구조유전자 (G gene, P gene)를 knockout 시킨 재조합 viral hemorrhagic septicemia virus (VHSV) 제작 및 특성
- Abstract
- Generation of recombinant viruses lacking an essential gene for viral replication would be a way to produce safety-enhanced live viral vaccines. In the present study, we produced a recombinant viral hemorrhagic septicemia virus (VHSV) that lacks G gene or P gene in the genome using reverse genetics system, and analyzed the characteristics of the recombinant viruses. To produce a recombinant VHSV that lacks G gene in the genome (rVHSV-ΔG), we constructed a G gene-deleted recombinant VHSV vector and transfected to the cells expressing G protein by pcDNA3.1(+) plasmid. Using this system, although we could get the rVHSV-ΔG, the titer measured by plaque assay was too low to be used in other experiments despite lots of trials to increase viral titer. To solve this problem, we used phiC31 Integrase Vector System which inserts the expression cassette into the cell chromosome, and could produce rVHSV-ΔG with a higher titer. In the semi-quantitative RT-PCR analysis, the amount of expressed G gene in the cells having the expression cassette in the chromosome was clearly higher than cells with plasmids, suggesting that G protein expressing efficiency might be the cause of the different viral titers. Through in vitro and in vivo experiments, the present rVHSV-ΔG could not produce infective viruses without trans-supply of G protein.
The P gene ORF contains 7 methionine codons including start codon in the same reading frame, and among them, we destroyed the first, second, and third methionine codon successively (change “ATG” to “TAG”) by site-directed mutagenesis, and named P1, P2, and P3, respectively. Recombinant VHSVs that could not express intact P protein (rVHSV-P1, -P2, and –P3) were successfully generated by trans-supply of the intact P protein. The rVHSV-Ps were not generated from cells expressing truncated P protein (P1, P2 or P3 protein), suggesting intact P protein is needed for infective virus production. However, interestingly, we isolated rVHSV-P1 that could produce infective viruses without P protein supply. The nucleotide sequence of the rVHSV-P1 revealed that a mutation occurred at the nucleotide 4 base before the second ATG codon, which changed isoleucine into methionine without frame shift, suggesting that strong selection pressure might exert on the mutation occurrences in the VHSV genome.
In conclusion, the present rVHSVs can infect cells only a single round and cannot spread to other cells because of lacking ability to express G or P protein, which can guarantee the safety of the recombinant virus-based vaccines. The availability of these recombinant viruses as attenuated viral vaccines will be evaluated in further studies.
- Author(s)
- 박지선
- Issued Date
- 2015
- Awarded Date
- 2015. 2
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/11978
