PUKYONG

Remediation of Contaminated Sediments Using the Sediment Washing and the In-Situ Capping Techniques

Metadata Downloads
Alternative Title
퇴적물 세척법과 원위치 피복 기술들을 이용한 오염퇴적물의 정화
Abstract
오염된 해양퇴적물을 정화하기 위한 토양세척법과 원위치피복법의 적용성을 평가하였다. 연구에 이용된 퇴적물은 마산에 위치한 봉암지역의 퇴적물로서, 이들 지역의 표층퇴적물의 중금속 오염 정도를 평가하였다. 퇴적물 세척법은 염산을 이용하였다. 또한, 산업부산물인 red mud bauxite (RMB)와 생석회를 피복재료로 적용하여 그 효과를 평가하고자 하였으며, 실험에 이용된 RMB는 원재료 RMB와 700℃에서 활성화한 RMB를 이용하였다.
연구지역 퇴적물의 평균입도는 0.24-5.16이며, sand와 silt가 우세하다. 총유기탄소 함량은 0.3-2.25%(평균 0.95%)로서, 남천의 합류지점(MS-04) 과 생태공원(MS-09)에서 높게 나타난다. 중금속과 redox-sensitive element의 분포 역시 이 지역에서 높게 나타난다. 총유기탄소와 평균입도의 Pearson 상관계수는 0.86이며, redox-sensitive element (Cd, Mo, 그리고 U)의 합과 총유기탄소의 상관계수는 0.80이다. 연구지역 퇴적물의 중금속 농도를 미국 해양 대기청의 sediment quality guideline과 비교한 결과, 구리, 납 및 아연의 부화정도가 높게 나타났으며, 이들 중금속들은 저서생물에 영향을 미칠 가능성이 있다. 또한, 연구지역은 인위적인 오염의 영향으로 하계에 혐기성환경이 조성될 수 있다. 연구지역 퇴적물의 크롬과 비소의 Enrichment factor (EF)는 1.5이하로 나타난 반면, 카드뮴, 납 및 아연 의 EF는 1.5 이상으로, 봉암지역의 퇴적물은 카드뮴, 납 및 아연으로 부화되어 있음을 알 수 있다. 또한 Geoaccumulation index (Igeo)에 의한 오염정도는 moderately to strongly polluted 또는 strongly polluted로 나타났다.
봉암 퇴적물의 카드뮴, 구리, 납 및 아연의 처리를 목적으로 퇴적물 세척 실험을 실시하였으며, 사용된 세척액은 염산으로 0.1, 0.3, 및 0.5N의 농도로 각각 30, 60, 180분간 처리하였다. 염산을 이용한 퇴적물 세척시험의 결과는 44.47-83.62%이다. 연구지역 내의 중금속들은 0.3N 염산을 이용하여 180 분 동안 반응하였을 경우 가장 높은 제거효율을 보였다. 0.3N 염산을 이용하여 180분 동안 세척한 경우, 연구지역 내에 오염된 중금속 중에서 Pb가 가장 효율이 좋으며, Cd>Zn>Cu로 나타났다. 0.3N 염산에 의해 제거된 중금속의 농도는 연구지역 퇴적물 내에 존재하는 weaker bound metals의 함량과 유사하다. 이 결과를 통하여 0.3N 염산을 이용한 세척이 퇴적물에서 중금속의 오염원으로 작용할 수 있는 weaker bound metals을 충분히 제거 할 수 있음을 알 수 있다. 또한, 0.3N 염산의 적용은 퇴적물내의 결정구조를 파괴하지 않기 때문에 오염된 퇴적물의 재활용에 적절할 것으로 사료된다.
RMB투여농도에 따른 수용액 내 인 제거능력을 평가하기 위하여 배치실험을 실시하였다. 3%의 RMB를 투여할 경우, 모든 pH (6, 8, 10) 조건에서 98%이상의 제거효율을 보인다. 또한, RMB를 1% 만 투여하여도 95% 이상의 제거효율을 보인다. 따라서, RMB는 담수조건(pH 6)뿐만 아니라 해수조건(pH 8)에서도 인을 충분히 제거할 수 있을 것이다. 또한 부영양화된 해수를 처리하기 위해서 1%의 RMB의 적용이 적절할 것이다.
