PUKYONG

Recovery and Characterization of Bioactive Compounds from Mackerel (Scomber japonicus) using Sub- and Supercritical Fluids

Metadata Downloads
Abstract
본 연구에서는 고등어 육 내의 지질을 추출하기 위해 환경 친화적인 용매인 초임계 이산화탄소 (SC-CO2)를 반 회분식 공정과 및 n-헥산을 사용하여 하였다. SC-CO2는 온도 45°C 에서, 압력은 15-25 MPa 범위에서 수행하였다. CO2 유량은 27 g/min로하여 총 추출 시간인 2시간 동안 지속적으로 흐르게 하였다. SC-CO2추출 후, 오일 제거 수율이 가장 조건에서 회수된 추잔물을 이용하여 소화 효소의 활성 측정을 위해 사용되었고, n-헥산 및 SC-CO2추출한 후에 회수된 고등어 추잔물로부터 수용성 추출물을 분리 회수하여 네가지 소화 효소에 대한 활성을 측정하였다. SC-CO2처리 후 회수된 추잔물의 수용성 추출물에서 아밀라아제, 리파아제와 트립신 활성이 높았으며, n-헥산 처리 추잔물에서는 단백질 분해 효소가 비교적 높은 활성을 나타내었다. 4가지 소화 효소 중에서 아밀라아제의 활동이 가장 높았고 그 값은 44.57 uM/min/mg을 보였다. SC-CO2와 n-헥산 처리한 고등어 육 추잔물의 수용성 추출물은 소화 효소의 각각에 대해 동일한 알칼리 최적 pH와 산도 안정성을 보였다. 또한 두 시료에 대한 아밀라제, 리파제, 프로테아제 및 트립신의 최적 온도는 각각 40°C, 50°C, 60°C, 30°C이었다. 언급 한 최적의 온도에서 두 가지 시료의 수용성 추출물에 대한 아밀라제, 리파제, 프로테아제 및 트립신은 80% 이상 안정성을 유지했다. 단백질 패턴으로 볼 때, SC-CO2후 고등어 육 시료의 수용성 추출물은 단백질 밴드의 변형이 없었으며, 이것은 n-헥산 처리한 군과 처리하지 않은 군 보다 단백질의 변성이 일어나지 않은 것을 나타낸다.
레시틴은 초임계 이산화탄소 (SC-CO2)와 에탄올을 사용한 방법과 헥산 추출법으로 오일이 제거된 고등어 육으로부터 추출, 분리되었다. 고등어 레시틴의 주요 인지질은 포스파티딜콜린 (PC) 20.11%와 포스파티딜 에탄올 아민 (PE) 67.44%였다. Eicosapentaenoic acid (EPA) 와 docosahexaenoic acid (DHA) 는 두 인지질에서 높은 함량을 나타내었다. 품질에 영향을 주는 인자를 검사한 결과, SC-CO2에와 에탄올을 사용하여 지질을 제거한 고등어 근육으로부터 분리된 레시틴은 다른 시스템에서 분리된 레시티에 비해 우수한 결과를 보였다. SC-CO2에와 에탄올을 사용한 시스템에서 레시틴의 산화 안정성과 항산화 활성은 유의한 차이를 찾을 수 없었다.
