PUKYONG

단열암반층에서 단열 및 수리 특성과 지하수 유동차원과의 상관성 연구

Metadata Downloads
Alternative Title
Correlation of groundwater flow dimensions with fracture density and hydraulic properties in fractured rocks
Abstract
When evaluating the flow dimensions of the groundwater in the fractured rocks, the data from the pumping test are used as important flow dimension parameters. Recently, a method to determine the groundwater flow dimension with the generalized radial flow (GRF) model (Barker, 1988) was developed, But it is hard to conceptualize the flow model for the non-integer flow dimension. So, fractional flow dimension, which appears as characteristic flow patterns displayed by the drawdown derivative data, is important because a flow dimension is the geometry of the flow streamlines in the fractured rocks. In particular, this study used the drawdown derivative formulated by Bourdet's (1983) and Spane & Wurstner's (1993) methods in order to interpret diverse flow dimensions based on the drawdown data from the pumping test. Since the slope of drawdown derivative appears as the fractional flow dimension, diverse fractional flow dimensions in the fractured rocks were easily interpreted by modified flow regime identification (MFRID) and flow type curve match (FTCM) method.
In an attempt to analyze the correlation of groundwater flow dimensions with fracture density and hydraulic properties, this study analyzed the data about fracture dimension (Cantor dust method), fracture orientation, step drawdown and constant rate pumping tests and borehole logging. Analyses of fracture dimension using Cantor Dust method (fracture density) and fracture orientation were used to interpret density and connectivity of fracture in both single and double wells. As a result, SB-2 well (8.290) showed high connectivity of fracture in general, while the other pumping and observation wells were well connected only at the upper intervals. In addition, this study utilized the FASTEP program to calculate aquifer loss, well loss and its exponentials in real numbers in the step-drawdown test. As a result, the well loss exponentials ranged from 2.390 to 8.290. The large drawdown of 64.2m at the interval of step 5 for CBP-2 well (8.290) was found to reduce fracture and cause hydraulic head loss by turbulent flow.
In interpretation of the flow dimensions with the data from the constant rate pumping tests (CBP-2, PBP-1), 1.0~1.9 dimension accounted for 61.54%, 2.0 dimension accounted for 3.84% and 2.1~3.0 dimension accounted for 34.62%. In the case of the step-drawdown test, 1.0~1.9 dimension stood at 53.01%, 2.0 dimension stood at 9.64% and 2.1~3.0 dimension stood at 37.35%. In other words, 1.0~1.9 dimension was as much as 8.53% higher in constant rate pumping test than step-drawdown test. This study also analyzed well reservoir effect, dual-porosity, channeling and constant head interval occurring at the pumping late times, permeable and impermeable interval, flow pattern of pseudo-steady state, and the like. Furthermore, this study found out that MFRID and FTCM are useful to analyze the flow dimension in comparatively analyzing the borehole logging.
With a view to analyzing the correlation of groundwater flow dimensions with fracture density and hydraulic properties, this study comparatively analyzed scale dependency effect of hydraulic conductivity, flow dimensions and patterns, fracture and flow dimensions, and specific capacity and flow dimensions. As a result, groundwater flow dimensions differed much depending on the secondary porosity and heterogeneity of fracture. When the fracture rock layer was more heterogeneous, 1.0~1.9 dimension took 68.75~83.33% (CBP-1, PBP-1). On the other hand, when the fracture rock layer was less heterogeneous, 2.0~3.0 dimension made up 60% due to development of the secondary porosity. From the comparative analyze of flow dimensions and patterns, and specific capacity and flow dimensions, it was found that 1.0~1.9 dimension prevailed at the intervals with smaller specific capacity, while 2.0~3.0 dimension prevailed at the intervals with larger specific capacity. Besides, dual-porosity patterns and channeling were observed. Additionally when the yield of groundwater was small, the correlation between fracture dimensions and flow dimensions was higher (R=0.9070~0.9529) because flow dimension well reflects characteristics of fracture regardless of fracture density. Moreover, when fracture density and groundwater yield were higher, the correlation was lower due to the flow dimensions diversified by variation characteristics of fracture.
All in all, this study confirmed that groundwater flow dimension is very useful to analyze fracture density and hydraulic properties in studying the correlation of groundwater flow dimensions with fracture density and hydraulic properties in fractured rocks.
Author(s)
김병우
Issued Date
2008
Awarded Date
2008. 8
Type
Dissertation
Keyword
지하수 유동차원의 상관성 연구 지하수 유동차원
Publisher
대학원
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/11030
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001955464
Alternative Author(s)
Kim, ByungWoo
Affiliation
환경해양대학
Department
대학원 응용지질학과
Table Of Contents
목 차

