PUKYONG

미생물연료전지 셀형 센서를 이용한 유해 수질오염물질 계측시스템의 개발

Metadata Downloads
Alternative Title
Development of Instrumentation System for Hazardous Water Pollutants(HWPs) Using a Microbial Fuel Cell Type Sensor
Abstract
A novel hazardous water pollutions(HWPs) instrumentation system was investigated using a bio-electrochemical technique based on microbial fuel cell that converts biochemical energy generated by microorganisms to electrical energy. Microbial fuel cell was composed of cathode and anode compartment, which are separated by a cation-exchange membrane. To construct the microbial fuel cell-type biosensor, electrode-active bacteria capable of reacting with electrode were enriched in the cathode compartment. In cyclic voltammetry performed with the working electrode, at which bacterial cells have been enriched, typical oxidation and reduction peaks were generated. When stable electricity was generated between working (cathode) electrode and anode in proportional to concentration of organic materials contained in wastewater, the working electrode is possible to be used as toxic sensor.
The electrochemical signal generated from microbial fuel cell is closely related to the function of electrode-active bacteria to directly reduce cathode, which can be disturbed by HWPs. The sensitivity and stability of HWPs-monitoring microbial fuel cell was improved by enlargement of bacterial-contacting area of electrode and reforming the wastewater-flowing channel,
The electrochemical signal generated from the microbial fuel cell-type biosensor was disturbed in the presence of the HWPs (Cadmium, Chromium (+6), Lead, Arsenic, surfactant and organic phosphate, and PCB mixture), in which same results was repeatedly reproduced whenever the HWPs was applied. When mixture of HWPs (Chromium (+6) with Mercury, Arsenic with Cyanide, and Chromium (+6) with Cyanide) was applied to the biosensor, the detectable signals were also obtained. The biosensing-signals obtained from serial concentration of HWPs shows that the microbial fuel cell-type biosensor could be used successfully for the detection of HWPs even under interference of organic materials. To exclude effect of temperature variation, a device to maintain temperature, which is a Peltier, was developed.
A control software and basic hardware were organized and constructed based on the data obtained from a series of preliminary experiments. The HWPs instrumentation system containing a back-up sensor was applied and estimated in the several practical fields including a water process company, water reservoir site for drinking, and a water treatment site in a research institute. The particle remover was also installed to prevent clogging. A customized tele-metering system (TMS) was also developed to add remote-monitoring capacity to the HWPs instrumentation system. Further experiments will be performed mainly in the practical fields to guarantee signal generation at the lower range than ppm or ppb of HWPs. The minimum alert range of cadmium was about 0.01 ppm, and the reliable operational detection ranges of Lead, and Arsenic were approximately 0.1 ppm and 0.05 ppm, respectively. The reliable alert data could be obtained within 10 to 30 minutes.
The experimental results obtained from a mixture of HWPs in the practical field based on the alert signals showed that the HWPs may inhibit the electron transfer from the electrode-active bacteria to electrode, from which we suggested that the bacterial growth and/or metabolism substantially inhibited in the presence of high concentration of HWPs. The complete halt of the system caused by the high concentration of HWPs was successfully prevented using the back-up cell. According to the results in the practical fields, the HWPs instrumentation system produced reliable and sensible alert data when the HWPs was flowed in a water system. Over 180 days, the measurement system was successfully operated without any serious problem. This application showed that the HWPs instrumentation system can serve a rapid and practical way for the toxicity-warning in the various water industries.
