PUKYONG

Synthesis of Core Cross-linked Polymeric Micelles and Nanomaterials by a Combination of Ring-opening Polymerization, RAFT Polymerization and Click Chemistry

Metadata Downloads
Abstract
In recent years the synthesis and application of polymers and nanomaterials based on ring-opening polymerization (ROP), living radical polymerization (LRP), click chemistry have attracted much attention. LRP, especially reversible addition-fragmentation chain transfer (RAFT) polymerization which is capable of controlling the molecular size and structure of polymers has been demonstrated as a powerful tool for synthesizing well-controlled macromoleules. Meanwhile, Cu(I)-catalyzed azide-alkyne cycloaddition has gained considerable attention. The great success of the Cu(I) catalyzed reaction is rooted in the fact that it is a virtually quantitative,very robust, insensitive, general, and suitable for polymerization reaction to synthesize a range of functional polymers.
The target of this thesis is to develop novel and simple approaches for synthesis of core cross-linked (CCL) micelles block copolymer and nanomaterials by using a combination of ROP, RAFT polymerization and/or click chemistry. Poly(ε-caprolactone)-b-poly(glycidyl methacrylate) (PCL-b-PGMA) block copolymers were prepared by the combination of ROP and RAFT polymerization. The direct formation of nanogels of the azido-functionalized PCL-b-PGMA-N3 block copolymer was controlled using a cross-linking agent in a nonselective solvent. Moreover, a drug delivery system for prednisolone 21-acetate (PA) based on dual-responsive CCL micelles was prepared. Poly(ethylene oxide)-b-poly(glycidyl methacrylate), PEO-b-PGMA, was synthesized by RAFT polymerization. The CCL micelles of the azido-functional PEO-b-PGMA-N3 and covalently entrapped PA were simultaneously prepared using a disulfide-containing cross-linking agent. Furthermore, the surface chemical modification of several nanomaterials including halloysite nanotubes, polyhedral oligomeric silsesquioxanes, magnetic graphene oxide, hydroxyapatite has been carried out to tune the surface properties for wide applications as catalysis and in wastewater treatment. The resulting nanogels and organic-inorganic hybrid nanostructures were characterized by a wide variety of techniques. The results show numerous potential applications towards drug controlled release, optical, catalysis, magnetic and environmental applications.
최근들어 개환중합 (ROP), 리빙 라디칼중합 (LRP), click chemistry 를 기반으로한 고분자와 나노물질의 합성과 응용이 많은 관심을 받고 있다. LRP 중 특히 reversible addition fragmentation chain transfer (RAFT) 중합은 분자량 제어도가 높은 고분자합성을위한 강력한 방법이다. 한편, 구리 (I) 촉매 아지드 알카인 고리화 첨가도 상당한 관심을 얻고 있다. 구리(I) 촉매화 반응의 엄청난 성공은 사실상 정량적이고, 매우 강력하고, 외부환경에 둔감하고, 일반적이고, 중합 반응에 적합한 기능성 고분자 합성에 뿌리를 두고있다.
이 논문의 목표는 ROP, RAFT 중합과 click chemistry의 조합을 이용하여 core crosslinked 마이셀 블록공중합체와 나노물질합성에대해 간단히 접근하고 새롭게 개발하는 것이다. Poly(ε-caprolactone)-b-poly(glycidyl methacrylate) (PCL-b-PGMA) 블록공중합체는 개환중합(ROP)과 reversible addition fragmentation chain transfer(RAFT) 중합을 조합하여 제조하였다. 아지드기를 가지는 PCL-b-PGMA-N3 블록공중합체 나노젤의 직접형성은 비선택적 용매에 가교제를 사용해 제어하였다. 게다가, 이중응답성 CCL 마이셀을 기반으로한 prednisolone 21-acetate (PA)의 약물 전달 시스템을 제조하였다.
Poly(ethylene oxide)-b-poly(glycidylmethacrylate) (PEO-b-PGMA)는 reversible addition-fragmentation chain transfer (RAFT) 중합에의해 합성되었다.
