토석류의 유변물성과 강우재현주기를 고려한 건물의 물리적 취약성 평가
- Alternative Title
- Physical Vulnerability Assessment of Buildings Considering Rheological Properties of Debris Flow and Rainfall Return Period
- Abstract
- The continued increase in population and resulting demand for resources has led to pressures to settle in places where continuous land development processes become a risk. Human lives and structures located in debris flow-prone mountainous areas are commonly subject to debris flow hazards. Previous research into debris flows has mainly focused on landslide hazard mapping and the corresponding triggering mechanisms; however, there is an increasing interest in researches on risk assessment. For a risk assessment, vulnerability assessment for the elements at risk in debris flow is required. Few studies have been made on the vulnerability assessment of a building due to debris flow in spite of the possibility to provide useful information on management of vulnerable areas, prioritization of national disaster management policies, and future city planning.
This study presents the physical vulnerability assessment of buildings impacted by debris flow. To achieve the objective, the following works were implemented.
First, the physical vulnerability was obtained from the relationship between the degree of building damage and the intensity of the debris flow events. Three different vulnerability curves were obtained, which are functions of the debris flow height, flow velocity, and impact pressure, separately for different structural types of buildings. Regarding to the non-RC buildings, complete destruction occurred with impact pressures of greater than 30 kPa. For the case of RC buildings, slight damage occurred with impact pressures of less than 35 kPa. The impact pressure of debris flow corresponding to slight damage to an RC building resulted in complete destruction of non-RC buildings. The vulnerability curves of the non-RC buildings increased with increasing flow depth, flow velocity, and impact pressure more rapidly than those of the RC buildings. This means that different structural types of buildings showed different vulnerability curves and damage patterns.
Secondly, large vane-type rheometer developed for measuring the rheological properties of the coarse soil. Several series of rheometer tests were performed to investigate rheological properties of natural soil sample from debris flow disaster area with various water contents. The yield stress and viscosity of weathered soil samples decreased as the water content increased. The water content in soil contributes to reduce yield stress and viscosity, and this is a major cause for a larger run-out distance of debris flow. Water content corresponding to the same yield stress and viscosity shows a different range for each sample. The yield stress and viscosity of the weathered soil obtained through experiments showed a high correlation between the fines content of soil. The estimated rheological properties of weathered soil were used as input parameters for numerical simulation of debris flow.
Third, volumetric sediment concentration of debris flow in risk areas were evaluated using the hydrological theory and IDF curves. Also, initial volumetric sediment concentration of debris flow evaluated the using the flow test. Through this, analysis method of debris flow based on rainfall return period was proposed. In conjunction with a volumetric sediment concentration and initial volumetric sediment concentration of the debris flow risk areas, it can be determined that debris flow will be occurred or not. Also, in conjunction with a volumetric sediment concentration of the debris flow risk areas and rheological properties of weathered soil, the analysis of debris flow behavior by rainfall return period can be carried out.
Finally, physical vulnerability assessment system was established based on three main research contents(physical vulnerability curves, rheological properties of natural soil, analysis of debris flow based on rainfall return period) of this study. The obtained results of vulnerability assessment were applied in Hwangryeong Mt. region of Busan. For accurate vulnerability assessment, a further study, based on database with more debris flow events and rheological properties is needed. Vulnerability index of a building due to the impact of the debris flow is difficult to estimate because it depends on various characteristics of buildings such as the structural type, shape, position, direction, height and number of windows as well. Despite of the disadvantage and limitations of the present study, the presented approach attempts to propose a method to estimate the vulnerability of two structural types of building. In this way, the proposed approach can increase the knowledge about prospective outcomes of future hazards, thus contributing to the protection of the people and their assets.
