Isolation of Protease-producing Bacteria from the Gut of Octopus vulgaris and Characterization of Their Proteases
- Abstract
- 프로티아제는 자연에서 널리 분포되어있으며 미생물은 이런 효소들의 우선적 원천이다. 미생물에서 추출된 효소들은 광범위한 생화학적 다양성, 대량 배양의 실현가능성과 유전적 조작의 용이성 때문에 널리 연구되어 왔다. 이 연구에서, Octopus vulgaris의 장관으로부터 프로테아제 생성 박테리아를 분리시키고, 확인하였다. 분리된 균주에서 프로테아제 최적 생산 조건을 조사하였다. 분리된 균주에서 생산된 프로테아제는 황산암모늄 침전 반응을 이용하여 정제하였고, 이온 교환 크로마토그래피를 사용하였다. 한편, 정제된 프로테아제의 특성 역시 연구되었다.
분리된 균주의 잠재적 산업 적용 가치를 연구하기 위해서, 균주는 문어 가공 부산물을 이용하여 배양되었다. 그리고 가수분해물의 항산화 활성은 in vivo와 in vitro 조건에서 측정되었고, 그 결과로서 V-2와 L-2의 프로테아제 수율이 높은 두 균주가 성공적으로 분리되었다. V-2는 Bacillus flexus 3xWMARB와 99.2%의 상동함을 보였고, L-2 균주는 Psedoalteromonas okeanokoites로 확인되었다. V-2 균주는 탄소원으로 fructose와 질소원으로서 펩톤을 이용하여 초기 pH 8.0, 배양온도 30℃ 조건에서 3.5일에서 배양하였을 때, 높은 활성의 프로테아제 생산하였다. L-2 균주는 수용성 전분을 탄소원으로, 펩톤을 질소원으로 사용하였고, 초기 pH 8.0에서 배양온도는 19℃에서 최적 조건이었다.
두 가지의 균주 V-2와 L-2에서 얻은 정제된 프로테아제를 Fa-2와 F1-1으로 명명하였다. 정제배수는 각각 2.5와 1.7이었으며, 활성 회복도는 각각 12.5%와 7.5%이었다. Fa-2의 경우에는 분자량 61.6kDa이고 최적 온도와 pH는 40℃와 pH 9.0이며, 열안전성을 가지고 있었다. F1-1은 61.4kDa의 분자량을 가지고 있고, 최적온도는 40℃이며, 뛰어난 열안전성을 나타내었다. 두 가지의 균주와 문어의 부산물을 이용하여 얻은 가수분해물을 P1과 P2라고 명명하고 DPPH∙ radical, hydroxyl radical, superoxide radical 소거능을 조사하였다. P1이 P2보다 높은 radical 소거능을 나타내었고, 결과에 따라 P1 가수 분해물을 이용하여 in vivo 상태에서의 항산화 능력을 측정하였다. 쥐의 D-galactose 유도 노화 모델을 설정하고, P1 가수분해물이 혈청과 간에서의 항산화 효과는 노화증상을 약화시키는 잠재적 능력을 가지고 있다고 결정지었다. 이 결과 두 균주가 우선 문어의 장관에서 성공적으로 분리되었고, in vitro, in vivo 모두 높은 항산화능을 가지고 있으며, 상업적 부분에 있어서도 적용할 수 있는 뛰어난 잠재력을 가지고 있다. 이 결과는 앞으로의 연구에 기초로 제공될 것이다.
Proteases are widespread in nature and microbes serve as a preferred source of these enzymes. The proteases from microorganisms were widely studied because of their broad biochemical diversity, feasibility of mass culture and ease of genetic manipulation. In this study, protease-producing bacteria were isolated and identified from the gut of Octopus vulgaris. The optimum condition for protease production of the isolated strains was investigated. The proteases produced from the isolated strains were purified through ammonium sulfate precipitation, and different cation and anion exchange chromatographies. Meanwhile, the properties of the purified proteases were also studied. To study the potential industrial application values of the isolated strains, the strains were incubated with octopus-processing waste to produce octopus scraps hydrolysates. The antioxidative activities of hydrolysates were measured in vitro and vivo. As a result, two protease high-yield strains named as V-2 and L-2 were successfully isolated from octopus gut. Strain V-2 has 99.2% homology with Bacillus flexus 3xWMARB-5, while L-2 strain was identified as Pseudoalteromonas okeanokoites. The results show that strain V-2 with fructose as carbon source, peptone as nitrogen source, medium initial pH 8.0, under temperature 30℃, for 3.5 days incubation, could produce the highest activity level of protease. For strain L-2, soluble starch was used as carbon source, peptone was used as nitrogen source, initial medium pH 8.0, culture temperature was 19℃, and 3.5 days were defined to be the optimum condition. Two purified proteases, named as Fa-2 and F1-1, obtained from strain V-2 and L-2. The purification folds were 2.5 and 1.7, activity recoveries were 12.5% and 7.5%, respectively. The molecular weight of Fa-2 was 61.6 kDa, with optimal temperature of 40℃, optimum pH 9.0 and a good thermal stability. For F1-1, the molecular weight was 61.4 kDa with an optimum temperature at 40℃, and a great thermal stability. Two hydrolysates, labeled as P1 and P2, were obtained from the hydrolysis of the two strains and octopus by-product. The scavenging activities of DPPH• radicals, hydroxyl radicals, and superoxide radicals were studied and P1 showed higher radical scavenging activities than P2. Therefore P1 hydrolysate was applied to the test of antioxidative activity in vivo. The D-gal-induced aging model of mice was established and the antioxidant effects of hydrolysate P1 both in serum and liver were determined to have potential ability to attenuate the aging symptoms through its antioxidant properties. These results indicated that, the two strains were firstly isolated from the gut of octopus successfully in China with high antioxidant activities in vitro and vivo, which have good potential on commercial application. The results also provide a basis for further study.
