PUKYONG

Synthesis and Characterization of New Type A-A Conjugated Copolymers and Small Molecules Based on Quinoxaline Unit For OPVs

Metadata Downloads
Alternative Title
OPV를 위한 Quinoxaline을 기반으로 한 새로운 타입의 A-A 교대구조를 가지는 공액중합체와 단분자들의 합성과 특성
Abstract
최근 2050년경 천연자원이 고갈 될 것이라는 주장이 점쳐지고 있으며, 이는 환경오염의 문제와 맞물려 친환경 재생에너지의 개발을 필요로 하고 있는 추세이다. 이러한 친환경, 재생 가능한 에너지의 종류로는 수력, 풍력, 지력, biomass 그리고 태양 에너지 등이 있으며, 이중 태양을 이용한 에너지는 무한한 에너지원을 가지고 있고, 전 세계 어느 나라에서든 용이한 접근성의 두 가지 장점을 가지고 있어 많은 연구가 활발히 진행되고 있다. 기존에 사용하던 실리콘과 같은 무기물질을 사용한 태양전지는 그 재료비용과 제작비용이 비싸다는 단점을 가지고 있어 경제적, 시장적 가치가 많이 떨어지고 있다. 이러한 단점을 극복하고자 가격이 저렴한 태양전지가 요구되고 있으며, 그 중 전도성의 성질을 띈 고분자, 저분자를 이용한 유기태양전지는 role-to-role 공정, 용액공정을 통한 대면적 생산의 용이성 때문에 그 제작 비용이 크게 절감되고 잘 휘어지는 유연한 물성을 동시에 지니고 있어 다양한 분야에 적용 가능하다는 장점을 가지고 있어 최근 많은 연구가 진행되고 있다. 이 연구에서는 electron—withdrawing 물질로 fluorine이 치환된 Quninoxaline을 사용하여 공액고분자 및 저분자 물질들을 합성하고 그 특성들을 분석 하였다. 고분자로써는 Bithiazole unit과 결합 되었을 때, 저분자에서는 electron-donating 물질로 Benzodithiophene unit과 결합하여 alkyl group이 바꾸었을 때, 또 electron-donating 물질로 thiophene을 도입하였을 때 그 개수, bi-thiophene, fused-thiophene, 그리고 sidechain의 배열이 바뀌었을때, 각각 device를 만들었을 때 효율에 어떠한 영향이 작용하는지에 대해 연구를 실시하였다.
Author(s)
공민성
Issued Date
2017
Awarded Date
2017. 2
Type
Dissertation
Keyword
PSCs OPVs polymer
Publisher
부경대학교 대학원
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/13593
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002334589
Affiliation
부경대학교 대학원
Department
대학원 공업화학과
Advisor
진영읍
Table Of Contents
Chapter I. Introduction 1
I-1. The Background of Polymer Solar Cells (PSCs) and Small Molecule Solar Cells (SMSCs) 1
I-2. Operating Mechanism of Device 3
I-3. Bulk Heterojunction Structure 4
I-4. Parameters of PSCs 6
I-4-1. Open-Circuit Voltage (Voc) 6
I-4-2. Short-Circuit Current Density (Jsc) 7
I-4-3. Fill Factor (FF) 8
I-5. Tactics to Synthesize Conjugated Polymers for High Performance 9
I-5-1. Acceptor-Acceptor (A-A) Type Polymer 9
I-5-2. Small Molecule 10
I-5-3. Influence of Functionalities Substitution in Conjugated Backbone 11
I-5-4. Selection of Donor and Acceptor Unit in Conjugated Materials 12
Chapter II. Experimental 14
II-1. Materials and Instruments 14
II-2. Synthesis of monomers 16
II-2-1. Synthesis of donor monomers 16
II-2-1-1. Synthesis of thiophene-3-carbonyl chloride 16
II-2-1-2. Synthesis of N,N-diethylthiophene-3-carboxamide 16
II-2-1-3. Synthesis of benzo[1,2-b:4,5-b']dithiophene-4,8-dione 17
II-2-1-4. Synthesis of 4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene 18
II-2-1-5. Synthesis of 2,6-bis(trimethyltin)-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:3,4b′]dithiophene 18
II-2-1-6. Synthesis of 4,8-bis(octyloxy)benzo[1,2-b:4,5-b']dithiophene 19
II-2-1-7. Synthesis of 2,6-bis(trimethyltin)-4,8-bis(octyloxy)benzo[1,2-b:3,4-b']dithiophene 20
II-2-1-8. Synthesis of 2,5-bis(trimethylstannyl)thiophene 22
II-2-1-9. Synthesis of 5,5'-bis(trimethylstannyl)-2,2'-bithiophene 22
II-2-1-10. Synthesis of 2,5-bis-trimethylstannyl-thieno[3,2-b]thiophene 23
II-2-1-11. Synthesis of 2,5-dibromothiophene 24
II-2-1-12. Synthesis of tributyl(thiophen-2-yl)stannane 24
II-2-1-13. Synthesis of 2,2':5',2''-terthiophene 25
II-2-1-14. Synthesis of 2,5''-bis(trimethylsilyl)-5,2',5',2''-terthiophene 25
II-2-1-15. Synthesis of tributyl(3-hexylthiophen-2-yl)stannane 28
II-2-2-16. Synthesis of tributyl(4-hexylthiophen-2-yl)stannane 28
II-2-1-17. Synthesis of tributyl(thieno[3,2-b]thiophen-2-yl)stanne 29
II-2-2. Synthesis of acceptor monomers 31
II-2-2-1. Synthesis of 2,3-difluoro-1,4-bis-(trimethylsilyl)benzene 31
II-2-2-2. Synthesis of 1,4-dibromo2,3-difluoro-benzene 31
