Biological activities of gentisic acid and coenzyme Q9 in Termitomyces albuminosus on the inflammation: obesity-related and mucosal
- Alternative Title
- 계종버섯 유래 겐티스산과 코엔자임Q9의 염증에 대한 생리활성 : 비만 관련 및 점막
- Abstract
- 계종버섯 (Termitomyces albuminosus)은 흰개미들이 계종버섯을 키워 영양분을 섭취하는 버섯이라하여 흰개미버섯으로도 불려진다. 계종버섯에 포함된 다당류, 단백질, 페놀 화합물 등의 다양한 구성 성분에 의해 항암효과, 항산화효과, 면역 증강 효과 등이 있다고 알려져 있으며, 따라서 전통적으로 약재로도 많이 이용되고 있다. 본 연구에서는 계종버섯의 약리학적 효과를 추가적으로 확인하기 위하여, 계종버섯에 존재하는 겐티스산과 코엔자임Q9의 염증에 대한 효과를 조사하였다. 겐티스산의 비만 유래 염증에 대한 효능을 확인하기 위하여, 먼저 리포다당류에 의해 자극된 RAW 264.7 세포에 대한 항염증 효능을 확인하였다. 겐티스산은 리포다당류에 의해 생성되는 염증 유발 효소인 iNOS와 COX-2 및 이 효소들이 생성하는 산화질소와 PGE2의 발현을 억제하였다. 주요 염증성 사이토카인인 TNF-α, MCP-1, 인터루킨의 RNA 발현량 역시 겐티스산 처리에 의해 억제되는 것을 확인하였다. 염증 반응에서 가장 주요하게 작동하는 전사인자인 NF-κB의 인산화는 감소하였으며, IκB의 인산화에 따른 분해 역시 겐티스산에 의해 억제되었다. 또한 MAPK (ERK, p38 MAPK, JNK)의 인산화에 따른 활성화 역시 겐티스산 처리에 의하여 감소하였다. 이 결과들에 따라 겐티스산이 리포다당류에 의해 유도된 RAW 264.7 세포에서의 염증 반응을 억제하는 것을 확인하였다. 다음으로, 겐티스산의 3T3-L1 세포에서의 지방세포 분화 과정 억제능을 확인하였다. 겐티스산 처리에 따라 지방세포 분화에 따른 지질과 중성지방의 축적이 억제되었고, 지방세포 분화 과정의 주요 전사인자인 C/EBPα와 PPARγ의 RNA와 단백질 발현 또한 억제되었다. 지질 합성에 관여하는 인자들인 LPL, aP2, FAS, SREBP1 역시 RNA 및 단백질 발현이 겐티스산 처리에 따라 감소하였다. 지방세포 분화에 관여하는 주요 신호전달 경로인 PI3K–Akt–mTOR의 인산화가 억제되었으며, 반대로 지방세포 분화를 억제하는 β-catenin의 활성은 겐티스산에 의하여 증가하였다. 따라서 겐티스산이 효과적으로 3T3-L1 세포에서의 지방세포 분화 과정을 억제하는 것을 확인하였다. 마지막으로 겐티스산의 비만 유래 만성 염증에 대한 효능을 알아보기 위하여 대식세포와 지방세포의 공배양 실험 방법을 사용하였다. 겐티스산은 대식세포와 지방세포의 상호작용에 의해 생성되어 비만 유래 염증 반응에 주요하게 관여하는 인자인 MCP-1, TNF-α, 유리지방산의 발현을 억제하였다. 또한 항염증 아디포카인인 아디포넥틴의 RNA 발현을 증가시키고, 염증성 아디포카인인 레지스틴, 인터루킨-6, MCP-1의 발현 및 염증성 사이토카인인 TNF-α, IL-1β의 발현을 감소시켰다. 반대로 항염증성 사이토카인인 인터루킨-10의 RNA 발현은 겐티스산 처리에 의해 증가하였다. 겐티스산 처리에 따라 대식세포의 M1 상태를 나타내는 유전자인 CD11c와 CCR7의 발현량은 감소하였으며, M2 상태를 나타내는 CD206과 아르기나아제1의 발현은 증가하였다. 따라서 GA는 염증성 아디포카인과 사이토 카인의 발현 조절 및 대식세포의 M2에서의 M1으로의 상태 전환을 억제함으로서 비만 유래 만성 염증에 대한 억제 효과를 나타내는 것을 확인하였다. 코엔자임Q9의 경우 피오사이아닌에 의해 유도되는 인간 기관지 표피 세포에서의 점액 과생산에 대한 효과를 확인하였다. 코엔자임Q9은 DPPH 라디칼 소거능을 나타내었으며, 피오사이아닌에 의해 생성된 세포 내 활성산소를 감소시켰다. 점액의 구성 성분인 두 종류의 뮤신인 MUC5AC와 MUC5B는 코엔자임Q9 처리에 따라 RNA와 단백질 발현량이 감소하였으며, 반대로 뮤신 생성의 억제인자인 FOXA2의 경우 발현이 증가하였다. 또한 뮤신 생산에 관여하는 EGFR 신호전달 체계의 구성 단백질인 EGFR, Akt, ERK의 인산화를 억제하였다. 따라서 코엔자임Q9이 피오사이아닌에 의해 유도되는 기도 폐쇄를 억제하는 것을 확인하였다. 결론적으로 본 연구에서는 계종버섯에 존재하는 겐티스산과 코엔자임Q9의 비만 유래 염증과 점액 과생산에 대한 효능을 확인함으로서, 항염증 효과를 증명하였다. 이 결과는 겐티스산과 코엔자임Q9의 항염증 제제로서의 활용 및 계종버섯의 약리학적 사용에 대한 전망을 제시할 수 있을 것으로 사료된다.
Termitomyces albuminosus, a mushroom and obligate symbiont of termites, has been used as a traditional medicinal agent because of its various biological activities, including anti-tumor, antioxidant, and immune-enhancing effects attained from its components, such as polysaccharides, proteins, and phenolic compounds. To further investigate the pharmaceutical activities of T. albuminosus, the effects of two components in this mushroom, gentisic acid (GA) and coenzyme Q9 (CoQ9), on inflammation were examined. To investigate the effects of GA on obesity-related