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Abstract 
The design of complex machinery is an iterative process. Components are redesigned 

iteratively until acceptable performance and reliability is obtained. In preliminary design of 

machinery, the optimum design is carried out to reduce the iterative redesign process. Therefore, 

the optimization of the system has become an important part of design process. There are very 

efficient optimization methods called the hill-climbing methods. However, it is clear that these 

methods provide local optimum values only and these values depend on the selection of the 

starting point. Therefore this research concerns with global optimization methods to overcome 

these problems. One of the global optimization methods is the artificial life algorithm (ALA) for 

function optimization. This study proposed a hybrid ALA called the enhanced artificial life 

optimization algorithm (EALA) to overcome the demerits of the ALA which are low speed of 

convergence and low accuracy after generating colony.  

Most of engineering optimization problems often consists of several objective functions 

rather than a single objective function. Basically, there are two kinds of approaches to solve the 

multi-objective optimization problems (MOP). The first approach transforms a given multi- 

objective optimization problem into a single objective optimization problem (SOP). In order to 

provide possible solutions for the final decision maker, this approach has limitation that is only 

one solution is provided. The second approach is based on the concept of Pareto optimality to 
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avoid this difficulty and to explore various possibilities.  

In order to apply artificial life algorithm to MOP in engineering problems, it is necessary to 

solve the Pareto optimization problem. Therefore, in this study, artificial life optimization 

algorithm has been expanded to enable the application of Pareto optimization to solve the MOPs. 
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I. Introduction 
 
 
1. Background 

 

The design of complex machinery is an iterative process. Beginning with 

concepts and configurations synthesized from experience, the preliminary design 

if analyzed with mathematical models using the best parametric data available. At 

every point where it is economically feasible, the data are verified or improved by 

testing. Components are redesigned iteratively until acceptable performance and 

reliability is obtained. Therefore, in preliminary design of machinery, the 

optimum design is carried out to reduce the iterative redesign process. Therefore, 

the optimization of the system has become an important part of design process.  

There are very efficient optimization methods called the hill-climbing 

methods [1-3]. Hill-climbing methods use the iterative improvement technique 

which is applied to a single point (the current point) in the search space. During a 

single iteration, a new point is selected based on gradient of an objective function. 

It is clear that these methods provide local optimum values only and these values 

depend on the selection of the starting point.  

Many researchers have proposed and developed various global optimization 

methods to overcome these problems. The best-known algorithms in this class 

include genetic algorithm (GA) [4-6], evolution strategies [7], ant colony [8], and 

artificial life algorithm [9, 10]. These algorithms are appealing to many uses in 

different areas of engineering, computer science, and operation research because 

of their simplicity, ease of interfacing, and extensibility.   
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2. Optimization 
 

Designer, in industrial fields, supplies design parameters for the product as 

input into the computer simulation programs which is developed by commercial 

vender, runs the program and then analyzes the results. If the results do not meet 

the design goals then the designer changes the design parameters and repeats the 

process. Solutions to their problems have been based mostly on judgment and 

experience. However, increased competitions and consumer demands often 

require that the solutions should be optimum and not just feasible solutions. The 

challenge to the designer is to find the best design. It can be realized to the 

designer through the optimization. 

Optimization is the process of maximizing or minimizing a desired objective 

function, which may be performance or weight, while satisfying the prevailing 

constraints. 

This chapter introduces the general concept of optimization. The definition 

and history of optimization are considered from the view point of engineering. 

 
2.1 Historical Review  

The existence of optimization methods can be traced to the days of Newton, 

Lagrange and Cauchy. The development of differential calculus methods of 

optimization was possible because of the contributions of Newton and Leibnitz to 

calculus. The use of a gradient method (requiring derivatives of the function) for 

minimization was first presented by Cauchy in 1847. He made the first application 

of the steepest descent method to solve unconstrained minimization problems. In 

spite of these early contributions, very little progress was made until the middle of 

the twentieth, when high-speed digital computers made the implementation of the 

optimization procedures possible and stimulated further research on new methods. 

Modern optimization methods were pioneered by Courant’s on penalty functions 
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in 1943. Dantzig developed the simplex method for linear programming in 1947 

and Bellman stated the principle of optimal policy for system optimization for 

dynamic programming problems paved the way for development of the methods 

of constrained optimization in 1939. Kuhn and Tucker derived the “KKT (Karush, 

Kuhn and Tucker)” optimality conditions for constrained problems which laid the 

foundations of a great deal of later research in non-linear programming in 1951. 

Fletcher and Reeves proposed the conjugate gradient method that is pioneer on 

unconstrained minimization. Constrained optimization methods were pioneered 

by Rosen’s gradient projection method and Fiacco and McCormick’s SUMT 

(sequential unconstrained minimization techniques) techniques in 1968.  

Geometric programming was developed by Duffin, Zener and Peterson. 

Gomory have done a pioneering work in integer programming, which is one of the 

most exciting and rapidly developing areas of optimization. Dantzig, Charnes and 

Cooper developed stochastic programming techniques by assuming design 

parameters to be independent and normally distributed. In the 1960’s, also, there 

were developments in non-gradient or direct methods such as principally 

Rosenbrock’s method of orthogonal directions in 1960, the pattern search method 

of Hooke and Jeeves in 1961, Powell’s method of conjugate directions in 1964, 

and the simplex method of Nelder and Meade [2]. Sequential quadratic 

programming (SQP) methods for constrained minimization were developed in the 

1970’s. Development of interior methods for linear programming was started by 

the work of Karmarkar in 1984. Most approaches among direct methods in recent 

research were genetic algorithms (Holland [4], Goldberg [5]). Tabu search 

algorithm which was developed independently by Glover [11, 12] and Hansen 

[13] for solving combinatorial optimization problems and simulated annealing 

algorithms was derived from an analogy with the annealing process of material 

physics by Kirkpatric [14]. Special methods that exploit some particular structure 

of a problem were also developed. Pareto optimality was developed in the context 
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of multi-objective optimization. The use of nonlinear optimization techniques in 

structural design was pioneered by Schmit in 1960. Today, applications are 

everywhere, from identifying structures of protein molecules to decreasing the 

heat generation of journal bearing. 

 
2.2 Definition of Optimization Problem 

The design optimization problems are commonly found in manufacturing 

industries and can be represented by the following mathematically formulation. 

Find ( )1 2, , , n
nx x x R= ∈x  

which minimize f(x) 

subject to the constraints ( ) ( )0, 0, 1 toj jg h j m≤ = =x x  

where n is the dimension of variables and m is the total number of the constraint 

condition (or function). x is a real numbered vector of n dimension. f(x) is an 

objective function or a cost function. ( ) 0jg ≤x  and ( ) 0jh =x  are an inequality 

constraint and an equality constraint, respectively. If x satisfies ( ) 0jg ≤x  and 

( ) 0jh =x , an x is called a feasible solution.  

This formulation supports the specification of unconstrained and constrained 

problems with a single objective. In the optimization problem formulation, three 

elements are considered such as design variables, constraints and an objective 

function.  

The idea of improving or optimizing a machine implicitly presupposes some 

freedom to change the machine. The potential for change is typically expressed in 

terms of ranges of permissible changes of a group. Such parameters are usually 

called design variables and denoted by a vector ( )1 2, , , n
nx x x R= ∈x .The 

choice of design variables can be critical to the success of the optimization 

process. In particular it is important to make sure that the choice of design 

variables is consistent with the analysis model.  
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Constraints introduce the notion of limits on the design variables in the 

optimization problem formulation. Because of their simplicity, these upper and 

lower limit constraints on the values of the design variables are often treated in a 

special way by solution procedures, and are refereed to as side constraints. 

Constraints which impose upper or lower limits on quantities are by their very 

some strategies for the solution of nonlinear optimization problems are unable to 

handle equality constraints, but are limited to inequality constraints only. In such 

instances it is possible to replace the equality constraint with two inequality 

constraints that form upper and lower bound constraints with a same limiting 

value. However, it is usually undesirable to increase the number of constraints. 

The objective function, when expressed as a function of the design variables, 

is known to the criterion with respect to which the design is optimized. The choice 

of objective function is governed by the nature of the problem. For mechanical 

engineering problems, weight, displacement, stresses, vibration frequencies, 

buckling loads, increase of temperature, flow rate of lubricant, and cost or any 

combination of these can be used as objective functions.  

 

 

 

 

 

 

 

 

 

 

 

 



 8

3. Artificial Life 
 

Artificial life (AL) is defined as the attempt to study all biological 

phenomena of the living world by reproducing them in artificial systems [9, 15, 

16]. This ordinarily means to simulate living phenomena in a computer, and is a 

man-made life system whose characteristic behaviors include self-reproduction, 

self-organization, evolution, and so on [17]. The research motive of AL was 

originated from the intent to understand the true meaning of life through the 

synthesis of the life that makes it superior to the existing life in nature. They have 

succeeded in generating creatures that look and act very many like living 

organisms on the computer screen. They can grow, reproduce, mutate, fight with 

each other, and die out [18]. 

