관경변화에 따른 흡수기의 성능특성에 관한 연구
- Alternative Title
- Performance of Horizontal Tube Absorber with Variation of Tube Diameter
- Abstract
- 흡수식 냉난방시스템은 여름철의 전력피크부하의 감소와 성층권의 오존고갈의 주요인인 CFCs와 HCFCs를 사용하지 않는 장점으로 큰 빌딩의 냉난방을 위해 널리 사용되어 왔다. 흡수식 냉난방기는 대응하는 증기압축식 냉난방기와 비교해서 컴팩트화되고 고효율화가 되어야 한다.
흡수식 냉난방기의 주 요소들 가운데 흡수기는 비용, 효율, 시스템의 사이즈에 있어서 시스템 설계와 작동에 직접적인 영향을 미친다. 컴팩트하고 고효율한 흡수기를 위해서 소구경관을 사용하는 흡수기가 기존의 쉘 앤 튜브 타입의 대안으로 제시되고 있다.
본 논문에서는 수치해석과 실험적인 연구를 통해 관경변화 및 관종류 변화를 이용한 수평관 흡수기의 성능을 비교·분석하고자 하였다.
수치해석적 연구에서, 작동유체로 리튬브로마이드 용액을 이용한 흡수식 냉난방기의 주요기기인 수평관 흡수기 안에서의 관군을 통한 수증기 유동의 압력강하 모델이 분석되었다. 수평관 흡수기 쉘측의 압력강하 특성은 기존의 쉘 엔드 튜브 열교환기의 압력강하와 비교·분석되었다. 또한, 관 직경을 15.88mm, 12.70mm, 9.52mm로 변화시켜 피치에 대한 직경비인 SL/d와 레이놀즈수의 변화에 따른 증기압력강하를 비교·분석하였다.
수치해석적 연구 결과는 다음과 같다. 증기압력강하는 용액의 액막 두께가 증가할수록 증가하였다. 증기압력강하는 관직경이 증가할수록, 피치에 대한 직경비인 SL/d가 증가할수록, 증기 레이놀즈 수가 감소할수록 감소하였다. 이것을 통해 수평관 흡수기의 체적을 최소화할 수 있는 최적 SL/d 비가 존재함을 확인할 수 있었다.
또한, 흡수기의 수평관 외부를 흐르는 리튬브로마이드 용액의 열전달 모델이 수치해석적으로 연구되었다. 본 논문에 사용된 모델은 용액의 상세한 유하형태 및 유하액막에서 관벽으로의 열전달을 포함한 수평관 흡수기내에서의 흡수 과정을 보여주고 있다. 열전달 계수에 대한 용액 레이놀즈수 및 관 직경의 영향이 분석되었다. 유동 가시화 연구는 용액의 유하 및 액막의 몇몇 복잡한 특성을 보여주고 있다. 이들 연구는 용액이 최초 관외벽으로 떨어지는 순간부터 마지막 분리되는 과정을 연속적으로 보여주고 있다. 열전달계수는 용액유량이 증가할수록, 관직경이 감소할수록 증가하였다. 관 직경 12.70mm 및9.52mm 에서의 열전달계수는 15.88mm에 비해 각각 8.8%, 33.1% 높은 값을 나타내었다.
실험적인 연구에서, 베어관 및 전열촉진관을 이용한 수평관 흡수기에서의 열 및 물질 전달 특성이 연구되었다. 흡수기의 열 및 물질 전달에 대한 관경의 영향을 알아보기 위해 기존 관경 15.88mm보다 작은 12.70mm, 9.52mm 로 실험에 사용된 관경을 변화시켰다. 나아가, 관표면 형상 및 계면활성제의 영향과 용액유량, 냉각수 유속 및 냉각수 입구 온도와 같은 작동 조건 변화에 따른 각 관경에서의 열 및 물질전달 특성이 실험적으로 비교·분석되었다.
