지능적 대기전력 시스템 제어를 위한 신호 분석 및 모델링
- Alternative Title
- A Signal Analysis and Modeling for Intelligent Standby Power Control Systems
- Abstract
- First reason for generation of standby power is because starting voltage must pass through from the source of electricity to IC. The second reason is due to current when IC is in operation. Purpose of this abstract is on structures of simple modules that automatically switch on or off through analysis of recognition of state on standby power and analysis of shutoff point patterns as well as application of intelligent algorithms. To achieve this, this paper is based on analysis of electric signals and modeling. Also, on/off shutoff criteria has been established for reduction of standby power.
State of standby power could be construed as initial value or coefficient below initial value of inflow to household electrical appliances via electrial plugs. However, circuit characteristics vary for different manufacturers of same type. In addition, there is no standard for value of electricity that can be defined as standby power. In some cases, it is very difficult to determine automatic on/off shutoff point due to signal characteristics and usage patterns for household appliances. To find the on/off shutoff point, therefore, the subtraction value was calculated between 1^(st) SCS and 2^(nd) SCS. Then the median value for sampling coefficient per second from electric plug inflow was defined as an important parameter to be followed by pre-processing. In addition, similar group and leading pattern group generation algorithm was developed to analyze patterns in the standby power state. FCM (Fuzzy C-mean) algorithm was also applied so that such algorithm could encompass periodicity such as recognition, exploration, generation and discovery of leading patterns. That is, determination is made whether or not valid data exists within arbitrary segment in given time interval before simplifying patterns.
Upon simplifying patterns, similar group G that is newly generated and group G' which contains leading groups are generated among total coefficients. These total group G and leading pattern G' are used to find target values and suitability diagrammatic chart. Improved differential algorithm is then executed for prompting them to evolve into improved objects. Reconstruction of group G' which contains such generated leading patterns is effective for finding shutoff point within arbitrary time interval. To analyze results of shutoff point that can be found within arbitrary time interval, bootstrap variance method and confidence interval were applied for presenting basis of finding. Input data used for study and evaluation purposes was also assessed on their significance as data after output. Additionally, mapping algorithm was performed for electric current and power values based on proposed signal analysis and modeling. Calculation was made on amount of usage by different times of day for average power usage by household appliance types that could realistically be used in households. The result was expressed in Watts which represent the amount of savings in electricity if automatic shutoff was used at the point of standby power.
- Author(s)
- 박태진
- Issued Date
- 2008
- Awarded Date
- 2008. 8
- Type
- Dissertation
- Keyword
- Standby Power modeling automatic on/off shutoff point group generation algorithm SCS(Subtraction Coefficient Similarity)
- Publisher
- 부경대학교 대학원
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/11167
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001955603
- Alternative Author(s)
- Park, Tae-Jin
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 전자계산학과
- Table Of Contents
- 1. 서론 = 1
1.1 개요 = 1
1.2 대기전력의 현황과 연구의 필요성 = 3
1.2.1 대기전력의 현황 = 3
2. 관련연구 = 5
2.1 신호해석과 변환 = 5
2.2 웨이블릿 변환 = 5
2.3 웨이블릿 변환의 원리와 응용 = 7
2.4 주성분 분석 = 9
2.4.1 주성분 분석의 정의 및 특징 = 9
2.5 퍼지제어와 원리 = 12
2.5.1 퍼지제어 원리와 특징 = 12
2.5.2 최소 오차를 위한 퍼지모델 인식 = 13
2.5.3 퍼지집합에 의한 퍼지추론 계산 = 17
3. 신호분석을 위한 모델링 정의 = 26
3.1 신호분석 해석을 위한 고려사항 = 28
3.2 신호 분석을 위한 모델링 절차와 구현 = 30
3.2.1 모델링을 위한 중간값과 차감값의 생성과정 = 30
3.2.2 모델링 정의를 위한 알고리즘 = 32
3.3 차감계수의 유사성 분석 = 35
3.3.1 차감계수의 유사성 분석의 필요성 = 35
3.3.2 차감계수의 유사도 해석 = 36
4. 차감계수 유사도 및 공분산 행렬 = 38
4.1 차감계수 유사도 및 공분산행렬의 결합과정 = 38
4.1.1 고유값 분석을 통한 차감계수의 성분 추출과정 = 38
4.1.2 공분산 행렬에 적용된 차감계수 유사도 = 40
4.2 차감계수 유사도와 신호분석 = 41
4.2.1 차감계수 유사도와 고유벡터 = 41
4.2.2 웨이블릿을 이용한 전력신호의 분석 = 46
5. 대기전력 상태 인식을 위한 실험방법 및 평가 = 48
5.1 실험 환경 및 장치 = 48
5.2 실험 방법 및 구현 = 51
5.2.1 모델링을 위한 실험 방법과 측정 = 51
5.2.2 퍼지 규칙 생성을 위한 퍼지 클러스터 = 58
5.2.3 대기전력 상태에서의 패턴 추출을 위한 그룹 생성 방법 = 61
5.3 퍼지제어를 위한 규칙과 평가 = 67
5.3.1 퍼지모델의 구축과 적용 방법 = 67
5.3.2 퍼지모델의 타당성 평가 = 72
5.3.3 유력패턴 그룹 적용에 따른 평가 = 74
5.4 콘센트 내장형 모듈 동작에 따른 기대효과 = 86
6. 결론 = 92
참고문헌 = 95
부록 = 100
- Degree
- Doctor
-
Appears in Collections:
- 과학기술융합전문대학원 > 기타 학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.