inflammation, firstly, anti-inflammatory effects of GA in LPS-stimulated RAW 264.7 cells were investigated. GA suppressed the expression of major LPS-induced pro-inflammatory enzymes, such as iNOS and COX-2 and their products, NO and PGE2. RNA expression of pro-inflammatory cytokines, such as TNF-α, MCP-1, and ILs, was inhibited by GA treatment. Phosphorylation of NF-κB, a crucial transcription factor for inflammatory responses, was down-regulated in the GA-treated group, and nuclear translocation of NF-κB was suppressed. Additionally, phosphorylation-induced IκB degradation was inhibited in GA-treated groups. GA effectively suppressed the phosphorylation and inhibited the activation of MAPKs (ERK, p38 MAPK, and JNK). These results indicated that GA could attenuate LPS-stimulated inflammatory responses via controlling the major pro-inflammatory factors and NF-κB–MAPKs signaling pathway in RAW 264.7 macrophages. Secondly, the anti-adipogenic activity of GA was examined in 3T3-L1 cells. GA inhibited lipid and triglyceride accumulation during adipogenesis. The RNA and protein expression of crucial adipogenic transcription factors, such as C/EBP α and PPAR γ, was down-regulated. Both RNA and protein expression levels of lipogenesis-related factors, including LPL, aP2, FAS, and SREBP1, were suppressed by GA treatment. The phosphorylation of PI3K–Akt–mTOR pathway proteins, as pro-adipogenic factors, was inhibited by GA treatment. In contrast, the activity of β-catenin, an anti-adipogenic factor, was stimulated in GA-treated groups. These results verified that GA successfully inhibited adipogenesis by down-regulating major adipogenic transcription factors and PI3K–Akt–mTOR pathway and activating β-catenin. Lastly, to determine the effects of GA on the obesity-related chronic inflammation, a macrophage–adipocyte co-culture system was used. GA treatment suppressed the secretion of major obesity-related inflammatory factors, such as MCP-1, TNF-α, and FFAs, caused by macrophage–adipocyte interactions. GA treatment increased the RNA expression of adiponectin, an anti-inflammatory adipokine. Conversely, GA suppressed the RNA expression of pro-inflammatory adipokines, such as resistin, IL-6, and MCP-1, and attenuated that of pro-inflammatory cytokines, such as TNF-α and IL-1β, at the RNA level. In contrast, the anti-inflammatory cytokine, IL-10 was up-regulated by GA treatment. Moreover, the mRNA expression of M1-state genes, such as CD11c and CCR7, were suppressed and M2-state genes, including CD206 and Arg-1, were increased in the GA-treated group. These results indicated that GA inhibits obesity-related chronic inflammatory responses via controlling pro-inflammatory adipokines and cytokines and preventing macrophage conversion from M2 to M1 polarization. The effects of CoQ9 on mucus hypersecretion were examined in PCN-stimulated NHBE cells. CoQ9 showed DPPH radical scavenging activity and decreased the