PUKYONG

물리적 처리에 의한 Porcine Serum Albumin의 항원성 저감화 및 돈육 가공 식품 개발

Metadata Downloads
Alternative Title
The Reduction of Antigenicity of Porcine Serum Albumin by Physical Treatments and Application
Abstract
최근 식생활의 서구화와 환경의 변화로 인해 식품 알레르기 발생률이 전 세계적으로 증가하고 있는 추세이다. 이에 미국, 일본, codex, EU에서는 주요 알레르기 유발 식품을 지정하여 표시를 의무화하고 있으며, 우리나라에서도 12가지 알레르기 식품에 대해 유발 표시를 의무화하고 있다. 현재 식품 알레르기에 대한 치료의 최선책은 원인 식품을 제거하는 것이지만 대부분이 고 단백 식품이여서 완전 제거는 영양상의 불균형을 초래할 수 있다. 따라서 식품의 알레르겐성을 저감화하기 위한 다양한 기법들이 연구되고 있다. 이에 본 연구에서는 알레르기 유발 식품 중 돼지고기의 항원성을 저감화 시키기 위해 주요 알레르겐인 serum albumin(PSA)에 물리적 처리를 하여 항원성 변화를 살펴보았다. 6가지의 물리적 처리 중(가열, 가압가열, 마이크로전자파, 초음파, 초고압, 감마선), 가압 가열 (121℃- 5, 10, 30분) 처리 시 IgG에 대한 결합력이 약 40% 이하로 감소하였으며, 특히 30분 처리 시 29%의 결합력을 나타내었다. 또한 감마선 조사 시, 3 kGy 조사구에서 30% 정도의 결합력을 보여, 가압가열 및 감마선 처리 시 PSA의 항원성 감소에 가장 효과가 크게 나타났다. 식품 알러겐은 체내 흡수 후 알레르기 반응을 나타내기 때문에, 가압가열 (121℃- 5, 10, 30분) 및 감마선 (1, 3, 10, 20 kGy) 처리된 PSA의 소화효소에 의한 항원성 변화를 in vitro상에서 살펴보았다. 가압가열 및 감마선 처리 된 PSA는 펩신과 트립신 처리 후 20% 이하로 항원성이 감소하였으며, 가열 처리 시간 및 감마선 조사선량 증가에 따라 다소 감소하는 경향을 나타내었다. 하지만, 트립신 처리 시간에 따른 차이는 크게 나타나지 않았다. 이 결과로부터, 가압가열 및 감마선이 PSA의 항원성 저감화에 효과가 있음을 확인하여 돈육 가공 제품 중 소비량이 가장 많은 소시지에 가압가열 및 감마선을 적용하여 항원성 감소의 유무를 확인하였다. 먼저 시판 되고 있는 소시지의 p-IgG에 대한 결합력을 살펴본 결과, 8가지 제품 중 3개의 제품이 결합력이 가장 높게 나왔다. 따라서 이 3가지 제품에 대해 가압가열 및 감마선을 처리하여 항원성의 변화를 살펴보았다. 그 결과, 가압가열 및 감마선 처리에 의해 소시지의 항원성이 감소하였다. in vitro 소화효소 처리 결과에서도 감마선 및 가압가열 처리된 소시지가 무처리 소시지 보다 항원성이 더 감소하였으며, 소화효소 처리 시간에 따른 큰 차이는 나타나지 않았다. 따라서 가압가열 및 감마선 처리된 소시지는 섭취 시 돼지고기로 인한 알레르기 유발이 억제될 것으로 보인다. 가압가열 및 감마선 처리에 의한 PSA의 항원성 감소 원인을 살펴보기 위해, 가압가열 및 감마선에 의한 2차 및 3차구조의 변화를 측정하였다. 또한 PSA의 알레르기를 유발하는 IgE-binding epitope를 확인하고 입체 구조에서의 위치를 파악하여, 간접적으로 감마선 및 가압가열에 의한 epitope의 변화를 예측하였다. PSA의 epitope는 SPOT 분석에 의해 돼지고기의 환자혈청으로부터 파악하였으며, homology modeling법으로 입체구조에서의 IgE-binding epitope의 위치를 확인하였다. 가압가열 및 감마선에 의한 PSA의 구조변화 결과, PSA의 3차 구조가 파괴되고 주요 2차 구조인 alpha-helix가 분해되어 β-sheet 또는 random coil 구조로 전환되었다. 따라서 PSA는 감마선과 가압가열에 의해 공유결합과 소수성 결합이 분해되면서 단백질이 unfolding이 되고, 분해된 산물의 cross-linking에 의한 응집이 발생함을 알 수 있었다. SPOT 분석에 의해 14개의 IgE-binding epitope가 확인되었다. 14개의 epiotpe중에서 11개의 epitope가 입체구조상에서 표면에 위치하였으며, 나머지 3개의 epitope(#5, #6, 및 #7)는 PSA의 내부에 위치하였다. 14개의 IgE-binding epitope 부위 중 표면에 위치하고 있는 6개의 epitope(#1, #4, #9, #12, #13, 및 #14)가 IgE와 강하게 결합을 하였다. 따라서 공유결합 되어있는 epitope 및 그 주위의 polypeptide가 가압가열 및 감마선에 의해 쉽게 영향을 받아 분해되고, 응집되면서 내부로 감춰짐에 따라 PSA의 항원성이 감소되는 원인으로 사료된다. 이상의 결과, 가압가열 및 감마선은 돼지고기 알레르기 환자를 위한 저 알레르기 돈육 가공 제품 개발에 효과적인 기술임을 알 수 있었다.
Recently, the incidence of food allergy is increasing because of westernization of dietary and environmental changes. The mandatory labeling of allergenic ingredients in foodstuffs was regulated by the Unite States, Japan, Codex, EU, and Korea. Currently, the best way to cure for food allergy would be to remove known allergenic foods from the diet. However, the complete limitation leads to the nutrition disorders because the most common allergenic foods tend to be foods with high protein content. Hence, a variety of food processing techniques is developed to reduce the intrinsic allergenicity of allergic food. Therefore, we investigated the antigenicity/allergenicity changes of PSA (porcine serum albumin) by physical treatments (sonication, gamma irradiation, microwave, heating, autoclave, high hydrostatic pressure). In the physical treatments, binding ability of autoclaved PSA to IgG was decreased to below 40%. In particular, the PSA treated with autoclave for 30 min showed 29% binding ability. The binding ability of irradiated PSA at 3 kGy