고등어 껍질을 동결 건조한 시료와 초임계 이산화탄소 (SC-CO2)로 처리하여 지질을 제거한 시료를 아임계 수의 온150-240°C와 압력 12-210 bar에서 처리하여 회수된 가수분해물에 대한 항 산화활성의 특성, 아미노산의 생산 및 조성, 단백질 가수분해물의 기능성 특성을 조사하였다. 가장 높은 아미노산 수율은240°C와 210 bar조건에서 SC-CO2처리하여 지질을 제거한 고등어 육의 가수분해물의 경우 122.96 ± 2.84 ㎎/g, 동결 건조한 121.93 ± 1.80㎎/g 을 나타내었다. 가수분해 한 두 시료에서 모두 필수 아미노산 9종이 확인되었고 그 중에 히스티딘의 함량이 가장 높았다. 모든 필수 아미노산은 트레오닌과 히스티딘을 제외하고 240°C까지의 온도 안정성을 보였다. 가수 분해물의 항산화 활성은 DPPH, ABTS, 히드록실 라디칼, 금속 킬레이트, 전력 분석법, 환원력 실험에서 온도 및 압력의 증가에 따라 증가하는 것으로 나타났다. 240°C, 210 bar에서 두 가수분해물의 항산화 활성이 모두 높았다. 기능성 관점에서, 서로 다른 온도 및 압력에서 회수된 가수 분해물을 분말화시킨 후, 그 분말 단백질의 물에 대한 용해도는 pH 3.5 - 9.5범위에서 59% 이상으로 증가하였다. 온도 및 압력이 증가 할 때, 유화제 활동 지수, 에멀젼 안정성, 거품 용량 면에서 두 가수 분해물의 기능이 모두 줄어들었다. 이것은 가수분해에 의해 짧은 펩티드 사슬이 생성된 것으로 예상된다. 본 연구의 고등어 껍질로부터 생산된 단백질 가수 분해물은 우수한 첨가제로 식품 관련 산업에 이용 될 수 있다고 에상된다.
부산물 또는 비상품성 자원을 효과적으로 사용하는 목적으로 PSC (pepsin solubilized collagen)을 고등어 뼈와 껍질로부터 분리 정제되었다. PSC의 수율은 껍질에서 8.10%, 뼈에서 1.75%를 보였다. 단백질 패턴에 기초하여, PSC는 타입 Ι 과 두 개의 α-사슬 모두 이루어져 있었다. Fourier-transform 적외선 스펙트럼은 뼈와 피부로부터 PSC의 트리플-나선 구조를 나타낸 것으로 보였다. 뼈와 피부에서 PSC의 변성 온도 (TD)는 각각 27과 30°C 였다. 매우 낮은 분자량의 펩타이드 (<1650 Da)가 아임계 물을 가수 분해 처리한 모든 PSC에서 생성되었다. 글리신은 모든 PSC 가수 분해물에서 확인되었으며, 전체 아미노산의 30%를 차지하였다. 두 PSC 가수 분해물의 항 산화 기능은 가수분해 전의 정제된 PSC보다 높게 나타났다. 따라서 고등어 뼈와 껍질 유래 PSC 가수 분해물은 식품, 화장품 및 제약 산업의 기능성 소재로 응용될 수 있을 것으로 사료된다.
Mackerel (Scomber japonicus) is an important fish food which is consumed in many countries including Korea. A lot of mackerels are injured after catching by net which are non-merchantable. These are rich in biomolecules that are useful to living beings. The discarding of non-merchantable mackerel is a big problem in the environment. However, recovery of useful materials from non-merchantable mackerel will be beneficial economically and environmentally. In this study, the oil in mackerel muscle was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-CO2) at a semi-batch flow extraction process and an n-hexane. The SC-CO2 was carried out at temperature 45 oC and pressures ranging from 15 to 25 MPa. The flow rate of CO2 (27 g/min) was constant at the entire extraction period of 2 h. The highest oil extracted residues after SC-CO2 extraction was used for activity measurement of digestive enzymes. Four digestive enzymes were found in water soluble extracts after n-hexane and SC-CO2 treated samples. Amylase, lipase and trypsin activities were higher in water soluble extracts after SC-CO2 treated samples except protease. Among the four digestive enzymes, the activity of amylase was highest and the value was 44.57 uM/min/mg of protein. The water soluble extracts of SC-CO2 and n-hexane treated mackerel sample showed the same alkaline optimum pH and pH stability for each of the digestive enzymes. Optimum temperatures of amylse, lipase, protease and trypsin were 40 oC, 50 oC, 60 oC and 30 oC, respectively of both extracts. More than 80% temperature stability of amylse, lipase, protease and trypsin were retained at mentioned optimum temperature in water soluble extracts of both treated samples. Based on protein patterns, prominent protein band showed in water soluble extracts after SC-CO2 treated samples indicates no denaturation of protein than untreated and n-hexane.