PCN-induced ROS level in NHBE cells. RNA and protein expression of mucins, such as MUC5AC and MUC5B, was inhibited by CoQ9 treatment. Conversely, RNA and protein levels of FOXA2, an inhibitor of mucin expression, were increased in the CoQ9-treated group. EGFR signaling promotes the mucin expression, and CoQ9 treatment suppressed phosphorylation of EGFR, Akt, and ERK proteins. These results indicated that CoQ9 could prevent airway obstruction by PCN-mediated mucin hypersecretion. In conclusion, this study verified that the anti-inflammatory activities of GA and CoQ9 from T. albuminosus on obesity-related inflammation and mucosal hypersecretion, respectively. These results can aid in developing GA and CoQ9 as new anti-inflammatory agents and provide new pharmaceutical applications for the mushroom of T. albuminosus.
- Author(s)
- 강민재
- Issued Date
- 2021
- Awarded Date
- 2021. 8
- Type
- Dissertation
- Keyword
- Biological activities Termitomyces albuminosus gentisic acid coenzyme Q9 inflammation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/1078
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=200000507463
- Alternative Author(s)
- Min Jae Kang
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 미생물학과
- Advisor
- 김군도
- Table Of Contents
- Chapter Ⅰ. General Introduction 1
1.1 Mushrooms in pharmaceutical area 1
1.2. Termitomyces albuminosus 2
1.3. Inflammation 5
1.4. Obesity 6
1.5. Obesity-mediated chronic inflammation 7
1.6. Gentisic acid 10
1.7. Coenzyme Q9 10
1.8. References 12
Chapter Ⅱ. The anti-inflammatory activity of gentisic acid on the lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages 21
2.1. Abstract 21
2.2. Introduction 23
2.3. Materials and Method 25
2.3.1. Chemicals and antibodies 25
2.3.2. RAW 264.7 cell culture 25
2.3.3. Cell viability assay 26
2.3.4. Nitric oxide production assay 26
2.3.5. PGE2 quantification assay 27
2.3.6. Reverse transcription-polymerase chain reaction (RT-PCR) 27
2.3.7. Western blotting analysis 28
2.3.8. Immunofluorescence staining 29
2.3.9. Statistical analysis 30
2.4. Results 32
2.4.1. Cytotoxic effects of GA on RAW 264.7 cells 32
2.4.2. Effects of GA on NO and PGE2 production in LPS-stimulated RAW 264.7 cells 34
2.4.3. Effects of GA on the expression of major pro-inflammatory enzymes in LPS-stimulated RAW 264.7 cells 36
2.4.4. Effects of GA on the expression of pro-inflammatory cytokines in LPS-stimulated RAW 264.7 cells 38
2.4.5. Effects of GA on NF-κB activation and nuclear translocation in LPS-stimulated RAW 264.7 cells 40
2.4.6. Effects of GA on MAPK signaling in LPS-stimulated RAW 264.7 cells 43
2.5. Discussion 45
2.6. References 51
Chapter Ⅲ. The anti-adipogenic mechanism of gentisic acid on the 3T3-L1 pre-adipocytes 56
3.1. Abstract 56
3.2. Introduction 57
3.3. Materials and Method 59
3.3.1. Chemicals and antibodies 59
3.3.2. 3T3-L1 cell culture 59
3.3.3. Cell viability assay 60
3.3.4. 3T3-L1 pre-adipocytes differentiation 60
