
+ [ Ultrys- AR B s)d(s) )

from which it follows

%W(t, s)Als)™! =~ ABU(t, 5)Als) ! — %A(t)‘lB(t)W(t, 5)A(s)™!
(4.2.13)
— AU, $)A(s) T B(s)A(s) L + %(A(t)‘lB(t)W(t, $)A(s)™)



—_—

Put A(t) = A(t) + B(t), Then from (4.2.12) we obtain that

—_—

AOW(t, s)A(s)™! (4.2.14)
=AUt s)A(s)H + BOU(t, s)A(s) ™" — B(t)W(t, s)A(s) "

— B()A@) ' BOW(t, s)A(s) ™" + AUt s)A(s) ' B(s)A(s)

+ B(t)U(t, S)A(s)lB(S)A(S)l—i—/ .A(t)U(t,T)%(A(T)IB(T)W(T, s)A(s) " Hdr

+B(t)/ z/{(t,T);(A(T)_ls(T)W(T,S)A(S)_l)dT.

T

Therefore from which and (4.2.13) it follows that

= BO){U,s)A(s)"H =W(L, s)A(s)=L.— A(t) "B(t)W(t,s)A(s) ™

+U(t, S)A(s)lB(s)A(s)l—i-/ Z/{(t,T)%(A@')lB(T)W(T, s)A(s) 1)dr}.

By (4.2.12), the right side-of (4.2.14) equals zero. Thus, it is evident that
W(t, s)x is differentiable in s and ¢ and satisfies

I W (1, 5)x = — (A1) + BT, 3)x,

%W(t, s)x = W(t, s)(A(t) + B(t))x

for each x € D(A(t)) = (D(A()) x V)T (orx € (V x H)T = X). Hence

such an operator valued function W(t,s) is the fundamental solution of
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d/0tx(t) + (A(t) + B(t))x(t) = 0. O

Remark 4.2.1. Let us assume also that B(t) is defined on [0, 7| as a strongly

continuously differentiable with values in B(X). Then for each x € (V x

H)T = X, there exists a fundamental solution W(t,s) of (4.3.1) satisfying

(a), (b), (c), and (d) in Theorem 4.2.1 in X.

4.3. Mixed problem of hyperbolic equations

Consider the mixed problem for the hyperbolic equation:

;

g—;u(t, G DA a%j(aij(t, a:)g—;) .1 AT, cc)g—; + c(t, r)u
= f(t), 0<t<oo, x€f,
u(t]my z# @, 0<t<oo, z€d,
\ u(0,2) =up(x), " Zu(0,z) = wy (=), z €.
(4.3.1)

We deal with the Dirichlet condition’s case.as follows. The matrix (a;;(z,t))

is uniformly positive definite, i.e., there exists a positive constant ¢ such that

n

Z ai;(z,t)&& > 0|¢)?

ij=1
for all z € Q, t € [0,7] and for all real vectors £. Let

0 0 0? 0

a/AA _a[ _a],. —a/,.
1] ax] ’L]?at 17 ataxj 17



be all continuous and bounded on Q2 x [0,77], and

0

Qij, 7 Qij, C
(9xj
satisfy uniformly Lipschitz’s condition with respect to t.

For each t € [0,7] and u,v € H}(Q), let us consider the following

sesquilinear form:
ou Ov
a(t; u;v) a;;(t, 1)=——dz
z]zl / ZJ 8!131 6x]

Then there exist constants cgsc; > 0 such that

0 (L, u, v)| < oflull|[v]]

du v
Y Z i ) g | < ] o]

‘ tuv

and it holds Garding’s-inequality ;

& ou Ou Ju 9
a(t;u,u) = /Q Z a;;(t, ) 8—%7jdx /’—‘ dx = ||ul]*.
2,j=1
Define the operator A(t) by

ou v
(A(t)u,v) = a(t; u,v) / Z a;;(t,x 0_xi8_xjdx7

i,7=1

DA®) ={u:ue€ H* Q) NHy ()} = {u:uec H*(Q), ulsgg =0}
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The operator A(t) in L?(f2) is defined as the following that for any v € H} ()

there exists f € L*(2) such that

a(t;u,v) = (f,v)

then, for any u € D(A(t)), A(t)u = f and A(t) is a positive definite self-
adjoint operator. Let u be fixed if we consider the functional H}(Q) 3 v —
a(t;u,v), this function is a continuous linear. For any [ € H~(Q), it follow

that (I,v) = a(t;u,v). We denote that for any u,v € H}(Q)

aft;u, v) = (A)uv),

that is, A(t)u =1. The operator A(t) is one to one mapping from HE(Q) to
H=Y(). The relation of operators A(t) and A(t) satisfy the following that
for any v € D(A(t))

D(A®) = {u & HA(Q), A®ue LX)}, A(t)u= At)u.