The most important characteristics of AL are emergence and dynamic 

interaction with the environment. Namely, the micro-interaction with each other 

in the AL’s group results in emergent colonization, the emergence, in the whole 

system. The concrete study method using the above characteristics consists of 

mainly two steps. First, the essence of AL system, which shows the behavior 

characteristics of living organisms in the natural world such as growth, adaptation, 

multiplication, self-preserving, self-control, and evolution, is realized through 

several theoretical models. Second, the AL organisms which are called real living 

organisms are created in the computer through the simulation. This process can be 

defined as the informationization process. Therefore, the research object of AL is 

not the physical system of life itself but the function as the information. AL has 

been associated to computer science by different ways. Many researchers have 

been involved with this field looking for models that would describe how real life 

began and evolved [19]. Those system models using artificial life’s characteristics 

can be classified into as follows: 
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• Adaptive moving model: classifier system [20], neural network [21], 

immune system [22] 

• Evolution operation model: genetic algorithm [23,5], evolutionary strategy 

[24], evolutionary programming [25], genetic programming [26], co- 

evolution [27] 

• Genetic development model: L-system [28], cellular automata [29-31] 

 

Although very different in nature, these works have been related to evolution 

and natural selection concepts.  

Many heuristic methods currently used in combinational optimization are 

inspired by adaptive natural behaviors or natural systems, such as genetic 

algorithms (GAs), simulated annealing, neural networks, ant colony algorithms, 

etc. The GAs is computational procedures to find the optimal solution in 

particular hard problems [22, 32]. This strategy provides an efficient way to 

obtain global optimization in cases where it is very difficult or not practical to 

formalize the optimization problem on an analytical framework. The ant colony 

algorithms are based on the principle that using very simple communication 

mechanisms, an ant group is able to find the shortest path between any two points 

[8]. 
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4. Summary of This Dissertation 
 

The dissertation is briefly summarized as follows. 

Chapter II presents an approach by hybrid artificial life algorithm with 

random tabu search method so called the enhanced artificial life optimization 

algorithm (EALA) for function optimization problem. The effectiveness of the 

proposed algorithm is evaluated using three test functions. The optimized results 

were compared with those of conventional artificial life algorithm for function 

optimization.  

Chapter III proposes a modified artificial life algorithm namely the Pareto 

artificial life optimization algorithm (PAL) to handle a multi-objective 

optimization problem. Through three known test problems, searching capabilities 

of the PAL are verified. Also, set of optimum solutions is found out by applying 

two objective functions to the optimum design of the journal bearing. By 

comparing with the optimum solutions of single objective function, it is confirmed 

in examples of this study that the result of single objective function optimization 

is one result of the specific cases of multi-objective optimization.  

Chapter VII summarizes and discusses the results obtained this paper. 
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Ⅱ. Enhanced Artificial Optimization Algorithm 
 

 

1. Introduction  
 

Recently, the possibilities of using ALA in optimization applications were 

being considered only by Satoh et al. [1], Yang et al. [2, 3] and Yang et al. [4]. Its 

development as a standard optimization tool is still in its infancy. Many aspects 

require considerable research effort. In ALA for the function optimization, the 

emergent colonization is accomplished through the metabolism and the 

reproduction in the artificial world. The optimum solutions are found on the 

emergently colonized region [2].  

Existing mathematical programming methods for the differentiable irregular 

function such as the conjugate gradient method, sequential quadratic programming 

approach among others [5], make use of local curvature information derived from 

linearization of the original functions by using their derivatives with respect to the 

design variables. These methods present a satisfactory local rate of convergence, 

but they cannot assure that the global optimum can be found and have the risk of 

trapping in the local optimums because those methods have an extreme 

dependence on the initial value. Tabu search method is a metaheuristic strategy 

for solving global optimization problems [6, 7]. This is called a metaheuristic 

because it can be combined with other heuristic procedures to prevent them from 

trapping at locally optimal solutions. It is an iterative procedure that starts from 

some initial feasible solution and attempts to determine a better solution. Tabu 

search method, basically a kind of neighborhood search method, makes several 

neighborhood moves and selects the move producing the best solution among all 

candidate moves for current iteration. This best candidate solution may not 

improve the current solution. Selecting the best move is based on the supposition 
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that good moves are more likely to reach the optimal or near-optimal solutions [8]. 

Hu [9] proposed a tabu search method with random moves for global optimization 

of continuous variables.  

Yang et al. [2, 3] proposed an artificial life algorithm (ALA) that can be 

applied to the irregular function without depending on the initial value [2] and 

also applied it to the optimization of the short journal bearing [2] and engine 

mount [10] to verify it. In the ALA, the emergent colony is the fundamental 

mechanism to search the optimum solution. Emergent colonies being 

accomplished through the metabolism, movement and reproduction among 

artificial organisms appeared at the optimum locations in the artificial world. The 

locations are optimum solutions in the optimization problem. Then, the ALA 

focuses on the searching of the optimum solution in the location of emergent 

colonies and can find a more accurate global optimum. So, the ALA is a 

stochastic searching algorithm using the feature of artificial life. But, the ALA has 

a demerit that after it is congregated at the neighborhood of optimum solutions, 

not only does the convergent speed become very slow, but also the solution 

accuracy is not good. Moreover, to decide the location of the waste in metabolism, 

of random movement, if the individuals did not find the wanted resources is 

difficult. In the next generation, the reproduction having a very important 

influence to the efficiency of the ALA remained to be improved [11]. 

This study proposes a hybrid ALA called the EALA (Enhanced Artificial 

Life optimization Algorithm) to overcome the above mentioned problems. In this 

section, the parameters used in the EALA are studied to simplify the parameters 

through normalizing and relating parameters. Also the performance of the EALA 

is verified.  
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2. Artificial Life Algorithm (ALA) 
 

The artificial world is defined as the space where the lowest limit and the 

highest limit of the variables are ( )min max, 1,2, ,n
i ix x R i n∈ = , respectively. For 

example, it is supposed that there are four kinds of resources (white, red, green 

and blue) and four species of artificial organisms (white, red, green and blue) in 

two dimensional space (n = 2).  

 

 

Fig. 2.1 A Circular Food Chain of an Artificial Organism. 
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Artificial organisms can move about in the world consuming energy 

resources and producing waste. The four species of artificial organisms compose a 

circular food chain where one species’ waste is another’s food as shown in Fig. 

2.1. Artificial organisms can only metabolize the resources they want. The 

demanded resources are determined according to the four species of artificial 

organisms. When they metabolize resources, their internal energy is increased by 

increasing internal energy Ge when they eat the wanted resources. After 

metabolizing it, they produce the waste at the random location of their 

neighborhood region. This waste becomes the resource for another artificial 

organism. A white artificial organism metabolizes a blue resource which it wants 

and produces waste. Then this waste becomes a white resource which is then 

metabolized by red artificial organism. This relation is carried out among the four 

species of artificial organisms.  

Artificial organisms have a sensory system which enables them to search 

resources as well as other artificial organisms in the world. They are also able to 

determine the location of the nearest resources and other artificial organisms from 

their present location. This nearest location of resource becomes the goal which 

drives them to move forward. Artificial organisms must maintain a minimum 

internal energy level Li in order to survive. Once an artificial organism’s energy 

level drops below Li, it is considered to be dead and removed from the world. 

Whenever artificial organism’s age is increased by 1, its internal energy is 

decreased by Le. Therefore, although artificial organisms do not have a 

pre-specified lifespan, they are subject to the consuming rate of energy which is 

proportional to their age. Thus, as an artificial organism grows older, it should be 

incessantly supplied with energy to maintain its existence. Eventually, if it doesn’t 

have enough chance to metabolize resources and get energy, it is supposed to die. 

This condition effectively imposes a finite lifespan on artificial organisms. Fig. 

2.2 shows the definition of a neighborhood region using two variables problems 
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as an example. The location sx  of an arbitrary artificial organism (individual) is 

considered as the center. Based on this point, the neighborhood region C of sx  is 

the space within the Euclidean distance and C is defined as 

 

 

Fig. 2.2 Definition of a Neighborhood Region. 

 

{ }n
sC R D= ∈ − ≤x x x        (2.1) 

where n is the dimension of the artificial world and/or the number of design 

variables, D is the possible movement range of artificial organisms per generation 
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number, and α  is the radius parameter.  

Artificial organisms use this defined neighborhood region for their 

movement and reproduction. They can only see and find the resources and other 

organisms within this region for each generation. D can be considered as a 

constant for the whole generation or as a variable according to increasing 

generation. In this study, artificial organisms can only move about and find other 

artificial organisms within the neighborhood region defined above per generation. 

If there are no resources in the neighborhood region, they can move randomly 

within the neighborhood region.  

In case of the optimization problem, the artificial world becomes the space of 

the design variables x. Every location has its own fitness. After they search the 

neighborhood region randomly, they produce their offspring finally at the location 

which has higher fitness than those of themselves. 

Also, the sensory system is introduced to enable artificial organisms to see 

and find the optimum value in the artificial world. These resources become the 

goal which drives an artificial organism to move towards a destination. Thus, all 

artificial organisms move to the resources which have the optimum value. 

Eventually, it is more likely to produce an emergent colonization at the location of 

the resources in the artificial world. 

The location of both artificial organisms and resources becomes the variables 

of the objective function which to optimize. Therefore, the objective function 

values for artificial organisms and resources can get by substituting the location 

into the objective function. An artificial organism compares its objective function 

value to that of the resources within the neighborhood region. It moves to the 

location of the resource having the higher fitness within the neighborhood region. 