실험결과는 다음과 같다. 열 및 물질 전달 유속은 용액 유량과 냉각수 유속이 증가할수록, 냉각수 입구온도가 감소할수록 증가하였다. 관경 변화에 따른 실험에서는 관경이 감소할수록 열 및 물질 전달 성능이 증가하였다. 각 실험 조건에 대해, 전열 촉진관에서의 열 및 물질전달 계수는 각각 20.6%에서 39.6%, 19.9%에서 29.9%로 증가하였다. 계면활성제를 사용했을 때의 열 및 물질전달계수는 각각 54.9%에서 70.6%, 26.1%에서 35.2%로 증가하였다. 열 및 물질전달성능은 계면활성제에 따라 증가 하였지만, 그 증가율은 계면활성제의 농도가 증가할수록 감소하였다.
본 논문은 각종 흡수관경 및 관종류 변화에 따른 열전달 특성값을 제공하고 있어 흡수식 냉난방기 설계를 위한 기초자료로 활용될 수 있을 것이다
Absorption cooling and heating system have been used widely for the cooling and heating of large building since they can reduce electric peak load during summer time and do not use CFCs and HCFCs which are the main cause of ozone depletion of the stratosphere. An absorption chiller/heater should be compact and high efficient in comparison with a corresponding vapor compressor chiller/heater. Among major components of an absorption chiller/heater, the absorber, which has a direct effect on efficiency, size, manufacturing and operating costs of the system, is least understood. In a horizontal tube absorber, the tube diameter effects to the heat and mass transfer performance of the absorber.
The purpose of the present study is to investigate the performance of horizontal tube absorber with variation of tube diameter by both of numerical study and experimental study. In numerical study, a model of pressure drop for water vapor flow across tube banks inside horizontal tube absorber in absorption chiller/heater using LiBr solution as a working fluid has been developed. The characteristics of the pressure drop in the shell side of the horizontal tube absorber are investigated by comparing with the pressure drop of the conventional shell and tube heat exchanger. Besides, the effect of the tube diameter which was changed from 15.88mm to 12.70mm and 9.52mm on the vapor pressure drop with variation of the longitudinal pitch to diameter ratio SL/d and the vapor Reynolds number have been studied. The numerical results showed that the vapor pressure drop increases as the solution film thickness increases. The vapor pressure drop decreases as the tube diameter increases, the longitudinal pitch to diameter ratio SL/d increases and the vapor Reynolds number decreases. It is confirmed that there is an optimal ratio SL/d minimizing the tube absorber volume.
Besides, a model of heat transfer for LiBr solution droplets and falling films over a cooled horizontal tube bundle of absorber has been developed. The present model considers to the details of the droplet formation and impact process for absorption on the horizontal tubes inside the absorber including the heat transfer from the solution film to the tube wall. The effect of the solution film Reynolds number and the tube diameter to the heat transfer coefficient have been investigated. Flow visualization study showed that the solution droplets and falling films have revealed some of the complex characteristics. These include the development of a droplet formation, detachment, fall, droplet impact and droplet detachment related waves. The heat transfer coefficient increases as the solution flow rate increase and the tube diameter decreases. For the tube with diameter of 12.70mm and 9.52mm, the heat transfer coefficient is respectively higher by 8.8% and 33.1% than that of the tube with diameter of 15.88mm.
In experimental study, the heat and mass transfer characteristics of a horizontal tube falling film absorber, which made by bare tubes and corrugated tubes, using LiBr solution with adding surfactant as a working fluid were investigated. The tube diameter was changed from the conventional diameter of 15.88mm to the smaller diameters of 12.70mm and 9.52mm to evaluate the effect of the tube diameter on the heat and mass transfer of the absorber. Further, the effects of the tube surface structure, the surfactant and the operating parameters such as the solution flow rate, the cooling water velocity and the inlet cooling water temperature on the heat and mass transfer of the absorber for each different tube diameter were examined. The experimental results showed that the heat and mass fluxes increase as the solution flow rate and the cooling water velocity increase and the inlet cooling water temperature decreases. The absorber shows better heat and mass transfer performance with smaller tube diameter. At the experimental conditions, the heat and mass transfer coefficients of the corrugated tube are respectively higher than those of the bare tube from 20.6% to 39.6% and from 19.9% to 29.9%. The heat and mass transfer coefficients are respectively higher than from 54.9% to 70.6% and from 26.1% to 35.2% once surfactant added. The heat and mass transfer performance increases with the surfactant concentration but the increase rate decreases as the surfactant concentration increases.