Lecithin was isolated with ethanol from deoiled mackerel muscle after SC-CO2 and hexane extraction. It was also isolated by SC-CO2 with ethanol as co-solvent after oil removal by SC-CO2 extraction. The main phospholipids of mackerel lecithin were phosphatidylcholine (PC) 20.11% and phosphatidylethanolamine (PE) 67.44%. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were found substantial amount in both phospholipids. After quality parameters checking, lecithin isolated by SC-CO2 with ethanol from deoiled mackerel muscle showed better results compared to other systems. Oxidative stability and antioxidant activity of lecithin was high and significant differences were not found using those systems.
The production of amino acids with antioxidant activities and functional properties from protein hydrolyzates of freeze dried and SC-CO2 deoiled mackerel skin by pressurized hydrothermal hydration (PHH) at different temperature (150-240 oC) and pressure (12-210 bar) was investigated. The highest yield of amino acid in freeze dried and SC-CO2 deoiled mackerel skin hydrolyzate was 121.93 ± 1.80 and 122.96 ± 2.84 mg/g, respectively, at 240 oC and 210 bar. Nine essential amino acids were identified in both skin hydrolyzates, of which histidine was the most abundant. All essential amino acids showed a temperature stability upto 240 oC with the exception of threonine and histidine. The antioxidant activity of the hydrolyzates, as demonstrated in the DPPH, ABTS, hydroxyl radical, Fe2+ chelating, and reducing power assays, increased with increases in temperature and pressure; it was high in both hydrolyzate at 240 oC and 210 bar. In terms of functional properties, hydrolyzate at different temperatures and pressures increased protein solubility to above 59% over a wide pH range (3.5-9.5). When the temperature and pressure increased, the emulsifying activity index, emulsion stability, foaming capacity, and foam stability of both hydrolyzates decreased, possibly caused by the shorter peptide chain length. We conclude that protein hydrolyzate produced from mackerel skin can be used in food related industries as good additives.
Pepsin-solubilised collagen (PSC) was isolated from mackerel bone and skin and characterized with the aim of using these by-products resources more effectively. The yield of PSC (8.10%) from skin was considerably higher than that from bone (1.75%). Based on the protein patterns, both PSCs were type Ι, and consisted of two α-chains. Fourier-transform infrared spectra demonstrated that PSCs from the bone and skin exhibited a triple-helical structure. The denaturation temperatures (Td) of the PSCs from bone and skin were 27 °C and 30 °C, respectively. Very low molecular weight peptides (<1650 Da) were generated from both PSCs after subcritical water hydrolysis treatment. Glycine accounted for 30% of the total amino acids identified in both PSC hydrolyzates. The antioxidant activities of both PSC hydrolyzates were significantly higher than those of the isolated PSCs. Therefore, PSC hydrolyzates can be used as a functional ingredient in the food, cosmetic and pharmaceutical industries.
Author(s)
A. K. M. Asaduzzaman
Issued Date
2014
Awarded Date
2014. 8
Type
Dissertation
Publisher
식품공학과
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/12336
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001967201
Affiliation
대학원
Department
대학원 식품공학과
Advisor
전병수
Table Of Contents
CONTENTS
Contents………………………………………………………………………..i
List of Figures……………………………………………………………..…ix
List of Tables………………………………………………………………xiii
Abstract……………………………………………………………………xv

Chapter 1
General introduction
1.1. Background……………………………………………………………….1
1.2. Mackerel…………………………………………………………………..2
1.2.1. Scomber japonicus……………………………………………………..3
1.2.1.1. Habitat and biology of S. japonicus…………………………………4
1.3. Supercritical fluids (SFs)………………………………………………...10
1.3.1. Historical background of SFs………………………………………...11