- Author(s)
- 강효섭
- Issued Date
- 2016
- Awarded Date
- 2016. 2
- Type
- Dissertation
- Publisher
- 부경대학교 대학원
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/13150
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002237818
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 해양공학과
- Advisor
- 김윤태
- Table Of Contents
- 제 1 장 서 론 1
1.1 연구배경 1
1.2 연구목적 및 내용 2
1.3 논문의 구성 4
제 2 장 토석류 물리적 취약성 평가 7
2.1 물리적 취약성 7
2.1.1 취약성 정의 7
2.1.2 취약성 표현 8
2.2 토석류 재해 유발인자 평가 10
2.3 토석류 취약성 평가 연구현황 12
2.3.1 물리적 취약곡선 12
2.3.2 토석류 물리적 취약성 평가 14
제 3 장 토석류에 의한 건물의 물리적 취약함수 17
3.1 개요 17
3.2 경험적 방법에 의한 건물의 물리적 취약곡선 특성 18
3.2.1 토석류 재해사례 분석 및 연구 방법론 18
(1) 연구지역 18
(2) 재해사례 분석 20
(3) 방법론 24
3.2.2 토석류 재해 유발인자에 대한 물리적 특성 26
(1) 토석류의 흐름 특성 26
(2) 유역면적과 토석류 규모 26
(3) 최대 첨두유량 28
(4) 토석류 이동속도 29
3.2.3 토석류 충격압과 건물 손상과의 관계 32
(1) 토석류 충격압 32
(2) 건물손상 특성 33
(3) 토석류 충격압과 건물 손상과의 관계 34
3.2.4 구조물 취약함수 개발 38
3.3 토석류 수치해석을 통한 건물의 물리적 취약곡선 특성 43
3.3.1 토석류 재해 사례 분석 43
(1) 재해사례 43
(2) 건물손상 특성 45
3.3.2 토석류 수치모의 46
(1) FLO-2D 46
(2) 입력변수 47
3.3.3 해석결과 분석 55
(1) 체적농도 역해석 55
(2) 체적농도에 따른 토석류 재해 유발인자 분석 59
(3) 건물에 미치는 유발인자 분석 61
3.3.4 토석류 재해에 의한 건물의 물리적 취약곡선 특성 62
(1) 토석류 재해 유발인자와 건물 손상과의 관계 62
(2) 토석류 재해 유발인자에 따른 건물 취약곡선 64
3.4 요약 68
제 4 장 토석류 유변물성 특성 71
4.1 개요 71
4.2 토석류 유변물성 연구현황 72
4.3 상향침투 특성을 고려한 토석류 유변물성 특성 73
4.3.1 토석류 발생 특성 73
(1) 간극 유체압력 73
(2) 토석류 발생 특성 74
4.3.2 상향침투 특성을 고려한 Vane type rheometer 76
(1) 토석류 유변물성 측정 76
(2) 상향 침투 특성을 고려한 Vane type rheometer 77
(3) 유변물성 산정 80
(4) 유동곡선 특성 81
4.3.3 실험 방법 및 재료 특성 84
(1) 재료 특성 84
(2) 실험 방법 85
4.3.4 결과 분석 87
(1) 전단응력과 전단변형률속도 관계 87
(2) 모래의 유동곡선 특성 90
(3) 모래의 유변물성 특성 93
(4) 액상화 시점의 유변물성 특성 95
4.4 풍화토의 함수비(체적농도)변화에 따른 유변물성 특성 97
4.4.1 실험방법 및 재료 특성 97
(1) 풍화토의 물리적 특성 97
(2) 실험 방법 99
4.4.2 결과 분석 101
(1) 전단응력과 전단변형률속도 관계 101
(2) 점성과 전단변형률속도 관계 103
(3) 함수비변화에 따른 유변물성 특성 105
(4) 세립분 함량에 따른 상관성 분석 109
4.5 요약 113
제 5 장 토석류 거동 해석을 위한 체적농도 평가 115
5.1 개요 115
5.2 토석류 발생 조건의 체적농도 결정 116
5.2.1 유동성 시험 116
5.2.2 흐름값과 함수비(체적농도)와의 관계 118
5.3 토석류 위험유역의 체적농도 평가 121
5.3.1 토석류 체적농도 산정 121
5.3.2 물의 유출 유량 123
5.3.3 토석류 규모와 유출 계수 123
5.3.4 강우강도-지속시간-재현주기곡선 126
5.3.5 토석류 강우지속 시간 산정 126
5.4 토석류 재해사례 적용 및 검증 128
5.4.1 강우재현주기별 체적농도 128
5.4.2 토석류 재해사례 적용 및 검증 133
5.4.3 강우재현주기별 토석류 거동 특성 137
5.5 요약 142
제 6 장 토석류 재해 분석을 위한 취약성 평가 적용 145
6.1 서론 145
6.2 토석류에 의한 건물의 물리적 취약성 평가 145
6.2.1 물리적 취약성 평가 흐름도 145
6.2.2 토석류 거동 해석 상세 흐름도 146
6.3 토석류 재해 취약성 평가 적용 148
6.3.1 적용 대상지역 148
6.3.2 토석류 발생 조건의 최소 체적농도 산정 151
6.3.3 재현주기별 위험유역의 체적농도 평가 152
6.3.4 유변물성 산정 157
6.3.5 재현주기별 토석류 해석 159
6.3.6 토석류에 의한 건물의 취약성 평가 165
6.4 요약 168
제 7 장 결론 및 추후 연구과제 171
7.1 결론 171
7.2 추후 연구과제 176
참고문헌 177
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > 해양공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.