Therefore, artificial organisms can produce an emergent colonization at the 

location that has the optimum of objective functions. 
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3. Tabu Search Method with Random Moves  

   

In this study, the moves in neighbors of different sizes are used both to prevent it 

from trapping at a local optimum as in hill climbing based methods, and to avoid 

blindly sampling as in random search [9]. The random tabu search method was 

recently extended for function optimization in the domain of continuous variables 

with the general constraints [12]. In the random tabu method, a set of steps h1, 

{ }1 2, , ,
sNh h h=H  is given. For an initial feasible point x, the search moves are 

made over a set of active steps l, { }1,2, , sl N= , where the step h1 ∈ H – T 

and T is the tabu list of accepted steps, which is initially empty. For each active 

step one feasible random move is generated as 1
,

k k
i i i lx x r h+ = + ⋅ , where r is a 

random number ( )1 1r− ≤ ≤ . If there is a decrement in the objective function, the 

random move is saved as the current solution x and the step h1 is added to T. 

When H – T is empty, T is updated empty and the total process is repeated, 

otherwise the above procedure is repeated. As mentioned by Hu [9], there is a 

probability for each point of the search space which is exploited. In this procedure, 

the moves in neighbors ( )1k k k
i i i i ix h x x h+− ≤ ≤ +  of different sizes prevent it from 

trapping at a local optimum. 

The procedure used to calculate H is: 

First, assume that the objective function is defined as a function of n 

continuous variables xi, i ∈ {1, …, n} in a box R, 

R = {x | ai ≤xi ≤bi, …, an ≤xn ≤ bn}    (2.3) 

Then, the Ns steps of H can be calculated as follows: 

hi, 1 = (bi – ai) / c 

hi, 2 = hi, 1 / c 

… 

hi, Ns = hi, Ns-1 / c 
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where c is a factor greater than 1, for example c = 2.  

Features of the random tabu method are as follows. First, it can reduce the 

number of iteration and promote the efficiency of searching, because each 

searching solution locates at different searching domain. Second, this method is 

possible to take a global optimum and to avoid trapping in local optimum because 

of utilizing random searching. Finally, it is possible to get the optimum solution 

fast and accurately, if the method is combined with other global optimization 

methods. 
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4. Enhanced Artificial Life optimization Algorithm (EALA) 

 

In the ALA [2], how fast the colonies at the location of the optimum solution 

can be made is one of the most important factors determining the performance of 

optimization. Also, the amount of individual density that the individuals located in 

the colonies had for the area of the colonies is an important factor determining the 

accuracy of the solution. They do not only determine the efficiency of the 

concentrate search but also mean the level of high solution accuracy. The timing 

of colonies formation and the individual density basically depend on the following 

three decisions of location problem. The bottom line is how to decide the new 

location efficiently. 

•  How to decide the location of the waste in metabolism 

•  How to decide the location of random movement, if the individuals did 

not find the wanted resources 

•  How to decide the location of the next generation in reproducing 

 

In the ALA, the possible searching space of each individual is defined by the 

neighbor region C as shown in Eqs. (2.1) and (2.2), in which organisms can 

perceive [2]. The ALA randomly searches the solution in this region. The ALA 

has the searching ability of the global optimum solution and the merit in searching 

speed is much better. But the individual density of colonies in the ALA is a little 

bit diverged as shown in Fig. 2.2. This means the efficiency of the precision 

search is low in the ALA. 

In this study, it is possible to set the new locations discussed before at or near 

the sub-step of the optimum solution and to search more efficiently because the 

neighbor region is divided into several sub-steps by the RTS that was introduced 

into the ALA and then, to search the sub-steps. Thus, the colonization can be 

achieved quickly and precisely. Accordingly as artificial organisms are forming 
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the colonization in whose neighbor of the optimum solution point is included, the 

artificial organisms, which have the higher fitness and are near the location with 

the optimum solution, can search for the solution accurately in inner sub-steps 

having a small radius, so the total accuracy is increased. In addition, the outer part 

of the colonized group, which belongs to the colony, but relatively has more 

distance from the optimum point, also can select the new locations in the sub-step 

having the large radius and being nearest to optimum point. This makes it possible 

to produce a dense colonization. Therefore, the EALA has good features which 

are the converging speed is higher and the solution is more accurate than those in 

the ALA. 

Fig. 2.3 shows the flow chart of the EALA and the calculation procedure of 

the EALA is as follows. 

Step 1: The initialization is activated based on the initial determination. The 

number of artificial organisms and resources Nin are distributed 

randomly and the initial internal energy Ie is given to the each 

artificial organism. The number of individuals and resources for each 

species are obtained by dividing Nin by Nsp. 

Step 2: Artificial organisms search for the nearest resource within their 

neighbor region as defined in Eq. (2.1). 

Step 3: If they find the resource that they want to metabolize within their 

neighbor region, they move to it and metabolize it. During 

metabolism, they get the energy of Ge and produce waste at the 

random location in the neighbor region. It is assumed that during the 

metabolism, artificial organisms intake the resources and then, the 

resources are vanished. In the decision of the random location for 

waste, first, the neighbor region is divided into several sub-steps and 

then, the random point is selected in each sub-step to estimate the 

fitness of it for the comparison with the present fitness. If estimated 
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fitness is better than the present fitness, the selected location is 

determined as a candidate and if not, a new random point is selected. 

After the comparison of all candidates determined in all sub-steps, the 

point having the best fitness is determined as the new location of 

waste. 

Step 4: If they did not find the wanted resource within their neighbor region, 

the random tabu method is applied to its moving method as in Step 3. 

The elites get as much energy as Ee.  

Step 5: The age of artificial organisms and the number of the generation are 

increased by 1. 

Step 6: The reproduction process starts. If the age and the internal energy of 

an artificial organism are not less than the minimum age for 

reproduction, Ra and minimum energy for reproduction, Re 

respectively, the organism can mate according to the probability of 

reproduction, Rp with the closest artificial organism of the same 

species that satisfies the above two conditions for Ra and Re. Two 

parent organisms reproduce themselves and the initial location of 

each offspring is determined within the neighbor region of each 

parent by the random tabu method.  

Step 7: The internal energy makes a decrease as Le and if the internal energy 

of an artificial organism drops below Li, it is considered to be dead 

and is removed from the world. 

Step 8: The number of generation is increased by 1. In returning to Step 2, 

the process is iterated until the final generation. 
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Fig. 2.3 Flow Chart of the Proposed Optimization Algorithm. 
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5. Estimation of Parameters of the EALA 

 

Table 2.1 shows the parameters used in the EALA. These parameters can be 

divided by four categories as follows based on the major effect. 

•  The parameters related to individual energy for survival 

•  The parameters related to the number of individuals being survived 

•  The parameters related to searching 

•  The parameters concerned with initial conditions 

 

Table 2.1 Parameters in the EALA 

Symbol Value Symbol Value Symbol Value 

Ee 10 Li 125 Ra 3 

Ge 50 Ns 5 Re 150 

Ie 150 α 12 Rp 0.0002 

Le 5 Pe 1 Nc 3 

Rr 10     

 

5.1 Parameters Related to Individual Energy 

The parameters related to individual energy for survival are Ie, Ge and Ee, and 

are normalized by the minimum energy, Li for survival and the consume energy, 

Le according to the increasing age, as Li = 0, Ie, Ge and Ee are normalized as an 

integer by Le. The investigated regions to determine the value of Ie, Ge and Ee are 

Ie = 3Le ~ 20Le, Ge = 3Le ~ 30Le, and Ee = 2Le, respectively. Four global optima of 

the multi-modal function are found in all values of Le, Ge. Also, the calculation 

time and the accuracy of the solution with the variation of the Ie and Ge value do 

not change as the specific trend does. But it is identified that the number of 

expired individuals and produced individuals are reduced. The reduction of 

produced individuals means that the probability of searching by the new 
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individuals is reduced. Therefore, Ie = 5Le, Ge = 5Le means that the number of 

expired and produced individuals is comparatively high as selected in this study. 

Fig. 2.4 shows the total number of expired individuals for Ie = 3, 10 and 20. 

In this study, the elite individuals can acquire double energy, Ee = 2Le, as the 

intake energy to give the benefit of survival during generations while the intake 

energy of common individuals is just Ge = Le. 

 

Fig. 2.4 Expired Organisms to Ie and Ge. 

 

5.2 Parameters Related to the Number of Individuals 

The parameters concerned with the convergence of individuals are decided 

by considering the normalized energy and the total number of individuals. The 

adult energy, the maximum energy at an adult age Ra, is defined in Eq. (2.4).  
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The probability of reproduction, Rp, that determines whether the individuals 

reproduce them or not is controlled to keep the optimum individual. The number 

of optimum individual, Nopt, is the result of the addition of the total individuals 

that survived in the present generation, Na, and the number of offspring, Noff, 

produced in the production. The number of offspring, Noff, can be obtained by 

multiplying the probability of finding a mate in the neighboring region, the ratio 

of production, Rp and Na. As the probability of finding a mate in the neighbor 

region can be assumed approximately as 1, off p aN R N= ⋅  is possible and so, the 

number of optimum individuals is ( )1opt a pN N R= + . Therefore, the ratio of 

production, Rp, is defined as follows; 

,min

,min ,min

,

,

opt a
p p p

a

p p p p

N N
R if R R

N
R R if R R

⎧ −⎪⎪ = >⎪⎪⎨⎪⎪ = ≤⎪⎪⎩

      (2.5) 

where the minimum production ratio Rp,min has a maximum value when 

1a optN N= − , namely Noff = 1. Therefore, the ratio of production can be defined in 

Eq. (2.6).  