RMB와 생석회를 피복재료로 이용한 원위치 피복법의 인과 중금속 차단 효과를 컬럼 규모의 실험을 통하여 평가하였다. 피복재료를 사용하지 않은 컬럼 A는 배경값 (해수의 초기 농도)보다 인의 농도가 44% 증가하였다. 반면, 피복 재료를 사용한 컬럼에서는 실험기간 동안 인의 농도가 배경 값 이하로 나타났다(capping efficiency = 100%). 또한, 피복재료로 사용된 원재료 RMB, 활성화한 RMB 그리고 활성화한 RMB와 생석회를 혼합한 재료는 해수 내 인의 농도를 각각 94, 78, 100% 저감 하였다. 그리고, 원재료 RMB는 카드뮴, 아연 및 납을 21일 이내에 100% 차단하였으며, 구리는 99% 차단되었다. 반면, 활성화한 RMB는 실험종료 시에 카드뮴 84%, 납 53%, 그리고 구리와 아연을 100% 차단하였다. RMB를 피복재료로 적용할 경우, 원재료RMB는 활성화한 RMB보다 중금속을 차단하는 효과가 크다. 그러나, 원재료 RMB의 구리와 납의 차단효과는 활성화한 RMB보다 다소 불안정한 양상을 보인다. 이 연구결과들에 의해 RMB는 퇴적물로부터 용출되는 오염원을 차단할 수 있는 새로운 피복재료로서 아주 효과적인 것으로 판단된다. 그리고 활성화한 RMB가 원재료 RMB 보다 안정적이기 때문에 피복재료로서 더욱 적합 할 것이다. 생석회와 활성화한 RMB를 혼합한 재료는 실험기간 동안 중금속들을 효과적으로 차단하였을 뿐만 아니라, 그 효과가 원재료 RMB와 활성화한 RMB보다 높다. 이들 연구결과들을 통하여 RMB는 퇴적물로부터 용출되는 인을 즉시 100% 차단 할 뿐만 아니라, 중금속들도 차단하는데 효과적인 것으로 판단된다. 또한 생석회를 RMB의 보조제로 사용함에 따라 그 효과는 증대될 것으로 사료된다.
Applicability of washing process and in situ capping method to remediate contaminated ocean sediment were evaluated. Ocean sediment of the Bongam tidal flat, which is located in Masan, Korea, was collected, and contamination levels of heavy metals in the sediment in this area were determined. A sediment washing process was performed using different concentrations of hydrochloric acid (HCl) in the washing solution at different reaction times. In situ capping method was also performed through column-scale experiment to reduce the levels of contaminants that are released from contaminated sediment in ocean, and the application of red mud bauxite (RMB) and quicklime as a capping material were investigated, and this study used raw RMB and calcined RMB when subjected to heat treatment (700℃).
The mean grain size (Mz) distribution of the surface sediments in the study area ranged from 0.24 to 5.16 Φ, and sand and silt-sized particles were found to the dominant contents throughout the study area, particularly around the ecological park and the junction of the Nam stream. Total organic carbon (TOC) contents ranged from 0.38 to 2.25 percent, and high levels were detected in the junction of the Nam stream (MS-09) and the ecological park (MS-04). High levels of heavy metals and redox-sensitive elements were also detected in the abovementioned areas. Pearson’s correlation coefficient between grain size and TOC and between TOC and the sum of the concentrations of 3 redox-sensitive elements (Cd, Mo, and U) is 0.86 and 0.80, respectively. The sediment quality in the present study area was estimated in accordance with the sediment quality guidelines from NOAA. Results show a high accumulation rate for Cu, Pb and Zn. These metals may have detrimental effects on the benthic environment, and study area will be affected by the establishment of anoxic conditions during the summer season by anthropogenic pollution. The EF values for Cr and As were less than 1.5 at all sites of the examined area. The level of Pollution with Cu is also not very high. In contrast, the EF values for Cd, Pb, and Zn were more than 1.5, indicating that the study area is polluted with these metals. In Particular, the junction of the Nam stream exhibited the highest I_(geo) values of Cd and Pb, the strongly polluted.