was also decreased to about 30%. The antigenicity of PSA was considerably decreased by autoclave and gamma irradiation among physical treatments. Food allergens trigger allergic reaction when food allergens are eaten. Thus, the antigenicity change of gamma-irradiated (1, 3, 10, 20 kGy) or autoclaved (121℃ for 5, 10, and 30 min) PSA following digestive process in vitro was measured. The binding ability of gamma-irradiated or autoclaved PSA was decreased more to below 20% following pepsin and trypsin treatments. The binding ability tended to decrease with increasing heating time and
irradiation dose but it had no significant differences in all samples depending on reaction time of digestive enzyme. From these data, autoclave and gamma irradiation are the effective technique for reduction of antigenicity of PSA. Thus, the gamma irradiation and autoclave were applied to market pork sausage for identifying the reduction of antigenicity. The 8 market pork sausages were used for assessment of binding ability to p-IgG. As a result, 3 pork sausages showed the highest binding ability among market pork sausages. Thus, 3 pork sausages were treated with autoclave or gamma irradiation. The antigenicity of 3 pork sausages was decreased by autoclave and gamma irradiation. The anitigenicity of autoclaved or gamma-irradiated sausages following digestive enzyme treatment was also reduced more than intact pork sausage. In conclusion, autoclave and gamma irradiation may inhibit allergenicity of pork sausage. To explore the reduction mechanism of PSA antigenicity by autoclave and gamma irradiation, IgE-binding epitopes of PSA protein were mapped and effect of PSA-epitope by autoclave and gamma irradiation was predicted through the measurement of the secondary and tertiary structural change using circular dichroim and fluorescence spectroscopy. The 14 epitopes of PSA was identified by SPOT analysis from pig-allergic patients’ sera and the location of PSA-epitope in tertiary structure level was searched using homology modeling method. As a result, the major alpha-helix structure of secondary structure was converted into β-sheet or random coil structure and tertiary structure of PSA was also destructed by autoclave and gamma irradiation. These results were due to degradation of covalent and hydrophobic bonds, and cross-linking of degradation products. The 14 IgE-binding epitopes were identified in PSA protein by SPOTs method. The 11 epitopes identified showed high probabilities of surface exposure and 3 epitopes (#5, #6, and #7) were located in the internal position of PSA. The 6 epitopes (#1, #4, #9, #12, #13 and #14) exposed on the surface strongly reacted with patients’ sera. Therefore, covalent bonds of epitopes and its environmental polypeptides were degraded or aggregated by autoclave and gamma irradiation, resulting in the cause of reduction in antigenicity. Consequently, gamma irradiation and autoclave are the effective processing techniques for development of hypoallergenic pork sausage for pork allergic patients.
Author(s)
김꽃봉우리
Issued Date
2010
Awarded Date
2010. 2
Type
Dissertation
Keyword
Porcine Serum Albumin Antigenicity Physical Treatments IgE-Binding Epitopes
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/10076
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001955840
Alternative Author(s)
Kim, Koth Bong Woo Ri
Affiliation
부경대학교 일반대학원
Department
대학원 식품공학과
Advisor
안동현
Table Of Contents
Contents
Contents i
List of Figures v
List of Tables viii
Abstract ix