( 1) 1
1 1

opt opt
p

opt opt

N N
R

N N
− −

= =
− −

      (2.6) 

Also, the effect of Nopt and Rp,min to the number of individuals produced 

appears by examining Nopt and Rp,min at the same time and the recommended range 

considering the success of searching and the calculation time is as follows: 

( )7
,min5.0 10 1/ 1p optR N−× ≤ ≤ −       (2.7) 

64 240optN≤ ≤         (2.8) 

Fig. 2.5 shows the calculation time according to Nopt and Rp,min. In the case of 



 30

both parameters having the value below the lower boundary of the recommended 

range, only three global optima are obtained occasionally. Namely, a few 

individuals can have the failure of searching and an excessive amount of 

individuals increase the calculation time.  

 

 

 

Fig. 2.5 Calculating Time According to Nopt and Rp,min. 
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optimum precision. Parameters α , Nc, Ns, Rf,Ns and Rr must be determined. Rf,Ns is 

directly concerned with the required precision of variables and determines the 

level of the solution that the designer requests in the design variable.  

, 1
f

f Ns Ns
r

R
R

R −=         (2.9) 

Rr is obtained by Rf,Ns and is determined as follows. 

01 1

, ,

exp( )
s s

s s

fN Nr
f N f N

R DR
R R

α
− −

−
= =       (2.10) 

where Rf is the radius of the neighbor region at the final generation. Also, Rr >1 

must be satisfied to reduce the radius of the inner sub-step. For D0 = 1,  

01

,

exp( ) 1s

s

Nr
f N

DR
R

α
−

−
= >        (2.11) 

Therefore, 

( ),0 ln f NsRα< < −         (2.12) 

The precision becomes worse as α increases. The increasing α , which 

makes the radius of the inner sub-step large, drops the effect of the precision 

search. The radius of the outermost and inmost sub-step is only determined by α  

and Rf,Ns. Therefore, the radius of each sub-step in the generation is the division of 

area, which is determined by α and Rf,Ns, into Ns using the linear-log coordinate 

(Fig. 6). Also, if ,s f NsN R= , the larger α  makes Rr small, because the objective 

value Rf,Ns, is the same. Therefore, the radius of all the sub-steps except the inmost 

and outermost sub-step become much larger as the α  gets larger in the 

generation before passing through the diagonal line in Fig. 6. The radius of the 
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sub-step according to the generation for α  = 12 and α  = 6 is also shown in Fig. 

2.6. If Ns is increased, the calculation time is increased. The amount of calculation 

time obtained during 3000 generations according to increasing the number of the 

sub-steps is handled statistically through the total 36 cases of the numerical 

experiment in the case that Ns is 3, 5, 7, 10, 15 and 20, and α is taken as 3, 5, 7, 

10, 12 and 15. As a result, the standard deviation /T Nsσ  is 0.2 (unit time) for the 

mean / 1sT NΔ Δ =  (unit time). Based on this result, it can be identified that 

increasing of the calculation time is approximately linear as the number of 

sub-steps increases. The trend of a result like that can be expected as the number 

of sub-steps increases. So, when Ns is determined, the calculation time must be 

considered. Nc is determined independently. The probability of success of 

searching by having just one random search in each step can be defined as  

/better fitness sub stepp A A− −=        (2.13) 

where each region is a square area for the problem of two variables and cubic 

volume for the problem of three variables, and so on (Fig. 2.7). Fig. 2.7 shows the 

radius of the sub-step for an organism and contour lines. 

The maximum probability, which can be succeeded at Nc time execution, 

follows the geometric distribution that is one of the discrete probability 

distribution functions. The maximum probability of success of searching is 

determined in Eq. (2.14). 

1

0

cN
i

Ns
i

P pq
−

=

=∑         (2.14) 

where q is the probability of failure and p is the probability of success of 

searching at each execution. For example, if there is a contour of a circle for the 

optimum point and the boundary of the neighbor region of a specific individual 

pass through the optimum point as in Fig. 2.7, the probability, which this 
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individual can succeed in searching at the outermost sub-step, is approximately 

0.33, 0.56, 0.70, 0.80 and 0.87 when Nc is 1, 2, 3, 4 and 5, respectively. Also, the 

probability of success is increased because p increased in the inner sub-step. 

Though Nc exceeds 3, the increase of probability of success is not larger than that 

of Nc. So, it can be known that Nc = 3 is the proper value for considering the 

calculation time. 

 

 

 

Fig. 2.6 Radius Ratio According to Generations. 
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Fig. 2.7 The Radius of the Sub-step for an Organism and Contour Lines. 

 

5.4 Parameters Concerned with Initial Conditions 

It becomes clear from Fig. 2.8 there is few effects of the number of species 

among the parameters concerned with initial conditions. In order to compare the 

optimization performance, the calculation time and the approximate Erms (root 

mean square) of objective function for all survived individuals through the 
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colony at each generation, M is the number of colonies in the artificial world, fj,opt 

is the optimum values of objective function by exact solution in the jth colony and 

fj,i is the fitness value of the ith survived individual in the jth colony at each 

generation. Fig. 2.8 shows the calculating time and the root mean square error of 

fitness according to generation for various numbers of species. Four global optima 

are obtained for all the cases considered. 

It is estimated that the number of initial individual, Nm, depends on the 

number of global optimum and now, for the function having 4 global optima, the 

total global optimum can be found by using just 160 individuals. Although the 

number of initial individuals is also related with the precision of solution, its 

effect is minute and it causes an increase of calculation time. So the number of 

initial individuals defined excessively is inefficient. 

A parameter belonging to a category cannot be distinguished strictly by this 

point of view. One parameter affects one part of behaviors of organisms. But a 

part of behavior is dominated by some parameters. This research utilizes the 

classification to determine the parameters for optimum performance in calculating 

time and accuracy of solutions. 
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(a) Calculating Time. 
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(b) rms Error of Fitness. 

Fig. 2.8 The Effects of the Number of Species. 
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6. Numerical Examples and Discussions 
 

The following three test functions, multi-modal function, Eq. (2.16), 

Rosenbrock banana function, Eq. (2.17), and function with many local optima, Eq. 

(2.18), are used to verify the effectiveness of the proposed optimization algorithm. 

These mathematical test functions are often used as a benchmark function for 

optimization algorithms [13]. 

 

6.1. Performance Comparison of EALA and ALA  

In this section, calculation results using a multi-modal function are presented 

for confirming the density of colonies. In general, objective functions with several 

global and/or local optimum points, are called multi-modal functions. Eq. (2.16) 

shows a two-dimensional multi-modal function. 

( ) ( )
( )

1 2 1 1

2 2

, cos2 cos2.5 2.1

2.1 cos3 cos3.5

f x x x x

x x

π π

π π

= + −

× − −
     (2.16) 

This function has four numbers of local and global optima in the given range, 

respectively. So it is possible to check and estimate the searching performance of 

the EALA for global optimum and the searching ability of the EALA that can find 

all global optima simultaneously by this function. The optimum results are x = 

{(0.4388, 0.3058), (0.4388, –0.3058), (–0.4388, 0.3058), (–0.4388, –0.3058)} 

with f (x) = –16.09172 in the solution space.  

Fig. 2.9 shows the distribution of survived organisms (existing individuals) 

and the contour line of objective function after 3,000 generations for the ALA and 

EALA, respectively. The number of existing individuals is about 300 and 220 in 

each case of the ALA and EALA. It is shown in Fig. 2.9 that both algorithms, the 

ALA and EALA, can find the global optimum, but the EALA is better than the 

ALA in the density of colonies being congregated after 3000 generations. It is 
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possible to redefine the individual density and the density of colonies as the 

colonized density using the kth variation of colony Vk in order to estimate the 

density of individuals in a colony quantitatively: 

1/ 2

, ,1 , ,
1 2

1 jNM

k k j k j i
j i

V x x
N = =

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑∑       (2.17) 

where 1 2 MN N N N= + + + , Nj is the number of organisms in the jth colony, M 

is the number of colonies in the artificial world (or the domain), xk,j,1 is the kth 

coordinate point (or the kth design variable) of the best organism in the jth colony, 

xk,j,i is the kth coordinate point (or the kth design variable) of the ith organism in 

the jth colony.  

In Fig. 2.9, for the multi-modal function, the 1st variation of the colony is 

3.40×10-3 and 1.08×10-9 for the ALA and EALA, while the 2nd variation of the 

colony is 2.50×10-3 and 1.39×10-9 for the ALA and EALA, respectively. Having a 

small value in the variation of colony means that the distribution of individuals in 

colonies is dense. As mentioned above, this means a high searching performance. 
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(a) ALA 

 

(b) EALA 

Fig. 2.9 Comparison of Distribution of Survived Organisms at 3000 Generations. 
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6.2. Performance Comparison of EALA and Other Optimization Methods 

 

( ) ( ) ( ) ( )22 2
1 2 2 1 1 1 2, 100 1 , 2 , 2f x x x x x x x= − + − − ≤ ≤    (2.18) 

( ) ( ) ( ) ( )1 2 1 2 1 2, , 2 , 2f x x F x F x x x= ⋅ − ≤ ≤     (2.19) 

where, ( ) ( )1 22

cos(2 ) 1, 2 , 2
2 0.2

xF x x x
x

π +
= − ≤ ≤

+
. 

Eq. (2.18) is also called a banana function and has only one global optimum. 

This function has the phase of hamming cliff. In general, the convergence speed 

of an evolution program is very slow and the accuracy of a searched solution is 

low in this phase. Then, it is difficult to find optimum solution because of a valley 

phenomenon. The optimum solution is given as x = (1.0, 1.0) with f (x) = 0.  