아지드 기능성의 PEO-b-PGMA-N3 마이셀과 공유결합된 PA는 disulfide를 함유한 가교제를 사용해 동시에 제조되었다. 또한, halloysitenanotubes, polyhedral oligomericsilsesquioxanes, magnetic graphene oxide, hydroxyapatite를 포함한 나노물질들을 화학적으로 표면개조하여 촉매작용이나 폐수정화같이 다양하게 응용하기위해 표면특성을 조정하는 연구를 수행하였다. 나노젤과 유기-무기 하이브리드 나노구조의 결과는 다양한 기술들을 통하여 관찰하였다. 그결과는 약물의 제어된 방출, 광학, 촉매작용, 자기 및 환경적인 응용에대한 많은 잠재력을 보여준다
Author(s)
CAO XUAN THANG
Issued Date
2015
Awarded Date
2015. 8
Type
Dissertation
Publisher
부경대학교 공과대학 대학원
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/12604
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002066790
Affiliation
부경대학교 융합디스플레이 공학과
Department
대학원 이미지시스템공학과
Advisor
임권택
Table Of Contents
Abstract.................................................................................................................. i
초록 ....................................................................................................................... iii
ACKNOWLEDGEMENTS.................................................................................. v
Contents ............................................................................................................... vi
List of Figures ...................................................................................................... xi
List of Tables ..................................................................................................... xvi
CHAPTER 1 ......................................................................................................... 1
General Introduction ............................................................................................ 1
1.1. Introduction to polymers and nanomaterials in nanotechnology ................... 1
1.2. Syntheis of polymer brushed via surface grafted strategies ........................... 6
1.3. Atom transfer radical polymerization (ATRP) in designing functional
materials ............................................................................................................. 8
1.4. Hybrid nanomaterials via reversible addition fragment chain transfer
(RAFT) polymerization...................................................................................... 10
1.5. Ring-opening polymerization (ROP) for nanomaterials having controlled
architectures ..................................................................................................... 13
1.6. Surface engineering of nanomaterials using click chemistry ....................... 15
1.7. Aim and outline of this thesis ...................................................................... 17
1.8. References .................................................................................................. 19
-vii-
CHAPTER 2 ....................................................................................................... 26
Synthesis of nanogels of poly(ε-caprolactone)-b-poly(glycidyl methacrylate) by
click chemistry in direct preparation ................................................................. 26
2.1. Introduction ............................................................................................... 27
2.2. Experimental details ................................................................................... 30
2.2.1. Materials .............................................................................................. 30
2.2.2. Synthesis of poly(ε-caprolactone)-based RAFT agent (PCL-RAFT)..... 31
2.2.3. Synthesis of PCL-b-PGMA block copolymer ....................................... 31
2.2.4. Preparation of PCL-b-PGMA-N3 block copolymer .............................. 32
2.2.5. CCL micelles of PCL-b-PGMA-N3 block copolymer by click chemistry
...................................................................................................................... 32
2.2.6. Characterization ................................................................................... 33
2.3. Synthesis and characterization of PCL-b-PGMA-N3 block copolymers by
ROP and RAFT polymerization ......................................................................... 34
2.3.1. The formation of macrogel or nanogel materials .................................. 42
2.3.2. The structure of CCL micelles ............................................................. 46
2.4. Conclusion ................................................................................................. 50
2.5. References .................................................................................................. 51
CHAPTER 3 ....................................................................................................... 54
One-pot synthesis of dual-responsive core cross-linked polymeric micelles and
covalently entrapped drug by click chemistry ................................................... 54
3.1. Introduction ............................................................................................... 54
3.2. Experimental details ................................................................................... 59
3.2.1. Materials .............................................................................................. 59
3.2.2. Synthesis of PEO-b-PGMA Block Copolymer ..................................... 60
-viii-
3.2.3. Preparation of PEO-b-PGMA-N3 Block Copolymer ............................. 60
3.2.4. Synthesis of cross-linking agent ........................................................... 61
3.2.5. Synthesis of alkyne conjugated prednisolone 21-acetate by hydrazone
linker ............................................................................................................. 62
3.2.6. Drug-loaded CCL micelles of PEO-b-PGMA-N3 block copolymer ...... 66
3.2.7. Reactivity of CCL micelles stabilization .............................................. 66
3.2.8. In vitro drug release ............................................................................. 67
3.2.9. Characterization ................................................................................... 67
3.3. Results and discussion ................................................................................ 68