3.3.5. Oil Red O staining 61
3.3.6. Triglyceride assay 61
3.3.7. Reverse transcription-polymerase chain reaction (RT-PCR) 62
3.3.8. Western blotting analysis 63
3.3.9. Immunofluorescence staining 64
3.3.10. Statistical analysis 64
3.4. Results 67
3.4.1. Cytotoxic effect of GA on 3T3-L1 pre-adipocytes 67
3.4.2. Effects of GA on lipid accumulation during adipogenesis in 3T3-L1 cells 69
3.4.3. Effects of GA on the expression of adipogenic transcription factors in 3T3-L1 cells 71
3.4.4. Effects of GA on the expression of lipogenic factors in 3T3-L1 cells 74
3.4.5. Effects of GA on adipogenesis-related signaling pathways in 3T3-L1 cells 76
3.5. Discussion 78
3.6. References 84
Chapter Ⅳ. The inhibitory activity of gentisic acid on obesity-related chronic inflammation in the macrophage-adipocyte co-culture system 89
4.1. Abstract 89
4.2. Introduction 91
4.3. Materials and Method 93
4.3.1. Cell culture 93
4.3.2. 3T3-L1 pre-adipocyte differentiation 93
4.3.3 Contact co-culture system of RAW 264.7 and 3T3-L1 cells 94
4.3.4 Conditioned medium co-culture system of RAW 264.7 and 3T3-L1 cells 94
4.3.5. Enzyme-linked immunosorbent assay (ELISA) 95
4.3.6. Quantification of released FFAs 95
4.3.7. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) 96
4.3.8. Statistical analysis 96
4.4. Results 99
4.4.1. Effects of GA on the expression of major factors for obesity-related inflammatory responses in macrophage–adipocyte contact co-culture system 99
4.4.2. Effects of GA on the adipokine expression of 3T3-L1 cells cultured in RAW-CM 101
4.4.3. Effects of GA on the expression of inflammation-related cytokines in RAW264.7 cells cultured in 3T3-CM 103
4.4.4. Effects of GA on macrophage polarization in RAW 264.7 cells incubated in 3T3-CM 105
4.5. Discussion 107
4.6. References 113
Chapter Ⅴ. Coenzyme Q9 inhibits mucin hypersecretion from human bronchial epithelial cells induced by pyocyanin from Pseudomonas aeruginosa 119
5.1. Abstract 119
5.2. Introduction 121
5.3. Materials and Method 124
5.3.1. Chemical and antibodies 124
5.3.2. Extraction of CoQ9 from T. albuminosus 124
5.3.3. Cell culture 125
5.3.4. Cell viability assay 126
5.3.5. DPPH assay 126
5.3.6. ROS quantification assay 127
5.3.7. Western blotting analysis 127
5.3.8. IF analysis 128
5.3.9. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) 129
5.3.10. Statistical analysis 129
5.4. Results 131
5.4.1. Isolation of CoQ9 from T. albuminosus 131
5.4.2. Protective effect of CoQ9 on PCN-induced cytotoxicity in NHBE cells 132
5.4.3. DPPH radical scavenging activity and antioxidant effect of CoQ9 in PCN-exposed NHBE cells 134
5.4.4. Effects of CoQ9 on mucin and FOXA2 expressions in PCN-exposed NHBE cells 136
5.4.5. Effects of CoQ9 on EGFR-mediated signaling in PCN-exposed NHBE cells 139
5.5. Discussion 141
5.6. References 144
국문 요약 149
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 미생물학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.