PUKYONG

앵커 충돌에 의한 해저케이블 보호구조물의 거동 특성

Metadata Downloads
Alternative Title
Behavior characteristic of submarine power cable protectors under anchor collision
Abstract
For the protection of underwater lifeline such as submarine power cables, structures (so-called protectors) have been frequently used along with burying methods. The protector can experience several accidental loads such as anchor collision. Therefore, protectors are tested for stability assessment under anchor collision before the installation. The numerical analysis and verification test are performed. The accuracy of test result cannot be guaranteed without considering correct analysis conditions (collision velocity, material model, etc.). This study presents the behavior characteristics of the submarine power cable protectors under anchor collision.
To achieve the objective, the following works are implemented. First, rock-berms and tunnel-type A-ducts were selected as the target structures. Anchor collision was selected as the hazardous activity. Second, the drag coefficients of the anchors were obtained using a computational fluid dynamics package ANSYS-CFX, to calculate the terminal velocities of the five anchors (stock anchor: 1, 2-ton, stockless anchor: 2, 4.89, 10.5-ton). Finally, the anchor collision of the target structures was performed by a general purpose finite element package ANSYS AUTODYN. The rock berm was modeled by the piecewise Drucker-Prager material model and analyzed by the smooth-particle hydrodynamics (SPH) method. In the analyses, to investigate the behavior characteristics, the following parameters are considered: type of anchor, ground condition, sizes of SPH particles (100, and 200mm), collision velocity and location. The A-duct was modeled by the RHT concrete model and analyzed by the Lagrange-based finite element method. For the analyses, type of anchor, ground condition, collision velocity and location were considered to investigate the response characteristics.
From the analysis results, the following conclusions are made. First, the terminal velocities of each anchor are calculated. Second, in the cases of rock-berms, the rock-berm size (mainly the height) and type (mainly the weight) of anchor are important to the responses In overall, the height of rock-berm is critical to the safety of the rock-berm; hence, it is suggested to use higher rock-berm to increase the safety. Third, in the case of the A-ducts, the collision by the anchor gives severer damages. Because the anchor collision with the terminal velocity causes the perfect damage (D = 1.0), it is suggested to install the A-duct in the shallow water depth smaller than 23.819m.
Author(s)
우진호
Issued Date
2014
Awarded Date
2014. 8
Type
Dissertation
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/12438
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001967303
Alternative Author(s)
Jinho Woo
Affiliation
대학원
Department
대학원 해양공학과
Advisor
나원배
Table Of Contents
1. 서론 1
1.1 연구 배경 및 목적 1
1.2 연구 목적 및 내용 4
2. 해저케이블 보호구조물 6
2.1 개요 6
2.2 해저케이블 보호 관련 연구현황 7
2.2.1 국외 연구 현황 7
2.2.2 국내 연구 현황 12
2.3 해저케이블 보호구조물 13
2.4 위해요소 15
3. 수치 해석 모델링 17
3.1 전산 유체해석 18
3.1.1 ANSYS-CFX 개요 19
3.1.2 CFD 지배방정식 20
3.1.3 난류모델 22
3.1.4 전산 유체 모델링 23
3.1.5 경계조건 27
3.1.6 항력계수의 산정법 29
3.2 충돌해석 30
3.2.1 ANSYS-AUTODYN 개요 31
3.2.2 지배방정식 32
3.2.3 충돌체의 유한요소 모델링 33
3.2.4 해저케이블 보호구조물의 유한요소 모델링 34
3.2.5 재료모델 37
3.2.6 입자법 43
4. 앵커의 전산유체 해석 결과 47
4.1 ANSYS-CFX 검증 47
4.2 유동해석 결과 49
4.3 항력계수 산정 결과 51
4.3.1 앵커의 종류에 따른 항력계수의 변화 51
4.3.2 유속에 따른 항력계수의 변화 52
4.3.3 스톡의 유무에 따른 항력계수의 변화 53
4.4 앵커의 종단속도 55
4.5 요약 및 결론 61
5. Rock-berm의 앵커 충돌해석 62
5.1 Rock-berm의 충돌 해석 개요 62
5.2 앵커의 종류, SPH입자 크기, Rock-berm의 치수 변화에 따른 Rock-berm의 충돌해석 결과 66
5.3 지반 특성 변화에 따른 Rock-berm의 충돌해석 결과 70
5.4 앵커의 충돌 속도 변화에 따른 Rock-berm의 충돌해석 결과 73
5.5 앵커의 충돌 위치 변화에 따른 rock-berm의 충돌 응답 75
5.6 Rock-berm의 보호성능평가 78
5.7 Rock-berm 충돌해석의 검증 81
5.8 요약 및 고찰 83
6. A-duct의 앵커 충돌해석 85
6.1 A-duct의 충돌해석 개요 85
6.2 앵커의 종류에 따른 A-duct의 충돌해석 결과 88
6.2.1 앵커의 종류에 따른 A-duct의 충돌 응답 88
6.2.2 앵커의 종류에 따른 A-duct의 손상 96
6.3 지반 특성에 따른 A-duct의 충돌 응답 101
6.4 앵커의 충돌속도 변화에 따른 A-duct의 충돌 응답 105
6.5 앵커의 충돌위치 변화에 따른 A-duct의 충돌 응답 110
6.6 A-duct 충돌해석의 검증 114
6.7 요약 및 고찰 117
7. 결론 119
참고 문헌 123
Degree
Doctor
Appears in Collections:
대학원 > 해양공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.