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001967597
- Affiliation
- 부경대학교
- Department
- 대학원 수산생명의학과
- Advisor
- 김기홍
- Table Of Contents
- Ⅰ. 서 론
Ⅱ. 재료 및 방법
1. rVHSV-ΔG
1-1. 세포 및 바이러스
1-2. T7 RNA polymerase (T7 RNAP)를 발현하는 EPC cell line 제작
1-3. VHSV G gene이 knock-out된 재조합 VHSV vector(pVHSV-ΔG) 제작
1-4. VHSV N, P, G, L gene을 발현하는 supporting plasmid 제작
1-5. VHSV G gene을 발현하는 cell line 제작
가. pcDNA3.1(+) vector를 이용한 VHSV G gene 발현 cell line 제작
나. phiC31 Integrase Vector System을 이용한 VHSV G gene발현 cell line 제작
다. EPC cell의 chromsome내 G gene 발현 cassette의 삽입확인
1-6. VHSV G gene의 expression level 비교 (RT-PCR)
1-7. VHSV G gene이 knock-out된 재조합 VHSV (rVHSV-ΔG) 제작
가. rVHSV-ΔG 제작
나. VHSV G gene을 발현하는 두 가지 cell line에서의 cytopathic effect (CPE) 관찰
다. rVHSV-ΔG의 수집
1-8. rVHSV-ΔG의 확인 (RT-PCR)
1-9. G gene 발현정도에 따른 rVHSV-ΔG titer 비교확인 (plaque assay)
1-10. rVHSV-ΔG의 감염성 확인
가. rVHSV-ΔG의 접종
나. Plaque assay
다. Real-time PCR
1-11. In vivo 상에서의 rVHSV-ΔG safety 확인 (semi-quantitative RT-PCR)
2. rVHSV-P1, P2, P3
2-1. 세포 및 바이러스
2-2. T7 RNA polymerase (T7 RNAP)를 발현하는 EPC cell line 제작
2-3. VHSV P gene이 knock-out된 재조합 VHSV vector (pVHSV-P1, P2, P3) 제작
2-4. VHSV N, P, L gene을 발현하는 supporting plasmid 제작
2-5. VHSV P (VP0, VP1, VP2, VP3) gene을 발현하는 cell line 제작
가. pcDNA3.1(+) vector를 이용한 VHSV P (VP0, VP1, VP2, VP3) gene 발현 cell line 제작
나. phiC31 Integrase Vector System을 이용한 VHSV P (VP0, VP1, VP2, VP3) gene발현 cell line 제작
다. EPC cell의 chromsome내 VHSV P (VP0, VP1, VP2, VP3) gene 발현 cassette의 삽입확인
2-6. VHSV P (VP0, VP1, VP2, VP3) gene의 expression level 비교(RT-PCR)
2-7. VHSV P gene이 knock-out된 재조합 VHSV (rVHSV-P1, P2, P3) 제작
가. rVHSV-P1, P2, P3 제작
나. VHSV P gene을 발현하는 두 가지 cell line에서 rVHSV-P2, P3의 cytopathic effect (CPE) 관찰
2-8. rVHSV-P1, P2, P3의 확인 (RT-PCR)
2-9. rVHSV-P1, P2, P3의 확인 (plaque assay)
가. rVHVS-P1 의 titer 측정
나. P gene 발현 정도에 따른 rVHSV-P2, P3 titer 비교확인
2-10. VHSV P (VP0, VP1, VP2, VP3) gene을 발현하는 cell line에서 rVHSV-P1, P2, P3의 감염성 확인
2-11. rVHSV-P1, P2, P3의 확인 (nucleotide sequence)
Ⅲ. 결 과
1. rVHSV-ΔG
1-1. VHSV G gene을 발현하는 cell line의 제작 및 G gene expression level 비교분석
1-2. VHSV G gene이 knock-out된 재조합 VHSV (rVHSV-ΔG) 제작 및 확인
가. rVHSV-ΔG 제작
나. VHSV G gene을 발현하는 두 가지 cell line에서의 cytopathic effect (CPE) 관찰 및 rVHSV-ΔG 생산 확인
1-3. rVHSV-ΔG의 감염성 확인
1-4. In vivo 상에서의 rVHSV-ΔG safety 확인
2. rVHSV-P1, P2, P3
2-1. VHSV P (VP0, VP1, VP2, VP3) gene을 발현하는 cell line의 제작 및 VHSV P (VP0, VP1, VP2, VP3) gene expression level 비교분석
2-2. VHSV P gene이 knock-out된 재조합 VHSV (rVHSV-P1, P2, P3) 제작 및 확인
가. rVHSV-P1, P2, P3 제작
나. rVHSV-P1의 생산 확인
다. VHSV P gene을 발현하는 두 가지 cell line에서의 cytopathic effect (CPE)관찰 및 rVHSV-P2, P3 생산 확인
2-3. VHSV P (VP0, VP1, VP2, VP3) gene을 발현하는 cell line에서 rVHSV-P1, P2, P3의 감염성 확인
2-4. rVHSV-P1, P2, P3의 nucleotide sequence 확인
Ⅳ. 고 찰
Ⅴ. 요 약
Ⅵ. 감사의 글
Ⅶ. 참고문헌
- Degree
- Master
-
Appears in Collections:
- 대학원 > 수산생명의학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.