Fig. 2.10(a) shows that the contour line and the emergent colonization are 

achieved at the global optimum. This function with separable variables has one 

global optimum and many local optima in the narrow solution space as shown in 

Eq. (2.19) and Fig. 2.10(b). The global maximum is f (x) =1.0 at x = (0.0, 0.0).  

Four kinds of species of artificial organism are used in searching the 

optimum solution. Artificial organisms are initially placed at random locations in 

the solution space, and gradually move towards the global optimum. The artificial 

organisms that were survived lastly comprise an emergent colonization together 

with the contour line of solution. The boundaries to which the artificial organism 

can move during one generation are calculated with Eq. (2.2), where, D0 = 1.0, 

12α = . Each number of the initial artificial organism and the initial resources is 

160. The parameters of the updated algorithm are adopted as presented Table 2.1 

referring to reference [2]. Fig. 2.10 shows the last surviving artificial organisms in 

two test functions with a contour line. This figure represents that each individual 
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is intensively distributed on optimum solution(s) and is searching all optimum 

solutions. 

The elapsed time and the calculated optimum solutions are shown as Tables 

2.2 and 2.3. The optimization results, which are calculated by the EALA, genetic 

algorithm (GA) [14, 15] and sequential quadratic programming (SQP), are shown 

in Table 2.2. The SQP is a numerical technique wherein an approximate solution 

is sought by proceeding in an iterative manner by starting from an initial solution. 

The GA and EALA can search all global optimum solutions. However, the EALA 

can get a more fast than GA. Table 2.3 shows the comparison with conventional 

algorithm (ALA) and EAL for Rosenbrock function and function with many local 

optimums. The EALA does not only converge faster than the LA, but also can 

find a more accurate solution. Also, the calculation errors are estimated by Eq. 

(2.20), and error E according to generations is described in Fig. 2.11.  

,

1 1 ,

( )1 N P
opt i j

j i opt i

x x
E

N x= =

−
= ∑ ∑        (2.20) 

where N is the total number of artificial organisms, and P is the number of the 

global optimum solutions, and xopt,i is ith optimal variable. 

Fig. 2.11 shows each the convergence characteristic of ALA and EALA. It is 

verified that accuracy of the solution by the EALA is superior to the existing 

artificial algorithm. Also, in searching for the optimum solution of Rosenbrock 

function, the ALA needs 49 seconds, but the EALA needs only 1 second (Table 

2.2). In other example functions, the new algorithm also has very good 

performance in the aspects of time which the algorithm needs for reaching the 

precision which the before algorithm has after 3000 generations (Table 2.3). The 

solution accuracy after 3000 generations, which the EALA has, is better than that 

of the before existing algorithm.  



 43

 

 

(a) Function Defined by Eq. (2.18) 
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(b) Function Defined by Eq. (2.19) 

Fig. 2.1 Contour Line and Emergent Colonization after Final Generation. 
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   (a) Rosenbrock Function 
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 (b) Multi-modal Function 
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(c) Function with Many Local Optimums 

Fig. 2.11 Convergence Characteristics of Colonization to Optimum Solution. 
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Table 2.2 Comparison of Optimization Results for Multi-modal Function 

Methods Optimum value Number of generation Computing time (s) 

ALA -16.09172 3000 17.7 

EALA -16.09171 28 0.26 

GA -16.09172 26 8.41 

SQP  
(xs = 0.5, 1) 

-14.33086 - 0.48 

 

 

Table 2.3 Comparison of Optimization Results for Rosenbrock Function and 

Function with Many Local Optimums 

Methods Optimum value Number of generation Computing time (s) 

 ALA EALA ALA EALA ALA EALA 

Rosenbrock 0.0 0.0 3000 101 17.9 0.75 

Local optima 
function 

0.9999 1.0 3000 251 15.6 2.18 
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7. Conclusions 
 

The parameters of the EALA have been simplified. The effectiveness of the 

EALA is evaluated using three test functions. The optimized results are compared 

with those of conventional artificial life algorithm. The results show that the 

EALA reaches the optimum solution faster and closer to exact solution than the 

conventional artificial life algorithm, and will give all global optimum solutions in 

a solution space. The algorithm reduced the time needed for searching, to say 

nothing of accuracy of optimum solutions, because the ELAL improved the 

method of making decision of new points for offspring and for own waste by 

using random tabu search method. 
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Ⅲ. Pareto Optimization Algorithm Artificial Life 
(PAL) 

 
 

1. Introduction 
 

Most engineering optimization problems often consist of several objective 

functions rather than a single objective function. There are basically two kinds of 

approaches to solve a multi-objective optimization method. First approach 

transforms a given multi-objective optimization problem (MOP) into a single 

objective optimization problem (SOP). One method of this approach is to 

aggregate multiple objective functions into a single overall objective function. 

Optimization of the objective function is then conducted with one optimal design 

as a result. This result is greatly dependent on how the objectives are aggregated 

[1]. One of the two forms such as linear combination or multiplication is usually 

employed as an aggregated single objective function. Another method is to select 

only the most interesting object function as a final objective function and to set 

the other objective functions as constraints. 

The motivation of the first approach is basically to establish a single basis of 

comparing each candidate solution in the course of optimization and finally to 

derive a single optimum solution (or approximate to the optimum solution).  

The second approach is simultaneously to consider the multiple objective 

functions, which is called Pareto optimization.  

In order to provide possible solutions for the final decision maker, this 

approach is to supplement the downside which is not able to find other 

possibilities besides a single solution obtained through conversion into a single 

objective function. In order to avoid this difficulty and to explore various 
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possibilities, the concept of Pareto optimality is employed.  

Many researches on Pareto optimization problems have been carried out 

recently to enable the application of heuristic global optimization algorithms such 

as evolutionary algorithm [2-6] and tabu search method [7, 8]. In the case of 

function optimization, heuristic optimization methods have the advantages of not 

being subjected to special restrictions on problem formulations. They are also 

evaluated as having outstanding search capability in finding a global optimum 

solution of optimization. As a heuristic global optimization technique, artificial 

life algorithm [9-11] has been applied to determine optimum design problems of 

journal bearing [12] and engine mount [13, 14]. However, the expansion onto 

Pareto optimization has not yet been attempted in real applications.  

In order to apply artificial life algorithm to MOP in engineering problems, it 

is necessary to solve the Pareto optimization problem. Therefore, in this chapter, 

artificial life optimization algorithm has been expanded to enable the application 

of Pareto optimization to solve the MOPs. 
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2. Multi-objective optimization problems (MOP) 
 

A MOP is defined as a problem which has two or more objective functions. 

A general MOP is defined as 

minimize  1 2( ) ( ( ), ( ), , ( ))T
kf f f=F x x x x…     (3.1) 

subject to  1 2( ) ( ( ), ( ), , ( )) 0T
mc c c= ≥c x x x x…     (3.2) 

1 2( , , , )T
nx x x=x … ,  S∈x      (3.3) 

where ( )if x  is the set of k objective functions, ( )ic x  is the set of m constraints, 

xj is the n optimization parameters, and nS R∈  is the solution or parameter space. 

Obtainable objective vectors {F(x) | x S∈ } are denoted by Y, where kY R∈  is 

usually referred to as the attribute space. 

In MOP, it is important to emphasize that there might be constraints imposed 

on the objectives. It is normal for the objectives of MOP to be in conflict with 

each other [15]. However, most MOPs do not lend themselves to a single solution 

but have a set of solutions. Such solutions are trade-offs or good compromises 

among the objectives. In order to generate these trade-off solutions, an old notion 

of optimality is normally adopted. This notion of optimality was generalized by 

Pareto [16] and is called Pareto optimum. The solution to a MOP is Pareto 

optimal if there is no other feasible solutions which would decrease some 

objective function values without causing a simultaneous increase in at least one 

other objective function value. 
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3. Pareto Optimization 
 

Let’s consider a minimization problem which has two or more objective 

functions. A Change in design variables (or design vector) in order to lower the 

value of an objective function may generally result in the increased values of 

other objective functions. Therefore, in most cases, a set of solutions that 

simultaneously minimize all the objective functions becomes a null set. This 

problem leads to a new concept called Pareto set. 

The Pareto set consists of solutions that are not dominated by any other 

solutions. Considering a minimization problem with two solution vectors x and y 

S∈ . Where x is said to dominate y, and is denoted by x y≺ , if: 

{1, 2, , }: ( ) ( ) and {1, 2, , }: ( ) ( )i i j ji k f f j k f f∀ ∈ ≤ ∃ ∈ <x y x y… …    (3.4) 

The space in Rk formed by the objective vectors of Pareto optimal solutions 

is known as the Pareto optimal front. 

Let’s consider a minimization problem to hold two objective functions, f1 and 

f2. For the two design vectors of A and B, the case in which all objective function 

values of A are the same or smaller than all objective function values of B and also 

at least one objective function value is smaller than B is described as “B is 

dominated by A”. In the case in which the first objective function value of A, f1(A), 

is smaller than f1(B), but the second objective function value, f2(A), is larger than 

f2(B), where A and B are referred to as the “non-dominated solution”.  