1.3.2. Properties of SFs……………………………………………………..12
1.3.3. Supercritical carbon dioxide (SC-CO2)………………………………17
1.3.4. Comparison between SC-CO2 and organic solvent extraction……….17
1.3.5. Subcritical water (SW)……………………………………………….21
1.3.6. Comparison between subcritical water, enzyme and
chemical hydrolysis…………………………………………………..21
1.4. Polyunsaturated fatty acids (PUFAs)…………………………………….25
1.4.1. Cardiovascular health effects…………………………………………25
1.4.2. Infant brain and vision development………………………...……25
1.4.3. Other possible health effects………………………………………….26
1.5. Digestive enzymes……………………………………………………….27
1.6. Bioactive peptides……………………………………………………….28
1.7. Objective of the thesis…………………………………………………...29

Chapter 2
Characterization of digestive enzymes from deoiled mackerel (Scomber japonicus) muscle obtained by supercritical carbon dioxide and n-hexane extraction as a comparative study
2.1. Introduction……………………………………………………………...31
2.2. Materials and Methods…………………………………………………33
2.2.1. Materials……………………………………………………………...33
2.2.2. Sample preparation…………………………………………………..33
2.2.3. SC-CO2 extraction……………………………………………………34
2.2.4. n-Hexane extraction………………………………………………….34
2.2.5. Water soluble extract preparation…………………………………….35
2.2.6. Measurement of protein content in water soluble extract……………35
2.2.7. Digestive enzyme assay of water soluble extract……………………38
2.2.7.1. Amylase assay……………………………………………………38
2.2.7.2. Lipase assay……………………………………………………….38
2.2.7.3. Protease assay…………………………………………………….39
2.2.7.4. Trypsin assay……………………………………………………..40
2.2.7.5. Optimum pH and pH stability of amylase, lipase, protease
and trypsin………………………………………………………...40
2.2.7.6. Optimum temperature and temperature stability of amylase,
lipase, protease and trypsin………………………………………..41
2.2.7.7. Sodium dodecyl sulfate polyacrylamide gel electrophoresis..........41
2.2.8. Statistical analysis…………………………………………………….42
2.3. Results and Discussion…………………………………………………..42
2.3.1. Total oil extraction……………………………………………………42
2.3.2. Protein yield in water soluble extract………………………………...44
2.3.3. Digestive enzyme activities…………………………………………..46
2.3.4. Optimum pH………………………………………………………….49
2.3.5. pH stability…………………………………………………………...50
2.3.6. Optimum temperature………………………………………………..56
2.3.7. Temperature stability…………………………………………………56
2.3.8. SDS-PAGE…………………………………………………………...62
2.4. Conclusion……………………………………………………………….64

Chapter 3
Quality characteristics of lecithin obtained from deoiled mackerel (Scomber japonicus) muscle using various isolation methods
3.1. Introduction……………………………………………………………...65
3.2. Materials and Methods…………………………………………………..68
3.2.1. Materials……………………………………………………………...68
3.2.2. Isolation of lecithin by CO2/ethanol and hexane/ethanol system…….68
3.2.3. Isolation of lecithin by CO2/CO2 with ethanol system……………….69
3.2.4. Phospholipid measurement of lecithin……………………………….69
3.2.5. Acid value, peroxide value and free fatty acid content measurement..70
3.2.6. Analysis of major phospholipids……………………………………..70
3.2.7. Identification of phospholipids by thin layer chromatography……….71
3.2.8. Fatty acid compositions analysis……………………………………72
3.2.9. Oxidative stability of lecithin……………………………………….72
3.2.10. Antioxidant activity of lecithin……………………………………...73
3.2.10.1. DPPH free radical scavenging assay…………………………..73
3.2.10.2. ABTS+ free radical scavenging assay…………………...74
3.3. Results and Discussion…………………………………………………..77
3.3.1. Phospholipid content in mackerel lecithin…………………………...77
3.3.2. Acid value, peroxide value and free fatty acid content………………77
3.3.3. Fatty acid composition of lecithin…………………………………..80
3.3.4. Major phospholipids quantification…………………………………80
3.3.5. Fatty acid compositions of PC and PE……………………………...84
3.3.6. Oxidative stability of lecithin………………………………………...85
3.3.7. Antioxidant activity of lecithin……………………………………...87
3.4. Conclusion……………………………………………………………...89




Chapter 4