From now on; both A(t) and A(¢) are denoted simply by A. Put

D(B(t)) = Hy(), B(t)u = Z bi(x,t)g—;i + c(z, t)u,

1j=1

and for (“) e HY(Q) x LX(9),

u1



Then B(t) is a bounded operatror from X = (H}(Q) x L?(2))7 to itself and

strongly continuously differentiable with respect to ¢. Since

0

U 1
al'i |2 + |u0|2)2 S C||u0||H01(Q)7

[B(t)uo| < max{([bil, bal, - - - [ba], [} (Y |

o (o), =)

Then we treat (4.3.1) as the initial-value problem for the abstract second

we have

<c

(B(t) € L(X)).

X X

order equations

u'(t) + (A(8) £ B(#)u(t) = F(t)
u(0) = uo, uw'(0) = uy.

(4.3.2)

Now we can apply the results of Theorem 4.2.1 and Remark 4.2.1 as

follows.

Theorem 4.3.1.. Assume that {A(¢t) : 0 < ¢ < T'}is defined as men-
tioned above and B(t) is-defined on [0, 7] as a strongly continuously differen-
tiable with values in £(L*(Q2)). Let us assume that f € C([0,T]; H=*(Q)) N
W20, T; H(Q2))(T > 0) and (ug, u;) € HL(Q) x L*(Q). Then, there exists
a fundamental solution W(t, s) of (4.3.2) satisfying (a), (b), (c), and (d) in

Theorem 4.2.1 and the solution u of (4.3.1) exists and is unique in

we WrnC([0,T); HX(Q) N C'((0,T); L2(Q)), T >0
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where
Wy = L*(0,T; Hy () N W2(0, T3 LA()) N W2(0,T; H™(2)).

Furthermore, the following energy inequality holds: there exists a constant

Cr depending on T such that

lullip, < Cr(L+ [luoll + [ur] + [[F O) [« + [IFllwr2.0-1(p)-

7



References

[1] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Sys-
tems, Academic Press Limited, 1993.

2] A. Belarbi and M. Benchohra, Ezxistence theory for perturbed impulsive
hyperbolic differential inclusions with variable times, J. Math. Anal. Appl.,
327(2) (2007), 1116-1129.

[3] H. Brézis, Problmes unilatérauz , J. Math. Pures Appl., 51 (1972), 1-168.

[4] P. Davis , Hyperbolic integrodifferential equations arising in the electro-

magnetic theory of dielectrics, J. Differential Equations., 18 (1975), 170
178.

[5] W. S. Edelstein and M. E. Gurtin, Uniqueness theorem in the linear
dynamic theory of anisotropic viscoelastic solid, Arch. Rat, Mech. Anal.,

17 (1964), 47-60.

[6] Maria J. Garride-Atienza and José Real, Existence and uniqueness of

solutions for delay evolution equations ef second order in time, J. Math.

Anal. Appl., 283 (2003), 582-609.

(7] J. A. Goldstein, Semigroup of Linear Operators and Applications, Oxford
University Press, Inc. 1985.

8] M. L. Heard, An abstract semilinear hyperbolic Volterra integro-
differential equation , J. Math. Anal. Appl., 80 (1981), 175-202.

78



9] M. Ikawa, Mized problems for hyperbolic equations of second order, J.
Math. Soc. Japan, 20(4) (1968), 580-608.

[10] J. M. Jeong, J. R. Kim and H. G. Kim, Regularity for solutions of non-

linear second order evolution equations, J. Math. Anal. Appl., 17 (2008),
209-222.