It is hoped that the data obtained from the present study will be useful in design of horizontal tube absorber in future absorption chillers/heaters.
- Author(s)
- 판탄통
- Issued Date
- 2007
- Awarded Date
- 2007. 2
- Type
- Dissertation
- Keyword
- absorption chiller/heater tube absorber tube diameter heat and mass transfer 관경변화
- Publisher
- 부경대학교 대학원
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/11521
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001953383
- Alternative Author(s)
- Thanh Tong PHAN
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 냉동공조학과
- Advisor
- 윤정인
- Table Of Contents
- Chapter 1. Introduction = 1
1.1 Background and objectives = 1
1.2 Review of previous study = 7
1.2.1 Numerical analysis on pressure drop of flow across tube banks = 7
1.2.2 Numerical study on the absorption process of vapor into aqueous LiBr solution falling film = 8
1.2.3 Experimental study on the absorption process of vapor into aqueous LiBr solution falling film = 10
1.3 Outline of the present study = 12
Chapter 2. Modeling of pressure drop for water vapor flow across tube banks inside horizontal tube absorber = 15
2.1 Analysis model of pressure drop for water vapor flow across tube banks inside horizontal tube absorber = 16
2.1.1 Analysis model and assumptions = 16
2.1.2 Governing equations = 21
2.1.3 Boundary conditions = 22
2.1.4 Method of numerical analysis = 23
a. Brief introduction to FLUENT = 23
b.Method of numerical analysis = 24
2.2 Numerical results and discussions = 26
2.2.1 Comparison with previous works = 29
2.2.2 Comparison of pressure drop between heat exchanger and absorber = 32
2.2.3 Effect of solution film thickness = 34
2.2.4 Effect of tube diameter = 34
2.3 Summary = 38
Chapter 3. Numerical simulation of heat transfer for LiBr solution droplets and falling films over a cooled horizontal tube bundle of absorber = 40
3.1 Analysis model of solution pendant droplets and falling films = 41
3.1.1 Analysis model and assumptions = 41
3.1.2 Governing equations and VOF method = 44
3.1.3 Boundary conditions = 46
3.1.4 Method of numerical analysis = 48
3.2 Numerical results and discussions = 48
3.2.1 Description of solution droplets and falling films = 48
3.2.2 Heat transfer = 59
3.2.3 Effect of solution flow rate = 61
3.2.4 Effect of tube diameter = 68
3.3 Summary = 76
Chapter 4. Experimental investigation of heat and mass transfer in absorber with variation of tube diameter = 77
4.1 Experimental apparatus and method = 78
4.1.1 Experimental apparatus = 78
4.1.2 Experimental method = 84
4.1.3 Calculation method of heat and mass transfer = 86
4.2 Experimental results and discussions = 88
4.2.1 Comparison of experimental results = 88
4.2.2 Effect of solution flow rate = 92
4.2.3 Effect of cooling water velocity = 96
4.2.4 Effect of inlet cooling water temperature = 96
4.2.5 Effect of tube surface structure = 99
a. Effect of enhanced surface tube with variation of solution flow rate = 100
b. Effect of enhanced surface tube with variation of cooling water velocity = 107
c. Effect of enhanced surface tube with variation of inlet cooling water temperature = 107
4.2.6 Effect of surfactant = 112
a. Comparison of heat and mass transfer performance with and without additives = 114
b. Effect of surfactant concentration = 121
4.3 Summary = 125
Chapter 5. Conclusions = 127
References = 130
A brief biography = 142
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 냉동공조공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.