3.3.1. Synthesis and characterization of CCL micelles ................................... 68
3.3.2. Stabilities and reactivities of non-CCL and CLL micelles .................... 75
3.3.3. Drug loading ........................................................................................ 77
3.3.4. In vitro PA release ............................................................................... 78
3.4. Conclusion ................................................................................................. 79
3.5. References .................................................................................................. 80
CHAPTER 4 ....................................................................................................... 88
Preparation of β-CyclodextrinMulti-decorated Halloysite Nanotubes as A
Catalyst and Nanoadsorbent for Dye Removal ................................................. 88
4.1. Introduction ............................................................................................... 88
4.2. Experimental details ................................................................................... 90
4.2.1. Materials .............................................................................................. 90
4.2.2. Preparation of HNTs-PGMA and HNTs-g-βCD composites ................. 91
4.2.3. Adsorption of MB and alcohol oxidation ............................................. 92
4.3. Results and discussion ................................................................................ 92
4.4. Conclusion............................................................................................ 100
4.5. References ............................................................................................ 101
-ix-
CHAPTER 5 ..................................................................................................... 104
Synthesis and Characterization of Photoluminescent Hybrids of Poly(ε-
caprolactone)-grafted-Polyhedral Oligosilsesquioxane by aCombination of
ROP and Click Chemistry ................................................................................ 104
5.1. Introduction ............................................................................................. 105
5.2. Experiments and discussion ...................................................................... 106
5.3. Conclusion ............................................................................................... 115
5.4. References ................................................................................................ 116
CHAPTER 6 ..................................................................................................... 118
β-Cyclodextrin Multi-conjugated Magnetic Graphene Oxide as A Nanoadsorbent
for Methylene Blue Removal .......................................................... 118
6.1. Introduction ............................................................................................. 119
6.2. Experimental details ................................................................................. 122
6.2.1. Materials ............................................................................................ 122
6.2.2. Immobilization of RAFT agents onto MNPs and synthesis of magnetic
poly(glycidyl methacrylate) (MNPs-g-PGMA) by RAFT polymerization .... 122
6.2.3. Preparation of MNPs/GO-βCD .......................................................... 123
6.2.4. Adsorption of methylene blue ............................................................ 124
6.2.5. Characterization ................................................................................. 125
6.3. Results and discussion .............................................................................. 125
6.3.1. Characterization of MNPs/GO-βCD ................................................... 126
6.3.2. Effect of MNPs/GO-βCD dosage ....................................................... 132
6.3.3. Effect of pH ....................................................................................... 134
6.3.4. Adsorption kinetics ............................................................................ 135
6.3.5. Adsorption isotherms ......................................................................... 138
-x-
6.4. Conclusions.............................................................................................. 141
6.5. References ................................................................................................ 142
CHAPTER 7 ..................................................................................................... 147
A Facile Synthesis of Poly(ε-caprolactone) grafted Poly(2-hydroxyethyl
methacrylate) functionalized Hydroxyapatite by RAFT and ROP ................ 147
7.1. Introduction ............................................................................................. 148
7.2. Experimental details ................................................................................. 149
7.2.1. Materials ............................................................................................ 149
7.2.2. Immobilization of RAFT agent onto the HAPs surface (HAP-RAFT) 150
7.2.3. Synthesis of HAP@PHEMA-g-PCL composites ................................ 150
7.2.4. Instrumentation .................................................................................. 151
7.3. Results and discussion .............................................................................. 152
7.4. Conclusion ............................................................................................... 159
7.5. References ................................................................................................ 160
SUMMARY ...................................................................................................... 162
PUBLICATIONS.............................................................................................. 165
Degree
Doctor
Appears in Collections:
대학원 > 이미지시스템공학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.