Chapter I. Introduction 1

Chapter II. Change in Antigenicity of PSA by Physical Treatments

1. Introduction 8
2. Materials and Methods
2.1. Antigen and antibodies 10
2.2. ci-ELISA (competitive indirect enzyme linked immunosorbent assay) 10
2.3. Titration curve of ci-ELISA 10
2.4. Standard curve of ci-ELISA 11
2.5. SDS-PAGE 11
2.6. Immunoblotting 12
2.7. Heat and autoclave treatments 12
2.8. High hydrostatic pressure and sonication treatments 12
2.9. Microwave treatment 12
2.10. Gamma irradiation treatment 13
2.11. Statistical analysis 13
3. Results and Discussion
3.1. Titration and standard curve 14
3.1.1. Titration curve of ci-ELISA 14
3.1.2. Standard curve of ci-ELISA 14
3.2. Effect of heat and autoclave on antigenicity/allergenicity of PSA 15
3.3. Effect of microwave on antigenicity of PSA 22
3.4. Effect of sonication on antigenicity of PSA 22
3.5. Effect of high hydrostatic pressure on antigenicity of PSA 27
3.6. Effect of gamma irradiation on antigenicity/allergenicity of PSA 27

Chapter III. Change in Antigenicity of the Autoclaved and Gamma-Irradiated PSA by Pepsin and Trypsin

1. Introduction 32
2. Materials and Methods
2.1. Antigen and antibodies 34
2.2. ci-ELISA 34
2.3. SDS-PAGE 34
2.4. Autoclave and gamma irradiation treatments 34
2.5. Pepsin and trypsin treatments 34
2.6. Statistical analysis 35
3. Results and Discussion
3.1. Effect of pepsin on antigenicity of PSA 36
3.2. Effect of trypsin on antigenicity of PSA 37
3.3. Effect of pepsin and trypsin on antigenicity of gamma-irradiated PSA 44
3.4. Effect of pepsin and trypsin on antigenicity of autoclaved PSA 49

Chapter IV. Change in Antigenicity of the Autoclaved and Gamma-Irradiated Sausage by Pepsin and Trypsin

1. Introduction 54
2. Materials and Methods
2.1. Antigen and antibodies 55
2.2. Preparation of sausage extracts 55
2.3. ci-ELISA 55
2.4. SDS-PAGE 56
2.5. Autoclave and gamma irradiation treatments 56
2.6. Pepsin and trypsin treatments 56
2.7. Statistical analysis 56
3. Results and Discussion
3.1. Comparison of antigenicity of market sausage products 57
3.2. Effect of pepsin and trypsin on antigenicity of gamma-irradiated sausages 57
3.3. Effect of pepsin and trypsin on antigenicity of autoclaved sausages 65

Chapter V. Effects of Structure Modifications on IgE-Binding Epitopes of PSA by Autoclave and Gamma Irradiation

1. Introduction 72
2. Materials and Methods
2.1. Autoclave and gamma irradiation treatments 74
2.2. SDS-PAGE 74
2.3. Circular dichroism (CD) spectroscopy 74
2.4. Fluorescence spectroscopy 74
2.5. Peptide synthesis 74
2.6. IgE-binding assay 75
2.7. Regeneration of SPOTs membrane 75
2.8. Molecular modeling 76
3. Results and Discussion
3.1. SDS-PAGE patterns of autoclaved and gamma-irradiated PSA 77
3.2. Secondary structure 79
3.2.1. Effect of autoclave on secondary structure of PSA 79
3.2.2. Effect of gamma irradiation on secondary structure of PSA 79
3.3. Tertiary structure 83
3.3.1 Effect of autoclave on tertiary structure of PSA 83
3.3.2. Effect of gamma irradiation on tertiary structure of PSA 83
3.4. Identification of the IgE-binding in PSA 86
3.5. Location of IgE-binding epitopes on the modeled structure of PSA 86

Summary 97
국문 요약 99
References 102
감사의 글 113
Degree
Doctor
Appears in Collections:
대학원 > 식품공학과
Authorize & License
  • Authorize공개
Files in This Item:
  • There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.