신경망 모형을 이용한 낙동강 중·하류 하도의 클로로필a 추정에 관한 연구
- Abstract
- A study for estimation of chlorophyll-a in a mid-lower reach of the Nakdong River using a neural network
ByeongGwon Park
Department of Civil Engineering, The Graduate School,
Pukyong National University
Abstract
Eutrophication has been continued by the discharge of untreated nitrogen and phosphorus from industrial complexes of Daegu and Gumi cities in the upstream area of the mid-lower Nakdong River. Prediction of algae is currently performed by measuring Chlorophyll-a and the number of cells of Cyanobacteria that are main indications of occurrence of aigal blooms.
The purpose of the study is to introduce a neural network model generalizing complicated mathematical model and to seek water quality factors estimating Chlorophlly-a that can be an indicator of eutrophication of water system. The measurement stations are Namgang, Jeokpo, Cheongam and Chilseo located on the mid-lower Nakdong River and the daily data of DO, water temperature, TN, TP, TOC, pH, tubidity are inputted as the training factors. Chlorophlly-a is selected as the estimation variable of the neural network.
As a result, the outcome of the combination of training factors of DO, water temperature, TN, TP, pH measured by automated water quality monitoring station in Namgang, Jeokpo and Cheongam is superior to the combinations of the other training factors. Also, the combination of training factors of DO, water temperature, TOC, pH by automated water quality monitoring station in Chilseo estimates Chlorophlly-a best. The result of this study suggests that Chlorophyll-a be estimated by a neural network model using the real-time data of automated water quality monitoring.
Keywords: neural network, chlorophll-a, aigal bloom, eutrophication, automated water quality monitoring station.
- Author(s)
- 박병권
- Issued Date
- 2015
- Awarded Date
- 2015. 2
- Type
- Dissertation
- Publisher
- 부경대학교 일반대학원
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/12106
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001967725
- Affiliation
- 부경대학교 일반대학원
- Department
- 대학원 토목공학과
- Advisor
- 이상호
- Table Of Contents
- 목 차
1. 서론 1
1.1 연구 배경 및 목적 1
1.2 연구 동향 3
1.3 연구 내용 및 범위 4
2. 신경망 및 학습인자 5
2.1 신경망 5
2.1.1 신경망의 배경 5
2.1.2 신경망 모형과 일반적인 모형의 비교 7
2.1.3 신경망의 기본 개념 8
2.1.4 신경망의 구성 9
2.1.5 퍼셉트론 학습 방법 12
2.1.6 신경망 내부 연산과정 예제 15
2.2 학습과 출력을 위한 수질항목 17
2.2.1 용존산소(dissolved oxygen; DO) 17
2.2.2 수온(water temperature) 17
2.2.3 수소 이온 농도(hydrogen ion concentration; pH) 18
2.2.4 탁도(turbidity) 18
2.2.5 총유기탄소(total organic carbon; TOC) 19
2.2.6 총인(total phosporus; TP) 19
2.2.7 총질소(total nitrogen; TN) 20
2.2.8 클로로필a(chlorophyll-a; Chl-a) 20
3. 수질 측정 자료 21
3.1 수질측정 조사지점 및 입력자료 구축 21
3.1.1 수질자동측정소 21
3.1.2 남강 측정지점 23
3.1.3 적포 측정지점 24
3.1.4 청암 측정지점 25
3.1.5 칠서 측정지점 26
3.1.6 입력자료구축 27
4. 결과 및 고찰 28
4.1 모형의 평가지표 28
4.2 신경망모형을 이용한 클로로필a 추정 29
4.2.1 모형의 보정 29
4.2.2 모형의 검증 64
5. 결론 및 향후 과제 99
6. 참고문헌 101
- Degree
- Master
-
Appears in Collections:
- 산업대학원 > 토목공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.