II-2-2-3. Synthesis of 1,4-dibromo-2,3-difiuoro-5,6-dinitro-benzene 32
II-2-2-4. Synthesis of 3,6-dibromo-4,5-difluorobenzene-1,2-diamine 32
II-2-2-5. Synthesis of hexacosane-13,14-dione 33
II-2-2-6. Synthesis of 5,8-dibromo-6,7-difluoro-2,3-didodecylquinoxaline 34
II-2-2-7. Synthesis of tetradecane-7,8-dione 36
II-2-2-8. Synthesis of 5,8-dibromo-6,7-difluoro-2,3-dihexylquinoxaline 37
II-2-2-9. Synthesis of 2,3-didodecyl-6,7-difluoro-5,8-di(thiophen-2-yl)quinoxaline 38
II-2-2-10. Synthesis of 5,8-bis(5-bromothiophen-2-yl)-2,3-didodecyl-6,7-difluoroquinoxaline 38
II-2-2-11. Synthesis of 5-(5-bromothiophen-2-yl)-2,3-didodecyl-6,7-difluoro-8-(thiophen-2-yl)quinoxaline 39
II-2-2-12. Synthesis of 6,7-difluoro-2,3-dihexyl-5,8-di(thiophen-2-yl)quinoxaline 40
II-2-2-13. Synthesis of 5-(5-bromothiophen-2-yl)-2,3-dihexcyl-6,7-difluoro-8-(thiophen-2-yl)quinoxaline 40
II-3. Synthesis of polymers 42
II-3-1. Synthesis of poly[4,4’-dibutoxy-2-(2,3-didodecyl-6,7-difluoro-8-phenylquinoxaline-5-yl)-2’phenyl-5,5’-bithiazole] (YJ-61) 42
II-3-2. Synthesis of poly[4,4’-dibutoxy-2-(5-(2,3-didodecyl-6,7-difluoro-8-(5-phenylthiophenphen-2-yl)quinoxaline-5-yl)-2’-phenyl-5,5’-bithiazole]
(YJ-62) 44
II-4. Synthesis of small molecule 46
II-4-1. Synthesis of 5,8-di([2,2’-bithiopehene]-5-yl)-2,3-didodecyl-6,7-difluoroquinoxaline (YJ-63) 46
II-4-2. Synthesis of 2,3-didodecyl-6,7-difluoro-5,8-bis(thieno[3,2-b]thiophen-2-yl)quinoxaline (YJ-64) 48
II-4-3. Synthesis of 2,3-didodecyl-6,7-difluoro-5,8-bis(3’’-hexyl-[2,2’:5’,2’’-terthiophen]-5-yl)quinoxaline (YJ-65) 50
II-4-4. Synthesis of 2,3-didodecyl-6,7-difluoro-5,8-bis(4’’-hexyl-[2,2’:5’,2’’-terthiophen]-5-yl)quinoxaline (YJ-66) 52
II-4-5. Synthesis of 2,3-didodecyl-6,7-difluoro-5,8-bis(5-(3-hexylthiophen-2-yl)thieno[3,2-b]thiophen-2-yl)quinoxaline (YJ-67) 54
II-4-6. Synthesis of 2,3-didodecyl-6,7-difluoro-5,8-bis(5-(4-hexylthiophen-2-yl)thieno[3,2-b]thiophen-2-yl)quinoxaline (YJ-68) 56
II-4-7. Synthesis of 5,5’”-bis(2,3-didodecyl-6,7-difluoro-8-(thiophen-2-yl)quinoxalin-5-yl)-2,2’:5’,2”:5”,2’’’-quaterthiophene (YJ-69) 58
II-4-8. Synthesis of 5-(4-(5-(5-(2,3-didodecyl-6,7-difluoro-8-(thiophen-2yl)quinoxalin-5-yl)thiophen-2-yl)thieno[3,2-b]thiophen-2yl)thiophen-2-yl)2,3-didodecyl-6,7-difluoro-8-(thiophen-2-yl)quinoxaline (YJ-70) 60
II-4-9. Synthesis of 8,8’-(5,5’-(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl)bis(thiophene-5,2-diyl))bis(2,3-didodecyl-6,7-difluoro-5-(thiophen-2-yl)quinoxaline (YJ-71) 62
II-4-10. Synthesis of 8,8’-(5,5’-(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl)bis(thiophene-5,2-diyl))bis(2,3-dihexcyl-6,7-difluoro-5-(thiophen-2-yl)quinoxaline (YJ-72) 64
II-4-11. Synthesis of 8,8’-(5,5’-(4,8-bis(octyloxy)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl)bis(thiophene-5,2-diyl))bis(2,3-didodecyl-6,7-difluoro-5-(thiophen-2-yl)quinoxaline (YJ-73) 66
II-4-12. Synthesis of 8,8’-(5,5’-(4,8-bis(octyloxy)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl)bis(thiophene-5,2-diyl))bis(2,3-dihexcyl-6,7-difluoro-5-(thiophen-2-yl)quinoxaline (YJ-74) 68
Chapter III. Results and Discussion 70
III-1. Polymerization Results 70
III-2. Thermal Stability of Polymers and Small Molecules 71
III-3. Optical Properties of Polymers and Small Molecule 72
III-3-1. Optical Properties of Polymers 72
III-3-2. Optical Properties of Small Molecules 75
III-4. Electrochemical Properties of Materials 82
III-5. Photovoltaic Properties of Materials 88
Chapter IV. Conclusions 92
References 93
Degree
Master
Appears in Collections:
대학원 > 공업화학과
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.