The efficiency of the studied washing process for the removal of Cd, Cu, Pb, and Zn in the sediment of the study area was evaluated by employing different concentrations of HCl (0.1, 0.3, and 0.5N) and different reaction time (30, 60, and 180min). Removal efficiency by washing process ranged from 44.47 to 83.62 percent. The most effective concentration of HCl for the remova of heavy metals in the sediment form this area was found to be 0.3N. Further, the most effective washing efficiency was obtained at a reaction time of 180 minutes. The removal efficiency was 79.44 percent for Cd, 77.10 percent for Cu, 83.62 percent for Pb and 78.10 percent for Zn. The sediment washing capacity using HCl showed the highest washing efficiency for Pb, followed by Cd>Zn>Cu. A removed concentration by 0.3N HCl is similar to that for the sum of weaker bound metals, such as bound to exchangeable, carbonate and Fe and Mn oxides fraction, in sediment of study area. On the basis of the results of this study, it is suggested that the washing process using 0.3N HCl is very useful to remove the weaker bound metals that could act as a pollution source. Moreover, treatment by 0.3N of HCl with 180 minutes will be adequate for the reuse of contaminated sediments, because the crystal structure in the sediment will not be damaged by 0.3N HCl.
In order to investigate the removal efficiency of phosphorus using RMB, batch-scale experiments were performed. In the case of adding 3.0 percent RMB, phosphorus removal efficiencies were above 98 percent at all pH conditions. When using only 1.0 percent RMB, phosphorus removal efficiencies at all pH conditions (pH 6, 8, and 10) were above 95 percent. Batch-scale test results showed that the RMB is an effective material to remove phosphorus from fresh water condition (pH 6) as well as seawater condition (pH 8). Furthermore, for the treatment of phosphorus in eutrophicated seawater, a usage of 1.0 percent RMB will be an adequate. Column-scale experiments were performed to investigate phosphorus and heavy metals capping efficiency of in situ capping method using RMB and quicklime. The phosphorus value of column A, which did not have a capping material, increased up to 44 percent that of background value (the concentration of initial seawater). On the other hand, phosphorus concentrations for all columns using capping material were lower than background value during the test period (capping efficiency=100%). Capping materials in all columns can also reduce the phosphorus concentration in seawater, and reducing rates of raw RMB, calcined RMB and the mixture of calcined RMB and quicklime were 94, 78, and 100 percent, respectively. The capping efficiency of Cd, Zn, and Pb by raw RMB showed 100 percent within 21 days after the beginning test and Cu capping efficiency was 99 percent at 21 days. The capping efficiency of calcined RMB is 84 percent for Cd, 100 percent for Zn, 100 percent for Cu, and 53 percent for Pb at the end of the test. Heavy metal capping efficiency of raw RMB is more effective than calcined RMB. However, capping efficiencies of the raw RMB for Pb and Cu were more unstable than calcined RMB. The experiments indicate that RMB may be suitable for use as a new capping material to limit the amount of heavy metals redistributed within the sediment. Moreover, calcined RMB may be more suitable because it is more stable than raw RMB. The mixture of calcined RMB and quicklime effectively prevented the release of heavy metals such as Cd, Zn, Pb, and Cu, from the sediment during the test period (capping efficiency = 100%), and it had the highest capping capacity for Cd, Pb, and Zn among the capping materials. From results of this investigation, it can be concluded that RMB is very useful to fix phosphorus released from contaminated sediment. In particular, RMB can fix 100 percent of phosphorus at the same time. Moreover, RMB is also useful to fix heavy metals, such as Cd, Cu, Pb and Zn. Furthermore, quicklime can enhance the fixing ability of RMB.
