Movement Distance Estimate of Underwater Free-Falling Cubes Considering Horizontal Water Flow
- Alternative Title
- 수평 유동을 고려한 수중 자유낙하 정육면체의 이동 거리 추정
- Abstract
- One of the most important problems in the field of ocean engineering is movement of free-fall objects in water by gravity and water flow. It turns out that few studies have considered horizontal motions according to water flows possibly dominant in water. Consideration in horizontal water flow is important because it makes a free-falling body move horizontally and eventually determines its arriving location in the seabed. Therefore, the purpose of this study is to estimate the movement distance of a free-falling cube model in the presence of horizontal water flow. For the purpose, first, experimental works have been performed to estimate the movement distance of the cube model. Second, numerical analysis was performed with the ANSYS Fluent program based on the finite volume method of CFD. Independency checks of mesh size and flow domain were conducted to increase reliability of the numerical analysis results. Third, those experimental and numerical results were compared for the verification of the methodologies, and the errors were found within 5%. Fourth, the movement distances were predicted according to the characteristics (e.g., size, density, width and characteristic length) of the cube model. Finally, the reliability of the regression equations was verified by interpolation and extrapolation. As a result, it is shown that movement distance of a cube or parallelepiped model increases as flow velocity increases. Moreover, it is found that the regression equations are reasonable to predict a movement distance or falling distance of a cube rather than a parallelepiped in water. Thus, the research results can be used to predict either of movement distance or falling distance of underwater moving solids subjected to gravity and horizontal water flow. This prediction can reduce the loss of solids (e.g., rocks) used for creating various marine built environment and accordingly increase construction efficiency.
중력과 물의 흐름(또는 유속)에 의해 물 속에서 자유낙하 하는 물체의 운동은 해양공학 분야에서 가장 중요한 공학적 문제 중 하나이다. 그러나 대부분의 연구는 물의 흐름에 의한 물체의 수평적 운동을 고려하지 않았다. 물의 흐름은 자유낙하 하는 물체를 이동시키고 결국에는 해저에 도달하는 위치를 결정 짓는데 큰 영향을 준다. 따라서 본 연구에서는 수평적 물의 흐름에서 자유낙하 하는 정육면체 모델의 이동 거리를 추정한다. 이를 위해, 먼저 정육면체 모델의 이동거리를 추정하는 실험을 수행하였다. 둘째, 전산유체역학(CFD)의 유한체적법(FVM)을 기반으로 하는 ANSYS Fluent 프로그램을 사용하여 수치해석을 수행하였다. 또한 수치해석 결과의 신뢰성을 높이기 위해 격자 크기와 유동장 영역에 대한 의존성 검사를 실시하였다. 셋째, 방법론의 검증을 위해 실험 결과와 수치해석 결과를 비교하였고, 약 5% 이내의 오차가 발견되었다. 넷째, 정육면체(또는 직육면체) 모델의 특성(크기, 밀도, 폭 및 특성 길이)에 따라 이동거리를 예측하였다. 마지막으로, 내삽과 외삽을 통해 회귀 방정식을 검증하였다. 이와 같은 일련의 과정을 통해, 유속이 증가할수록 정육면체 또는 직육면체의 이동거리가 증가한다는 알 수 있었다. 또한, 직육면체보다 정육면체의 이동거리 또는 낙하거리를 예측하는 것이 더 합리적인 것을 알 수 있었다. 따라서 본 연구 결과는 물 속에서 중력과 수평적 흐름을 받는 고체의 이동거리 또는 낙하거리를 예측하는 데 사용할 수 있다. 이 예측은 다양한 해양 건설 환경을 조성하는 데 사용되는 재료의 손실을 줄여 건설 효율성일 높이는 데 도움이 될 수 있다.
- Author(s)
- 이유정
- Issued Date
- 2021
- Awarded Date
- 2021. 8
- Type
- Dissertation
- Keyword
- Movement distance Underwater Free falling Cube ADV PIV system High speed camera
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/1110
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=200000508144
- Alternative Author(s)
- Yu-Jeong Lee
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 해양공학과
- Advisor
- 나원배
- Table Of Contents
- CHAPTER1 INTRODUCTION 1
1.1 Background 1
1.2 Objective and scope 2
1.3 Thesis structure 3
CHAPTER2 EXPERIMENTS 5
2.1 Introduction of Particle imaging velocimetry (PIV) 5
2.2 Experiment of velocity measurement and the cube's free-falling 6
2.2.1 Experimental equipment 6
2.2.2 Experimental procedures 12
2.2.3 Experimental setting values of equipment 13
2.2.4 Image post-processing 18
2.3 Results of flow velocity measurement 21
2.3.1 ADV equipment 21
2.3.2 PIV system 21
2.3.3 Comparison of average flow velocities 25
2.4 The result of cube's free falling experiment 27
CHAPTER3 FLUID ANALYSIS USING COMPUTATIONAL FLUID DYNAMICS 30
3.1 Introduction of computational fluid dynamics (CFD) analysis 30
3.2 Introduction of dynamics mesh 31
3.3 Governing equations 33
3.4 Numerical modelling using CFD analysis 35
3.4.1 Target cube model 35
3.4.2 Target flow field 35
3.4.3 Boundary conditions 36
3.4.4 Mesh conditions 36
3.4.5 Pre-processing 37
3.5 Sensitivity analysis of numerical simulation 42
3.5.1 Sensitivity analysis according to mesh size 42
3.5.2 Sensitivity analysis according to flume length 47
3.5.3 Summary 47
3.6 Evaluation of CFD analysis results 50
3.6.1 Analysis results according to flow velocity 50
CHAPTER4 COMPARISON OF EXPERIMENTAL RESULTS AND CFD ANALYSIS RESULTS 53
4.1 Experimental results considering correction factor 53
4.2 Comparison of corrected experimental results and CFD analysis results 53
4.3 Causes of errors in experimental results and CFD analysis results 54
4.4 Numerical analysis results by length of cube model 58
4.5 Numerical analysis results by density of cube model 63
CHAPTER5 APPLICATION OF NUMERICAL ANALYSIS AFTER VERFICATION 66
5.1 Introduction 66
5.2 Numerical analysis scenarios 67
5.3 Numerical analysis results 70
5.3.1 Movement distance by width 'a' of cube model 70
5.3.2 Movement distance by characteristic length 'l' of cube model 74
5.3.3 Movement distance by volume 'V' of cube model 78
5.4 Interpolation and extrapolation 83
CHAPTER6 CONCOLUSTIONS 86
6.1 Summary of study flow 86
6.2 Concluding remark 87
REFEREMCES 89
KOREAN ABSTRACT 93
ACKNOWLEDGEMENT 94
- Degree
- Master
-
Appears in Collections:
- 대학원 > 해양공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.