- Author(s)
- Qing Liu
- Issued Date
- 2014
- Awarded Date
- 2014. 8
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/12322
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001967187
- Affiliation
- 대학원
- Department
- 대학원 식품공학과
- Advisor
- 양지영
- Table Of Contents
- Abstract i
Table of contents iii
List of Tables vii
List of Figures viii
Chapter 1. General introduction 1
1.1. Background 2
1.2. Protease 3
1.3. Octopus vulgaris 5
1.4. The source of the microbial protease 8
1.4.1. Bacteria 8
1.4.2. Mold 8
1.4.3. Yeast 9
1.4.4. Actinomycete 9
1.5. Isolation and purification of protease 9
1.5.1. Salting-out 9
1.5.2. Ion exchange chromatography 10
1.6. Application of protease 11
1.6.1. Application in food and feed 11
1.6.2. Application in detergent industry 11
1.6.3. Application in leather processing 12
1.6.4. Application in peptides synthesis 12
1.7. Objectives 12
Chapter 2. Isolation and identification of protease-producing bacteria from Octopus vulgaris tract and its optimal condition of protease production 14
2.1. Introduction 15
2.2. Materials and methods 16
2.2.1. Materials 16
2.2.2. Reagents and apparatus 16
2.2.3. Culture medium 17
2.3. Methods 17
2.3.1. Screen of protease producing bacteria from octopus vulgaris gut 17
2.3.2. Measurement of protease activity 18
2.3.3. Identification of strains 19
2.3.4. Optimum fermentation conditions 20
2.4. Results and discussions 21
2.4.1. Screening results of protease-producing bacteria from Octopus vulgaris gut 21
2.4.2. 16S rRNA sequence analysis 26
2.4.3. Optimum fermentation conditions 30
2.5. Conclusions 46
Chapter 3. Purification of protease obtained from two strains and its enzymatic properties 48
3.1. Introduction 49
3.2. Materials and apparatus 50
3.2.1. Material 50
3.2.2. Reagents and apparatus 50
3.3. Methods 51
3.3.1. Preparation of crude enzyme solution 51
3.3.2. Ammonium sulfate precipitation 51
3.3.3. Dialysis and concentration 51
3.3.4. Cellulose CM-52 cation exchange chromatography 51
3.3.5. DEAE-Sephadex A50 anion exchange chromatography 52
3.3.6. Sephadex G-100 gel chromatography 52
3.3.7. SDS-PAGE electrophoresis 52
3.3.8. Determination of protease activity 53
3.3.9. Measurement of protein content 53
3.3.10. Protease stability 53
3.4. Results and discussions 54
3.4.1. Cellulose CM-52 cation exchange chromatography 54
3.4.2. DEAE-Sephadex A50 anion exchange chromatography 56
3.4.3. Sephadex G-100 gel chromatography 59
3.4.4. SDS-PAGE electrophoresis 62
3.4.5. Detection of protein content 64
3.4.6. Protease stability 64
3.5. Conclusions 71
Chapter 4. Application of Stain V-2 and L-2 74
4.1. Introduction 75
4.2. Materials and apparatus 76
4.2.1. Materials 76
4.2.2. Reagents and apparatus 76
4.3. Methods 77
4.3.1. Preparation of fermentation broth 77
4.3.2. Ultrafiltration 77
4.3.3. Antioxidant activity of octopus scraps peptides 77
4.3.4. Determination of peptide concentration 79
4.3.5. Preparation of experimental rats 79
4.3.6. Determination of protein content of the liver tissue of mice 80
4.3.7. Determination of antioxidant activity of hyderolysate on rats’ plasma and liver tissue 80
4.3.8. Data processing 82
4.4. Results and discussions 82
4.4.1. Standard curve of peptide concentration 82
4.4.2. Determination of free radical-scavenging activity 82
4.4.3. Effect of octopus scraps enzymatic hydeolysate on body weight of rats 89
4.4.4. Effect of antioxidant activities of hydeolysate on serum and liver tissue 91
4.5. Conclusions 102
Summary 104
References 106
Abstract in Korean 119
Acknowledgement 121
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 식품공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.