Author(s)
Kim, Pil-Geun
Issued Date
2009
Awarded Date
2009. 2
Type
Dissertation
Keyword
퇴적물 복원 중금속  토양 세척법 원위치 피복법 레드머드
Publisher
부경대학교 대학원
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/10605
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001954744
Alternative Author(s)
김필근
Affiliation
부경대학교 대학원
Department
대학원 환경지질과학과
Advisor
최정찬
Table Of Contents
Chapter 1. Introduction = 1
1.1 Objectives of the study = 1
1.2 Statement of Problem = 2
1.3 Background = 3
1.3.1 Sediment Remediation Technologies = 3
1.3.1.1 Nonremoval technologies = 5
1.3.1.2 Removal technologies = 9
1.3.2 Case studies of contaminated sediment treatment = 11
1.3.2.1 Foreign status = 11
1.3.2.2 Domestic status = 13
Chapter 2. Characteristics of study area = 16
2.1 History for contamination of Masan Bay = 16
2.2 General statement of study area = 17
2.3 Statement of problem = 19
Chapter 3. Site investigation = 20
3.1 Introduction = 20
3.2 Sampling and analytical methods = 21
3.2.1 Sediment sample = 21
3.2.2 Grain-size analysis = 21
3.2.3 TOCs analysis = 24
3.2.4 Chemical analysis = 25
3.2.5 Sequential extraction procedure for the speciation = 27
3.3 Results = 31
3.3.1 Mean grain size and TOCs of surface sediment = 31
3.3.2 Distribution of heavy metals = 34
3.3.3 Distribution of redox-sensitive elements = 37
3.3.4 Chemical forms of heavy metals = 39
3.4 Discussion = 43
3.4.1 Contamination characteristics of surface sediment = 43
3.4.2 Enrichment factor = 48
3.4.3 Geoaccumulation Index = 52
Chapter 4. Sediment washing process = 56
4.1 Introduction = 56
4.2 Selection of washing solution for sediment washing = 57
4.3 Experimental methods = 63
4.3.1 Sediment washing process = 63
4.3.2 Heavy metal removal test = 65
4.4 Results = 66
4.4.1 Removal efficiency of heavy metals of the sediment washing process = 66
4.4.2 Evaluation of treated sediment by sediment washing process = 71
4.5 Discussion = 73
Chapter 5. Application of In situ Capping treatment using a RMB = 77
5.1 Introduction = 77
5.2 Material and methods = 79
5.2.1 Red Mud Bauxite = 79
5.2.2 Capping treatment = 82
5.2.2.1 Phosphorus removal test in batch scale = 82
5.2.2.2 Column test for the reduction of phosphorus after capping treatment = 84
5.2.2.3 Column test for the reduction of heavy metals after capping treatment = 89
5.3 Results = 91
5.3.1 Properties of Red Mud Bauxite = 91
5.3.1.1 Major elements of RMB = 91
5.3.1.2 Mineralogical property = 94
5.3.1.3 Eh-pH variation of RMB = 96
5.3.2 Application of in situ Capping treatment using a RMB = 98
5.3.2.1 Phosphorus removal efficiency of RMB = 98
5.3.2.2 The variation of pH, Eh and DO in the column = 103
5.3.2.3 Capping treatment column test for the reduction of phosphorus release = 107
5.3.2.4 Capping treatment column test for the reduction of heavy metals release = 110
5.4 Discussion = 118
5.4.1 In situ fixation of phosphorus in ocean environments using RMB and quicklime = 118
5.4.2 In situ fixation of heavy metals in ocean environments using RMB and quicklime = 121
Chapter 6. Conclusions and Recommendations for further research = 128
6.1 Distribution characteristics of heavy metals in the Bongam tidal flat = 128
6.2 Heavy metal removal efficiency of washing process = 130
6.3 Capping efficiency of RMB and quicklime = 131
6.4 Recommendations for further research = 134
References = 135
요약 = 152
감사의 글 = 155
Degree
Doctor
Appears in Collections:
대학원 > 환경지질과학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.