Hydrolyzates produced from mackerel Scomber japonicus skin by the pressurized hydrothermal process contain amino acids with antioxidant activities and functionalities
4.1. Introduction…………………………………………………………….90
4.2. Materials and Methods…………………………………………………92
4.2.1. Materials…………………………………………………………….92
4.2.2. Sample preparation………………………………………………….92
4.2.3. Proximate composition analysis…………………………………….93
4.2.4. Pressurized hydrothermal hydrolysis……………………….93
4.2.5. Amino acid composition analysis…………………………………...96
4.2.6. Antioxidant activity measurement…………………………………..96
4.2.6.1. DPPH free radical scavenging assay…………………………….96
4.2.6.2. ABTS+ free radical scavenging assay……………………………96
4.2.6.3. Hydroxyl radical scavenging assay……………………………...97
4.2.6.4. Fe2+ chelating assay……………………………………………...97
4.2.6.5. Ferric reducing power assay……………………………………98
4.2.7. Functional properties………………………………………………..98
4.2.7.1. Solubility………………………………………………………...98
4.2.7.2. Emulsifying properties…………………………………………..99
4.2.7.3. Foaming properties………………………………………………100
4.3. Results and Discussions………………………………………………..101
4.3.1. Proximate analysis of mackerel skin………………………………..101
4.3.2. PHH conversion yield……………………………………………….103
4.3.3. Total and essential amino acid yield………………………………..103
4.3.4. Antioxidant activities……………………………………………….109
4.3.5. Functional properties………………………………………………..115
4.3.5.1. Solubility of protein hydrolyzates……………………………….115
4.3.5.2. Emulsifying properties of protein hydrolyzates…………………116
4.3.5.3. Foaming properties of protein hydrolyzates……………………..117
4.4. Conclusions…………………………………………………………….122

Chapter 5
Characterization of pepsin-solubilized collagen recovered from mackerel (Scomber japonicus) bone and skin using subcritical water hydrolysis
5.1. Introduction…………………………………………………………….123
5.2. Materials and Methods…………………………………………………126
5.2.1. Materials…………………………………………………………….126
5.2.2. Proximate analysis of mackerel bone and skin……………………...126
5.2.3. Isolation of collagen from mackerel bone and skin…………………126
5.2.4. Characterization of pepsin solubilised collagens…………………128
5.2.4.1. Sodium dodecyl sulphate polyacrylamide gel electrophoresis ….128
5.2.4.2. Fourier-transform infrared (FT-IR) spectra analysis…………….128
5.2.4.3. Measurement of viscosity………………………………………..128
5.2.4.4. Denaturation temperature (Td) determination…………………...129
5.2.4.5. Collagen hydrolyzate production using subcritical water
hydrolysis………………………………………………..129
5.2.4.6. Peptide molecular weight analysis………………………………130
5.2.4.7. Analysis of amino acid composition…………………………….130
5.2.4.8. Antioxidant activities……………………………………………130
5.2.4.8.1. DPPH free radical scavenging assay………………………..130
5.2.4.8.2. ABTS+ free radical scavenging assay………………………131
5.2.4.8.3. Ferric reducing power assay………………………………..131
5.2.4.8.4. Fe2+chelating assay………………………………………131
5.3. Results and Discussion…………………………………………………132
5.3.1. Proximate composition of mackerel bone, skin and PSCs…………132
5.3.2. Analysis of PSCs by SDS-PAGE…………………………………..135
5.3.3. FT-IR spectra of PSC from mackerel bone and skin……………….137
5.3.4. PSC viscosity and its thermal behaviour……………………………140
5.3.5. Hydrolysis PSC yield……………………………………………….142
5.3.6. Peptide MW and the predicted peptide sequence of PSC
hydrolyzates………………………………………………………...142
5.3.7. Amino acid composition of PSC hydrolyzates……………………...147
5.3.8. Antioxidant activities of PSC hydrolyzates…………………………150
5.3.8.1. DPPH free radical scavenging activity………………………150
5.3.8.2. ABTS+ free radical scavenging activity…………………………150
5.3.8.3. Ferric reducing power activity…………………………………151
5.3.8.4. Fe2+ chelating activity………………………………………….151
5.4. Conclusions…………………………………………………………….156
References……………………………………………………………...157
Summary…………………………………………………………………...185
Abstract (In Korean)………………………………………………………186
Acknowledgement………………………………………………………….190
Degree
Doctor
Appears in Collections:
대학원 > 식품공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.