Ultimately, Pareto optimization problem is considered to find the set of all 

non-dominated solutions and this set of solutions is referred to as Pareto set of 

solutions. Also, the set of objective function values in the range by Pareto set of 

solutions are referred to as Pareto front. A range holds the same dimension as the 

number of objective functions. If there are four or more objective functions, it is 

difficult to express them geometrically. Therefore, this study only deals with 
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simple problems with two design variables and two objective functions in order to 

validate and confirm the proposed method. 
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4. Pareto Artificial Life Optimization Algorithm (PAL) 
 

For convenience, artificial life optimization algorithm for a single objective 

function [8] is called artificial life algorithm (ALA), and the artificial life 

optimization algorithm used to find the optimum Pareto solution is called Pareto 

optimization algorithm based on artificial life (PAL). For ALA, the course of 

finding solution imitates cluster formation, which is one of the ecological 

processes of natural phenomena. The basic concept is to promote cluster 

formation in proximity in order to optimize the solution and carry out an extensive 

search in the cluster. For PAL, the fitness evaluation method in ALA has been 

improved to suit multi-objective function. Also, by adding the Pareto list, 

adjustment has been made to enable application to multi-objective function 

optimization problem. 

 

4.1. Fitness Evaluation  

In ALA, cluster formation by artificial objects has been promoted in areas 

with outstanding fitness within the space of design variables by evaluating the 

fitness based on objective function values. In the case of multi-objective function 

optimization problem, changes in design variables generally result in a reduction 

of one objective function value and an increase in another objective function value. 

Therefore, a new method must be found for fitness evaluation.  

Horn et al. [5] attempted to solve Pareto optimal design problem with 

evolutionary algorithm by proposing a modified shared fitness evaluation method 

which introduced the concept of niche into the concept of shared fitness by 

Goldberg [4].  

Shared fitness by Horn et al. is found by dividing the ordinary fitness used in 

genetic algorithms (GA), with the number of niches. Niche is defined as 

biological position in the study of biology. The detailed concept of niche used in 
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GA can be interpreted as a type of density of solutions. Ho et al. [8] modified the 

shared fitness in order to apply it in tabu search method to Pareto optimization 

problem. The shared fitness by Ho et al. uses the concept of the density of 

solutions. In Ho et al. algorithm, the difference is that they did not use the 

ordinary fitness rules used in GA in order to use the tabu search method, instead 

the reciprocal number of the density of solutions is considered. Also, when 

finding the number of niches, Horn et al. [5] evaluated and reflected the Euclid 

distance dij of two objects, i and j defined in the space of objective functions. 

However, they evaluated the density with only the number of solutions within the 

set proximity.  

In PAL, shared fitness is improved by using density evaluation method 

reflected with distances among solutions in the concept of shared fitness as 

proposed by Ho et al. [8]. In detail, shared fitness of PAL is defined as of Eq. 

(3.5).  
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where, fshare, dj, RC0, RCj and NACj represent shared fitness, density of solutions 

of object j (or candidate solution), radius to calculate density dj on the basis of the 
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location of object j, radius of the final proximity used in calculating dj and number 

of objects including itself in proximity to the object j defined with RC0 

respectively. 

In shared fitness proposed by Ho et al., RCj is a fixed value regardless of the 

distribution status of solutions or objects and corresponds with RC0 in this study. 

Therefore, in evaluating the density of objects around a specific object, depending 

only on the number of solutions within a domain regardless of the status of 

distribution within a specific domain, detail approach was presented by Ho et al. 

[8]. However, for PAL, by introducing RCj, density evaluation of solutions could 

be further improved not only by the number of solutions in the proximity set by 

user, but also by evaluating the distance between these solutions and the center 

point.  

 

4.2. Pareto Set of Solutions 

The concept of Pareto can be interpreted as a type of long-term memory 

collection of past memory set in PAL such as tabu search method. To find Pareto 

set of solutions, Pareto archive is renewed by adding and replacing non-dominated 

solutions among all artificial objects of each generation. It is also renewed in each 

generation.  

 

4.3. Flowchart of PAL 

The flow diagram of the algorithm to describe the process of the proposed 

PAL is shown in Fig. 3.1. The overall processes are explained as follows.  

Step 1: Initial artificial life objects and resources are distributed randomly in 

solution space and granted initial internal energy for each organism. 

Step 2: All artificial objects conduct search, metabolism, movement and 

reproduction.  

Step 3: Artificial life object searches the resources to exist within proximity 
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domain of its own to hold the radius as defined by Eq. (3.8),  

max( / )G GD e α−=        (3.8) 

where, G, Gmax and α , respectively, represent the number of current 

generations, the maximum number of generations and factor to reduce 

the radius of proximity domain according to generation. In particular, 

α  was reviewed by Yang and Lee [9] and it was set as α = 3 in this 

study.  

 

Metabolism: When resources are searched, artificial life object moves 

to the most closely located resource and metabolizes the 

closest resource. The metabolized resource is eliminated 

and, object increases internal energy. It also disposes 

waste in a random position within the proximity domain.  

Movement: In the case where resources are not found in proximity, a 

random location is selected within the proximity. If the 

selected location has a higher fitness than the current 

location, the artificial life object moves to the selected 

location. If not, the process of randomly selecting new 

locations is repeated.  

Reproduction: For objects of which the internal energy are over the 

minimum energy to enable reproduction,  the closest 

object among artificial life objects of the same species is 

selected as itself within the proximity domain. If the same 

conditions are satisfied, the object carries out 

reproduction. By reproduction, two new objects are 

created as offspring. Initial location of each of these two 

objects is decided as random location with higher fitness 
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than the fitness of each of their parent objects within 

proximity domain for locations of each of the parent 

objects. 

Step 4: Renew Pareto archives with the method described in section 4.2. 

Step 5: Increase the number of generation and age of organism by 1.  

Step 6: When internal energy is of critical value as internal energy reduced, 

artificial life object is considered extinct and is deleted.  

Step 7: Return to step 2 in case where the number of generations does not 

reach the maximum value, and if it reaches the maximum value, end 

the process.  
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Fig. 3.1 Flowchart of Pareto Artificial Life Optimization Algorithm. 
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5. Examples 
 

The performance verification is carried out by applying PAL to three test 

functions, of which the optimum solutions were known. The first test function 

[17] is defined by Eq. (3.9) and, for convenience, n, the number of design 

variables, was set as 2.   

Minimize 

1 2( ) ( ( ), ( ))Tf f=F x x x          (3.9) 
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=
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⎛ ⎞⎛ ⎞= − − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

x

x

 

Subjected to:  

2 2ix− ≤ ≤   

There are no constraints with the exception of the upper and lower limits of 

design variables. Pareto set of solutions and Pareto front are shown in Fig. 3.2 

together with the results by PAL. The “dots” represent Pareto set of solutions 

and “○” marks are the solutions obtained by PAL.  
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(a) Pareto Set 

 

 

(b) Pareto Front 

Fig. 3.2 Pareto Set and Pareto Front of Test Function 1. 
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The second test function [6] is defined by Eq. (3.10).  

Minimize 

( )

( ) ( ) ( )

( ) ( )

1 2

2 2
1 1 2

2
2 1 2

( ( ), ( ))

2 2 1

9 1

Tf f

f x x

f x x

F x x x

x

x

=

= + − + −

= − −

      (3.10) 

Subjected to 

 
( ) ( )2 2

1 1 2 2 1 2

1 2

225 0, 3 10 0
20 , 20

c x x c x x
x x

x x≡ + − ≤ ≡ − + ≤

− ≤ ≤
 

There are two constraints in addition to the upper and lower limits of design 

variables. Feasible solutions are the intersections at the top of straight line and 

inside the circle shown in Fig. 3.3(a). In Fig. 3.3(a), Pareto set of solutions is 

expressed with dots. The overlapping “○” marks represent Pareto set of 

solutions calculated by PAL. Pareto front is shown in Fig. 3.3(b). From the second 

example, it is confirmed that Pareto set of solutions could be successfully found 

while satisfying the constraints in cases where there were simple constraints. 
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(a) Pareto Set 

 

(b) Pareto Front 

Fig. 3.3 Pareto Set and Pareto Front of Test Function 2. 
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The third test function [18] is defined by Eq. (3.11).  

Minimize 

( )
( ) ( )

1 2

1 1 2 2

( ( ), ( ))

,

Tf f

f x f x

F x x x

x x

=

= =
       (3.11) 

Subjected to  

( )
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2 2 1
1 1 2

2 2
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1 0.1cos 16 tan 0

0.5 0.5 0.5 0
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xc x x
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c x x
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x

x
π

−
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≡ − + − − ≤

≤ ≤

 

The small insert at the bottom left-hand corner of Fig. 3.4 shows the Pareto 

solutions. According to the two constraints, feasible solutions are those which 

correspond to the part filled with slashes and include the boundary. Here, Pareto 

solutions of Fig. 3.4 are shown by thick lines in the small insert and are based on 

the first constraint c1. Among the feasible solutions marked with slashes, those 

shown with dotted lines are active constraints and therefore are feasible solutions. 

However, they cannot be Pareto set of solutions as they are not the non-dominated 

solutions. In particular, this problem is useful in evaluating the search capabilities 

in relations to the problems in which active constraints exist. It is also confirmed 

that PAL has successfully found the set of solutions.  

 

 

 

 

 

 

 



 69

Fig. 3.4 Pareto Set and Pareto Front of Test Function 3. 
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6. Pareto optimum design of journal bearing 
 

Pareto optimization problem of high-speed and short journal bearing shown 

in Fig. 3.5 is considered with the two objective functions, temperature increase 

and supply flow.  

Optimum design of journal bearing has been studied by many researchers. 

Hashimoto [19], Yang et al. [10] and Song et al. [12] studied the optimization by 

using sequential quadratic programming (SQP), the ALA and the EALA, 

respectively. However, they only searched the optimization of a single objective 

function and only as the form of linear combination of two objective functions, 

temperature increase and supply flow. Therefore, this study intends to provide 

Pareto set of solutions by carrying out Pareto optimization.  