List of Figures vi
List of Tables xix
Abstract xxi

제 1장 서 론 1
1.1. 연구 배경 및 목적 1
1.1.1. 연구 배경 1
1.1.2. 연구목적 5
1.2. 연구 내용 및 방법 7

제 2장 단열의 특성 12
2.1. 프랙탈 차원 12
2.1.1. 프랙탈 차원의 측정방법 13
2.1.2. Cantor dust 방법 15
2.1.2.1. Cantor set 15
2.1.2.2. 단열의 프랙탈 차원 18
2.1.2.3. Cantor dust 기법 적용 및 구간 설정 20
2.1.2.4. 변이계수 24
2.1.3. 단열특성 분석 25

제 3장 양수시험 해석 27
3.1. 양수시험 27
3.2. 단계양수 시험 30
3.2.1. 이론적 개념 30
3.2.2. 대수층손실과 우물손실 산정 33
3.3. 단계양수시험의 해석해 37
3.4. 장기양수시험의 해석해 39
3.4.1. 피압대수층 39
3.4.2. 누수 피압대수층 40
3.4.3. 자유면대수층 42
3.5. 수리전도도의 규모종속 효과 43
3.6. 공내물리검층 46

제 4장 지하수 유동차원 이론과 해석방법 49
4.1. 유동차원의 정의 및 모델의 개념 49
4.2. 수위강하 도함수 52
4.2.1. Bourdet(1983)의 방법 52
4.2.2. Spane and Wurstner(1993)의 방법 54
4.3. 유동차원과 유동형태의 개념 56
4.3.1. 유동차원과 유동형태 56
4.3.2. 유동차원 해석 66
4.3.2.1. 유동형태동정기법 그래프 66
4.3.2.2. 유동형태동정 수정기법 그래프 67
4.4. 양수시험에 의한 유동차원 해석의 유용성 69

제 5장 단열 및 수리 특성과 지하수 유동차원과의 상관성 분석 사례 72
5.1. 부산 사직동의 단열암반층 77
5.1.1. 지형 및 지질 77
5.1.2. 시험 지하수공 79
5.1.3. 단열특성 81
5.1.3.1. 공내영상 81
5.1.3.2. 일반통계 및 변이 계수 82
5.1.3.3. 단열분포의 프랙탈 차원 86
5.1.3.4. 프랙탈 차원의 공간적 분포 90
5.1.3.5. 심도에 따른 단열특성 92
5.1.4. 수리 특성 100
5.1.4.1. 단계양수시험 100
5.1.4.2. 수리상수 산출 105
5.1.5. 지하수 유동차원 108
5.1.6. 단열틈과 유동차원의 대비 116
5.2. 충북 청원의 단열암반층 123
5.2.1. 지형 및 지질 123
5.2.2. 시험 지하수공 125
5.2.3. 단열특성 128
5.2.3.1. 공내영상 128
5.2.3.2. 일반통계 및 변이 계수 129
5.2.3.3. 단열분포의 프랙탈 차원 136
5.2.3.4. 프랙탈 차원의 공간적 분포 142
5.2.3.5. 심도에 따른 단열특성 144
5.2.4. 수리 특성 161
5.2.4.1. 단계 및 장기 양수시험 161
5.2.4.2. 수리상수 산출 165
5.2.5. 지하수 유동차원 172
5.2.6. 단열간극과 유동차원의 대비 182
5.3. 경기도 포천의 단열암반층 196
5.3.1. 지형 및 지질 196
5.3.2. 시험 지하수공 198
5.3.3. 단열특성 200
5.3.4. 수리 특성 202
5.3.4.1. 단계 및 장기 양수시험 202
5.3.4.2. 수리상수 산출 205
5.3.4.3. 수리전도도의 규모종속 209
5.3.5. 지하수 유동차원 212
5.3.6. 단열틈과 유동차원의 대비 215

제 6장 단열 및 수리 특성과 유동차원과의 상관성 및 문제점 220
6.1. 단열 및 수리 특성과 유동차원과의 상관성 220
6.1.1. 수리전도도의 규모관계와 유동차원 220
6.1.2. 유동차원과 유동형태 221
6.1.3. 단열차원과 유동차원 225
6.1.4. 비양수량과 유동차원 229
6.2. 국내·외의 유동차원 해석 231
6.3. 유동차원 해석의 문제점 및 고찰 233

제 7장 결 론 236

참고문헌 243
부 록 258
요약 273
감사의 글 275
Degree
Doctor
Appears in Collections:
대학원 > 응용지질학과
Authorize & License
  • Authorize공개
Files in This Item:
  • There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.