[11] J. M. Jeong, Y. C. Kwun and J. Y. Park, Approximate controllability
for semilinear retarded functional differential equations, J. Dynamics and

Control Systems, 3 (1999), 329-346.

[12] T. Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci.
Univ. Tokyo I, 17(1970), 241-258.

[13] T. Kato, Linear evolution equations of hyperbolic” type II, J. Math.
Soc. Japan, 25 (1973), 638-666.

[14] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New
York 1966.

[15] A. G. Kartsatos and L. P. Markov, An Le=approach to second-order
nonlinear functional evolutions imvolving m-accretive operators in Banach

spaces, Differential Integral Equations, 14 (2001), 833-866.

[16] K. Kobayasi, On a theorem for linear evolution equations of hyperbolic

type, J. Math. Soc. Japan, 31 (1979), 647-654.

[17] Y. Kobayashi, T. Matsumoto and N. Tanaka, Semigroups of locally Lip-
schitz operators associated with semilinear evolution equations, J. Math.

Anal. Appl., 330(2) (2007), 1042-1067.

79



[18] J. L. Lions and E. Magenes, Non-Homogeneous Boundary value Prob-
lems and Applications, Springer-Verlag Berlin Heidelberg New York, 1972.

[19] R. H. Martin, Nonlinear Operators and Differential Equations in Banach
Spaces, John Wiley and Sons New York, 1976.

[20] J. L. Lions and E. Magenes, Optimal Control of Systems Governed

by Partial Differential Equations , Springer-Verlag Berlin heidelberg New
York, 1971.

[21] D. G. Park, J. M. Jeong and H. G. Kim, Regular problems for semilinear
hyperbolic type equations, Nonlinear Diff. Equ. Appl. 16 (2009), 235-253.

22] R. S. Phillips, Perturbation theory. for semigroups of linear operator,
Trans. Amer. Math. Soec. 74 (1953), 199-221.

(23] H. Tanabe, Equations of Evolution, Pitman-London, 1979.

[24] N. Tanaka, Nonautonomous abstract Cauchy problems for strongly mea-

surable families, Math. Nachr., 274 /275 (2004), 130-153.

25] G. F. Webb, Abstract-Volterra integro-differential equations and a class
of reaction-diffusion equation , Lecture Notes in Math., 737 (1979), 295
303.

[26] G. Webb, Continuous nonlinear perturbations of linear accretive opera-

toe in Banach spaces, J. Fun. Anal., 10 (1972), 191-203.

127) J. Wu, Theory and Applications of Partial Functional Differential Equa-

tions, Springer-Verlag, New York , 1996.

80



[28] K. Yosida, Functional Analysis, 2nd ed. Springer-Verlag, Berlin, Heidel-
berg, New York. 1968.

81



	Chapter 1.  Introduction and Preliminaries
	Chapter 2.  Regularity for solutions of nonlinear second order evolution equations
	2.1. Introduction
	2.2. Semilinear equations
	2.3. L^2-regularity for solutions
	2.4.  Applications for nonlinear evolution equations 

	Chapter 3.  Regular problems for semilinear hyperbolic type  equations 
	3.1. Introduction} 
	3.2. Preliminaries
	3.3. Semilinear equations of hyperbolic type}
	3.4. Applications}

	Chapter 4.  Perturbation results for hyperbolic evolution systems 
	4.1. Introduction} 
	4.2. Perturbation for fundamental solutions} 
	4.3. Mixed problem of hyperbolic equations}

	References


<startpage>7
Chapter 1.  Introduction and Preliminaries 1
Chapter 2.  Regularity for solutions of nonlinear second order evolution equations 6
 2.1. Introduction 6
 2.2. Semilinear equations 7
 2.3. L^2-regularity for solutions 18
 2.4.  Applications for nonlinear evolution equations  28
Chapter 3.  Regular problems for semilinear hyperbolic type  equations  35
 3.1. Introduction}  35
 3.2. Preliminaries 37
 3.3. Semilinear equations of hyperbolic type} 48
 3.4. Applications} 58
Chapter 4.  Perturbation results for hyperbolic evolution systems  63
 4.1. Introduction}  63
 4.2. Perturbation for fundamental solutions}  65
 4.3. Mixed problem of hyperbolic equations} 73
References 78
</body>