 

6.1. Defining state variables of journal bearing 

As state variables used in the objective functions or constraints, bearing load 

W (N), operating speed ns (rps), eccentricity ratio 0ε , oil film pressure p (MPa), 

oil film temperature T ( K° ), journal surface friction Fj (N), supply flow Q (m3/s) 

and whirling onset speed crω  (rad/s) are considered.  

These state variables, in general, are determined by design variables. For 

design variables, the radial clearance C and bearing width to diameter ratio λ  (= 

L/D) are considered. The state variables, equations (3.12) ~ (3.19), are obtained 

from Hashimoto [19].  

The average Reynolds number is defined as of ( ) /eR CUρ μ=x , where μ  

represents the viscosity. The correction coefficients mα  and *Gθ  are defined by 

the following equations according to Reynolds number.  
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510:eR < 1,mα =  * 1/12Gθ =   

:1125510 <≤ eR  ,914.5 285.0−= em Rα  57.0* 915.2 −= eRGθ  

:135001125 <≤ eR  ,798.0=mα  57.0* 915.2 −= eRGθ  

:13500≥eR  ,756.0=mα  75.0* 45.14 −= eRGθ      (3.12) 

Modified Sommerfeld number S is the most important factor in bearing 

design, and eccentricity ratio 0ε  expressed as the function of S, is obtained from 

the following equation. 

3

* 248
sn DS
G C Wθ

μ λ
=  , and 0 exp( 2.236 )m Sε α λ= −     (3.13) 

The minimum oil film thickness hmin, whirling start speed crω  and the 

maximum oil film pressure pmax under the steady-state condition are respectively 

obtained from Eqs. (3.14), (3.15) and (3.16). 

( )min 01h C ε= −         (3.14) 

( ) ( )1/ 22.07
0 00.0584exp 6.99 1.318 2.87 /cr g Cω ε ε⎡ ⎤= − +⎣ ⎦    (3.15) 

2 2 2
0 0

max * 2 3
0 0

sin
8 (1 cos )

s mn Dp
G Cθ

π μ α λ ε θ
ε θ

=
+

      (3.16) 

where g represents acceleration of gravity, 0θ  represents the angular location of 

the maximum oil film pressure occurs and is defined by Eq. (3.17). 

2
1 0

0
0

1 1 24
cos

4
ε

θ
ε

−
⎛ ⎞− +
⎜ ⎟=
⎜ ⎟
⎝ ⎠

       (3.17) 
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The journal surface friction is approximately given by Eq. (3.18) according 

to Reynolds number.  
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3 2
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j
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           (3.18) 

    

Lastly, flow of supplied lubricant Q and oil film temperature increase TΔ  

can be found from Eq. (3.19).  

2
04 sQ n CDπ ε=  , 

0

2
2

j j

p p

F D F
T

C Q C DC
ω

ρ ρ ε
Δ = =     (3.19) 
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Fig. 3.5 Geometry of a Hydrodynamic Journal Bearing. 

 

Table 3.1 Input Parameters for Optimum Design 

Minimum radial clearance Cmin = 40 μm 
Maximum radial clearance Cmax = 300 μm 
Minimum length to diameter ratio λmin   = 0.2 
Maximum length to diameter ratio λmax = 0.6 
Lubricant viscosity μ = 0.001 Pa⋅s 
Allowable minimum film thickness ha = 10 μm 
Allowable maximum film pressure pa = 10 MPa 
Allowable film temperature rise ΔTa = 70 °K 
Density of lubricant ρ = 860 kg/m3 
Specific heat of lubricant Cp = 4.19×103 J/kg⋅°K 
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6.2. Optimum design formulation  

Optimization problem is formulated by the basis of state variables described 

in section 6.1. Design variables are the radial clearance C and width to diameter 

ratio λ . Design variable vector is defined by Eq. (3.20). The objective function 

vector for the supply flow and temperature increase is defined by Eq. (3.21). Also, 

the constraints for the design variables are defined by Eq. (3.22).  

( , )TC λ=x          (3.20) 

( ) ( ( ), ( ))TQ T= ΔF x x x        (3.21) 

( ) 0, ( 1~8)i ic g i≡ ≤ =x        (3.22) 

1 min 2 max

3 min 4 max

5 0 min

6 7

8 max

, ,

, ,
{1 ( )} ,

( ) , ( ),
( )

a a

a cr

a

g C C g C C

g g
g h C h h
g T T g
g p p

x
x x
x

λ λ λ λ
ε

ω ω

= − = −

= − = −

= − − = −

=Δ −Δ = −

= −

  

In g1 to g4 of Eq. (3.22), the subscripts of min and max, respectively, 

represent the lower and upper limit values of the design variables. In order to 

observe the changes in Pareto front and Pareto set of solutions according to major 

state variables, optimization is carried out by changing the operating speed ns and 

load W exerted on bearing.  

Lastly, to investigate the relevance between Pareto set of solutions and 

optimum solutions obtained from changing this problem into a single objective 

function in the form of linear combination, optimization problem with one 

objective function of Eq. (3.23) is  

1 1 2 2( ) ( ) ( )F Q Tα β α β= + Δx x x  , and ( )1 2 1α α+ =        (3.23) 
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where, 1α  and 2α  are weighting factors.  

In particular, for comparison with Pareto set of solutions, scale factors are 

fixed as 1 21, 1/ 5000β β= =  and the weighting factors are considered as the 

following:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2, 1.0,0.0 , 0.8,0.2 , 0.6,0.4 , 0.5,0.5 , 0.4,0.6 , 0.2,0.8 , 0.0,1.0α α =  

           (3.24) 

Then, optimization is carried out for each case. 

 

6.3. Results of optimum design 

Result of optimization by the PAL is presented by the symbol ‘○’ and the 

result of optimization through Eq. (3.23) by the EALA is presented by the 

symbols of ‘*’, ‘▲’ and ‘◆’, etc. The results are shown in Figs. 3.6 and 3.7. 
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(a) Pareto Set 

 

(b) Pareto Front 

Fig. 3.6 Comparison of Pareto Optimal and Single Optimal 

( ( ) ( ) ( )( ){ }1 2, 1.0,0.0 , 0.5,0.5 0.0,1.0α α = , W = 10 kN, ns = 100 rps). 
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(a) Pareto Set 

 

(b) Pareto Front 

Fig. 3.7 Comparison of Pareto Optimal and Single Optimal 

( ( ) ( ) ( )( ){ }1 2, 1.0,0.0 , 0.5,0.5 0.0,1.0α α = , W = 10 kN, ns = 200 rps). 
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Fig. 3.6(a) and Fig. 3.7(a) express the Pareto set of solutions obtained from 

the space of design variables. In Fig. 3.6(b) and Fig. 3.7(b), Pareto front is 

consisted with objective function vector calculated from Pareto set of solutions in 

Fig. 3.6(a) and Fig. 3.7(a). In case of a single objective function, calculation was 

carried out on 7 cases of weighting factors defined by Eq. (3.24). However, to 

clarify the expression, only 3 cases were expressed.  

When load W = 10 kN and operating speed ns = 100 rps, the solutions for a 

single objective function by the EALA and for Pareto front and Pareto set of 

solutions by the PAL are compared. In case of 1α  = 1.0, it becomes a problem 

which only considers the temperature increase. The solutions and their 

corresponding temperature increases are located at the bottom right-hand corner 

for Pareto set of solutions and at the top left-hand corner for Pareto front as shown 

in Fig. 3.6. Also, in case of 1α  = 0, optimum problem is only considered for the 

supply flow. In Fig. 3.6, this is located at the other end of Pareto front and Pareto 

set of solutions. Lastly, in case where 1α  = 0.5, it is located in between the two 

cases described above for Pareto front and Pareto set of solutions. In other words, 

it can be confirmed that the problem of optimizing a single objective function in 

the form of linear combination is to find a specific solution to the corresponding 

Pareto optimization problem. From a different perspective, a designer can make 

selection according to the given situations by utilizing Pareto set of optimum 

solutions obtained.  

Of the results obtained from PAL, value of the far-right solution in Fig. 

3.7(a) is given by ( λ , C) = (0.200, 247.3). It shows a difference of 52 μm or more 

in the upper limit of radial clearance of 300 μm. This result is related to 

temperature increase. When the operating speed ns = 200 rps, load W = 10 kN and 

width to diameter ratio λ  = 0.2, the temperature increase TΔ  discontinuously 

rises for radial clearance exceeds 249.8 μm. As shown by Eqs. (3.12) and (3.18), 

this is due to the discontinuity of correction coefficients , mα  and *Gθ , and 
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friction Fj according to Reynolds number.  

As a result, in the above conditions, solutions exceeding C = 249.8 μm 

cannot be non-dominated solutions. Therefore, the domain below is excluded 

from the final Pareto set of solutions.  

( ){ }, | 249.8 mexS C Cλ μ= ≥       (3.25) 

In Figs. 3.7(a) and (b), there are blanks in Pareto set of solutions and Pareto 

front and these are related to the constraints. Fig. 3.8 shows the constraints 

applicable in case W = 10 kN and ns = 200 rps. The solid lines in Fig. 3.8 

represent the limit values ( ), , ,a a ah T pωΔ . Although all other constraints are 

satisfied, whirling start at lower speed than operating speed as shown in Fig. 

