금속산화물 촉매에서 프로필렌 글라이콜로의 글리세롤 수소화 분해반응
- Alternative Title
- Hydrogenolysis of Glycerol to Propylene glycol over Metal Oxide Catalysts
- Abstract
- Glycerol (1,2,3-propanetriol or glycerine), an organic molecule isolated by heating fats in the presence of ash (to produce soap) as early as 2800 BC, is an industrial chemical with tens of applications. Since the late 1940s, and following the discovery of synthetic surfactants, glycerol has been produced from epichlorohydrin obtained from propylene (and thus from fossil oil) as large chemical companies forecasted a glycerol shortage and initiated its synthetic production. Today, however, glycerol plants are closing and others are opening that use glycerol as a raw material as a result of the large surplus of glycerol that is formed as a byproduct (10% in weight) in manufacturing biodiesel fuel by trans-esterification of seed oils with methanol.
If crude natural glycerol could be converted to propylene glycol, this technology could be used in biodiesel production plants to increase profitability. Preferred technology would convert crude natural glycerol at moderate temperatures and pressures. Some typical uses of propylene glycol are in unsaturated polyester resins, functional fluids (antifreeze, de-icing, and heat transfer), pharmaceuticals, foods, cosmetics, liquid detergents, tobacco humectants, flavors and fragrances, personal care, paints and animal feed. The antifreeze and deicing market is growing because of concern over the toxicity of ethylene glycol-based products to humans and animals as well.
Hydrogenolysis of glycerol to propylene glycol has been previously reported to use several supported transition metal catalysts such as sulfide Ru, Pt, Cu, Raney Ni including some bimetallic catalysts consisting of Pt–Ru, Pt–Re, Rh–Cu, Cu-Cr and Ni–Cu. Selective hydrogenolysis of glycerol to propylene glycol requires cleavage of C–O bonds by H2 without attacking C–C bonds in the glycerol molecule. For this purpose, a number of solid catalysts have been explored, among which Cu-containing catalysts exhibit superior performances.
In this study, binary and ternary metal oxide catalysts with Cu contents were carefully prepared by co-precipitation method and microwave-assisted process. Metal oxide catalysts were characterized by gas choromatography (GC) with flame ionization detector (FID), X-ray diffraction (XRD), X-ray fluorescence (XRF), field emission scanning electron microscope (FE-SEM), ammonia temperature-programmed desorption (NH3-TPD), and BET surface area.
Among the different mixed-metal oxides that were evaluated for glycerol hydrogenolysis, the Cu/Zn/Al (a molar ratio of 2/2/1) mixed-metal oxides were the most active catalysts, showing selectivity of 72.6~74.0% toward propylene glycol. The optimized conditions for the glycerol conversion and selectivity toward propylene glycol were a hydrogen pressure of 250psig, reaction temperature 200℃, reaction time of 20h, catalyst concentration of 5.0wt%, and glycerol aqueous solution of 20wt%.
- Author(s)
- 김동원
- Issued Date
- 2015
- Awarded Date
- 2015. 2
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/11986
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001967605
- Alternative Author(s)
- Kim, Dong Won
- Affiliation
- 공업화학과
- Department
- 대학원 공업화학과
- Advisor
- 문명준
- Table Of Contents
- 목 차 ⅰ
List of Tables ⅳ
List of Figures ⅵ
Abstract ⅹ
제 1 장 서 론 1
제 2 장 이론적 배경 10
2. 1. 금속 산화물 촉매 제조 방법 10
2. 1. 1. 볼밀법 10
2. 1. 2. 공침법 12
2. 2. 마이크로파를 이용한 공정 13
2. 2. 1. 재료에 따른 마이크로파의 특성 15
2. 2. 2. 용매의 종류에 따른 마이크로파의 영향 15
2. 3. Gas Chromatography 17
2. 3. 1. Gas Chromatograph의 구성 18
2. 3. 1. 1. Carrier gas 18
2. 3. 1. 2. Injection 20
2. 3. 1. 3. Column 21
2. 3. 1. 4. Detector 23
2. 3. 1. 5. Chromatogram 24
2. 3. 2. GC를 이용한 정량분석 24
제 3 장 실 험 28
3. 1. 원료 물질 28
3. 2. 촉매 제조 28
3. 2. 1. 공침법 28
3. 2. 2. 마이크로웨이브를 이용한 폭발법 31
3. 3. 수소첨가 분해반응 실험 31
3. 4. 촉매 특성 분석 33
3. 5. 글리세롤의 전환율과 프로필렌 글라이콜의 선택도 측정 34
제 4 장 반응조건에 따른 글리세롤의 전환율과 프로필렌 글라이콜의 선택도 변화 37
4. 1. 서론 37
4. 2. 촉매 제조 38
4. 3. 온도 및 압력에 따른 영향 38
4. 4. 반응 시간 및 촉매 농도에 따른 영향 44
4. 5. 초기 글리세롤의 함량 및 용매에 따른 영향 49
4. 6. 결론 55
제 5 장 Cu/Zn계 및 Cu/Cr계 혼합 금속산화물 촉매를 이용한 글리세롤의 수소첨가 분해반응 57
5. 1. 서론 57
5. 2. 촉매 제조 58
5. 3. Cu/Cr계 촉매의 글리세롤 수소첨가 분해반응 58
5. 3. 1. 공침법으로 제조한 Cu/Cr계 촉매의 조성에 따른 영향 58
5. 3. 2. 마이크로웨이브법으로 제조한 Cu/Cr계 촉매의 조성에 따른 영향 63
5. 4. Cu/Zn계 촉매의 글리세롤 수소첨가 분해반응 68
5. 4. 1. 제조법에 따른 Cu/Zn계 촉매의 조성에 따른 영향 68
5. 4. 2. 첨가 유기산에 따른 영향 77
5. 5. 결론 81
제 6 장 삼원계 이상 혼합 금속산화물 촉매를 이용한 글리세롤의 수소첨가 분해반응 82
6. 1. 서론 82
6. 2. 촉매 제조 82
6. 3. Cu/Zn/Cr계 촉매의 글리세롤 수소첨가 분해반응 83
6. 4. Cu/Zn/Al계 촉매의 글리세롤 수소첨가 분해반응 91
6. 4. 1. 조성비와 제조공정에 따른 영향 91
6. 4. 2. CuO의 환원에 따른 영향 100
6. 5. Rh가 포함된 Cu/Zn/Al계 촉매의 글리세롤 수소첨가 분해반응 104
6. 6. 결론 107
제 7 장 결 론 108
참고문헌 110
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 공업화학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.