Author(s)
정동희
Issued Date
2008
Awarded Date
2008. 8
Type
Dissertation
Keyword
생물경보 수질유해물질 미생물연료전지
Publisher
부경대학교 대학원
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/11049
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001955484
Alternative Author(s)
Jung, Dong-Hee
Affiliation
부경대학교 대학원
Department
대학원 지구환경공학학ㆍ연협동과정
Advisor
옥곤
Table Of Contents
1. 서론 = 1
1.1 연구배경 및 필요성 = 1
1.2 연구 목적 = 4
1.3 논문 구성 = 5
2. 전기화학적 활성미생물 셀형 유해물질 감지센서 개발과 최적화 = 7
2.1 배경 = 7
2.2 재료 및 방법 = 9
2.2.1 미생물 셀의 제작 = 9
2.2.2 인공폐수의 조성 = 10
2.2.3 실험장치의 구성 = 10
2.2.4 전기화학적 활성미생물의 농화배양 = 12
2.2.5 미생물 셀형 센서의 감도향상 및 운영 최적화 실험조건 = 13
2.3 결과 및 고찰 = 15
2.3.1 미생물 셀형 감지센서의 농화배양 = 15
2.3.2 미생물 셀형 유해물질 감지센서의 감도향상과 온도영향 = 15
3. 3 전극계형 유해물질 감지센서의 최적화 성능평가 = 27
3.1 이론적 배경 = 27
3.2 재료 및 방법 = 33
3.2.1 3전극계 감지센서의 구성 = 33
3.2.2 농화배양의 실험조건 = 35
3.2.3 분석방법 = 37
3.3 결과 및 고찰 = 37
3.3.1 전극의 전기화학적 특성변화 = 37
3.3.2 전기화학적 활성미생물의 농화배양 = 38
3.3.3 인공폐수 농도변화의 영향 = 39
3.3.4 순환전압전류법을 통한 농화배양 검정 결과 = 41
3.4 감지센서의 최적화를 위한 성능보완 = 45
3.4.1 유해물질 감지셀의 성능보완 실험 - Case I - = 45
3.4.2 유해물질 감지셀의 성능보완 실험 - Case II - = 53
3.4.3 유해물질 감지셀의 성능보완 실험 - Case III - = 61
4. 미생물연료전지 셀형 센서의 감응특성 및 적용성 평가 = 71
4.1 배경 = 71
4.2 재료 및 방법 = 73
4.2.1 미생물 셀형 유해물질 감지센서의 제작 = 73
4.2.2 모의 유해물질 시료의 제조 = 74
4.2.3 유해물질 감지시스템의 구성과 운전조건 = 75
4.3 결과 및 고찰 = 76
4.3.1 단일 유해물질의 적용 = 76
4.3.2 혼합 유해물질의 적용 = 87
4.3.3 단일·혼합 유해물질 주입농도와 주입회수별 독성도의 변화 = 92
5. 전기화학적 활성미생물 셀형의 유해물질 감지시스템화 = 94
5.1 감지시스템 하드웨어의 구성 = 94
5.1.1 DC 서보 모터 제어 Three-way 밸브의 설계 및 구성 = 94
5.1.2 DC 서보 모터의 제어프로그램의 구성 = 96
5.1.3 열전소자를 이용한 항온장치 개발 = 98
5.1.3.1 배 경 = 98
5.1.3.2 항온장치 구성요소와 원리 = 99
5.1.3.3 결과 및 고찰 = 122
5.1.4 감지시스템의 유로도 구성과 특성 = 123
5.1.4.1 유해물질 감지장치의 유로도 = 123
5.1.4.2 하드웨어 장치구성 = 128
5.2 감지시스템 소프트웨어의 구성 특성 = 130
5.2.1 유해물질 감지시스템 Software의 구성 = 130
5.2.2 독성도의 계산과 문제점 개선 = 132
5.2.3 유해물질 감지장치의 운전 Process = 134
5.2.4 화면 구성 = 140
5.3 무인 원격감시시스템(TMS)의 구축 = 151
5.3.1 무인 원격감시시스템의 원리 = 151
5.3.2 무인 원격감시시스템의 적용 = 152
6. 전기화학적 활성미생물 셀형 유해물질 감지시스템의 현장적용 평가 = 155
6.1 폐수에의 적용 = 155
6.1.1 재료 및 방법 = 155
6.1.2 결과 및 고찰 = 159
6.2 상수원 시료에의 적용 = 167
6.2.1 재료 및 방법 = 167
6.2.2 결과 및 고찰 = 168
6.3 하수에의 적용 = 172
6.3.1 재료 및 방법 = 172
6.3.2 결과 및 고찰 = 173
6.4 유해물질 감지장치의 현장 적용성 평가의 고찰 = 177
7. 총괄 = 178
참고문헌 = 180
Degree
Doctor
Appears in Collections:
대학원 > 지구환경공학연협동과정
Authorize & License
  • Authorize공개
Files in This Item:
  • There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.