3.8(b). Therefore, a domain does not satisfy c7 of Eq. (3.22) for constraints to 

exist. Also, this domain corresponds to the domain of discontinuity in Pareto set 

of solutions shown in Fig. 3.7(a). When W = 10 kN, all constraints, with the 

exception of upper and lower limits of design variables do not influence Pareto set 

of solutions in case where ns = 100 or 150 rps.  

Fig. 3.9 shows Pareto set of solutions and Pareto front when the load is fixed 

at 10 kN and operating speeds change to 100, 200 and 300 rps. The arrows in Fig. 

3.9(a) show the domain of radial clearance being excluded from Pareto set of 

solutions due to discontinuity of correction coefficient, as described previously. 

The six arrows in Fig. 3.9(b) point toward both ends of Pareto front. As predicted, 

it is confirmed that Pareto front moves in the direction of temperature increase as 

operating speed increases. At the same time, the expansion for Pareto front is also 

observed.  
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(a) Minimum Clearance to ha 

 

(b) Onset Speed to crω  
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(c) Maximum Pressure to pa 

 

(d) Temperature Rise to TΔ a 

Fig. 3.8 Constraints: W = 10 kN, ns = 200 rps. 
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(a) Pareto Optimal 

 

(b) Pareto Front 

Fig. 3.9 Pareto Optimal and Pareto Front (W=10 kN, ns=100, 150, 200 rps). 
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Fig. 3.10 shows the Pareto set of solutions and Pareto front in case where the 

load W is changed to 10, 20 and 30 kN, and operating speed fixes at ns = 200 rps. 

For each case, the solutions of single objective functions in the form of linear 

combination are found and the results showed no noticeable discrepancy other 

than the contents of execution administered by changing the operation speed. 

Therefore, the result of single objective function is not fully explained. The 

domains marked with three arrows in Fig. 3.10(a) represent the domains excluded 

from Pareto set of solutions due to constraints under each load condition. The 

description for the operating condition of W = 10 kN and ns = 200 rps is described 

previously. As the load increases, the domains excluded from the set of solutions 

start moving. Domains discontinuously broken by constraints in three sets of 

solutions from Pareto front as shown in Fig. 3.10(b) are expanded and presented 

in Fig. 3.10(c). In Fig. 3.11, the constraints for whirling starting speed are 

expressed according to each load. Fig. 3.8(b) is repeated in Fig. 3.11(a) for clarity. 

As shown in Fig. 3.8, design limits ( )crω  are marked with solid lines. The three 

discontinuous domains in Fig. 3.10(a) correspond to the domains which do not 

satisfy the constraints as shown in the three inserts of Fig. 3.11.  

In all Pareto sets of solutions expressed in Fig. 3.10(a), Sex of Eq. (3.25) is 

excluded. In other words, the exclusion from Pareto set of solutions due to 

discontinuity of correction coefficients and others occur in all cases. However, 

approximating the correction coefficients to eliminate this phenomenon will 

produce results which are not physically possible in reality. This phenomenon has 

been reflected with the physically existing discontinuity. Therefore, modification 

are not required if the equations represent well reality.  
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(a) Pareto Optimal 

 

(b) Pareto Front 
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(c) Zoomed Pareto Front 

Fig. 3.10 Pareto Optimal and Pareto Front (W = 10, 20, 30 kN, ns = 200 rps). 
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(b) W = 20 kN 

 

(c) W = 30 kN 

Fig. 3.11 Onset Speed to crω  (ns = 200 rps). 
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7. Conclusions 
 

On the basis of artificial life optimization algorithm, Pareto artificial life 

optimization algorithm is proposed, which is capable of searching Pareto set of 

solutions of multiple objective functions. Through the three problems of 

multi-objective function optimization to hold known solutions, searching 

capabilities of the PAL on Pareto set of solutions has been verified. Also, by using 

the proposed algorithm, Pareto set of optimum solutions was found out by 

applying the PAL to the optimum design of the journal bearing. By comparing 

with the optimum solutions of single objective function, it has been confirmed in 

examples of this study that the solution of single objective function optimization 

is one of the specific cases of Pareto set of optimum solutions. In addition, the 

movement of Pareto front is confirmed when changing the conditions of load and 

operating speed. Lastly, it is confirmed that certain domains are excluded from 

Pareto set of solutions due to discontinuity of correction coefficient, etc. 

according to operating conditions.  
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IV. Conclusions 
 
 

The parameters of the EALA have been simplified. The effectiveness of the 

EALA was evaluated using three test functions. The optimized results were 

compared with those of conventional artificial life algorithm. The results show 

that the EALA reaches the optimum solution faster and closer to exact solution 

than the conventional artificial life algorithm, and will give all global optimum 

solutions in a solution space. The algorithm reduced the time needed for searching, 

to say nothing of accuracy of optimum solutions, because the ELAL improved the 

method of making decision of new points for offspring and for own waste by 

using random tabu search method. 

On the basis of the artificial life optimization algorithm, Pareto artificial life 

optimization algorithm is proposed, which is capable of searching Pareto set of 

solutions of multiple objective functions. Through the three problems of multi-

objective function optimization to hold known solutions, searching capabilities of 

PAL on Pareto set of solutions was verified. By using the proposed algorithm, 

Pareto set of optimum solutions was found out by applying PAL to the optimum 

design of the journal bearing. Also the EALA was applied to the same problem. 

By comparing Pareto set of optimum solutions with the optimum solutions of 

single objective function, it was confirmed in examples of this study that the 

solution of single objective function optimization is one of the specific cases of 

Pareto set of optimum solutions. In addition, the movement of Pareto front was 

confirmed when changing the conditions of load and operating speed. Lastly, it 

was confirmed that certain domains were excluded from Pareto set of solutions 

due to discontinuity of correction coefficient, etc. according to operating conditions.  
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다목적 최적화 문제를 위한 파레토인공생명 
최적화 알고리듬 

 

 

송 진 대 
 

부경대학교 대학원 기계공학과 
 
 

국문요약 
 

 

많은 공학적 최적화 문제는 단일 목적 함수보다는 다수의 목적 

함수로 구성되는 경우가 많다. 이러한 다목적 최적화 문제는 여러 

목적함수를 하나의 목적함수로 변환하고 통상의 단일 목적함수 방법을 

적용하여 푸는 방법과, 2 개 이상의 목적함수를 동시에 고려하여 파레토 

해집합이라 불리는 최적해 집합을 구하는 방법으로 대별된다. 

전자는 일반적으로 다수의 목적 함수를 선형 조합의 형태 혹은 

곱의 형태를 취하여 단일 목적함수로 치환하는 방법을 사용하거나, 

중요한 하나의 목적 함수만을 설정하고 다른 목적 함수들은 

구속조건으로 처리하는 방법을 택한다. 이러한 방법들은 최적화 

과정에서 각 후보해들을 비교하는 단일 기준을 확립하려는 방법론적인 

원인과 하나의 최적해(혹은 근사 최적해)를 도출하고자 하는 목적에서 

시작되었다. 다른 방법으로 다수의 목적 함수를 동시에 목적 함수로 

고려하는 방법을 파레토 최적화(Pareto optimization)라 한다. 이는 최종 

의사결정자에게 가능한 해를 제공하려는 목적으로 단일 목적함수로 

변환하여 하나의 해만을 얻게 됨으로써 존재하는 다른 가능성을 찾지 
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못하는 단점을 보완하고자 하는 것이다. 또 다른 방법으로는 문제를 

목표 계획법으로 변환하여 공식화하기도 한다. 

 함수 최적화의 경우, 휴리스틱 최적화 방법들은 문제에 대한 

특별한 제한사항을 가지고 있지 않는 장점을 가지고 있고, 전역 

최적해에 대한 탐색능력이 우수한 것으로 평가되고 있다. 특히 

휴리스틱 전역 최적화 기법의 하나로 함수최적화를 위한 인공생명 

알고리듬이 개발되어 저널 베어링, 엔진 마운트 등의 최적 설계 문제를 

통해 그 유용성이 입증되었다.  

인공생명이란 용어는 1987 년 Langton 이 주관한 제 1 회 인공생명 

workshop에서부터 시작되었다. Langton은 “자연계의 살아있는 시스템이 

나타내는 거동을 모의하는 인공시스템에 대하여 연구하는 분야”로 

인공생명을 정의하였다. 인공생명의 기본적인 동기는 지구상에 

존재하는 자연적인 생명체의 모델을 넘어선 가능한 생명체를 

합성함으로써 더욱 넓은 생명의 영역을 탐구하고, 생명의 진정한 

의미를 파악하는 데 있다. 인공생명 최적화 알고리듬은 생물군의 

군집형성을 모의함으로써 최적화를 실현하는 최적화 방법론이다.  

본 연구에서는 인공생명 알고리듬에 배분적응도의 개념과 파레토 

목록(Pareto archive)을 도입하여 파레토 최적화 문제에 적용 가능하도록 

확장하였다. 이를 통해 다양한 공학적 문제를 실용적인 관점에서 

해결할 수 있도록 하였다.  

제안된 방법론으로 저널 베어링의 최적 설계에 적용하여 하중 및 

운전속도 등의 파라미터에 따른 파레토 최적해를 구하고 그 유용성을 

확인하였다. 또, 단일목적함수로 변환된 단일목적함수 최적화 문제의 

해와 비교를 하여, 선형조합 형태의 단일 목적 함수 최적화 문제와 

파레토 최적화 문제와의 관련성을 검토하였다. 그 결과로 선형조합된 

단일목적함수의 최적해는 파레토 최적화 문제의 파레토 해집합의 

특수한 경우임을 확인하였다.  
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