전기수력학적 방법을 이용한 PVA 나노구조가 적용된 리튬이온전지용 Si/C음극의 제조
- Alternative Title
- Preparation of Si/C Anode with PVA Nanocomposite for Lithium-ion Battery using Electrohydrodynamic Method
- Abstract
- Silicon (Si) is considered to be a promising anode material for next-generation lithium ion batteries (LIBs) due to its extremely large capacity of 4,200 mAh/g (Li4.4Si phase). However its large volume change during charging and discharging leads to a severe crack in the electrode and rapid capacity decrease. Fortunately, a size dependence of fracture was discovered and it turned out that there is a critical size of ~150 nm for avoiding fracture in Si nanoparticles. Meanwhile, a binder is homogeneously mixed with active materials to withstand the volume change but large volume expansion drops its cohesiveness. Polyvinyl alcohol (PVA) is known to form a hydrogen bonding with partially hydrolyzed silicon oxide layer on Si nanoparticles. For this reason, PVA replaces existing binders like PVDF, SBR/CMC in the Si based LIBs but the cracks in the overall structure of the electrode caused by large volume change still happens.
To overcome this binder problem, we have introduced electrohydrodynamic methods (electrospray/electrospinning). By using electrospraying method, PVA nanoparticles were added to make adhesive pores through the drying process to withstand the expansion of Si nanoparticles. By using electrospinning method, the resulting nanofibrous PVA structures were expected to stably weave the active materials. Stresses from the large volume expansion of Si nanoparticles could be spread out and the loss of the electrical contact from the contraction of Si nanoparticles could be eliminated by the elasticity of nanofibrous PVA structures.
Accordingly, we have confirmed that the capacity retention of Si-based LIBs using electrospun PVA matrix is much higher compared to the electrospraying method and the conservative method (only dissolving in the slurry); the 25th cycle capacity retention ratio based on the 2nd cycle was 37% for the electrode with electrospun PVA matrix, compared to 22, 27, and 8% for the electrodes with the electrosprayed PVA, PVdF and PVA binders, respectively.
- Author(s)
- 정희철
- Issued Date
- 2017
- Awarded Date
- 2017. 2
- Type
- Dissertation
- Keyword
- 리튬이온전지 리튬이차전지 음극 silicon Si 실리콘 전기방사 electrospinning
- Publisher
- 부경대학교 대학원
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/13769
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002332961
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 화학공학과
- Advisor
- 원용선
- Table Of Contents
- 1. 서 론 1
2. 이 론 4
2.1. 리튬이온전지의 개요 4
2.2. 리튬이온전지의 동작 원리 5
2.3. 리튬이온전지의 구성 요소 7
2.3.1. 음극 10
2.3.2. 음극활물질의 종류 및 전기화학적 특성 11
2.3.2.1. 리튬 금속 11
2.3.2.2. 탄소재 12
2.3.2.3. 비탄소재 13
2.3.2.4. Si 음극재 15
2.3.3. 양극 18
2.3.4. 전해질 21
2.3.5. 분리막 23
2.3.6. 바인더 28
2.3.7. 바인더의 요구 특성 28
2.3.7.1. 전지의 성능 및 안정성 측면 28
2.3.7.2. 제조공정 측면 29
2.3.7.3. 바인더로 사용되고 있는 고분자 29
2.3.7.4. 바인더의 향후 동향 30
2.3.8. PVA 33
2.3.8.1. 바인더로서의 PVA 34
2.4. Electrohydrodynamics(electrospinning, electrospraying) 37
2.4.1. Electrohydrodynamics의 배경과 원리 37
2.4.2. 점도 42
2.4.3. 표면장력 42
2.4.4. 용매의 영향 43
2.4.5. 전기방사/전기분사 공정의 조건 43
2.4.5.1. 전압(voltage) 43
2.4.5.2. 주입속도(feed rate) 44
2.4.5.3. 노즐(nozzle) 44
3. 실 험 48
3.1. 실험재료 48
3.2. 실험방법 48
3.2.1. 전극의 제조 48
3.2.2. 전기방사/전기분사 공정 49
3.2.3. 전기화학적 특성 분석 50
3.2.3.1. 완전전지(full cell)와 반쪽전지(half cell) 50
3.2.3.2. 정전류/정전압 시험법 50
3.2.3.3. 임피던스 분광법
(EIS, electrical impedance spectroscopy) 51
3.2.4. Morphology 51
4. 결과 및 고찰 52
4.1. 정전류/정전압 시험법 – 수명 특성 분석 52
4.1.1. 정전류 시험법 52
4.1.2. 정전류/정전압 시험법 53
4.2. 정전류/정전압 시험법 – 전압 특성 분석 58
4.3. 임피던스 분광법(EIS, electrical impedance spectroscopy) 64
4.4. Morphology 73
5. 결 론 75
6. 참고문헌 77
- Degree
- Master
-
Appears in Collections:
- 산업대학원 > 응용화학공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.