PUKYONG

미세조류 형질전환을 위한 디지털 전기천공법의 적용 및 바이오연료 중 불순물 제거 반응기 CFD 모델링

Metadata Downloads
Alternative Title
Application of Digital Electroporation for Microalgae Transformation and CFD Modeling of Reactor for Impurities Removal in Biofuel
Abstract
For the production of bio-fuel, it is essential to get superior species of microalgae. However, it is hard to get good species in nature. Therefore, the transformation of microalgae by delivering external DNA into cells is very significant. Among various transformation methods, electroporation is known for high efficiency and convenience. However, conventional electroporation system has drawbacks such as high initial cost and low cell viability issue. So in previous study, A digital microfluidic electroporation (EP) method is suggested. In this study, we conduct optimization of parameter effect on digital microfluidic electroporation. Optimization of parameters are separated two categories. One is biological parameter such as cell concentration in cell suspension, type of electroporation medium and temperature of electroporation medium , the other is electrical parameter such as applied voltage and number of pulse in same time. we use fluorescent dye to make a fluorescence ,when attache dsDNA, call ed Yo-Pro-1 to reduce analysis time. we perform the verification the optimization result using plasmid DNA. And superior microalgae use to make a bio-fuel. but bio-fuel include impurities such as water, alcohol, glycerin and catalyst. We performed bio-fuel purification reactor design by computation fluid dynamics simulation. By analyzing the change in flow and impurities concentration at the outlet according to the changes in flow rate, reactor length, and reactor diameter, we have found the minimum catalyst performance for the given flow rate condition and the relation between the reactor performance and the reactor size and shape. We also studied the effects of permeability of the packed bed on the flow and impurities concentration distribution. And then, We analyzed the changes in regeneration process according to purge gas flow rate, catalyst permeability, reactor size, and heat loss of reactor. We have found that the regeneration process is very much affected by temperature changes whereas it is hardly affected by catalyst permeability and porosity. We also estimated the regeneration time according to purge gas flow rate and initial temperatures and have found that increasing purge gas temperature is more effect for fast regeneration. The present work can be utilized to design a purification reactor for a fuel cell.
Author(s)
권상구
Issued Date
2017
Awarded Date
2017. 2
Type
Dissertation
Keyword
전기천공법 미세조류 형질전환 CFD 탈황 청정에너지
Publisher
부경대학교 대학원
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/13673
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002333369
Affiliation
부경대학교 대학원
Department
대학원 화학공학과
Advisor
임도진
Table Of Contents
I. 서론 1
II. 이론 4
1. 형질전환 4
2. 전기천공법 4
3. 유세포분석기 5
4. 공초점현미경 5
5. 클라미도모나스 6
6. 전산 유체 역학 6
III. 실험방법 7
1. 디지털 전기천공법을 이용한 미세조류의 형질전환 7
1.1 디지털 전기천공 시스템 7
1.2 세포 및 DNA 준비 9
1.3 디지털 전기천공법 11
1.4 유세포분석기 및 공초점현미경을 이용한 형질전환율 분석 12
2. CFD를 이용한 바이오연료 중 불순물 제거 및 촉매 재생모사 13
2.1 불순물 흡착제거 및 반응기 재생 프로세스 13
2.2 수치해석 방법론 14
2.3 흡착 제거 반응기 모델형상 및 격자구성 15
2.4 반응기 모델의 주요 변수 및 지배방정식 16
IV. 결과 및 고찰 19
1. 디지털 전기천공법을 이용한 미세조류의 형질전환 19
1.1 Yo-Pro-1의 농도 결정 19
1.2 Yo-Pro-1을 이용한 전기천공법의 생물학적 조건의 최적화 21
1.3 Yo-Pro-1을 이용한 전기천공법의 전기적 조건의 최적화 26
1.4 최적화된 전기천공 조건의 검증 32
2. CFD를 이용한 바이오연료 중 불순물 제거 및 촉매 재생 모사 35
2.1 촉매로 충전된 반응기 내부 유속 및 압력 강하 예측 35
2.2 반응기 유량에 따른 흡착 성능 분석 37
2.3 반응기 크기 변화에 따른 흡착제거 반응기 디자인 40
2.4 투과율에 따른 반응기 내부 유동 및 농도 변화 44
3. 반응기 내 촉매 재생프로세스 모사 46
3.1 퍼지가스 유량에 따른 촉매 재생성능 분석 46
3.2 반응기 크기 변화에 따른 영향 분석 50
3.3 퍼지가스 유량에 따른 촉매 재생성능 분석 52
3.4 비정상상태 분석을 통한 촉매 재생 소요시간 예측 54
V. 결론 58
참고문헌 61
Degree
Master
Appears in Collections:
산업대학원 > 응용화학공학과
Authorize & License
  • Authorize공개
Files in This Item:
  • There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.